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M. Grüninger
Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON
M5S 3G8, Canada
E-mail: gruninger@mie.utoronto.ca



2 Winter, Hahmann, Grüninger

1 Introduction

In his seminal work, Stone [14] proved that every Boolean algebra has an isomor-
phic representation as the open sets of a topological space. Similarly, the regular
open sets (and dually the regular closed sets) of a topological space also form
Boolean algebras, cf. [11]. It is only natural to ask what algebraic structures rep-
resent the regular sets of a topological space. This is still an open question. It
is motivated by the theory of qualitative space proposed in [1] whose intended
models contain only regular sets of a topological space. Generally speaking, Qual-
itative Spatial Reasoning (QSR) aims to capture relations in space qualitatively,
e.g. without applying a specific metric. Topological and mereological relations are
fundamental amongst such relations and are often captured in logical theories
referred to as mereotopologies. For many practical representation and reasoning
problems it is appropriate to assume that all regions are of the same dimension,
we refer to such theories as equidimensional mereotopologies. Therein all regions
must be regular, i.e. isolated points or other lower-dimensional artifacts cannot oc-
cur in order to ensure closure under sums and intersections amongst regions. This
commonsensical notion of regularity corresponds to the definition of regularity
known from topology. Several alternative axiomatizations of mereotopology have
been proposed, for a comprehensive overview of the different ontological assump-
tions and sets of axioms see e.g. [6,9]. One way to classify these axiomatizations
of equidimensional mereotopology is by their intended topological models. Either
it is assumed that all regions are regular closed (or dually regular open) or that
all regions are regular, but not necessarily open or closed [6].

The approach assuming that all regions are regular closed makes the ontological
commitment that two regions with identical closures must be identical. Such an as-
sumption is made for example by the most prominent mereotopology, the Region-
Connection Calculus (RCC, [5]). Topological interpretations thereof include only
regular closed sets and consequently each model forms a Boolean algebra. If we
superimpose a contact relation on such a Boolean algebra we obtain so-called
Boolean contact algebras [7,13].

The alternative approach, first axiomatized as a first-order theory by Asher and
Vieu [1] which we refer to as RT0, can distinguish regions with identical closures.
For example, a region that is neither open nor closed is distinct from both its
interior and its closure. This approach is maybe less popular, but the arising models
are both algebraically and topologically interesting. Most importantly, the theory
RT0 captures the same set of mereotopological relations as the RCC. Though
regions with identical closures can be distinct, interiors and closures of all regions
are still required to exist. Moreover, all regions must again be regular which leads to
definitions of regular union and intersection that differ from standard set-theoretic
union and intersection. Hence not every set of subsets of a topological space can be
extended to a model of RT0. For studying the mereotopology RT0, it is convenient
to study a weaker theory thereof which has been introduced in [10] and is referred
to as RT−. The models of RT− are structurally equivalent to the models of RT0.
However, ‘trivial’ models of the RT−, in which the extensions of external contact
(EC) or weak contact (WCont) are empty, are not models of RT0. Recall that two
regions are externally connected if they share a point, i.e. are in contact, but do
not share an equidimensional part, i.e. do not overlap. Two regions are in weak
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contact if their closure are not in contact but any open region containing one of
them is in contact to the other.

In [10] Stonian p-ortholattices were introduced to characterize the models of RT−

algebraically. Moreover, it has been shown that the models of RT0 are the Stonian
p-ortholattices that contain at least one of C14, C16, C18, or C20

1 as a sublattice.
Subsequent work [15] demonstrated that the skeleton, i.e. the set of all closed sets,
of a Stonian p-ortholattice is a model of RCC and every model of RCC can be
extended to a Stonian p-ortholattice while preserving the contact relation. This
verified the close relationship between the RCC and RT−. However, one important
question has been left open: the topological, i.e. the point-set, representability of
Stonian p-ortholattices. If every model of the theory RT0 would indeed capture
the regular sets of some topological space as claimed in [1], we could represent
all Stonian p-ortholattices topologically by the regular sets of some topological
space. An algebraic representation of the regular closed sets of a topological space
would immediately follow. In this paper, we prove that this is not the case: not
all Stonian p-ortholattice can be represented as regular point sets of a topological
space. Therefore, the completeness theorem for RT0 with respect to the intended
models of regular subsets of a topological space from the original paper [1] is
incorrect; we will show why it fails.

In this work, we make significant progress towards a full topological representation
of Stonian p-ortholattices in two ways. We give examples of Stonian p-ortholattices
that are not (topologically) representable and identify five necessary properties
for Stonian p-ortholattices to be representable. These properties, amongst them a
conditional form of distributivity, are topologically motivated and can be used to
eliminate unintended models of the theories RT− and RT0. Though the identified
properties eliminate all unintended, i.e. non-representable, models up to a domain
size of 24, a proof whether the properties suffice to eliminate all non-representable
Stonian p-ortholattices remains outstanding.

The paper is structured as following. First we review the mereotopology RT0
and its subtheory RT−, followed by a a review of Stonian p-ortholattices and
their algebraic properties and a compact equational axiomatization of Stonian
p-ortholattices. The equational theory enabled us in the first place to generate
sufficiently large Stonian p-ortholattices that guided our inquiry into representable
ones. We subsequently give examples of Stonian p-ortholattices that are models
of the full mereotopology RT0 and give an equational theory thereof. In Section 4
we formally define what we mean by representability of Stonian p-ortholattices
and how this relates to the structures we can obtain from the regular sets of a
topological space. Section 5 introduces relative notions of interior and closure;
those are necessary for Section 6, in which we introduce the properties (RP1),
(RP2), (M), (S), as well as a localized version of distributivity (D). These properties
are always satisfied by lattices constructed from the regular sets of a topological
space. All five properties can again be expressed as quasiidentities, thus preserving
the equational character if we extend the theory of Stonian p-ortholattices by
those properties. Section 6 concludes by showing that our localized version of
distributivity implies the conditions (RP1) and (RP2). In Section 7 we look at

1 C14, C16, C18, or C20 are all Stonian p-ortholattices themselves, we will formally define
them later in the paper.
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small (with up to 24 elements) Stonian p-ortholattices and show that the only two
representable ones amongst them, C18 and C24, satisfy all five conditions while all
non-representable ones amongst them violate at least one of the conditions. We
also show how to construct a counterexample to the completeness proof of [1] and
finally show why the original completeness proof is incorrect.

2 The Mereotopology RT0

The mereotopology RT0 proposed by Asher and Vieu [1] evolved from Clarke’s
theory, addressing some of its shortcomings. RT0 is a first-order theory based on a
binary contact relation C as primitive. We use the following definitions, we include
only the ones necessary for the subsequent axioms or later in the paper:

(D1) P (x, y) ≡def ∀z[C(z, x)→ C(z, y)] (Parthood)
(D3) O(x, y) ≡def ∃z[P (z, x) ∧ P (z, y)] (Overlap)
(D4) EC(x, y) ≡def C(x, y) ∧ ¬O(x, y) (External connection)
(D6) NTP (x, y) ≡def P (x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)])

(Non-tangential parthood)
(D7) c(x) ≡def −i(−x) (Closure operation)
(D8) OP (x) ≡def x = i(x) (Open individuals)
(D11) WCont(x, y) ≡def ¬C(c(x), c(y)) ∧ ∀z[(P (x, z) ∧OP (z))→ C(c(z), y)]

(Weak contact)

The operations interior, i, and complement, −, necessary in (D7) and (D8) are
defined by the axioms (A7) and (A8). Notice that the elements implied by the
axioms (A4)-(A8), (A13) are indeed unique which follows immediately from (A3).

(A1) ∀x[C(x, x)] (C reflexive)
(A2) ∀x, y[C(x, y)→ C(y, x)] (C symmetric)
(A3) ∀x, y[∀z(C(z, x)↔ C(z, y))→ x = y] (C extensional)
(A4) ∃x∀y[C(x, y)] (Existence of a unique universally connected element 1)
(A5) ∀x, y∃z∀u[C(u, z)↔ (C(u, x) ∨ C(u, y))]

(Existence of a unique sum x ∪ y for every x and y)
(A6) ∀x, y[O(x, y)→ ∃z∀u[C(u, z)↔ ∃v(P (v, x) ∧ P (v, y) ∧ C(v, u))]]

(Existence of a unique intersection x ∩ y for overlapping elements x and y)
(A7) ∀x[∃y[¬C(y, x)]→ ∃z∀u[C(u, z)↔ ∃v(¬C(v, x) ∧ C(v, u))]]

(Existence of a unique complement −x for elements x 6= 1)
(A8) ∀x∃z∀u[C(u, z)↔ ∃v(NTP (v, x) ∧ C(v, u))]

(Existence of a unique interior i(x) for every x)
(A9) c(1) = 1 (Closure as a total function)
(A10) ∀x, y[(OP (x) ∧OP (y) ∧O(x, y))→ OP (x ∩ y)]

(Intersection of open individuals is open)
(A11) ∃x, y[EC(x, y)] (Existence of two externally connected elements)
(A12) ∃x, y[WCont(x, y)] (Existence of two weakly connected elements)
(A13) ∀x∃y[P (x, y) ∧OP (y) ∧ ∀z((P (x, z) ∧OP (z))→ P (y, z))]

(Existence of a smallest open neighborhood n(x) for every x)
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The axioms (A1) to (A13) together with the previous definitions axiomatize the
theory RT0. We will also use the subtheory RT− = RT0 \ {(A11), (A12), (A13)}
introduced in [10]. We have maintained the notation and numbering from [10];
the notation slightly differs from that in [1] to avoid confusion with the lattice
operations we use in our work.

3 Stonian p-ortholattices

Stonian p-ortholattices have been introduced in [10] as algebraic counterparts of
the mereotopology RT−. Here we first review the definitions and properties of
Stonian p-ortholattices and then give an equational axiomatization thereof. Sub-
sequently, we give examples of Stonian p-ortholattices and show how to define the
RT− and the original theory RT0 algebraically as extension thereof.

Definition 1 A Stonian p-ortholattice is a structure 〈L,+, ·,∗ ,⊥ , 0, 1〉 of type
〈2, 2, 1, 1, 0, 0〉 such that

1. 〈L,+, ·, 0, 1〉 is a bounded lattice;
2. x∗ is the pseudocomplement of x, i.e. x · y = 0 ⇐⇒ y ≤ x∗ for all
x, y ∈ L;

3. x⊥ is an orthocomplement of x, i.e. for all x, y ∈ L we have
(a) x⊥⊥ = x,
(b) x · x⊥ = 0,
(c) x ≤ y implies y⊥ ≤ x⊥;

4. the Stone identity (x · y)∗ = x∗ + y∗ holds for all x, y ∈ L.

In a Stonian p-ortholattice the structure 〈L,+, ·,∗ , 0, 1〉 is a pseudocomplemented
lattice while the structure 〈L,+, ·,⊥ , 0, 1〉 is an ortholattice. Moreover, with x+ =
x⊥∗⊥ the structure 〈L,+, ·,+ , 0, 1〉 is a quasicomplemented lattice, also known
as a dually pseudocomplemented lattice. Stonian p-ortholattices are a natural
generalization of the Stone lattices, i.e. the distributive lattices that satisfy the
Stone identity, to non-distributive lattices. Stonian p-ortholattices satisfy the De
Morgan laws but are in general not even modular [10], which is a weaker notion
than distributivity. The next theorem from [10] shows that modularity, like many
other conditions, forces a Stonian p-ortholattice to be Boolean.

1

a = a∗∗ = a⊥∗ = a+∗ a∗

a++ = a⊥+ = a∗+ a⊥ = a+

0

Fig. 1: The smallest non-Boolean Stonian p-ortholattice C6
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Theorem 1 Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then the following
statements are equivalent:

1. x∗ = x⊥ for all x ∈ L.
2. x∗ = x+ for all x ∈ L.
3. L is modular, i.e. x ≤ y → x+ (y · z) = y · (x+ z) for all x, y, z ∈ L.
4. L is distributive, i.e. x+ (y · z) = (x+ y) · (x+ z) for all x, y, z ∈ L.
5. L is uniquely complemented, i.e. x+ y = 1 ∧ x · y = 0 ∧ x+ z = 1 ∧ x · z =

0→ y = z for all x, y, z ∈ L.
6. L is a Boolean algebra.
7. L does not have C6 (see Fig. 1) as a subalgebra.

Basic properties of Stonian p-ortholattices have been proven in [10,15]. The prop-
erties of interest here are summarized by the following lemma.

Lemma 1 Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then we have for all
x, y ∈ L:

1. x · x∗ = 0, x+ x∗ = 1, x · x+ = 0, and x+ x+ = 1.
2. x+ ≤ x⊥ ≤ x∗ and x++ ≤ x ≤ x∗∗.
3. x+++ = x+ and x∗∗∗ = x∗.
4. x ≤ y implies y∗ ≤ x∗ and y+ ≤ x+.
5. (x+ y)∗ = x∗ · y∗, (x · y)+ = x+ + y+, and (x+ y)+ = x+ · y+.
6. (x+ y)⊥ = x⊥ · y⊥ and (x · y)⊥ = x⊥ + y⊥.
7. x∗⊥ = x⊥+ = x∗+ = x++ and x+⊥ = x⊥∗ = x+∗ = x∗∗.

We will use these properties as well as the following equivalences throughout the
paper without further mentioning.

Lemma 2 Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then the following
statements are equivalent:

1. x++ ≤ y,
2. x++ ≤ y++,
3. x∗∗ ≤ y∗∗,
4. x ≤ y∗∗.

Proof (1)⇒ (2) : We have x++ = x++++ ≤ y++.
(2)⇒ (3) : From x++ ≤ y++ we directly obtain x∗∗ = x++∗∗ ≤ y++∗∗ = y∗∗.
(3)⇒ (4) : This follows from x ≤ x∗∗.
(4)⇒ (1) : From x ≤ y∗∗ we obtain x++ ≤ y∗∗++ = y++ ≤ y. ut

3.1 An Equational Theory of Stonian p-ortholattices

The Stonian p-ortholattices form a variety, i.e. they can be axiomatized by a set of
equations. The equational theory can be constructed as the union of the axioms of
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the equational theories of pseudocomplemented lattices and ortholattices, together
with the Stone identity (S1).

The theory of pseudocomplemented lattices consists of the axioms for bounded
lattices (L1∧)-(L6∧), (L1∨)-(L6∨), and the definitions (D1∧) and (D1∨) from
[12] extended by the axioms (PC1)-(PC3) governing the pseudocomplement oper-
ation ∗ [2]. The axioms (OC1)-(OC3) are a compact axiomatization of the theory of
ortholattices [3]. The definition(QC1) defines quasicomplementation +. Together
with the Stone identity we obtain the equational theory of Stonian p-ortholattices
consisting of all of the above axioms, and (S1).

(L1∧) x = x · x (L1∨) x = x+ x
(L2∧) x · y = y · x (L2∨) x+ y = y + x
(L3∧) x · (y · z) = (x · y) · z (L3∨) x+ (y + z) = (x+ y) + z
(L4∧) x · (x+ y) = x (L4∨) x+ (x · y) = x
(L5∧) 0 · x = 0 (L5∨) 0 + x = x
(L6∧) 1 · x = x (L6∨) 1 + x = 1

(D1∧) x ≤ y ↔ x · y = x (D1∨) x ≤ y ↔ x+ y = y

(PC1) x · (x · y)∗ = x · y∗ (OC1) (x+ y) + z = (z⊥ · y⊥)⊥+ x
(PC2) x · 0∗ = x (OC2) x · (x+ y) = x

(PC3) 0∗∗ = 0 (OC3) x+ (y · y⊥) = x

(QC1) x+ = x⊥∗⊥ (S1) (x · y)∗ = x∗ + y∗

The set of axioms {L2∧, L3∧, L4′∧, L6∧, PC1, PC2′, PC2′′, O1′, O2′, S1′} is a more
compact axiomatization of Stonian p-ortholattices2 in which + is definable in
terms of · and ⊥ (OC3′). We verified that all the above properties are theorems
of this reduced set of axioms using the automated theorem prover Prover9. See
www.cs.toronto.edu/~torsten/RegularSets/ for the proof output.

(L2∧) x · y = y · x (L3∧) x · (y · z) = (x · y) · z
(L4′∧) x · (x⊥ · y⊥)⊥ = x (L6∧) 1 · x = x

(PC1) x · (x · y)∗ = x · y∗ (OC1′) x⊥⊥ = x

(PC2′) 0∗ = 1 (OC2′) x · x⊥ = 0

(PC2′′) 1∗ = 0 (S1′) (x · y)∗ = (x∗⊥ · y∗⊥)⊥

(OC3′) (x+ y) = (x⊥ · y⊥)⊥ (QC1) x+ = x⊥∗⊥

Throughout the paper we are interested in equational versions of all newly intro-
duced properties. Then the extension of the theory of Stonian p-ortholattices by
those conditions results again in a variety.

3.2 Examples of Stonian p-ortholattices

Before we define the mereotopologies RT− and RT0 as extension of Stonian p-
ortholattices, we review the four Stonian p-ortholattices C14, C16, C18 and C20

introduced in [10]. Those lattices have a common outer structure given in Fig-
ure 2(a), and they only differ in the intervals between a++ · b+ and a∗∗ · b∗

2 Peter Jipsen pointed out that a reduction to a theory with only the binary operation · and
the unary operations ′ and ∗ is possible.
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1

a = a∗∗ (a++ · b+)⊥ b∗

a++ (a∗∗ · b∗)⊥

.

..

b⊥ = b+

b = b∗∗ a∗∗ · b∗ a∗

b++ a++ · b+

...

a⊥ = a+

0
(a) The outer structure

a∗∗ · b∗

a++ · b+

(b) The inner structure of C14

a∗∗ · b∗

a++ · b∗ a∗∗ · b+

a++ · b+

(c) The inner structure of C18

a∗∗ · b∗

a++ · b∗

a++ · b+

(d) The inner structure of C16

a∗∗ · b∗

b∗ + a∗∗a++· · b+

a++ · b∗ a∗∗ · b+

a++ · b+

(e) The inner structure of C20

Fig. 2: The outer and inner structure of C14, C16, C18 and C20
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and (a∗∗ · b∗)⊥ and (a++ · b+)⊥. Notice that those two intervals must be dual
due to the orthocomplement operation ⊥. The specific inner structure of those
lattices is given by Fig. 2(b)–(e). All four structures as well as the examples
in the remainder of the paper were checked to be Stonian p-ortholattices by a
program written in the programming language Haskell, which is available from
www.cs.toronto.edu/~torsten/RegularSets/. Furthermore, it was also checked
that all lattices satisfy the additional axioms (A11)−(A13), i.e. that all lattices are
models of the full theory RT0. As we will see shortly, C14 is in fact the only Stonian
p-ortholattice satisfying (A12) that contains only 14 elements and is thereby the
smallest model of RT0. However, several other Stonian p-ortholattices with 16, 18,
or 20 elements exist.

3.3 RT0 as extension of Stonian p-ortholattices

The definitional extensions defining parthood as P (x, y) ⇔ x ≤ y and contact
as C(x, y) ⇔ x 6≤ y⊥ reconstruct the mereotopology RT− from Stonian p-
ortholattices [10]. Other mereotopological relations such as external connection
EC, overlap O, non-tangential parthood NTP , etc. can be defined subsequently
using the definitions from RT−. The models of the mereotopology RT− are the
class of all Stonian p-ortholattices [10, Theorems 4.3 and 5.1]:

Theorem 2 Let L be a set, C a binary relation over L. Define x � y⊥ ⇔ C(x, y).

Then 〈L,C〉 is a model of RT− iff the structure 〈L∪{0},+, ·,∗ ,⊥ , 0, 1〉 with 0 /∈ L
and ≤ as underlying partial order is a Stonian p-ortholattice.

Recall that the full mereotopology RT0 extends RT− non-conservatively by the
axioms (A11), (A12), and (A13). (A12) and (A13) can be restated in algebraic
form as (A12′) and (A13′), while we proved in [10] that (A11) is a theorem of
Stonian p-ortholattices satisfying (A12); hence (A11) can be omitted altogether.

Lemma 3 Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then

1. the following statements are equivalent:
(a) L satisfies (A12)
(b) L satisfies the property (A12′):

(A12′) ∃x, y[x 6= 0 ∧ x∗∗ ≤ y++ ∧ ∀z[x � z++ ∨ z∗∗ � y]];

2. (A12′) implies (A11);
3. the following statements are equivalent:

(a) L satisfies (A13)
(b) L satisfies the property (A13′):

(A13′) ∀x∃y[x ≤ y++ ∧ ∀z[x � z++ ∨ y++ ≤ z]];

Proof The first part has been shown in [10, Lemma 7.1], while the second part im-
mediately follows from the fact that (A11) is a theorem of Stonian p-ortholattices
satisfying (A12), which we proved in [10, Corollary 7.3]. It remains to show that
(A13) and (A13′) are equivalent.
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(a)⇒ (b) : Suppose x, y satisfy (A13). Then we want to show that x and y satisfy
(A13′). We immediately have x ≤ y = y++. If we pick an arbitrary z, we
also have x ≤ z = z++ if P (x, z) and OP (z). Then y++ = y ≤ z, otherwise
x � z++.

(b)⇒ (a) : Suppose x, y satisfy (A13′). Then we want to show that x and y++

satisfy (A13). First notice that for any y, y++ must exist. From x ≤ y++ we get
P (x, y++). We also know OP (y++). If for an arbitrary z, it holds x � z++,
then P (x, z) would require that x ≤ z. Then x 6= x++ and thus ¬OP (z)
follow. If on the other hand x ≤ z++, then y++ ≤ z by (A13′) and we obtain
P (y++, z). ut

In [10] we also proved that a Stonian p-ortholattice satisfying (A12′) has at least
one of C14, C16, C18 or C20 as a subalgebra. Consequently, all examples in this
paper satisfy (A12′). By looking at the dual skeleton of only open elements {x | x =
x++, x ∈ L} we can easily verify that all examples in this paper also satisfy (A13′)
and thus are indeed models of the full mereotopology RT0.

Many other small examples of Stonian p-ortholattices quite often do not provide
elements in weak contact, i.e., Axiom (A12′) is not valid. Therefore, those lattices
are not models of the full theory RT0. However, the next lemma shows that such
lattices can be extended into a lattice satisfying (A12′). Notice that the class of
Stonian p-ortholattice is a variety, and, hence, closed under products.

Lemma 4 Let L1 and L2 be Stonian p-ortholattices. If L1 satisfies (A12′), then
so does the Stonian p-ortholattice L1 × L2.

Proof Suppose x, y ∈ L1 are the two elements required by (A12′). Then we have
(x, 1) 6= (0, 0) since x 6= 0 and (x, 1)∗∗ = (x∗∗, 1) ≤ (y++, 1) = (y, 1)++ because
x∗∗ ≤ y++. Now suppose (x, 1) ≤ (z1, z2)++ and (z1, z2)∗∗ ≤ (y, 1). Then we have
x ≤ z++

1 and z∗∗1 ≤ y, a contraction. ut

4 Topological and representable Stonian p-ortholattices

In this section, we show how the regular sets of a topological space form a Stonian
p-ortholattice and define when a Stonian p-ortholattice is representable, i.e. has
a representation by the regular sets of some topological space. Beforehand, we
review some basic definitions and properties of topological spaces relevant for our
work and prove properties of regular sets. For any notion not explained here, we
invite the reader to consult [8].

4.1 Topological spaces

In the following we will denote union and intersection of sets by ∪ and ∩, respec-
tively. If a ⊆ X, then we write X \ a for the complement of a with respect to X.
If X is understood, we will simply write a instead.
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We will denote topological spaces by 〈X, τ〉, where τ is the topology on X, i.e., τ
is a collection of sets containing ∅ and X, and being closed under arbitrary unions
and finite intersections. The elements of τ are called open, and a subset a ⊆ X
is called closed if a ∈ τ , i.e., if its complement is open. We let clτ (a) =

⋂
{b |

b is closed, a ⊆ b ⊆ X} be the τ -closure of a, and intτ (a) =
⋃
{b | b is open, b ⊆ a}

its τ -interior. If τ is understood, we will just speak of X as a topological space, and
drop the subscripts from the operators. The interior and the closure operator are
monotone, and they satisfy the following properties which we will use throughout
the paper without mentioning:

int(int(a)) = int(a), cl(cl(a)) = cl(a),

int(a ∩ b) = int(a) ∩ int(b), cl(a ∪ b) = cl(a) ∪ cl(b),

int(a) ∪ int(b) ⊆ int(a ∪ b), cl(a ∩ b) ⊆ cl(a) ∩ cl(b),

int(a) = cl(a), cl(a) = int(a).

4.2 Regular sets

Given a topological space X, a subset a ⊆ X is called regular iff int(a) = int(cl(a))
and cl(a) = cl(int(a)). Intuitively, regular sets are those sets that have full interior
and no isolated points. We will denote the set of regular sets of a topological space
X by RT(X), i.e., RT(X) = {a ⊆ X | a is regular}.

Lemma 5 Suppose 〈X, τ〉 is a topological space. Then we have

1. a is regular iff a is regular,
2. cl(a) ∩ b ⊆ cl(a ∩ b) if b open,
3. cl(int(a) ∩ b) = cl(int(a) ∩ int(b)) if b regular,
4. cl(a ∪ int(cl(a))) = cl(a).
5. int(a ∪ b) ⊆ int(a) ∪ b if b is closed,
6. int(cl(a) ∪ b) = int(cl(a) ∪ cl(b)) if b is regular,
7. int(a ∩ cl(int(a))) = int(a).

Proof 1. Suppose a is regular, i.e., int(cl(a)) = int(a) and cl(int(a)) = cl(a). Then
we have int(cl(a)) = int(int(a)) = cl(int(a)) = cl(a) = int(a). The second
equation as well as the converse implication follow analogously.

2. This follows immediately from

cl(a) ∩ b ⊆ cl(a ∪ b) ∩ b
= cl((a ∩ b) ∪ b) ∩ b
= (cl(a ∩ b) ∪ cl(b)) ∩ b
= (cl(a ∩ b) ∪ b) ∩ b b open

= cl(a ∩ b) ∩ b
⊆ cl(a ∩ b).
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3. The inclusion ’⊇’ is trivial, and for the converse inclusion consider the following
computation

int(a) ∩ b ⊆ int(a) ∩ cl(b)

= int(a) ∩ cl(int(b)) b regular

⊆ cl(int(a) ∩ int(b)) by 1.

This implies cl(int(a) ∩ b) ⊆ cl(cl(int(a) ∩ int(b))) = cl(int(a) ∩ int(b)).
4. We have

cl(a ∪ int(cl(a))) = cl(a) ∪ cl(int(cl(a)))

= cl(a)

since cl(int(cl(a))) ⊆ cl(cl(a)) = cl(a).
5.-7. follow from 1.-4. and the fact that int(a) = cl(a). ut

4.3 Topological Stonian p-ortholattices

Topological models of the theory of Stonian p-ortholattices are given by a suitable
structure on the set RT(X) of regular sets. The notations a ∩∗ b and a ∪∗ b are
maintained from [1] as follows.

a ∩∗ b = a ∩ b ∩ cl(int(a ∩ b)),
a ∪∗ b = a ∪ b ∪ int(cl(a ∪ b)),

a∗ = cl(X \ a),

a⊥ = X \ a.

The next theorem was shown in [15, Theorem 4.3] and verifies that the set RT(X),
the regular sets of an arbitrary topological space X, together with the operations
∪∗,∩∗,∗, and ⊥ always forms a Stonian p-ortholattice. It moreover verifies that the
class of all structures RT(X) can indeed be seen as the class of standard topological
models of the mereotopology RT−.

Theorem 3 Let be 〈X, τ〉 a topological space. Then 〈RT(X),∪∗,∩∗,∗ ,⊥ , ∅, X〉 is
a Stonian p-ortholattice. We call such a structure a topological Stonian p-ortho-
lattice.

Notice that the order on RT(X) is regular set inclusion. As a consequence we
have a ⊆ b iff a ∩∗ b = a for all a, b ∈ RT(X). Furthermore, using the definition
a+ = a⊥∗⊥ we obtain a+ = int(a).

Example 1 Consider some topological space (X, τ) with X = 1 and the topology

τ = {a+, b++, c+, b++ ∪ c+, a+ ∪ c+, b++ ∪ c+, 0, 1}.

Suppose every set in τ is regular, i.e. is a regular open set. It is well known that this
forms a Boolean algebra, depicted in Figure 3 with c+ = a++ ·b+, a++ = b++∪c+,
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1

a++ a+ + b++ b+

b++ a++ · b+ a+

0

Fig. 3: The 8-element Boolean lattice of regular open sets that generates C18.

and b+ = a+ ∪ c+. If all elements in τ are also closed, these eight sets are in fact
the only regular sets, hence the structure 〈RT(X),∪∗,∩∗,∗ ,⊥ , 0, 1〉 is the Boolean
algebra as shown in Figure 3 and thereby also a Stonian p-ortholattice. If none of
the elements in τ except for 0, 1 are closed, we must add their closures, resulting
in additional six regular elements. Closure under sums and intersections amongst
the regular sets result in an extra four elements, thereby leading to the 18-element
lattice C18 = 〈RT(X),∪∗,∩∗,∗ ,⊥ , 0, 1〉, which again is a Stonian p-ortholattice.
Figure 7 instantiates C18 with concrete point sets: all sets with ++ denote open
sets, together with 0 and 1 we have the underlying topological space (X, τ) with

τ = {a++, b++, c++, d++, e++, f++, 0, 1}.

C14, on the other side, is not a topological Stonian p-ortholattice, that is, it cannot
be generated from the regular sets of some topological space. We will show why
towards the end of the paper. Since C14 is a model of RT0, it will also mean that
not every model of RT0 can be generated from the regular sets of some topological
space. To formalize this notion, we next look at the reverse of Theorem 3.

4.4 Representable Stonian p-ortholattices

Now we study when a Stonian p-ortholattice can be represented by RT(X) of some
topological space X. For that we define a Stonian p-ortholattice to be representable
(by some topological space X) if orthocomplementation in the lattice corresponds
to set complementation in X and the space is minimal, i.e. the set of (regular)
open sets forms a basis of X. This is captured as follows.

Definition 2 A Stonian p-ortholattice 〈L,+, ·,∗ ,⊥ , 0, 1〉 is called representable iff
there is a topological space 〈X, τ〉 and an injective lattice homomorphism h : L→
RT (X) satisfying:

(a) h(x⊥) = X \ h(x) for all x ∈ L.
(b) The set B = {h(x) | x ∈ L, x++ = x} is a basis of 〈X, τ〉.
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The next lemma verifies that a representable Stonian p-ortholattice is isomorphic
to a subalgebra of RT(X).

Lemma 6 Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice and h : L → RT (X)
be a representation. Then we have:

1. h(x) ⊆ h(y) iff x ≤ y.
2. h(x++) = int(h(x)) and h(x+) = h(x)+.
3. h(x∗∗) = cl(h(x)) and h(x∗) = h(x)∗.

Proof 1. Consider the following equivalences:

h(x) ⊆ h(y)⇔ h(x) ∩∗ h(y) = h(x) order on RT(X)

⇔ h(x · y) = h(x) h lattice homomorphisms

⇔ x · y = x h injective homomorphism

⇔ x ≤ y.

2. Since the set B = {h(y) | y ∈ L, y++ = y} is a basis of 〈X, τ〉 the interior
of h(x) is the union of all those elements from B that are smaller or equal to
h(x). Obviously, the element h(x++) is among those elements. Assume h(y)
is also such an element, i.e., y++ = y and h(y) ⊆ h(x). From 1. we conclude
y ≤ x. This implies y = y++ ≤ x++. We obtain h(y) ⊆ h(x++) so that
h(x++) = int(h(x)) follows immediately. We obtain the second assertion from
the first by computing

h(x+) = h(x+++) Lemma 1(3)

= h(x⊥++) Lemma 1(7)

= int(h(x⊥))

= int(h(x)) Def. 2(a)

= h(x)⊥++

= h(x)+.

3. This property is analogously to 2. using that C = {h(y) | y ∈ L, y∗∗ = y} is a
basis of closed elements. ut

In particular, this verifies that the interior and closure operations int and cl map
to ++ and ∗∗, respectively, as expected. Moreover, we have verified that a repre-
sentable Stonian p-ortholattice is isomorphic to a subalgebra of RT(X) for some
topological space X. Therefore, any quasiidentity, i.e., any universally quantified
implication of the form s1 = t1 ∧ . . . ∧ sn = tn → s = t where s1, . . . , sn, s
and t1, . . . , tn, t are terms in the language of Stonian p-ortholattices, that holds
in any topological Stonian p-ortholattice also holds in any representable Stonian
p-ortholattice. We will use this result to identify properties of topological Stonian
p-ortholattices that must also hold for representable Stonian p-ortholattices. In
other words, once we identify properties that hold for all Stonian p-ortholattices
that arise from the regular sets of an arbitrary topological space, these properties
must equally hold for representable Stonian p-ortholattices.
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5 The operations inty(x) and cly(x)

Some of the properties of topological Stonian p-ortholattices that we are about to
discuss require a new kind of interior and closure operation. In this section, we
introduce these operations and prove some useful properties about them.

In Stonian p-ortholattices we define the operation inty(x) = (x · y + y⊥) · x. We
call inty(x) the interior of x with respect to y. In the next lemma we will show
some basic properties of this operation. Only later, we will justify the notation we
have chosen.

Lemma 7 Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then the following
properties hold for all x, y ∈ L:

1. inty(x) ≤ x.
2. inty is monotone, i.e., x ≤ x′ implies inty(x) ≤ inty(x′).
3. inty(x) · y = x · y.
4. inty(inty(x)) = inty(x).
5. inty(x) ≥ x++ and intx∗(x) = x++.
6. (inty(x))++ = x++.
7. If y++ ≤ x++, then inty(x) = x.
8. If x ≤ y⊥, then inty(x) = x.
9. inty(inty(x) · intz(x)) = inty(intz(x)).

Proof 1. is obvious.
2. follows immediately from the monotonicity of · and +.
3. We immediately conclude

inty(x) · y = (x · y + y⊥) · x · y
= x · y. absorption

4. This follows from

inty(inty(x)) = (inty(x) · y + y⊥) · inty(x)

= (x · y + y⊥) · inty(x) by 3.

= (x · y + y⊥) · x · inty(x) by 1.

= inty(x) · inty(x)

= inty(x).

5. First, we have

x · y + y⊥ + x+ ≥ x · y + y+ + x+ Lemma 1(2)

= x · y + (x · y)+ Lemma 1(5)

= 1, Lemma 1(1)
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which implies x++ ≤ x · y + y⊥. Since x++ ≤ x by Lemma 1(2) we obtain
x++ ≤ (x ·y+y⊥) ·x = inty(x). For the second assertion consider the following
computation

intx∗(x) = (x · x∗ + x∗⊥) · x

= x∗⊥ · x pseudocomplement

= x++ · x Lemma 1(7)

= x++. Lemma 1(2)

6. follows immediately from 1., 4., the monotonicity of (.)++, and Lemma 1(3).
7. We have y++ ≤ x++ ≤ inty(x) ≤ x·y+y⊥ by 5. This implies x·y+y⊥+y+ = 1,

and, hence, x·y+y⊥ = 1 since y+ ≤ y⊥. We conclude inty(x) = (x·y+y⊥)·x =
x.

8. From x ≤ y⊥ we get x · y = 0 so that inty(x) = (x · y + y⊥) · x = y⊥ · x = x
follows.

9. We compute

inty(inty(x) · intz(x))

= (inty(x) · intz(x) · y + y⊥) · inty(x) · intz(x)

= (x · y · intz(x) + y⊥) · inty(x) · intz(x) by 3.

= (y · intz(x) + y⊥) · inty(x) · intz(x) by 1.

= inty(intz(x)) · inty(x)

= inty(intz(x)). by 1. and 2.

This completes the proof. ut

Notice that 1., 2. and 4. of the previous lemma shows that inty is indeed an interior
operation. Properties 5. and 6. will – in just a moment – justify why we we call
inty(x) the interior of x with respect to y.

Now, we define dually the closure of x with respect to y as cly(x) = (x+y)·y⊥+x =
inty⊥(x⊥)⊥. From the previous lemma we immediately obtain:

Corollary 1 Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then the following
properties hold for all x, y ∈ L:

1. x ≤ cly(x).
2. cly is monotone, i.e., x ≤ x′ implies cly(x) ≤ cly(x′).
3. cly(x) + y = x+ y.
4. cly(cly(x)) = cly(x).
5. cly(x) ≤ x∗∗ and clx+(x) = x∗∗.
6. cly(x)∗∗ = x∗∗.
7. If x∗∗ ≤ y∗∗, then cly(x) = x.
8. If x⊥ ≤ y, then cly(x) = x.
9. cly(cly(x) + clz(x)) = cly(clz(x)).
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Example 2 Consider the interior of b∗ with respect to a++, i.e. inta++(b∗), in
C14 and C18. In C14 it is not the interior of b∗, i.e.

inta++(b∗) = (b∗ · a++ + a++⊥) · b∗ = (a++ · b+ + a∗) · b∗ = b+ · b∗ = b+;

while in C18 the interior of b∗ with respect to a++ is the interior b+ of b∗

inta++(b∗) = (b∗ · a++ + a++⊥) · b∗ = (a++ · b∗ + a∗) · b∗ = b∗ · b∗ = b∗.

As another example consider C18 in Fig. 7. For inta(f) we obtain

inta(f) = (a · f + a⊥) · f = (0 + f++) · f = f++

while for inta++(f) we obtain

inta++(f) = (a++ · f + a++⊥) · f = (0 + f) · f = f.

Now, we want to investigate the operation intb(a) for regular sets a and b. In the
Euclidean plane intb(a) removes elements from a that are isolated points in a ∩ b.
Since int(a) ⊆ intb(a) by Lemma 7(5) and Lemma 6(2) those elements are always
elements of the border of a. This together with the fact that inta∗(a) = int(a) by
Lemma 7(5) was our motivation to call intb(a) the interior of a with respect to b.
Generally, we obtain the following characterization.

Lemma 8 Let a, b, c be regular. Then we have c ⊆ intb(a) iff c ⊆ a and c ∩ b ⊆
cl(int(a ∩ b)).

Proof ’⇒’: It is sufficient to show that intb(a) ∩ b ⊆ cl(int(a ∩ b)). We have

cl(int(cl((a ∩∗ b) ∪ b)) ∩ b)
= cl(int(cl((a ∩∗ b) ∪ b)) ∩ int(b)) Lemma 5(3)

= cl(int(cl((a ∩∗ b) ∪ b)) ∩ int(int(b)))

= cl(int(cl((a ∩∗ b) ∪ b) ∩ int(b)))

= cl(int((cl(a ∩∗ b) ∪ cl(b)) ∩ int(b)))

= cl(int((cl(a ∩∗ b) ∪ int(b)) ∩ int(b)))

= cl(int(cl(a ∩∗ b) ∩ int(b)))

= cl(int(cl(a ∩∗ b)) ∩ int(int(b)))

= cl(int(cl(a ∩∗ b)) ∩ int(b))

= cl(int(a ∩∗ b) ∩ int(b)) a ∩∗ b regular

= cl(int(a ∩ b ∩ cl(int(a ∩ b))) ∩ int(b))

= cl(int(a ∩ b) ∩ int(b)) Lemma 5(7)

= cl(int(a ∩ b)).



18 Winter, Hahmann, Grüninger

This implies

intb(a) ∩ b
= (((a ∩∗ b) ∪∗ b) ∩∗ a) ∩ b
⊆ ((a ∩∗ b) ∪∗ b) ∩ a ∩ b
= ((a ∩∗ b) ∪ b ∪ int(cl((a ∩∗ b) ∪ b))) ∩ a ∩ b
= ((a ∩∗ b) ∩ a ∩ b) ∪ (int(cl((a ∩∗ b) ∪ b)) ∩ a ∩ b)
= (a ∩∗ b) ∪ (int(cl((a ∩∗ b) ∪ b)) ∩ a ∩ b)
⊆ (a ∩∗ b) ∪ (cl(int(cl((a ∩∗ b) ∪ b)) ∩ b) ∩ a ∩ b)
= (a ∩∗ b) ∪ (cl(int(a ∩ b)) ∩ a ∩ b) see above

= a ∩∗ b.

’⇐’: Suppose c ⊆ a and c ∩ b ⊆ a ∩∗ b. Then c ⊆ (a ∩∗ b) ∪ b ⊆ (a ∩∗ b) ∪∗ b, and,
hence, c ⊆ ((a ∩∗ b) ∪∗ b) ∩∗ a = intb(a) since c is regular. ut

The previous lemma implies the following important characterization of when the
meet of regular sets (∩∗) coincides with set intersection.

Lemma 9 Let a and b be regular. Then intb(a) = a iff a ∩ b = a ∩∗ b.

Proof ’⇒’: From a ⊆ intb(a) we get a ∩ b ⊆ cl(int(a ∩ b)) from Lemma 8, and,
hence, a ∩ b ⊆ a ∩ b ∩ cl(int(a ∩ b)) = a ∩∗ b. The converse inclusion is trivial.
’⇐’: Suppose a ∩ b = a ∩∗ b. Then we have a ∩ b ⊆ cl(int(a ∩ b)) so that Lemma 8
implies a ⊆ intb(a). The converse inclusion is again trivial. ut

Since clb(a) is defined dually we obtain the following two results as corollaries.

Corollary 2 Let a, b, c be regular. Then we have:

1. clb(a) ⊆ c iff a ⊆ c and int(cl(a ∪ b)) ⊆ c ∪ b.
2. clb(a) = a iff a ∪ b = a ∪∗ b.

6 Necessary Properties of Representable Stonian p-ortholattices

In this section we want to investigate five properties of representable Stonian p-
ortholattices. We do so by proving them for topological Stonian p-ortholattices,
which by Lemma 6 implies that they are valid in representable Stonian p-ortholat-
tices as well. Again, we are also interested in equational versions of each property.
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border of y

border of x

=

Fig. 4: The intuitions of the conditions (RP1) and (RP2)

6.1 (RP1)

The first property, (RP1), can be motivated as follows (compare also Fig. 4).
Suppose a and b are regular open regions, i.e., regular and open sets, that together
fill the whole space, i.e., a ∪ b = X. The element a ∩∗ cl(b) is the regular set a ∩ b
together with that portion of its border that is also a border of b. Similarly, cl(a)∩∗b
is a∩b together with that portion of its border that is also a border of a. Because we
have a∪b = X the region a∩b cannot have any point on its border that is neither in
the border of a nor in the border of b. We obtain (a∩∗cl(b))∪∗(cl(a)∩∗b) = cl(a∩b)
or in other words that a ∩∗ cl(b) is a complement of cl(a) ∩∗ b in the interval
[a∩b, cl(a∩b)]. For general regular sets, i.e., not necessarily regular open sets, this
generalizes to the following theorem.

Theorem 4 Let 〈X, τ〉 be a topological space. Then we have

(a ∩∗ cl(b)) ∪∗ (cl(a) ∩∗ b) = cl(a) ∩∗ cl(b)

for all a, b ∈ RT(X) with a ∪ b = X.

Proof First notice that ⊆ of the equation in questions is always true. Now, to
prove ⊇, assume x ∈ cl(a)∩∗ cl(b). From a∪ b = X we obtain that x ∈ a or x ∈ b.
Suppose w.l.o.g. that x ∈ a, and, consequently, x ∈ a ∩ (cl(a) ∩∗ cl(b)). From

int(cl(a) ∩∗ cl(b)) = int(cl(a) ∩ cl(b)) Lemma 5(7)

= int(cl(a)) ∩ int(cl(b))

= int(a) ∩ int(b) a, b regular

⊆ int(a)

we obtain intcl(a)∩∗cl(b)(a) = a using Lemma 7(7). We conclude

a ∩ (cl(a) ∩∗ cl(b)) = a ∩∗ cl(a) ∩∗ cl(b) Lemma 9

= a ∩∗ cl(b)

⊆ (a ∩∗ cl(b)) ∪∗ (cl(a) ∩∗ b),

i.e., x ∈ (a ∩∗ cl(b)) ∪∗ (cl(a) ∩∗ b). ut

The previous theorem shows that the quasiidentity

(RP1) x⊥ ≤ y implies x · y∗∗ + x∗∗ · y = x∗∗ · y∗∗ for all x, y ∈ L
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holds in all representable Stonian p-ortholattices. Since the theory of Stonian p-
ortholattices is equational as demonstrated in Section 3.1, it is interesting to know
whether an additional property/axiom such as (RP1) can also be formalized as an
equation.

Lemma 10 Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then following state-
ments are equivalent:

(RP1) x⊥ ≤ y implies x · y∗∗ + x∗∗ · y = x∗∗ · y∗∗ for all x, y ∈ L.
(RP=

1 ) x · (x∗ + y∗∗) + x∗∗ · (x⊥ + y) = x∗∗ · y∗∗ for all x, y ∈ L.

Proof (RP1)⇒ (RP=
1 ) : We have x⊥ ≤ x⊥ + y which implies

x · (x∗ + y∗∗) + x∗∗ · (x⊥ + y)

= x · (x⊥ + y)∗∗ + x∗∗ · (x⊥ + y)

= x∗∗ · (x⊥ + y)∗∗ (RP1)

= x∗∗ · (x∗ + y∗∗) x∗ = x⊥∗∗

= x∗∗ · x∗ + x∗∗ · y∗∗ S(L) distributive

= x∗∗ · y∗∗ x∗∗ · x∗ = 0.

(RP=
1 )⇒ (RP1) : Suppose x⊥ ≤ y. Then y = x⊥ + y and we conclude

x · y∗∗ + x∗∗ · y = x · (x⊥ + y)∗∗ + x∗∗ · (x⊥ + y)

= x · (x∗ + y∗∗) + x∗∗ · (x⊥ + y)

= x∗∗ · y∗∗. (RP=
1 )

This completes the proof. ut

Example 3 Consider x = a++ and y = b⊥, first in C14 (cf. Fig. 2):

a++ · (b+)∗∗ + (a++)∗∗ · b+ 6= (a++)∗∗ · (b+)∗∗

a++ · b∗ + a∗∗ · b+ 6= a∗∗ · b∗

a++ · b+ + a++ · b+ 6= a∗∗ · b∗

a++ · b+ 6= a∗∗ · b∗

Hence C14 does not satisfy (RP1). Now consider the same elements in C18 (cf.
Fig. 2):

a++ · (b+)∗∗ + (a++)∗∗ · b+ = (a++)∗∗ · (b+)∗∗

a++ · b∗ + a∗∗ · b+ = a∗∗ · b∗

a∗∗ · b∗ = a∗∗ · b∗

Since C18 is a topological Stonian p-ortholattice, (RP1) holds for all its elements.
The differenec between C14 and C18 lies in the fact that the intersections a++ · b∗
and a∗∗ · b+ in C18 are strictly greater than a++ · b+. Each of them contains
complementary parts of the boundary of a++ · b+ and their sum a∗∗ · b∗ contains
the full boundary again. In C14, the intersections a++ ·b∗ and a∗∗ ·b+ are identical
and contain no part of the boundary, hence their sum is open again.
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6.2 (RP2)

The next property that we want to consider is related to (RP1) in the following
sense. In the situation that motivated the first property we concluded that the
element a ∩∗ cl(b) is a complement of cl(a) ∩∗ b in the interval [a ∩ b, cl(a ∩ b)].
(RP2) requires that this complement must be unique.

Theorem 5 Let 〈X, τ〉 be a topological space. Then a∪ b = X and int(c) ⊆ a and
a ∩∗ c ⊆ b implies c ⊆ b for all a, b, c ∈ RT(X).

Proof Assume x ∈ c. Since a ∪ b = X we have x ∈ a or x ∈ b. The case x ∈ b is
trivial so that we assume x ∈ a. From int(c) ⊆ a we obtain int(c) ⊆ int(a), and,
hence, intc(a) = a from Lemma 7(7). This implies a ∩ c = a ∩∗ c by Lemma 9 so
that we conclude x ∈ a ∩ c = a ∩∗ c ⊆ b. ut

We have just shown that the quasiidentity

(RP2) x⊥ ≤ y and z++ ≤ x and x · z ≤ y implies z ≤ y for all x, y, z ∈ L

holds in all representable Stonian p-ortholattices. As before, we are interested in
an equational version of (RP2). Notice that a ≤ b can always be rewritten in
equational form, thus (RP=

2 ) below is indeed an equational variant of (RP2).

Lemma 11 Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then following state-
ments are equivalent:

(RP2) x⊥ ≤ y and z++ ≤ x and x · z ≤ y implies z ≤ y for all x, y, z ∈ L.
(RP=

2 ) z ≤ x⊥ · z∗ + (x+ z++) · z for all x, z ∈ L.

Proof (RP2)⇒ (RP=
2 ) : Set x := x + z++, y := x⊥ · z∗ + (x + z++) · z, z := z in

(RP2), then we have (x+z++)⊥ = x⊥ ·z++⊥ = x⊥ ·z∗ ≤ x⊥ ·z∗+(x+z++) ·z
and z++ ≤ x+ z++ and (x+ z++) · z ≤ x⊥ · z∗ + (x+ z++) · z. From (RP2)
we conclude z ≤ x⊥ · z∗ + (x+ z++) · z.

(RP=
2 )⇒ (RP2) : Suppose x⊥ ≤ y and z++ ≤ x and x · z ≤ y. Then (a) x =
x+ z++ and (b) x⊥+x · z ≤ y, and, hence by substituting (a) in (b), x⊥ · z∗+
(x+ z++) · z = (x+ z++)⊥ + (x+ z++) · z = x⊥ + x · z ≤ y. We conclude

z ≤ x⊥ · z∗ + (x+ z++) · z (RP=
2 )

≤ y.

This completes the proof. ut

Example 4 Consider x = b+, y = a++, and z = a∗∗ · b∗; first in C14 (cf. Fig. 2).
We have all three preconditions of (RP2) satisfied:

(i) b+⊥ = b∗∗ ≤ a++

(ii) (a∗∗ · b∗)++ = a++ · b+ ≤ b+

(iii) b+ · (a∗∗ · b∗) = a++ · b+ ≤ a++
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But a∗∗ · b∗ � a++ violates the consequent of (RP2).

In C18, the last precondition is not satisfied:

(iii) b+ · (a∗∗ · b∗) = a∗∗ · b+ � a++

Therefore (RP2) trivially holds. Again, since C18 is a topological Stonian p-ortho-
lattice, (RP2) must hold for all its elements.

6.3 Meet of interiors intb(a)

The final three properties of this section deal with the interior operation intb(a)
for regular sets in a topological space. First we show that the meet of the interiors
of a with respect to b and c are unaffected by additional applications of interiors
with respect to b and c. Afterwards we prove a symmetry between the interior of
a with respect to b and the interior of b with respect to a. Finally, we prove a
localized version of distributivity. This results in the sentences (M), (S), and (D)
which must hold for all elements in any representable Stonian p-ortholattice since
all three conditions can be expressed as quasiidentities.

Theorem 6 Let 〈X, τ〉 be a topological space. Then we have

intb(intb(a) ∩∗ intc(a)) = intb(a) ∩∗ intc(a)

for all a, b, c ∈ RT(X).

Proof By Lemma 7(9) it is sufficient to show

intb(a) ∩∗ intc(a) = intb(intc(a)).

To this end we compute

cl(int(intc(a) ∩ b)) = cl(int(intc(a)) ∩ int(b)) Lemma 5(3)

= cl(int(a) ∩ int(b)) Lemma 7(6)

= cl(int(a ∩ b)).

Now, suppose that d is regular. Then we have

d ⊆ intb(a) ∩∗ intc(a)

⇐⇒ d ⊆ intb(a) and d ⊆ intc(a)

⇐⇒ d ⊆ a and d ∩ b ⊆ cl(int(a ∩ b)) and d ⊆ intc(a) Lemma 8

⇐⇒ d ∩ b ⊆ cl(int(a ∩ b)) and d ⊆ intc(a) since intc(a) ⊆ a
⇐⇒ d ∩ b ⊆ cl(int(intc(a) ∩ b)) and d ⊆ intc(a) see above

⇐⇒ d ⊆ intb(intc(a)), Lemma 8

i.e., intb(a) ∩∗ intc(a) = intb(intc(a)). ut

We have just shown that the equation
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(M) inty(inty(x) · intz(x)) = inty(x) · intz(x)

holds in all representable Stonian p-ortholattices.

Example 5 Consider x = (a++ · b+)⊥ in the inner structures of C14, C16, and
C18. Choose y = a and z = b∗. Then in all of C14, C16 we have

inta(inta(x) · intb∗(x)) = inta(x) · intb∗(x)

inta([(x · a+ a⊥) · x)] · [(x · b∗ + b∗⊥) · x]) = [(x · a+ a⊥) · x] · [(x · b∗ + b∗⊥) · x]

inta([(x · a+ a⊥) · x)] · [(x · b∗ + b++) · x]) = [(x · a+ a⊥) · x] · [(x · b∗ + b++) · x]

inta([(b+ a⊥) · x] · [(a∗ + b++) · x]) = [(b+ a⊥) · x] · [(a∗ + b++) · x]

We continue at the last line , first with C14. In C14 we have:

inta([(b+ a⊥) · x] · [(a∗ + b++) · x]) = [(b+ a⊥) · x] · [(a∗ + b++) · x]

inta([x · x] · [x · x]) = [x · x] · [x · x]

inta(x) = x

(x · a+ a⊥) · x = x

(b+ a⊥) · x = x

x = x

Hence in C14 we have inta(inta(x) · intb∗(x)) = inta(x) · intb∗(x). In C16, this fails:

inta([(b+ a⊥) · x] · [(a∗ + b++) · x]) 6= [(b+ a⊥) · x] · [(a∗ + b++) · x]

inta([(a++ · b∗)⊥ · x] · [(a++ · b∗)⊥ · x]) 6= [(a++ · b∗)⊥ · x] · [(a++ · b∗)⊥ · x]

inta((a++ · b∗)⊥ · x) 6= (a++ · b∗)⊥ · x

inta((a++ · b∗)⊥) 6= (a++ · b∗)⊥

((a++ · b∗)⊥ · a+ a⊥) · (a++ · b∗)⊥ 6= (a++ · b∗)⊥

(b++ + a⊥) · (a++ · b∗)⊥ 6= (a++ · b∗)⊥

(a∗∗ · b∗)⊥ · (a++ · b∗)⊥ 6= (a++ · b∗)⊥

(a∗∗ · b∗)⊥ 6= (a++ · b∗)⊥

In C18 the equality inta(inta(x) · intb∗(x)) = inta(x) · intb∗(x) holds again:

inta([(b+ a⊥) · x] · [(a∗ + b++) · x]) = [(b+ a⊥) · x] · [(a∗ + b++) · x]

inta([(a∗∗ · b+)⊥ · x] · [(a++ · b∗)⊥ · x]) = [(a∗∗ · b+)⊥ · x] · [(a++ · b∗)⊥ · x]

inta((a∗∗ · b+)⊥ · (a++ · b∗)⊥) = (a∗∗ · b+)⊥ · (a++ · b∗)⊥

inta((a∗∗ · b∗)⊥) = (a∗∗ · b∗)⊥

((a∗∗ · b∗)⊥ · a+ a⊥) · (a∗∗ · b∗)⊥ = (a∗∗ · b∗)⊥

((b++ + a⊥) · (a∗∗ · b∗)⊥ = (a∗∗ · b∗)⊥

(a∗∗ · b∗)⊥ · (a∗∗ · b∗)⊥ = (a∗∗ · b∗)⊥

(a∗∗ · b∗)⊥ = (a∗∗ · b∗)⊥

Again, (M) is not only true for these particular elements, but generally valid for
all elements in the topological Stonian p-ortholattice C18.
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6.4 Symmetry of intb(a) = a

We now show that intb(a) = a and inta(b) = b can be used interchangeably in
topological Stonian p-ortholattices and thus also in representable ones.

Theorem 7 Let 〈X, τ〉 be a topological space. Then intb(a) = a iff inta(b) = b for
all a, b ∈ RT(X).

Proof Consider the following computation

a ⊆ intb(a) ⇐⇒ a ∩ b ⊆ cl(int(a ∩ b)) Lemma 8

⇐⇒ b ∩ a ⊆ cl(int(b ∩ a))

⇐⇒ b ⊆ inta(b). Lemma 8

This implies the assertion since intb(a) ⊆ a and inta(b) ⊆ b are trivial. ut

Notice that the property of the previous theorem is a conjunction of two quasi-
identities so that we have just shown that

(S) inty(x) = x iff intx(y) = y for all x, y ∈ L

holds in all representable Stonian p-ortholattices. As before, we are interested in
an equational version of (S).

Lemma 12 Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then following state-
ments are equivalent:

(S) inty(x) = x iff intx(y) = y for all x, y ∈ L.
(S=) intintx(y)(x) = x for all x, y ∈ L.

Proof (S)⇒ (S=) : From Lemma 7(4) we obtain intx(intx(y)) = intx(y) so that
the implication ’⇒’ (S) for intx(y) and x implies intintx(y)(x) = x.

(S=)⇒ (S) : Assume intx(y) = y. Then we have inty(x) = intintx(y)(x) = x by
(S=). The converse implication follows analogously. ut

Example 6 Consider again x = (a++ · b+)⊥ and y = a. In Example 5 we already
showed that in C14 we have inta(x) = x. Now consider intx(a):

intx(a) = (a · x+ x⊥) · a

= (b+ x⊥) · a

= (b+ a++ · b+) · a

= (a++ · a

= a++

6= a
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Hence (S) is violated in C14. But in C18 (S) always holds. E.g. we have intx(a) =
a++ 6= a as in C14 but we also have:

inta(x) = (x · a+ a⊥) · x

= (b+ a⊥) · x

= (a∗∗ · b+)⊥ · x

= (a∗∗ · b+)⊥

6= a

On the other hand we have inta((a∗∗ · b∗)⊥) = (a∗∗ · b∗)⊥ in C18 as demonstrated
in Example 5 and we also have:

int(a∗∗·b∗)⊥(a) = (a · (a∗∗ · b∗)⊥ + (a∗∗ · b∗)⊥⊥) · a

= (b++ + (a∗∗ · b∗)) · a
= a · a
= a

Hence both sides of (S) are satisfied in this particular instance. Again, (S) must
hold for arbitrary elements in (C18) because it is a topological Stonian p-ortholattice.

6.5 Localized distributivity

Our last property is based on the observation that topological Stonian p-ortho-
lattices exhibit distributivity for some triples of elements even though they are
generally not distributive. Again, we use the interior and closure with respect to
another element to state when distributivity holds.

Theorem 8 Let 〈X, τ〉 be a topological space. Then intb(a) = a and intc(a) = a
and clc(b) = b implies a ∩∗ (b ∪∗ c) = (a ∩∗ b) ∪∗ (a ∩∗ c) for all a, b, c ∈ RT(X).

Proof We have

a ∩∗ (b ∪∗ c) ⊆ a ∩ (b ∪∗ c)
= a ∩ (b ∪ c) Corollary 2(2)

= (a ∩ b) ∪ (a ∩ c)
= (a ∩∗ b) ∪ (a ∩∗ c) Lemma 9

⊆ (a ∩∗ b) ∪∗ (a ∩∗ c).

The converse inclusion holds in every lattice. ut

The previous theorem shows that the quasiidentity

(D) inty(x) = x and intz(x) = x and clz(y) = y implies x·(y+z) = x·y+x·z
for all x, y, z ∈ L.



26 Winter, Hahmann, Grüninger

holds in all representable Stonian p-ortholattices. As before, we are interested in
an equational version of (D). Unfortunately, we are only able to provide such a
version if we assume (M).

Lemma 13 Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice satisfying (M). Then
following statements are equivalent:

(D) inty(x) = x and intz(x) = x and clz(y) = y implies x · (y + z) = x · y + x · z
for all x, y, z ∈ L.

(D=) intclz(y)(x) · intz(x) · (clz(y) + z) = intz(x) · clz(y) + intclz(y)(x) · z for all
x, y, z ∈ L.

Proof (D)⇒ (D=) : Property (M) implies

intclz(y)(intclz(y)(x) · intz(x)) = intclz(y)(x) · intz(x)

as well as intz(intclz(y)(x) · intz(x)) = intclz(y)(x) · intz(x).

Using Corollary 1(4) and (D) we obtain

intclz(y)(x) · intz(x) · (clz(y) + z)

= intclz(y)(x) · intz(x) · clz(y) + intclz(y)(x) · intz(x) · z (D)

= x · intz(x) · clz(y) + intclz(y)(x) · x · z Lemma 7(3)

= intz(x) · clz(y) + intclz(y)(x) · z. Lemma 7(1)

(D=)⇒ (D) : Assume inty(x) = x and intz(x) = x and clz(y) = y. Then we
compute

x · (y + z) = intclz(y)(x) · intz(x) · (clz(y) + z)

= intz(x) · clz(y) + intclz(y)(x) · z (D=)

= x · y + x · z.

This completes the proof. ut

Lemma 14 Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice. Then (D) is equiv-
alent to

(Ddual) cly(x) = x and clz(x) = x and intz(y) = y implies x+y ·z = (x+y)·(x+z)
for all x, y, z ∈ L.

Proof Assume cly(x) = x and clz(x) = x and intz(y) = y. From the definition of cl
we obtain inty⊥(x⊥) = x⊥ and intz⊥(x⊥) = x⊥ and clz⊥(y⊥) = y⊥. We conclude

x+ y · z = (x⊥ · (y⊥ + z⊥))⊥

= (x⊥ · y⊥ + x⊥ · z⊥)⊥ by (D)

= (x+ y) · (x+ z).

The converse implication is shown analogously. ut
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Example 7 Consider the elements x = a∗, y = b, and z = a⊥. First we verify
that in C14 the preconditions of (D) are met:

(i) intb(a
∗) = (a∗ · b+ b⊥) · a∗

= b⊥ · a∗

= a∗

(ii) inta⊥(a∗) = (a∗ · a⊥ + a⊥⊥) · a∗

= (a⊥ + a) · a∗

= a∗

(iii) cla⊥(b) = (b+ a⊥) · a⊥⊥ + b

= (a++ · b+)⊥ · a+ b

= b+ b

= b

But the following computation shows we do not have a∗ · (b+a⊥) = a∗ · b+a∗ ·a⊥:

a∗ · (b+ a⊥) 6= a∗ · b+ a∗ · a⊥

a∗ · (a++ · b+)⊥ 6= 0 + a⊥

a∗ 6= a⊥

This example shows (D) is not satisfied in C14.

In C18, the precondition of (D) are equally satisfied; the computations for (i) and
(ii) are identical to those for C14, while the following verifies (iii) in C18:

(iii) cla⊥(b) = (b+ a⊥) · a⊥⊥ + b

= (a∗∗ · b+)⊥ · a+ b

= b+ b

= b

But now a∗ · (b+a⊥) = a∗ ·b+a∗ ·a⊥ holds as expected because C18 is a topological
Stonian p-ortholattice:

a∗ · (b+ a⊥) = a∗ · b+ a∗ · a⊥

a∗ · (a∗∗ · b+)⊥ = 0 + a⊥

a⊥ = a⊥

6.6 (RP1) and (RP2) hold in Stonian p-ortholattices satisfying (S) and (D)

To conclude this section, we will show that in a Stonian p-ortholattice (RP1) and
(RP2) become provable if (D) is satisfied.

Lemma 15 Let 〈L,+, ·,∗ ,⊥ , 0, 1〉 be a Stonian p-ortholattice satisfying (S) and
(D). Then (RP1) and (RP2) are valid.
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Proof We want to prove (RP2) first. Therefore, suppose x⊥ ≤ y, z++ ≤ x, and
x · z ≤ y. Then we have z++ = z++ · z ≤ x · z ≤ y so that intz(x) = x, intz(y) = y,
and cly(x) = x follow from Lemma 7(7) and Corollary 1(8). Using (S) we obtain
intx(z) = z and inty(z) = z. We conclude

z = z · (x+ x⊥)

≤ z · (x+ y)

= z · x+ z · y by (D)

≤ y + z · y
= y.

In order to prove (RP1) suppose x⊥ ≤ y. First we want to show that x∗∗ · y∗∗ ≤
x · y∗∗ + x∗∗ · y + y. This follows by using x, x · y∗∗ + x∗∗ · y + y and x∗∗ · y∗∗ as
x, y, and z in (RP2) by:

x⊥ ≤ y ≤ x · y∗∗ + x∗∗ · y + y,

(x∗∗ · y∗∗)++ = x∗∗++ · y∗∗++ = x++ · y++ ≤ x,
x · (x∗∗ · y∗∗) = x · y∗∗ ≤ x · y∗∗ + x∗∗ · y + y.

We have (x · y∗∗ + x∗∗ · y)∗∗ = x∗∗ · y∗∗ ≤ y∗∗ so that cly(x · y∗∗ + x∗∗ · y) =
x · y∗∗ + x∗∗ · y follows from Corollary 1(7). Furthermore, we have x∗∗ · y∗∗)++ =
x∗∗++ · y∗∗++ = x++ · y++ = x++ · y∗∗++ + x∗∗++ · y++ = (x · y∗∗ + x∗∗ · y)++

and (x∗∗ · y∗∗)++ = x∗∗++ · y∗∗++ = x++ · y++ ≤ y++. From Lemma 7(7) we
get intx∗∗·y∗∗(x · y∗∗ + x∗∗ · y) = x · y∗∗ + x∗∗ · y and intx∗∗·y∗∗(y) = y. Using (S)
we obtain intx·y∗∗+x∗∗·y(x∗∗ · y∗∗) = x∗∗ · y∗∗ and inty(x∗∗ · y∗∗) = x∗∗ · y∗∗. We
conclude

x∗∗ · y∗∗ = x∗∗ · y∗∗ · (x · y∗∗ + x∗∗ · y + y) see above

= x∗∗ · y∗∗ · (x · y∗∗ + x∗∗ · y) + x∗∗ · y∗∗ · y (D)

= x · y∗∗ + x∗∗ · y.

This completes the proof. ut

The Theorems 4 to 8 in this section show that the properties (RP1), (RP2), (M),
(S), and (D) are necessary for a Stonian p-ortholattice to be representable. Fur-
thermore, we showed that (RP1) and (RP2) are entailed by (D) in Stonian p-or-
tholattices. It remains open whether these properties guarantee representability of
Stonian p-ortholattices.

7 Some representable and non-representable Stonian p-ortholattices

In the following we provide examples of Stonian p-ortholattice satisfying some (or
all) of the properties (RP1), (RP2), (M), (S), and (D). In addition to the lattices
C14, C16, C18 and C20, which we previously introduced, we will also use Cd20 and
Cm20, whose outer structure is also given by Fig. 2(a), while their inner structure is
given in Fig. 5. Moreover, we use the lattice C12 from Fig. 6. This lattice does not
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a∗∗ · b∗

a++ · b∗ c a∗∗ · b+

a++ · b+

(a) The inner structure of Cd20.

a∗∗ · b∗

a++ · b∗ a∗∗ · b+

c

a++ · b+

(b) The inner structure of Cm20.

Fig. 5: The inner structure of Cd20 and Cm20

1

a+ b+ c (a · b · c)⊥

a b c a⊥ b⊥ c⊥

a · b · c (a+ b+ c)⊥

0

Fig. 6: The lattice C12

satisfy (A12), but by Lemma 4 the lattice C12×C18 does. Since (M) is an equation
and valid in both C12 and C18, all of the properties (RP1), (RP2), (M), (S), and
(D) can be written as equations in C12 × C18 as well. Since all five properties are
true in C18, any of those five properties is true in C12×C18 if and only if it is true
in C12.

In Table 1 we have summarized the properties satisfied by the different lattices. If
a certain property is not valid, we list a counterexample. We checked the results in
Table 1 and verified that all lattices in the table are indeed Stonian p-ortholattices
by the program written in Haskell as mentioned earlier. Recall further that all
examples in Table 1 satisfy (A11), (A12) and (A13), i.e. are also models of RT0.

We already noted that C18 is the smallest representable lattice amongst the Sto-
nian p-ortholattices that satisfy (A12). The next biggest example of a representable
Stonian p-ortholattice satisfying (A12) is C24, for which we also include a concrete
representation in Fig. 7. As Table 1 shows, C18 and C24 are at the same time the
only lattices amongst our examples in which all five properties hold; they are the
only representable Stonian p-ortholattices of up to 24 elements that satisfy (A12).
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1 , {0, 1, 2, 3, 4}

d , {0, 1, 3, 4} e , {0, 2, 3, 4} f , {1, 2, 3, 4}

{0, 2, 3} {0, 2, 4}

d++ , {0, 1, 3} e++ , {0, 2} f++ , {1, 2, 4}

a , {0, 3} b , {1, 3, 4} c , {2, 4}

{1, 3} {1, 4}

a++ , {0} b++ , {1} c++ , {2}

0 , ∅

1 , {0, 1, 2, 3, 4, 5}

d∗∗ , {0, 1, 3, 4, 5} e∗∗ , {0, 2, 3, 4, 5} f∗∗ , {1, 2, 3, 4, 5}

{0, 2, 3, 5} {0, 2, 4, 5}

{0, 1, 3, 4} {0, 2, 3} {0, 2, 5}

d++ , {0, 1, 3} e++ , {0, 2} f++ , {1, 2, 4, 5}

a∗∗ , {0, 3} b∗∗ , {1, 3, 4, 5} c∗∗ , {2, 4, 5}

{1, 3, 4} {1, 4, 5} {2, 5}

{1, 3} {1, 4}

a++ , {0} b++ , {1} c++ , {2}

0 , ∅

Fig. 7: Point-set representations of the Stonian p-ortholattices C18 and C24
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Table 1: Examples of Stonian p-ortholattices and counterexamples (if they exist)
to the properties (RP1), (RP2), (M), (S), and (D) (d is an abbreviation for

a++ · b∗ + a∗∗ + b+)

Lattice (RP1) (RP2) (M) (S) (D)

C14
x = a++

y = b+

x = a++

y = b+

z = a∗∗ · b∗
true

x = a++

y = b∗

x = b
y = a∗

z = b++

C16
x = a++

y = b+

x = b+

y = a++

z = a∗∗ · b∗

x = (a++ · b+)⊥

y = a
z = b∗

x = a
y = b⊥

x = a∗

y = b
z = a⊥

C18 true true true true true

C20
x = a++

y = b+
true

x = (a++ · b+)⊥

y = a
z = b∗

x = a
y = d⊥

x = a
y = a⊥

z = d

Cd20 true
x = a++

y = b+

z = c

x = a∗∗ · b∗
y = a++

z = c⊥

x = a++

y = c

x = b
y = a∗

z = c

Cm20 true true
x = (a++ · b+)⊥

y = b⊥

z = c

x = a
y = c

x = a
y = a⊥

z = c
C24 true true true true true

C12 × C18 true true true true
x = (a, 1)
y = (b, 1)
z = (c, 1)

7.1 A non-representable model of RT0: the example of C14

With the help of one of our examples of non-representable Stonian p-ortholattices
we can now show that non-representable models of the theory RT0 exist. For that
matter, let us consider C14 in more detail. C14 is a Stonian p-ortholattice that
satisfies (A11), (A12) and (A13), hence C14 with the lowest element removed is
a model of RT0 by Theorem 2. Because C14 violates some of the conditions of
topological Stonian p-ortholattices, it is not representable in the sense of Def. 2.
That also implies that C14 cannot be generated from the regular sets of a topo-
logical space, thereby refuting the original completeness theorem for RT0 given in
[1]. In order to make the last statement more precise, consider the following figure
of C14 \ {0} and the following formulas where ei for i ∈ {1, . . . , 12} are constant
symbols and 1 is the symbol for the universe as introduced in Section 2:

1

e10 e11 e12

e7 e8 e9

e4 e5 e6

e1 e2 e3
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(Ω) ∀x(x = e1 ∨ x = e2 ∨ x = e3 ∨ x = e4 ∨ x = e5 ∨ x = e6 ∨ x = e7

∨ x = e8 ∨ x = e9 ∨ x = e10 ∨ x = e11 ∨ x = e12 ∨ x = 1)

(Ωi) ei 6= 1

(Ωi,j) ei 6= ej

The set of formulas {Ω}∪{Ωi | i ∈ {1, . . . , 12}}∪{Ωi,j | i, j ∈ {1, . . . , 12}∧ i < j}
requires that any model of this set has exactly 13 elements. Now, consider the
following formulas:

(Γ0) ∀x C(x, 1)

(Γ1) C(e1, e4) ∧ C(e1, e7) ∧ C(e1, e8) ∧ C(e1, e10) ∧ C(e1, e11)

(Γ2) C(e2, e5) ∧ C(e2, e7) ∧ C(e2, e9) ∧ C(e2, e10) ∧ C(e2, e12)

(Γ3) C(e3, e6) ∧ C(e3, e8) ∧ C(e3, e9) ∧ C(e3, e11) ∧ C(e3, e12)

(Γ4) C(e4, e5) ∧ C(e4, e7) ∧ C(e4, e8) ∧ C(e4, e10) ∧ C(e4, e11) ∧ C(e4, e12)

(Γ5) C(e5, e6) ∧ C(e5, e7) ∧ C(e5, e9) ∧ C(e5, e10) ∧ C(e5, e11) ∧ C(e5, e12)

(Γ6) C(e6, e8) ∧ C(e6, e9) ∧ C(e6, e10) ∧ C(e6, e11) ∧ C(e6, e12)

(Γ7) C(e7, e8) ∧ C(e7, e9) ∧ C(e7, e10) ∧ C(e7, e11) ∧ C(e7, e12)

(Γ8) C(e8, e9) ∧ C(e8, e10) ∧ C(e8, e11) ∧ C(e8, e12)

(Γ9) C(e9, e10) ∧ C(e9, e11) ∧ C(e9, e12)

(Γ10) C(e10, e11) ∧ C(e10, e12)

(Γ11) C(e11, e12)

The above formulas Γi for i ∈ {0, . . . , 11} together with the axioms (A1) and
(A2) from RT0 (cf. Section 2) specify which elements should be in contact, and,
similarly,

(Υ1) ¬C(e1, e2) ∧ ¬C(e1, e3) ∧ ¬C(e1, e5) ∧ ¬C(e1, e6) ∧ ¬C(e1, e9) ∧ ¬C(e1, e12)

(Υ2) ¬C(e2, e3) ∧ ¬C(e2, e4) ∧ ¬C(e2, e6) ∧ ¬C(e2, e8) ∧ ¬C(e2, e11)

(Υ3) ¬C(e3, e4) ∧ ¬C(e3, e5) ∧ ¬C(e3, e7) ∧ ¬C(e3, e10)

(Υ4) ¬C(e4, e6) ∧ ¬C(e4, e9)

(Υ5) ¬C(e5, e8)

(Υ6) ¬C(e6, e7)

the formulas Υi for i ∈ {1, . . . , 6} together with (A2) specify which elements should
not be in contact. Altogether these formulas specify precisely the contact structure
of any 13-element model of RT0. Consequently, the set

Λ = RT0 ∪ {Ω} ∪ {Ωi | i ∈ {1, . . . , 12}} ∪ {Ωi,j | i, j ∈ {1, . . . , 12} ∧ i < j}
∪ {Γi | i ∈ {0, . . . , 11}} ∪ {Υi | i ∈ {1, . . . , 6}}

has at most one model (up to isomorphism). As mentioned earlier C14 \ {0} is a
model of RT0, and, by construction of the formulas above, a model of Λ3. However,

3 The model finder Paradox, an incremental SAT-based model, can automatically generate
this model. See www.cs.toronto.edu/~torsten/RegularSets/ for our axiomatization of Λ in
the TPTP format and the model found by Paradox. The result can be easily reproduced
using our axiomatization as input for Paradox 4.0, which is accessible from the online theorem
proving environment TPTP.org
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this model is not representable, i.e., it is not an intended model in the sense of [1],
providing a counterexample to the completeness proof in [1].

We also want to demonstrate where the original completeness proof of [1] fails.
The completeness proof follows the usual Henkin method. First, the authors extend
the given consistent theory Σ to a maximal consistent saturated set of formulas.
The remaining step is to construct a topological model based on certain subsets
of equivalence classes of constant symbols ΣC from Σ. In order to do so they
define two sorts of ultrafilter constructions, one for interior points (IP) and one
for boundary points (BP), as follows:

IP(α) ≡defα ⊆ ΣC ∧ α 6= ∅∧
∀x, y[(x ∈ α ∧ y ∈ α)→ (O(x, y) ∧ x · y ∈ α)]∧
∀x, y[(x ∈ α ∧ P (x, y))→ y ∈ α]∧
α maximal with respect to ⊆ and the properties above

BP(α) ≡defα ⊆ ΣC∧
∃x, y[x ∈ α ∧ y ∈ α ∧ EC(x, y)]

∀x, y[(x ∈ α ∧ y ∈ α)→ ((O(x, y) ∧ x · y ∈ α)

∨ (∃z, t(z ∈ α ∧ t ∈ α ∧ P (z, x) ∧ P (t, y) ∧ EC(z, t))))]∧
∀x, y[(x ∈ α ∧ P (x, y))→ y ∈ α]∧
α maximal with respect to ⊆ and the properties above

Based on the above they define an interpretation for every equivalence class of
constants [c] = {c′ | Σ ` c = c′}, i.e., the set of constants c′ that can be proven in
Σ to be equal to c, by Ω[c] = {α | (IP(α) ∨BP(α)) ∧ [c] ⊆ α}. This interpretation
yields an interpretation for arbitrary constants by [[c]] = Ω[c]. The topology is
defined as the topology with the set {[[c]] | Σ ` OP (c)} as a basis of the open
sets, i.e., the interpretation of open elements of the theory generate the topology.
Notice the similarity of the definitions above to those in [7]. Now, on Page 850 of
[1] the authors claim that the following property (among others)

(∗) [[x · y]] = [[x]] ∩∗ [[y]]

follows immediately from the axioms and definitions. We want to demonstrate that
this is not the case. Since any model of Λ has exactly 13 elements, we will identify
the 13 equivalence classes of the elements e1, . . . , e12, 1 after saturating Λ with the
corresponding element. If M↑ = {y | ∃x(x ∈ M ∧ P (x, y))} denotes the upwards
closure of M , then we obtain the following interior and boundary points:

IP = {{e1}↑, {e2}↑, {e3}↑}, BP = {{e4, e5}↑, {e5, e6}↑}.

Consequently, we get

[[e7]] = {{e1}↑, {e2}↑, {e4, e5}↑},
[[e12]] = {{e2}↑, {e3}↑, {e4, e5}↑, {e5, e6}↑},

[[e7]] ∩ [[e12]] = {{e2}↑, {e4, e5}↑},
[[e7 · e12]] = [[e2]] = {{e2}↑}.
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Furthermore, the model is finite so that {∅, [[e1]], [[e2]], [[e3]], [[e7]], [[e8]], [[e9]], [[e13]]} is
the set of open sets, and {∅, [[e4]], [[e5]], [[e6]], [[e10]], [[e11]], [[e12]], [[e13]]} is the set of
closed sets of the topology. We obtain

cl(int([[e7]] ∩ [[e12]])) = cl(int({{e2}↑, {e4, e5}↑}))
= cl([[e2]])

= cl({{e2}↑})
= [[e5]]

= {{e2}↑, {e4, e5}↑, {e5, e6}↑},

so that

[[e7]] ∩∗ [[e12]] = [[e7]] ∩ [[e12]] ∩ cl(int([[e7]] ∩ [[e12]]))

= {{e2}↑, {e4, e5}↑} ∩ {{e2}↑, {e4, e5}↑, {e5, e6}↑}
= {{e2}↑, {e4, e5}↑}

follows, a contradiction to (∗). Notice that the elements e7 and e12 are also integral
part of the counterexample to (RP1). Furthermore, a similar argument does not
work for C18 since the meet e7 · e12 will lead to a different element.

8 Conclusion and Future Work

We showed that not all Stonian p-ortholattices are topologically representable and
explored five topologically motivated quasiidentities that must hold in topological
Stonian p-ortholattices and thus also in representable Stonian p-ortholattices. We
also showed that all five proposed properties can be expressed as equations, thus
ensuring that the variety of Stonian p-ortholattices extended by all five properties
is again a variety. Since (RP1) and (RP2) follow from (D) in Stonian p-ortholat-
tices, the resulting equational theory can be obtained by extending the equational
theory of Stonian p-ortholattices by (S=), (M=), and (D=). Most importantly,
we conclude that an algebraic representation of the regular sets of a topological
space is a Stonian p-ortholattice that satisfies (S), (M), and (D). With regard to
the mereotopology RT0, we were able to demonstrate that the mereotopology has
unintended models, i.e. models which are not representable by regular sets of a
topological space as claimed in [1].

Future work is twofold. First, we only showed that the properties (S), (M), and
(D) are necessary for a Stonian p-ortholattice to be representable. In order to give
a full (isomorphic) algebraic representation of the regular sets of a topological
space, it remains to be proved whether (S), (M), and (D) are sufficient. If not,
additional properties satisfied by all representable Stonian p-ortholattices need to
be identified.

Separately of this issue, it remains to be investigated whether the conditions (S),
(M), and (D) are independent of each other in Stonian p-ortholattices or whether
e.g. (S) or (M) are provable in the presence of (D). From our examples we only know
that (M) is insufficient to prove (S) or (D), and that (M) and (S) are insufficient
to prove (D). Moreover, our experiments showed that all Stonian p-ortholattices
containing no more than 60 elements and satisfying (D) also satisfy (S).
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