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Abstract. In this paper we show how the relationships between first-order ontolo-
gies within a repository can be used to support ontology verification. We discuss the
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els of an ontology, and then show how such results can be obtained from notions
such as relative interpretation.
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1. Ontology Verification

Verification is concerned with the relationship between the intended models of an on-
tology and the models of the axiomatization of the ontology. In particular, we want to
characterize the models of an ontology up to isomorphism and determine whether or not
these models are equivalent to the intended models of the ontology. This relationship
between the intended models and the models of the axiomatization plays a key role in
the application of ontologies in areas such as semantic integration and decision support.

We can say that two software systems are semantically integrated if their sets of in-
tended models are equivalent. However, systems cannot exchange the models themselves
– they can only exchange sentences in the formal language that they use to represent
their knowledge. We must be able to guarantee that the inferences made with sentences
exchanged in this way are equivalent to the inferences made with respect to the system’s
intended models – given some input the application uses these intended models to infer
the correct output.

In the area of decision support, the verification of an ontology allows us to make
the claim that any inferences drawn by a reasoning engine using the ontology are ac-
tually entailed by the ontology’s intended models. If an ontology’s axiomatization has
unintended models, then it is possible to find sentences that are entailed by the intended
models, but which are not provable from the axioms of the ontology.

Unfortunately, it can be quite difficult to characterize the models of an ontology
up to isomorphism. Ideally, since the classes of structures that are isomorphic to an on-
tology’s models often have their own axiomatizations, we should be able to reuse the
characterizations of these other structures. In this paper we show how the relationships
between first-order ontologies within a repository can be used to support ontology de-
sign and evaluation. Throughout the paper, we will focus on the role that model-theoretic



properties play in the application of an ontology repository. In particular, we will address
the following challenges:

• How can we identify and characterize the classes of structures that are isomorphic
to the models of ontologies?

• What is the weakest theory that is required to axiomatize the intended models of
an ontology?

• How can the design of new ontologies be driven by investigating the properties of
the models of existing ontologies?

All of these questions are being investigated in the context of the COLORE (Com-
mon Logic Ontology Repository) project, which is building an open repository of first-
order ontologies that serve as a testbed for ontology evaluation and integration tech-
niques, and that can support the design, evaluation, and application of ontologies in first-
order logic. All ontologies are specified using Common Logic (ISO 24707), which is a
recently standardized logical language for the specification of first-order ontologies and
knowledge bases. At the lowest level are theories of general mathematical structures,
such as algebraic structures (e.g. semigroups, groups, rings, vector spaces), and combi-
natorial structures (e.g. orderings, lattices, graphs). These ontologies serve as the basis
for the representation theorems for generic ontologies currently within the repository,
such as processes, time, mereotopology, and geometry. Future work will design new on-
tologies for manufacturing standards (such as ISO 10303 STEP (Standard for the Ex-
change of Product data) and ENV 12204 (Constructs for Enterprise Modelling)), which
will extend and integrate the generic ontologies.

The fundamental insight of this paper is that we can use the relationships between
ontologies to assist us in the characterization of the models of the ontologies. The ob-
jective of the work is the construction of the models of one ontology from the models
of another ontology by exploiting the relationships between these ontologies and their
modules in the repository.

2. Relationships Between Ontologies

We begin with the relationship between ontologies and their subtheories within the repos-
itory. Theories within the repository will be referred to as modules. An ontology is a the-
ory that consists of one or more modules, so that relationships between ontologies can
be defined with respect to the relationships between their modules. We first introduce the
set of relationships between ontologies and their modules within a repository, and then
show how we can use these relationships to characterize the models of the ontologies.

2.1. Extensions

The simplest relationship between ontologies is that of extension, In particular, the notion
of conservative extension has played a key role in the study of modular ontologies ([8],
[9]):

Definition 1 Let T1 be a first-order theory with language L(T1) and let T2 be a first-
order theory with language L(T2).

T2 is a conservative extension of T1 iff L(T1) ⊂ L(T2) and for any formula Φ ∈
L(T1), we have T2 |= Φ iff T1 |= Φ.



Several results ([15]) illustrate how conservative extensions of theories are related to
extensions and substructures of models of the theories. In particular, if for every model
M1 ∈ Mod(T1) there exists a modelM2 ∈ Mod(T2) such thatM1 ⊂ M2, then T2

is a conservative extension of T1. Alternatively, if T2 is a conservative extension of T1

then for any model M2 ∈ Mod(T2) there exists a model M1 ∈ Mod(T1) such that
M1 ⊂M2.

Since our goal is to construct the models of an ontology by using the models of the-
ories that are already in the repository, these propositions tell us how to capture and reuse
existing constructions. If we have constructed the models of one theory by extending
models of the other theory, then this is captured in the repository as a conservative exten-
sion relationship. If we know that one theory is a conservative extension of another (e.g.
by proof-theoretic means), then we know that models of the theory can be constructed
from models of the other.

2.2. Relative Interpretation

Different ontologies within the same language can be compared using the notions of
satisfiability, extension, and independence. More difficult is to compare ontologies that
are axiomatized in different languages; in such cases, we need to determine whether or
not the nonlogical lexicon of one ontology can be interpreted in the nonlogical lexicon
of the other ontology. In this section, we review the basic concepts from model theory
that will supply us with the techniques for comparing ontologies in different languages.

We will adopt the following definition from [5]:

Definition 2 An interpretation π of a theory T0 with language L0 into a theory T1 with
language L1 is a function on the set of parameters of L0 such that

1. π assigns to ∀ a formula π∀ of L1 in which at most the variable v1 occurs free,
such that

T1 |= (∃v1) π∀

2. π assigns to each n-place relation symbol P a formula πP of L1 in which at most
the variables v1, ..., vn occur free.

3. For any sentence σ in L0,

T0 |= σ ⇒ T1 |= π(σ)

Thus, the mapping π is an interpretation of T0 if it preserves the theorems of T0.

Definition 3 An interpretation π of a theory T0 into a theory T1 is faithful iff there exists
an interpretation π of T0 into T1 and

T0 6|= σ ⇒ T1 6|= π(σ)

for any sentence σ ∈ L(T0).

Thus, the mapping π is a faithful interpretation of T0 if it preserves satisfiability with
respect to T0. We will also refer to this by saying that T0 is faithfully interpretable in T1.

For example, the work in [10] shows that the PSL-Core theory within the PSL On-
tology [11] is interpretable by Reiter’s axiomatization of situation calculus, but that this



is not a faithful interpretation, since there are sentences consistent with PSL-Core that
are not consistent with situation calculus.

Definable equivalence is a generalization of the notion of logical equivalence be-
tween ontologies with the same language.

Definition 4 Two ontologies T1 and T2 are definably equivalent iff T1 is faithfully inter-
pretable in T2 and T2 is faithfully interpretable in T1.

Similarly, faithful interpretations are a generalization of the notion of conservative
extension.

Theorem 1 T1 is faithfully interpretable in T2 iff there is theory T3 such that T1 is de-
finably equivalent to T3 and T2 is a conservative extension of T3.

2.3. Definability

Relative interpretations specify relationships between theories; we are also interested in
specifying relationships between models of the theories. We begin with the notion of
definable sets within a structure.

Definition 5 LetM be a structure with domain M and language L.
A set X ⊆ Mn is definable inM iff there is a formula ϕ(v1, ..., vn) of L such that

X = {〈a1, ..., an〉 ∈Mn : M |= ϕ(〈a1, ..., an〉)}.

Using this definition, we can adopt the following approach from [17]:

Definition 6 LetN be a structure in L0 and letM be a structure in L. We say thatN is
definable inM (equivalently,M defines N ) iff we can find a definable subset X of Mn

and we can interpret the symbols of L0 as definable subsets and functions on X so that
the resulting structure in L0 is isomorphic to N .

Since we will also be interested in characterizing the models of an ontology’s ax-
iomatization up to elementary equivalence, we will need a generalization of the notion
definability:

Definition 7 A structureM is weakly definable in N iff there exists a structure K such
that N is elementary equivalent to K andM is definable in K.

The relationship between relative interpretations of ontologies and definability of
structures is captured in a straightforward way by the following theorem:

Theorem 2 If there exists a faithful interpretation of an ontology T1 into an ontology T2,
then every model of T2 defines some model of T1.

Using techniques that characterize the definable sets within a model, this result can
be used to show when relative interpretations between theories do not exist (see [10]).



2.4. Classes of Theories

The notion of definability allows us to distinguish between different kinds of subthe-
ories of an ontology. We will later see how this distinction impacts the verification of
ontologies.

Definition 8 A theory T2 is a definitional extension of a theory T1 iff every constant,
function, and relation in any model of T2 is definable in some model of T1.

It is easy to see that a definitional extension of a theory T is also a conservative
extension of T , although the converse is not true; that is, there are conservative extensions
of theories which are not definitional extensions.

Definition 9 Two theories T1 and T2 with disjoint nonlogical lexicons are synonymous
iff there exists a theory S in the language formed by taking the union of the lexicons of
T1 and T2 such that S is a conservative extension of both T1 and T2.

The notion of logical synonymy is stronger than definable equivalence, and it allows
us to explicitly axiomatize the mapping between the ontologies as conservative defini-
tions:

Theorem 3 T1 and T2 are synonymous theories iff there exists a set of conservative
definitions Σ12 with respect to T1 such that

T1 ∪ Σ12 |= T2

and there exists a set of conservative definitions Σ21 with respect to T2 such that

T2 ∪ Σ21 |= T1

For example, the alternative axiomatizations of lattices as posets and as algebras
demonstrate that these are synonymous theories.

Definition 10 A module Tcore in the repository is a core theory iff no function and no
relation in models of Tcore is definable in the models of any other theory unless that
theory is synonymous.

Core theories are the modules that are the building blocks of the repository. The
relations that are axiomatized in a definitional extension are those which are definable in
a core theory, and in Section 4 we will see how the definitional extensions are related to
the models of the core theories.

Definition 11 A core hierarchy is a set of core theories T1, ..., Tn such that L(Ti) =
L(Tj), for all i, j.

For example, the theories that axiomatize classes of partial orderings form a core
hierarchy – all theories have the same language (i.e. the ordering relation ≤) and all are
extensions of the theory that contains the three axioms for a partial ordering (transitivity,
reflexivity, and antisymmetry).

By the following theorem, theories in the same core hierarchy are related by non-
conservative extension.



Theorem 4 If T1 and T2 are core theories in the same core hierarchy, then

T1 ⊂ T2 ⇔Mod(T2) ⊂Mod(T1)

In other words, models of a core theory in a core hierarchy are models of its sub-
theories that are modules in the same core hierarchy; extensions only restrict the sets
of models, not the structures of the models themselves. This is not in general the case
for all core theories; for example, the core theories in the PSL Ontology do not form a
core hierarchy, since each theory expands the nonlogical lexicon; as a result, the models
of a core theory in the PSL Ontolgy are constructed by extending models of other core
theories.

2.5. Related Work

The use of relative interpretations between first-order axiomatized theories as a means to
combine smaller theories has been implemented by the Interactive Mathematical Proof
System (IMPS). IMPS is a mathematical theorem prover that utilizes a repository of ax-
iomatized mathematical theories linked to each other through relative interpretations us-
ing the little theories approach to mechanize traditional tools of classical mathematical
reasoning [7]. The use of relative interpretations by IMPS provide the means to trans-
port a theorem from the theory it was proved in to any other theory linked with an in-
terpretation. The IMPS repository is organized around the relative interpretations avail-
able between stored theories. Furthermore, IMPS guarantees the consistency of gener-
ated proofs based on the notion of relative consistency between theories. Within IMPS
there is a set of theories deemed foundational, meaning they are regarded or known to
be consistent. Since all proofs begin with a foundational theory and any theory devel-
oped from another is a conservative extension of the original theory, all theories devel-
oped are consistent relative to the original foundational theory [6]. Although the use and
definitions of theory interpretations and relative consistency in IMPS are specific to the
purpose of theorem proving, it nonetheless shows how such relationships can be utilized
to relate and combine theories. Unfortunately, relative consistency proofs alone are in-
sufficient to verify an ontology. Strictly speaking, we only need to show that a model
exists in order to demonstrate that a theory is satisfiable. However, in the axiomatization
of domain theories, we need a complete characterization of the possible models.

The Information Flow Framework, an application of category theory to knowledge
representation, uses theory interpretations for sharing ontologies in distributed settings
[16]. Instances of two different ontologies are linked if they share the same type subsump-
tion hierarchy. Finding equivalent types between those ontologies are done using theory
interpretations through a common upper ontology. A virtual ontology is then formed as
a fusion of all participating ontologies and used as the complete system through which
the sharing of information occurs [16].

Using E-connections for modularization of OWL ontologies has been explored for
both the decomposition of existing ontologies [8] and for ontology design [9]. The E-
connection language is a formalism that allows the combination of decidable logics in
a way that preserves decidability while adding expressiveness [9]. An E-connection is
a set of E-connected ontologies that each model a different application domain, while
the E-connection itself models the union of all the domains [8]. In the case of using E-
connections to decompose a large ontology into modules (a collection of axioms), each



module encapsulates some terms of the original ontology. In [8] the definition of seman-
tic encapsulation is given as a component that preserves a basic set of entailments of a
term in an ontology. This leads to the partitioning of a large ontology into a collection
of modules that are conservative extensions of one another. The relationship of conser-
vative extensions between modules ensures that each module can be reused independent
of the rest while retaining the original semantics of its contained terms. An algorithm for
partitioning an OWL ontology into E-connected ontologies is provided in detail in [8].
The major limitation of using E-connections is that the use of such modules as a means
of refining an ontology (non-conservative extensions of a theory) becomes impossible.

3. Ontology Verification: Core Theories

Any ontology can be partitioned into a set of core theories and a set of definitional ex-
tensions to the core theories. We therefore approach the problem of ontology verifica-
tion from two perspectives. First, we consider the verification of core theories through
representation theorems, and then we consider the verification of definitional extensions
through classification theorems. In both cases, we show how the relationships between
ontologies within the repository can be used to specify properties of the models of the
ontologies.

3.1. Representation Theorems

We can evaluate the adequacy of the application’s ontology with respect to some class of
structures that capture the intended meanings of the ontology’s terms by proving that the
ontology has the following two fundamental properties:

• Satisfiability: every structure in the class is a model of the ontology.
• Axiomatizability: every model of the ontology is elementary equivalent to some

structure in the class.

The purpose of the Axiomatizability Theorem is to demonstrate that there do not
exist any unintended models of the theory, that is, any models that are not specified in
the class of structures. In general, this would require second-order logics; however, if we
assume that the ontology supports interoperability among first-order inference engines
which exchange first-order sentences, then we do not need to restrict ourselves to ele-
mentary classes of structures when we are axiomatizing an ontology. Since the appli-
cations are equivalent to first-order inference engines, they cannot distinguish between
structures that are elementarily equivalent. Thus, the unintended models are only those
that are not elementary equivalent to any model in the class of structures.

Classes of structures for theories within an ontology are therefore axiomatized up
to elementary equivalence – the theories are satisfied by any model in the class, and any
model of the core theories is elementarily equivalent to a model in the class.

In this section, we are interested in constructing models of one ontology by combin-
ing models of ontologies in repository, or by decomposing the models of the ontology
into models of other ontologies in the repository. We will consider two motivating ex-
amples – the mereotopology RT and the core theories PSL-Core and Occurrence Trees
from the PSL Ontology.



3.2. Relationship to Interpretability

In this section, we show how representation theorems for ontologies are captured by the
relationships between modules within the repository. We begin by a model-theoretic def-
inition for the key property that underlies the Satisfiability and Axiomatizability Theo-
rems:

Definition 12 A class of structures M can be represented by a class of structures N iff
there is a bijection ϕ : M → N such that for anyM ∈ M,M is weakly definable in
ϕ(M) and ϕ(M) is weakly definable inM.

Note that representation is up to elementary equivalence rather than up to isomor-
phism, since we are using the notion of weak definability between models.

Theorem 5 A theory T1 is definably equivalent with a theory T2 iff the class of models
Mod(T1) can be represented by Mod(T2).

We can use this result in two ways – if we have specified Satisfiability and Ax-
iomatizability Theorems for a particular ontology, we can capture this in the repository
by identifying the theories that axiomatize the classes of structures that are elementary
equivalent to the models of the ontology. Alternatively, if we are attempting to prove
the Satisfiability and Axiomatizability Theorems for the ontology, then we can use the
relationships between theories in the repository to identify any other theories that are
definably equivalent to the ontology; the models for these other theories will provide the
classes of structures that characterize the models of the ontology.

The notion of representability allow us to specify the weakest theory required to
axiomatize the intended models of an ontology. For example, some process ontologies
may represent a timeline as the real numbers, yet the intended models for the timeline
simply require a dense linear ordering. Since the theories in the repository are combined
to specify a theory that is definably equivalent to the ontology, eliminating any axioms
would result in unintended models.

3.3. Examples from Mereotopology

Within formal ontologies, spatial ontologies are amongst the most widely studied ontolo-
gies. Our environment is saturated with spatial and spatio-temporal information. Hence,
every upper ontology contains some definitions and axioms dealing with spatial infor-
mation. Within spatial ontologies, mereotopologies capturing topological (contact) and
mereological (parthood) relations between regions of space have been most widely stud-
ied. First-order ontologies of mereotopologies are in particular interesting because a large
set of possible axioms and their interactions can be studied in a clearly defined setting. In
the study of mereotopologies, representation theorems helped to establish the relation-
ship between different ontologies. Lattices in general and, more specifically, contact al-
gebras consisting of a lattice and a binary contact relation satisfying certain axioms have
proven useful as representations of Whiteheadian mereotopology [14]. Here, we only
summarize some of the results to exemplify the usefulness of representation theorems
for verifying ontologies.
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Figure 1. The ontologies and modules TRT− , TSPOL, TOCL and TPCL and their relationships.

For example, the models of the first-order ontology of mereotopology TRT − (a gen-
eralization of the ontology from [1]) can be represented by the definably equivalent ontol-
ogy of Stonian p-ortholattices (Stonian, pseudocomplemented, orthocomplemented lat-
tices) TSPOL. The axiomatization of TRT − and the precise structure of Stonian details
are not important here, but can be found in [13] together with the details of the represen-
tation theorem. The main point here is that Stonian p-ortholattices are a natural class of
lattices that is definable as the ontology TSPOL = TOCL ∪ TPCL ∪ {S1} consisting of
a module for orthocomplemented lattices TOCL and a module for pseudocomplemented
lattices TPCL strengthened by the Stone identity (S1) (x+ y)∗∗ = x∗ + y∗ where ∗ de-
notes the pseudocomplementation operation. Of course, TOCL and TPCL are themselves
ontologies; both of them are non-conservative extensions of the ontology of bounded
lattices. As mentioned before, these lattices are definable in terms of ≤ and thus form
a core hierarchy. From the knowledge that TRT − is definably equivalent to TSPOL, we
can then, for example, deduce that the each of the ontologies TOCL and TPCL are inter-
pretable in TRT − , but not faithfully interpretable in TRT − . All these classes of lattices
have been studied for half a century in lattice theory and are well-understood, cf. [2].
Hence, giving representation theorems for a not-well understood ontology in terms of a
better-understood mathematical theories (and their first-order ontologies) helps to verify
whether the mereotopology captures the intended models.

Perhaps more well-known is the representation of the models of the popular
mereotopology Region Connection Calculus (RCC) [3] by Boolean Contact Algebras
(BCA), the latter structures denoted by 〈A,C〉. For the RCC, we use in the following the
theory TRCC as axiomatized by (RCC1)-(RCC8) from [4]. BCAs, in turn, consist of a
standard Boolean algebra A = 〈A; 1; 0;′ ; +; ·〉 with a bottom element 0, a top element
1 and the sum and intersection operations + and · for which many definably equivalent
first-order theories can be found, e.g., in [19]. We denote any such theory based on the
single predicate≤ by TBA. Another definition of a Boolean algebra established in [13] is
that of a distributive Stonian p-ortholattice. Furthermore, BCAs require a binary contact
relation C that is reflexive, anti-symmetric, and extensional as captured by the first-order
theory TC = {C1, C2, Ext}. For details see e.g. [20]. The axioms (P) and (O) which de-
fine the pivotal mereotopological relations of parthood P and overlap O are definitional
extensions of TC .

(C1) x 6= 0→ C(x, x) (Reflexivity)
(C2) C(x, y)↔ C(y, x) (Symmetry)
(Ext) ∀z(C(x, z)→ C(y, z))↔ x = y (Extensionality)
(P) P (x, y)↔ ∀z(C(x, z)→ C(y, z)) (Parthood)
(O) O(x, y)↔ P (x, y) ∨ P (y, x) (Overlap)
(C0) ¬C(0, x) (Null disconnectedness)
(C3) C(x, y) ∧ y ≤ z → C(x, z) (Monotonicity of C with respect to ≤)
(C4) C(x, y + z)→ C(x, y) ∨ C(x, z) (Topological sum)
(Con) (x 6= 0 ∧ x 6= 1)→ C(x, x′) (Connectedness of x and x′)
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Figure 2. The ontologies and modules TRCC , TBCA, TBA and TC and their relationships.

In addition, the axioms C0, C3, C4, Con govern the interplay between the Boolean
algebra and the relation C. Notice that in these axioms all relations apart from C, and
allfunctions and constants are defined in the Boolean algebra. This results in the theory
TBCA = TBA ∪ TC ∪ {C0, C3, C4, Con} being definably equivalent to, for details see
TRCC [20,4]. The mapping between the two theories is defined by three equivalences:
P (x, y)↔ x ≤ y ¬C(x, y)↔ x < y O(x, y)↔ x · y 6= 0

Due to (C0), (C3), (C4), and (Con), we cannot choose arbitrary models from TBA
and TC and combine them into a model of the theory TBCA. We can however select an
arbitrary Boolean algebra and choose a model from TC accordingly so that we obtain a
model of TBCA. In particular, we have to make sure that the equivalence ¬C(x, y) ↔
x < y is satisfied. The reverse, i.e. taking an arbitrary model of TC and constructing a
model of TBCA accordingly, is not guaranteed to work.

Both these examples show how representation theorems can be used to obtain sev-
eral relationships between different ontologies and their modules (see Figures 1 and 2).
The first example of the theory TRT− demonstrated how the intersection of two theories
is captured, while the second example of the theory TRCC shows how a module (TBA)
can be supplemented by another module (TC) to build an ontology definably equiva-
lent to another ontology. In these examples, we exploited the relationships between the
models of the different theories to characterize the relationships between the ontologies
and modules. They also demonstrate that there are different ways in which models of
multiple ontologies can be combined to construct complex ontologies. The next section
formalizes one special case thereof with especially well-behaved properties.

3.4. Reducibility

Suppose that we wish to provide representation theorems for some new theory T . Even if
there is no single ontology (i.e. set of modules) in the repository that is definably equiv-
alent to T , we can still use the models of repository theories to specify a representation
of Mod(T ). We want to capture the following intuition: the representation of Mod(T )
is reducible to the representations of Mod(T1), ..., Mod(Tn) for some set of modules
T1, ..., Tn in the repository. Moreover, we want to characterize this notion of reducibil-
ity by using the relationships among modules in the repository. The question is there-
fore how we can use the representations of the Mod(Ti) to specify the representation of
Mod(T ).

As we did with the notion of representation, we begin with a model-theoretic defi-
nition of the relationship:

Definition 13 A class of structures M is reducible to the classes of structures N1, ...,Nn

iff there is a set of surjections ϕi : M→ Ni such that ifM∈M and

M =M1 ∪ ... ∪Mn

thenMi is weakly definable in ϕi(Mi) and ϕi(Mi) is weakly definable inMi.



As we did with representability, we can show how the model-theoretic notion of
reducibility can be characterized by the relationships between modules in the repository:

Theorem 6 Let T be a theory and let T1, ..., Tn be a set of modules in the repository.
Mod(T ) is reducible to Mod(T1), ...,Mod(Tn) iff

• T faithfully interprets each theory Ti, and
• T1 ∪ ... ∪ Tn is definably equivalent to a subtheory T ′ ⊂ T such that

Mod(T ) ⊂Mod(T ′)

If a theory T is reducible to a set of theories, then from any modelMi ∈Mod(Ti),
we can construct a modelM of T ; each such model is isomorphic to a substructure of
M. The axioms in T \ T ′ are expressed in the same language as T ; in this sense, they
are not satisfied by new classes of structures, but instead specify how the substructures
Mi ∈ Mod(Ti) are assembled to construct a model M of T . If a theory T is not
reducible to a set of theories, then there exist models of one theory which cannot be
combined with models of other theories to construct a model of T . In this case, T is not
a faithful interpretation of one of the theories. For example, the theory TRCC from the
previous section is not reducible to the theories TBA and TC . The next section gives an
example of a reducible theory.

3.5. Examples from the PSL Ontology

The models of the PSL-Core theory [18] provide an example of reducibility. In particular,
we can identify three classes of structures that can be combined to construct models of
PSL-Core. Two of these are classes of incidence structures which are represented by the
decomposition of graphs:

Definition 14 Let G = (V,E) be a directed graph with no nontrivial cycles, and let
P (E) be a partitioning of the edges in G.

A partitioning incidence structure is the tripartite incidence structure of rank 3:

I = (P (E), E, V,∈)

A graph incidence structure is the bipartite incidence structure of rank 2:

I = (E, V,∈)

Theorem 7 Let Tlinear be the theory of linear orderings, let Tpartition be the theory
of partitioning incidence structures, and let Tgraph−incidence be the theory of graph
incidence structures.

Tpslcore is reducible to Tlinear ∪ Tpartition ∪ Tgraph−incidence.

Thus, any linear ordering, partitioning incidence structure, and graph incidence
structure can be combined to construct a structure that is isomorphic to a model of
Tpslcore. The additional axioms in Tpslcore specify how the substructures are combined
by constraining the mapping of timepoints, activity occurrences and objects to the linear
ordering.



3.6. Foundational Theories

The methodology proposed in this section leads to some obvious questions. If all core
theories in the repository have representation theorems, how do we avoid infinite regress?
Do there exist theories which are foundational in the sense that the models of all other
theories are represented using the models of the foundational ones? If so, how can we
characterize the models of such foundational theories?

There are three techniques that can be used to address these questions. First, there
are some theories that are so general that they can be used to represent the models for a
wide range of theories. For example, graphs (symmetric binary relations) and preorders
(transitive, reflexive relations) are used to specify the structures for ontologies such as
[21], yet we do not provide representation theorems for graphs and preorders. Also note
that powerful theories such as Peano Arithmetic do not play the role of foundational
theories in this sense, since representability requires that the models of the two theories
are equivalent, whereas the models of Peano Arithmetic properly contain many other
classes of models as substructures.

In some cases, we can use the notion of mutual interpretability, in which two dif-
ferent theories are definably equivalent so that both can be used as foundational. For
example, classes of lattices are often characterized by topological representations.

A third technique is to use structure theorems to specify the models of a theory. In
this case, we provide representation theorems for a small class of structures and then
specify how all models can be constructed from such “building block" structures. This
approach is taken for theories such as linear orderings, groups, rings, and modules.

4. Ontology Verification: Definitional Extensions

The evaluation of the definitional extensions within an ontology is based on the notion
of definable sets and the particular property of such sets that they are preserved by auto-
morphisms of the underlying models.

4.1. Classification Theorems

Many ontologies are specified as taxonomies or class hierarchies, yet few ever give any
justification for the classification. If we consider ontologies of mathematical structures,
we can classify models by using properties of models, known as invariants, that are pre-
served by isomorphisms. For some classes of structures, invariants can be used to clas-
sify the structures up to isomorphism; for example, vector spaces can be classified up
to isomorphism by their dimension. For other classes of structures, such as graphs, it is
not possible to formulate a complete set of invariants. Nevertheless, even without a com-
plete set, invariants can still be used to provide a classification of the models of a theory.
In a sense, classification theorems provide an alternative approach to characterizing the
models of a core theory – if a model can be reconstructed up to isomorphism from the
invariants alone, then the invariants provide an implicit representation of the models.

This approach can also be justified by the application of ontologies to support se-
mantic integration. If the ontologies of two software applications have the same lan-
guage, then the applications will be interoperable if they share the semantics of the termi-



nology in their corresponding theories. Sharing semantics between applications is equiv-
alent to sharing models of their theories, that is, the theories have isomorphic sets of
models. We therefore need to determine whether or not two models are isomorphic, and
in doing so, we can use invariants of the models.

4.2. Relationship to Interpretability

Following this methodology, the set of models for a core theory can be partitioned into
equivalence classes defined with respect to the set of invariants of the models. Each
equivalence class in the classification of the core theory’s models is axiomatized using
a definitional extension of the core theory. In particular, each definitional extension of
the core theory is associated with a unique invariant for the models of the theory. The
different classes and relations that are defined in the extension correspond to different
properties of the invariant. In this way, the terminology of an ontology arises from the
classification of the models of the core theories with respect to sets of invariants.

Invariants for models may also be related to invariants of their substructures. For
example, definitional extensions of PSL-Core axiomatize classes of activity occurrences
that arise from the automorphism group of the occurrence structure within a model of
PSL-Core, and classes of timepoints arise from the automorphism group of the time-
line structure. Other examples of invariants for the PSL Ontology were first discussed
in [12]. The most prevalent class of occurrence constraints is that of markovian activi-
ties, activities whose preconditions depend only on the state prior to their occurrences
(e.g., to withdraw money from a bank account, there must be sufficient funds in the ac-
count). The class of markovian activities is defined in the PSL definitional extension
state_precond.def . In this case, the substructure of a model of PSL characterizes the
relations between states and activity occurrences. The invariant that corresponds to this
extension is the automorphism group and the classes that are defined in the extension
correspond to different classes of groups.

5. Ontology Design

The design of new core theories can be driven by investigating the properties of the
models of existing ontologies within the repository. For example, models of existing
mereotopologies are represented by classes of lattices (e.g. Boolean lattices and Stonian
p-ortholattices). It is possible to design new mereotopology ontologies by searching for
other classes of lattices axiomatized within the repository which can be used to represent
alternative ontological choices with respect to the parthood and connection relations.

Definitional extensions of a core theory T axiomatize the classes of models in
Mod(T ). Since the class of models of a core theory is a restriction of the class of models
of other theories in the same core hierarchy, nonconservative extensions of a core theory
T are often related to the classification of the models of T with respect to invariants.

Another approach to the design of new ontologies is to consider the definability of
invariants. Definitional extensions arise when the invariants for models of T are definable
in T . In some cases, however, the invariants for models of a theory T may not be definable
in T , but rather may be definable in a core theory which is an extension of T .



6. Summary

The concepts and methods discussed in this paper, in particular the relationships of rela-
tive interpretation together with conservative and nonconservative extension, can be used
to organize the theories within an ontology repository. We have shown how to use these
relationships between ontologies to assist us in the characterization of the models of the
ontologies. In particular, we can use the notion of interpretability to specify represen-
tation theorems, and use the notion of reducibility of structures to construct the mod-
els of one ontology from the models of another ontology by exploiting the relationships
between these ontologies and their modules in the repository.

References

[1] Asher, N. and Vieu, L. (1995) Toward a geometry of common sense: a semantics and a complete axiom-
atization for mereotopology. In Proc. of the 14th Int. Joint Conf. on Artificial Intelligence (IJCAI’95),
pp. 846–852. Morgan Kaufmann, 1995.

[2] T. S. Blyth. Lattices and Ordered Algebraic Structures. Springer London, 2005.
[3] Cohn, A.G., Bennett, B., Gooday, J.M., and Gotts, N.M. (1997) RCC: a calculus for region based

qualitative spatial reasoning. GeoInformatica, 1:275–316, 1997.
[4] Düntsch, I., Wang, H., and McCloskey, S. (1999) Relation algebras in qualitative spatial reasoning.

Fundamenta Informaticae, 39(3):229–248, 1999.
[5] Enderton, H. (1972) Mathematical Introduction to Logic,Academic Press.
[6] Farmer, W. M. (2000) An Infrastructure for Intertheory Reasoning. In: CADE-17, Lecture Notes in

Computer Science (LNCS), D. McAllester, ed., p. 1831:115-131.
[7] Farmer, W. M., Guttman, J. D., Thayer, F. J. (1992) Little Theories. In: CADE-11, Lecture Notes in

Computer Science (LNCS), D. Kapur, ed., p. 607:567-581.
[8] Grau, B., Parsia, B., Sirin, E., Kalyanpur, A. Automatic Partitioning of OWL Ontologies Using E-

Connections, Proc. of Description Logic Workshop (DL), 2005.
[9] Grau, B., Parsia, B., Sirin, E. (2009) Ontology Integration Using E-connections, pp.293-320, Modular

Ontologies, Stuckenschmidt et al. (eds.). Springer-Verlag, Berlin.
[10] Gruninger, M. (2009) Definability and Process Ontologies, Ninth International Symposium on Logical

Formalizations of Commonsense Reasoning, Toronto, Canada.
[11] Gruninger, M. (2009) Process Ontologies, pp. 419-421, Handbook of Ontologies, 2nd Edition, S. Staab

(ed.). Springer-Verlag, Berlin.
[12] Gruninger, M. and Kopena, J. (2004) Semantic Integration through Invariants, AI Magazine, 26:11-20.
[13] Hahmann, T., Winter, M., and Gruninger, M. (2009) Stonian p-ortholattices: A new approach to the

mereotopology RT0. Artificial Intelligence, 173:1424–1440, 2009.
[14] Hahmann, T., and Grüninger, M. (2010) Region-based theories of space: Mereotopology and beyond.

In Qualitative Spatio-Temporal Representation and Reasoning: Trends and Future Directions. IGI Pub-
lishing. in press.

[15] Hodges, W. (1993) Model Theory. Cambridge University Press.
[16] Kent, Robert E. (2000) The Information Flow Foundation for Conceptual Knowledge Organization.

In: Dynamism and Stability in Knowledge Organization. Proceedings of the Sixth International ISKO
Conference. Advances in Knowledge Organization 7 (2000) 111-117. Ergon Verlag, Wurzburg.

[17] Marker, D. (2002) Model Theory: An Introduction. Springer Verlag.
[18] Menzel, C. and Gruninger, M. (2001) A formal foundation for process modeling, Second International

Conference on Formal Ontologies in Information Systems, Welty and Smith (eds), 256-269.
[19] Padmanabhan, R. and Rudeanu, S. (2008) Axioms for Lattices and Boolean Algebras. World Scientific,

2008.
[20] Stell, J.G. (2000) Boolean connection algebras: a new approach to the Region-Connection Calculus.

Artificial Intelligence, 122:111–136, 2000.
[21] Troquard, N., Trypuz, R., Vieu, L. (2006) Towards an ontology of agency and action: From STIT to

ONTOSTIT+, pp. 179-192, Proceedings of the Fourth International Conference on Formal Ontology in
Information Systems, B. Bennett and C. Fellbaum (eds.) Baltimore. IOS Press.


