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In the past little work has been done to characterize the models of various mereotopo-

logical systems. This thesis focuses on Asher and Vieu's �rst-order mereotopology

which evolved from Clarke's Calculus of Individuals. Its soundness and complete-

ness proofs with respect to a topological translation of the axioms provide only

sparse insights into structural properties of the mereotopological models. To over-

come this problem, we characterize these models with respect to mathematical

structures with well-de�ned properties � topological spaces, lattices, and graphs.

We prove that the models of the subtheory RT− are isomorphic to p-ortholattices

(pseudocomplemented, orthocomplemented). Combining the advantages of lattices

and graphs, we show how Cartesian products of �nite p-ortholattices with one mul-

tiplicand being not uniquely complemented (unicomplemented) gives �nite models

of the full mereotopology. Our analysis enables a comparison to other mereotopolo-

gies, in particular to the RCC, of which lattice-theoretic characterizations exist.
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CHAPTER 1

Introduction

In the area of knowledge representation the use of ontologies for representing and

organizing knowledge becomes increasingly popular. Ontologies are shared concep-

tualizations of speci�c domains that de�ne semantics for all concepts and relations.

Such ontologies can be described by an abundance of languages in various degrees

of formality. For logical inference using ontologies, so-called formal ontologies are

necessary: they describe the involved concepts and relations up to a formality which

allows automatic reasoning systems to determine the validity of inferences. Rea-

soners are used to check the truth of entailments in a theory or a speci�c model

instance. In this sense, the term ontology in Arti�cial Intelligence has a meaning

that di�ers from understanding of Ontologies in philosophy. Formal ontologies are

understood to enable logical entailments by the sole use of the formal speci�ca-

tion, but do not refer to Formal Ontologies as de�ned in philosophy (see [Gua98]).

We are mainly interested in ontologies de�ned in the language of �rst-order logic

(FOL), since its expressiveness allows complex descriptions while well-de�ned in-

ference methods exist. In this sense, we consider ontologies to be equivalent to

axiomatic systems.

Several ontologies for mereotopology have been developed during the last few

decades. Most of them are more of theoretical nature, as far as we know there

are few applications of them. However, this seems not to be caused by lack of

interest in the area, as recent work on upper ontologies shows. On the contrary,

mereotopological concepts are applied in a wide breadth of areas ranging from

spatial modeling and reasoning to physical, biological, and chemical models that

orders, e.g. physical or natural, parts (in manufacturing processes, anatomic mod-

els, or modeling of complex chemical structures in di�erent levels of granularity)

based on connection relations. Uncertainty about di�erences in mereotopological

systems, in particular about their implicit assumptions, seem to be a major source

of confusion that hinders forthright application of even well-developed mereotopo-

logical theories. This problem arises with the various theories in di�erent ways:

some lack any formal representations, requiring the user to reason about intended

interpretations and providing no formal reasoning framework; others are already

formalized, e.g. in �rst-order logic but lack a rigorous presentation of the allowed

1



1. MOTIVATION 2

and forbidden models. This thesis focuses on one instance of the latter problem.

We analyze the models of the mereotopology proposed by Asher and Vieu in 1995

using formalisms of well-understood mathematical disciplines in the style of a rep-

resentation theorem. The purpose is straightforward: we want to understand what

kind of models the axiomatic system describes and what properties these models

have in common. The goal is to characterize at least the �nite models of Asher and

Vieu's mereotopology in terms of classes of structures de�ned in topology, lattice

theory, and graph theory. Although the authors developed the theory from a char-

acterization of the intended models, this characterization is a mere rephrasing of

the axioms. Looking at the characterization does not reveal much insight about the

theory and its models. Of course, the axiomatic system describes exactly the same

models as demonstrated by their soundness and completeness proof, but the given

characterization does not give any hints about applicability for certain practical

purposes, the restriction of the theories, its hidden assumptions, and relations to

other theories, i.e. either mereotopologies or simply mereology, topology, set theory

or algebraic systems.

1. Motivation

The primary motivation of this work is to give a better insight into the axiomatic

theory and to uncover problems and assumptions that users of the ontology should

be aware of. A characterization of the models of the axiomatic theory allows us to

reuse knowledge about the mathematical structures in the mereotopological theory.

We attempt an characterization up to elementary equivalence of the models of RT .

This is su�cient because two models that are elementary equivalent cannot be

distinguished by a �rst-order sentence, hence everything we entail for one such

model is true for the other model as well with respect to what we can express in

�rst-order logic. That allows us to rely on the soundness and completeness proof

of RT0 with respect to RTT that implies elementary equivalence between the two

classes of models; hence we can use the known axioms and conditions of either

theory. But only for the models of a subset of the theory, called RT−, we can

give a full-blown representation theorem. However, later we restrict ourselves to

the �nite models of RT0, and by showing that every �nite model of RT0 also gives

a �nite model of RTT , we characterize the �nite models of RT0 (or subtheories

thereof) up to isomorphism.

Another point for motivating this work is the fact that such a characterization can

link the theory to other mereotopological systems, no matter whether those use

the same primitives or not, in a standard mathematical fashion and not only on

a philosophical level. In previous work, Biacino and Gerla [BG96] characterized
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the models of Clarke's Calculus of Individuals [Cla81, Cla85] in terms of lattices.

They showed that a subset of the axioms of Clarke, i.e. axioms A1 to A4, also called

a connection structure, are characterizing the complete orthocomplemented lattices.

Together with an axiom requiring the existence of a common point of two connected

individuals, [BG96] prove that it is equivalent to the complete Boolean algebras.

Since the system of Asher and Vieu [AV95] heavily relies on the work of Clarke, it

is interesting to know how the changes proposed by Asher and Vieu alter the class

of associated models, particularly in a lattice-theoretic description. The surprising

outcome here will be that the models change fundamentally, they are much more

restricted and therefore reveal additional implicit structural properties. Details

on the lattice-theoretic characterization and their relation to the work of Biacino

and Gerla is presented in chapter 4 on page 34. Likewise, a characterization of

the Region Connection Calculus (RCC), originally proposed in [RCC92] has been

conducted in [Ste97, Ste00]. Stell uses a similar notion of Connection Algebras to

describe the Region Connection Calculus.

While going through this model analysis, the mereological and topological sub-

structures are exhibited as well. They are related to the concept of contact algebras

[DW05, DWM99, DW06] and the more restricted de�nition of connection struc-

tures [BG96]. This relationship will also be discussed in chapter 4 from page 34

on.

A longer term question arising from this work is an exhaustive comparison of dif-

ferent mereotopological approaches within a strictly de�ned mathematical context,

such as topological spaces, graph representations, or lattices. As it turns out, lat-

tices seems to be best suited for such a research as they provide a very intuitive

way of modeling parthood relations. Therefore, this work can be seen as a �rst

step towards a comparison of the mereotopological framework with respect to their

models, rather than arguing for or against the underlying philosophical assumption.

We are more interested in a rigid mathematical study to provide the community

interested in mereotopological systems and relations with a model-theoretic view

on mereotopology.

Ultimately, this approach can lead to a revision of mereotopology constructed purely

from a mathematical structure, such as a certain class of lattices, or their combi-

nations (e.g. Cartesian products of lattices). A so-de�ned mereotopology might

either generalize existing axiomatizations by relaxing some restrictions or might

turn out to characterize mereotopological structures in a novel way. Interesting

classes of lattices that seem speci�cally promising are Stone [Joh82] and Heyting

algebras [Joh82, Vic89] as well as pseudocomplemented or orthocomplemented

lattices (see [Grä98] as general reference on lattices). Stell mentions using Heyting
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and co-Heyting algebras for de�ning pointless topology [SW97, Ste97]. A com-

mon example of a Heyting algebra is the set of open sets of a topological space (see

[Hal63]), which links back to the mereotopology of Asher and Vieu [AV95] which

is de�ned in terms of a topological space where the open sets play an important role

de�ning mereological concepts. Similarly, Stone spaces are mentioned by [Joh83]

for formalizing an uniform theory of pointless topology. A promising branch of

research is the generalization of mereotopology in terms of a pointless topology.

Linking the two together in a meaningful sense would contribute tremendously to

a general framework of pointless topology that might make mereotopology as a

separate theory redundant. Since Clarke's work in�uences many following authors,

we revisit his work in the revised version of Asher and Vieu on the way towards an

axiomatization of pointless topology. Asher and Vieu already made a large step for-

ward by formalizing the theory purely in �rst-order logic and removing any concrete

references to regions or individuals as sets of points. The only other mereotopo-

logical systems that we know of being formalized in �rst-order logic are the RCC

[RCC92] and [Got96]. However, some of their de�nitions still imply the existence

of point sets, hence another step might be necessary.

From an ontological perspective, in the presence of more and more emerging up-

per ontologies this analysis and further work in the same direction can guide the

selection of a proper, i.e. universal, axiomatization of mereotopology. Currently,

the most common upper ontologies such as SUMO, DOLCE, and BFO incorporate

some mereotopological concepts [NP01, MBG+03, Gre03]. A special applica-

tion that might need a more �ne-grained axiomatization is the area of geographic

information systems (GIS) where mereotopologies can be see as a generalization of

spatial and spatio-temporal theories (of any dimension).

2. Outline

For the characterizations of the models of Asher and Vieu three di�erent tech-

niques are employed. First of all, we use topological spaces as an instrument for

analyzing the structures and revealing their properties. This attempt seems nat-

ural, since the intended models were already constructed using topological spaces.

Nevertheless, we will see that this attempt does not lead to a characterization

as exhaustive as hoped for. But instead, this failed attempt clears the way for

an alternative characterization using lattice-theoretic concepts from universal alge-

bra. Other mereotopologies have been characterized partly or completely using this

manner; however, all of the analyzed models have a rather straightforward charac-

terization in terms of Boolean or Heyting algebras. The lattice approach is more

fruitful than the analysis with topological spaces and leads to a full characterization
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of the �nite models of a subset of the mereotopology. We show that this subset

is isomorphic to the class of complete atomic p-ortholattices (the intersection of

double-pseudocomplemented with orthocomplemented lattices). The additional re-

strictions that the full mereotopological theory of Asher and Vieu have to obey, e.g.

with respect to modularity, symmetry, distributivity (and weaker forms thereof),

and complementedness, are singled out. These substantial restrictions to the �not-

so-nice� substructures of p-ortholattices are references as non-modular complete

atomic p-ortholattices although they go beyond non-modularity. It turns out that

the most di�cult part is the characterization up to isomorphism when including

external connection. It is easily veri�able that the models are all in the restricted

class of lattices, but the tough question is to show that any such lattice does indeed

yield a model of the theory. Lattices alone fail to show the reverse homomorphism.

The third attempt is purely graph-theoretic - we show how every model can be

represented as a graph based on its extension of the connection relation. We break

the theory into a topological and a mereological part and show equivalences to

certain graph classes. However, the models including external connection can be

only classi�ed as dually chordal graphs which are too general. A stricter vertex

ordering, a maximum neighborhood inclusion ordering, that de�nes a subclass of

dually chordal graphs but contains all the models of the theory (including external

connection) is presented. But the converse cannot be proved; it is conceived that the

class of graphs that yield maximum neighborhood inclusion orderings also comprises

graphs that cannot be associated to models of the mereotopological theory.

To take advantage of a graph-theoretic representation and to overcome some in-

trinsic restrictions of lattice theory that fail to characterize the models including

external connection up to isomorphism, we apply a combination of both approaches.

This allows us to elegantly prove that a restricted set of p-ortholattices is in fact

isomorphic to the class of models of the mereotopology without weak contact. This

yields a way of constructing models from any lattice in the restricted set of p-

ortholattices. The last section of the thesis focuses on the weak contact relation

that further restricts the models to direct products of speci�c p-ortholattices. Basic

properties of the lattices participating in such products are identi�ed and we give

an example of such an product which is the smallest model of the full theory of

Asher and Vieu.

In conclusion� some of the problems of the axiomatization that were identi�ed dur-

ing the analysis are addressed in a broader context and in comparison to other

work on mereotopology. Generalizations of the proposed method for the analysis

of other mereotopologies are discussed and an outlook for further research in the

area is presented. Finally the thesis contains an overview of the lattice-theoretic
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implications of the analysis, in particular with respect to the intersection of or-

thocomplemented and pseudocomplemented lattices. This class of lattices has not

received much attention previously.

Remark 1. At some points in the thesis, we discuss direct implications of inter-

mediate results on the intended models of the mereotopology in comparison to

other mereotopological frameworks. Those comments are always marked as �Re-

mark� and separately numbered from de�nitions, theorems, lemmas, propositions,

and so on.



CHAPTER 2

The Mereotopology RT of Asher and Vieu

Reasoning about space in general and qualitative spatial reasoning (QSR) in par-

ticular has received signi�cant attention in the last decade. Its application ranges

from simple problems of path-�nding to industry automation, cognitive robotics,

computer vision applications, bio-informatics, and most commonly GIS systems

[CH01]. Qualitative spatial reasoning abstracts from quantitative concepts like

distances and angles and therefore does not deal with possibly in�nite or continuous

units, restricting the complexity of the reasoning task. Most QSR frameworks use

a combination of topological (expressing connectedness) and mereological (express-

ing parthood) relations. These mereotopological systems draw a lot of attention

in philosophic and logic communities and recently also in reasoning and knowledge

representation research. However, the di�erences and similarities between various

mereotopologies with respect to model-theoretic and reasoning perspectives are not

yet well understood. [CV99] was the �rst work classifying mereotopologies with

respect to their underlying topology and mereology and the fusion of them to co-

herent theories. In the next section, we will give a short introduction to mereology

and topology and then show how they relate to each other in mereotopological

theories. The following section deals with the di�erent proposed mereotopologies,

their current status, and some intrinsic problems of these axiomatizations.

1. Introduction to Mereotopology

1.1. Topology. Mereotopology in general is a composition of topological (from

Greek topos, �place�) notions of connectedness with mereological (from Greekméros,

�part�) notions of parthood. In mathematics, topology has reached a certain level

of maturity in the last century with a common understanding of its basic concepts.

By topology we mean speci�cally the area known as general topology or point-

set topology, whereas other divisions of topology such as algebraic and geometric

topology are not considered at all. Point-set topology relies as the name implies

on traditional set theory and uses all its well-known concepts such as containment

(subsets), intersection, union, and Cartesian products. General topology extends

these set-theoretic notions with concepts of interior, closure (and hence open and

7



1. INTRODUCTION TO MEREOTOPOLOGY 8

closed sets), limit points and neighborhoods but most importantly with the con-

cept of connectedness. In this thesis, topology is illuminated from the perspective of

topological spaces in chapter 3. This is a very natural approach, since the intended

models of the axiomatization from [AV95] that we are interested in (called RTT ),

are constructed using a topological space T = 〈S,O〉 on the set of points S (the

underlying set, named X in [AV95]) and the topology O on it. Di�erent notations

for topological spaces are common. We stick to the notation of Munkres [Mun00].

For basic de�nitions and theorems for topological spaces, we refer to section 1

on page 24 in chapter 3 (topological characterization). More details on point-set

topology and topological spaces can be found in [HY88, Mun00, Men90].

1.2. Mereology. Mereology is a much younger discipline and evolved from

a philosophical logic perspective. It investigates the relations between parts, in

particular parthood structures and relative complementation. Earliest references

reach back to the beginning of the 20th century, e.g. Edmund Husserl (�Logical

investigations� 1901 [Hus01]) and Alfred N. Whitehead [Whi29]. The term mere-

ology itself was coined in the 1920s by Stanisªaw Le±niewski in his work in Polish,

translated in [Lus62] and analyzed in [Grz55]. A more formal approach was con-

ducted by Leonard and Goodman in [LG40] in 1940. The latter two works are now

accepted as classical examples for extensional mereology. Now �Parts� by Simmons

[Sim87] is the standard reference for mereology. Casati and Varzi approach the

topic in a more rigorous way and give a classi�cation of varying strength of mereol-

ogy based on the properties of closure, extensionality, and atomism [CV99]. The

basic relation in mereology is that of an part to a whole. This is most commonly

expressed as proper part, <, where no part is a proper part of itself (irre�exive par-

tial order). For convenience, the re�exive parthood relation ≤ is often used as well

(re�exive partial order). Such a re�exive parthood relation is also referred to as

Ground Mereology [Var96]. Rewritten using �rst-order logic, a ground mereology

is de�ned in the following way.

Definition 2.1. [Var96] Ground Mereology M is the theory de�ned by the fol-

lowing proper axioms for the parthood predicate P :

(P1) ∀x [P (x, x)]

(P2) ∀x, y [P (x, y) ∧ P (y, x)→ x = y]

(P3) ∀x, y, z [P (x, y) ∧ P (y, z)→ P (x, z)]

In addition, most mereologies de�ne the concepts of overlap, union, and intersec-

tion of two individuals. General sums and products, i.e. the union and intersection
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of arbitrary many individuals, also referred to as fusion, are also widespread. Mere-

ological theories de�ne a whole, i.e. an individual that everything else is part of -

the so-called domain or universe, and relative to the whole a complement for ev-

ery element. More controversial is whether any such theory may consist of atoms,

i.e. individuals without proper parts. Atoms are indivisible not in the physical

sense, but on a more abstract level so that they are the smallest parts of inter-

est. Some theories are atomless while others explicitly force the existence of atoms

[Sim87]. The same controversy is inherent in mereotopology as we will see shortly.

Mereotopological theories can as well be de�ned atomless, or atomic, or making no

assumption about atomism at all.

1.3. Mereotopology = Topology + Mereology. Neither topology nor

mereology are by themselves powerful enough to express part-whole relations. Topol-

ogy can also be seen as a theory of wholeness, but has no means of expressing

parthood relations. Connection does not imply a parthood relation between two

individuals, as well as disconnection does not prevent parthood. Just consider the

example of countries - there exist many countries, e.g. the United States, that are

not self-connected. Alaska should be considered part of the United States but is

by no intuitive means connected to the other states. The same applies for Hawaii,

although the kind of separation is di�erent here: Alaska is separated by Canada

from the continental US, whereas Hawaii is solely separated by the Paci�c ocean.

If we consider landmass only, then Alaska and the continental US are part of a self-

connected individual, namely continental North America, whereas Hawaii is sepa-

rated from this landmass. On the other hand mereology is not powerful enough to

reason about connectedness. As the previous example shows, two individuals being

part of a common individual does not imply that this sum is self-connected. Hence,

parthood is not su�cient to model connectedness.

Consequently, to be able to reason about self-connected individuals, ways to com-

bine mereology with topology are necessary. Previously, Casati and Varzi [CV99]

classi�ed mereotopologies by the way how the two independent theories are merged.

One way to bridge this gap between them is the extension of mereology with a topo-

logical primitive [Var94]. Most notably the work by Tarski [Tar56] employs this

approach as does Smith's works on mereotopology [Smi96]. Tarski [Tar56] and a

recently proposed simpli�cation by Bennett [Ben01] de�ne a proper part predicate

as mereological primitive (as de�ned in the mereology by Le±niewski, see [Grz55])

extended by the topological primitive of a sphere (arising from Euclidean geometry).

Smith [Smi96] uses the re�exive parthood relation for de�ning mereology, extended

by a mereotopological primitive of an interior part (comparable to a non-tangential

part in Clarke's [Cla81] and Asher and Vieu's [AV95] mereotopologies). Clearly,
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mereology alone cannot de�ne the notion of interior part, since interior requires

some concept of connection or neighborhood. [CV99] presents a more general

approach that extends each mereological concept by a corresponding interior or

internal concept, e.g. for the parthood relation they de�ne an internal part, for

overlap an internal overlap relation, etc.

The second approach for merging mereology and topology is the reverse of the

previous: taking topology as basis and de�ning mereology on top of it using only

topological primitives. The argument given for such a de�nition is the greater

generality of topology. Topology is assumed to be the more powerful of the two

theories, subsuming mereology in its entirety [Var94]. Whitehead in Process and

Reality [Whi29] and De Laguna were the �rst to use this paradigm. Today, it

is the most widespread approach: Clarke choose it for his Calculus of Individuals

[Cla81], and all the work based on Clarke inherited his assumptions, e.g. Asher

and Vieu [AV95], the RCC by the group around Randell, Cohn, and Bennett

[RCC92, CBGG97a, Ben01], Gotts [Got94], and Pratt and Schoop's polygo-

nal mereotopology [PS97]. Due to the same origin all of these works use a single

primitive of connectedness (or contact) and express parthood in terms of connec-

tion which limits the expressiveness. The RCC is a more simpli�ed framework

compared to [Cla81], and [AV95]: it does not distinguish individuals from their

interiors and closures. The authors argue that such a distinction is unnecessary

for spatial reasoning aspects. But surprisingly they still distinguish tangential and

non-tangential parts as well as overlap and external connection.

A third, less common suggestion how to combine topology and mereology was

presented by Eschenbach and Heydrich in [EH95]. They employ the mereologi-

cal framework of Leonard and Goodman [LG40] and claim it to be more general

than topology and thus better extendable to mereotopology. However, they ex-

tend the classical mereology by quasi-mereological notions such as overlap (quasi-

mereological because it combines mereology with some topological idea, e.g. con-

nection) in order to be able to de�ne wholeness. Apart from a mereological primitive

(discreteness), [EH95] proposes to use the unary predicate region instead of con-

nection. The authors show how they are able to de�ne Clarke's theory by such an

extended mereology.

Most mereotopologies are described in terms of �rst-order axioms. However, they ei-

ther lack proofs of soundness and completeness [Cla85, Smi96, BGM96, Var96]

or the proof is based on a rephrased model de�nition as in [AV95]. Only the Re-

gion Connection Calculus [RCC92, CBGG97a] and the framework of Pratt and

Schoop [PS97], which is limited to planar polygonal mereotopology, provide formal

proofs that actually give insight into the possible models. But to better understand
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the relation between di�erent mereotopologies, we need to identify their actual

models and compare them to each other other. To achieve that we use a strict

analysis of the models from the axioms alone instead of interpreting the theories

and their models on a high level.

2. Axiomatization RT0 of Asher and Vieu

2.1. First-Order Logic. For all axiomatizations a standard �rst-order logic

with equality is used. We usually quantify all free variables, in cases they are

not fully quanti�ed, universal quanti�cation is assumed. For negation we use the

symbol ¬, for conjunctions ∧ and for disjunctions ∨. Implication is denoted by →.

Equality uses the standard symbol = and equivalence (two-directional implication)

is written as ≡. All of the relations we consider are predicates in the logic, i.e. C,

P , PP , O, EC, WCont, etc. are all binary relations, whereas OP , CL, Con are

unary relations. Subset and superset relations are also considered binary predicates.

Interiors (int or simply i), closures cl (or c), and complements ∼ denote functions.

We use a∗ as a constant describing the (unique) universal individual as used by

Asher and Vieu [AV95]. Later we will see that this corresponds to the set S on

which the topological space 〈S,O〉 is de�ned (see chapter 3 on page 23).

2.2. The theory RT0. The �rst-order theory de�ned by Asher and Vieu

[AV95], called RT0, uses a single primitive, the connection (also called contact)

relation C. The authors use as basis the theory of Clarke's Calculus of Individu-

als as proposed in [Cla81] and extended in [Cla85]. However, some changes are

applied to make the theory �rst-order de�nable: (1) the explicit fusion operator

is eliminated, [AV95] claims it unnecessary; and (2) the concept of weak contact,

WCont, is added. Moreover, the theory aims to eliminate trivial models by requir-

ing at least an external connection as well as a weak contact. Two ontological and

cognitive criticisms are also addressed. Contrary to Clarke, the proposed theory

prevents individuals having a set of individuals as parts by having only individuals

(also called elements or regions) as elements for the �rst-order theory. Finally an

awkward model arising from Clarke's axiomatization that contains two (or more)

externally connected individuals whose interiors amount to the entire space is �xed,

see �gure 4.1 in chapter 3. Oddly, this model is despite its external connection be-

tween the two largest elements considered disconnected in Clarke's system. It will

be connected in Asher and Vieu. Notice that we show later that this model is a

model only of a subset of axioms proposed by Asher and Vieu, but it is in the class

of trivial models eliminated in the fully theory RT0.
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Notice that the theory RT0 does not contain an explicit mereology RTP , i.e. it

does not de�ne a set of axioms that is limited to the parthood relation. In this

sense, Asher and Vieu's mereotopology follows the strategy called �Topology as

Basis for Mereology� in [CV99] that is based on the assumption that topology is

more general and fundamental than mereology. The parthood relation P is de�ned

in terms of the primitive connection relation C. This limits the theory in the sense

that within the theory of RT0 we cannot express stronger notions of parthood than

what we can express with connection. Due to the single primitive C, parthood

between elements is completely de�ned through the connectivity of individuals.

For a more elaborate discussion on the philosophical issues related to this kind of

axiomatization, we refer the reader to [CV99] and [Var07].

2.3. Essential concepts. Asher and Vieu de�ne a set of concepts that are

considered essential to build models of their mereotopological ontology. By essential

we mean that these de�nitions are necessary to read the axioms A1 to A13. In

other words these de�nitions are not just a conservative extension of A1 to 13, but

essential part of the theory. On the contrary are the enhancing concepts covered in

the next subsection conservative extensions - they give us no new restrictions for

the extensions of the here de�ned concepts (and thus for C).

Most of these concepts have been previously de�ned by Clarke [Cla85]. Others

[BGM96, Smi96, RCC92] de�ne instead of tangential part and non-tangential

part the concepts of tangential proper part (TPP) respectively non-tangential proper

part (NTPP). All of these concepts are necessary to understand the axioms. In this

sense they are used in the fashion of macros. The other relations, amongst others

self-connectedness, are not necessary for building the models. Instead they are

enhancing in the way that they are desired to describe intuitive notions in the

domain, but the models are not changed by them but just interpreted in a certain

(intended) way.

Part P(x,y). A traditional (re�exive) partial order (transitive, symmetric) that

corresponds to the axioms of Ground Mereology (see de�nition 2.1 on page 8) as

de�ned by Casati and Varzi [CV99].

(D1) P (x, y) ≡def ∀z [C(z, x)→ C(z, y)]

Overlap O(x,y). Two individuals overlap if they have some part in common. In

a spatial or physical theory it would mean that they occupy the same space, e.g. a

room overlaps with the building it is part of in the sense that whatever space the

room occupies, the building occupies as well. This example shows that parthood

is a special case of overlap, whereas we can think of partial overlap in the sense
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that neither individual is part of the other, but both have some part, i.e. a proper

part, in common. For example, the Rocky Mountains and Canada overlap, since

obviously the Rocky Mountains do not take up the entire country of Canada, but

on the other sides there are parts of the Rocky Mountains that are outside Canada,

e.g. in the United States. Note that for overlap to hold, two individual actually

have to have a named individual in common.

(D3) O(x, y) ≡def ∃z [P (z, x) ∧ P (z, y)]

External Connection EC(x,y). External connection is understood as two indi-

viduals being connected by their borders only, so that they have no common part.

Hence, it is necessary that the sets of parts of the two individuals are disjoint.

Moreover, we will later see that this implies that their interiors are disconnected.

(D4) EC(x, y) ≡def C(x, y) ∧ ¬O(x, y)

Non-Tangential Part NTP(x,y). A non-tangential part is intuitively a part that

does not touch the border of the greater individual. Special cases must be considered

for open individuals, since they naturally have no border that is included in the set

of points they are de�ned over.

(D6) NTP (x, y) ≡def P (x, y) ∧ ¬∃z [EC(z, x) ∧ EC(z, y)]

Interior i(x), Open OP(x). The interior i(x) is conceived to be the greatest

open part (not necessarily proper) y of x, i.e. 〈x, y〉 ∈ P . If the individual itself is

open, i.e. 〈x〉 ∈ OP , then it should be interior of itself. This is equivalent to the

de�nition of interiors in topological spaces, compare to fact 3.4 on page 25.

(D8) OP (x) ≡def x = i(x)

Since parthood P is re�ective, i.e. ∀xP (x, x) holds, it is noteworthy to observe

that open individuals are then in fact non-tangential parts of themselves whereas

closed individuals are tangential parts of themselves. However, clopen individuals,

i.e. elements that are both open and closed, only non-tangential part of themselves.

One might expect them to be both tangential and non-tangential part of themselves.

On the contrary, every individual that is neither open nor closed is a tangential part

of itself which matches our intuition that it must consist of some part of the border.

Closure c(x), Closed CL(x). Closure c(x) de�ned by D7, and closed CL(x)
de�ned by D9 are interpreted in the standard topological sense, i.e. the complement

of an open individual is closed. Intuitively, the closure of an individual includes its

boundary. Exceptions apply to topological wholes, since these are elements that

are open and closed but have no real boundary.
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Figure 1. Example of weak contact: 〈b, c〉 ∈WContM

Only d and a∗ are open elements ≥ b, c and both are connected to b and c.

Weak Contact WCont(x,y). Weak contact WCont uses the de�nition of the

closure c(x) =def −i(−x) which itself uses the complement of i and the complement

of x. The complement of x is de�ned for each x 6= a∗ and c(x) does only exist if

x 6= a∗. Intuitively, weak contact requires the closures of two individuals x and y

to be not connected, but any greater neighborhood that the closure of one of the

individuals is contained in to be connected to the other individual. The de�nition

of weak contact might only deviate from our common-sense understanding of two

elements touching each other without sharing common borders when we consider

disconnected spaces.

(D11) WCont(x, y) ≡def ¬C(c(x), c(y)) ∧ ∀z [(OP (z) ∧ P (x, z))→ C(c(z), y)]

2.4. Axioms. The theory RT0 is de�ned by the following axioms.

Re�exivity of C

(A1) ∀x [C(x, x)]

Symmetry of C

(A2) ∀x, y [C(x, y)→ C(y, x)]

Idempotence of C

(A3) ∀x, y [∀z (C(z, x) ≡ C(z, y))→ x = y]

Existence of an universally connected individual u, commonly referred to as a∗.

(A4) ∃x∀u [C(u, x)]

Existence of a sum for any pair of individuals.

(A5) ∀x, y∃z∀u [C(u, z) ≡ (C(u, x) ∨ C(u, y))]



2. AXIOMATIZATION RT0 OF ASHER AND VIEU 15

Existence of an intersection for any pair of overlapping individuals.

(A6) ∀x, y [O(x, y)→ ∃z∀u [C(u, z) ≡ ∃v (P (v, x) ∧ P (v, y) ∧ C(v, u))]]

Part of what this axiom expresses is: The overlap of two individuals requires that

these individuals have a common part that is connected to both of them. Thus we

can consider a special case of this axiom (it is weaker than the axiom itself): no

matter what we choose for z the most inner term must hold for u = z s.t.:

(A6') ∀x, y [O(x, y)→ ∃z [C(z, z) ≡ ∃v (P (v, x) ∧ P (v, y) ∧ C(v, z))]]

(A6�) ∀x, y [O(x, y)→ ∃z, v [C(z, z) ≡ (P (v, x) ∧ P (v, y) ∧ C(v, z))]]

The existence of a (unique) complement for each individual.

(A7) ∀x [∃y (¬C(y, x))→ ∃z∀u [C(u, z) ≡ ∃v (¬C(v, x) ∧ C(v, u))]]

The existence of a (unique) interior for each individual.

(A8) ∀x∃y∀u [C(u, y) ≡ ∃v (NTP (v, x) ∧ C(v, u))]

De�ning the closure operation c as a function.

(A9) c(a∗) = a∗

The intersection of open individuals is also open.

(A10) ∀x, y [(OP (x) ∧OP (y) ∧O(x, y))→ OP (x ∩ y)]

Existence of two externally connected individuals.

(A11) ∃x, y [EC(x, y)]

Existence of two individuals of weak contact as de�ned by WCont. Weak contact

is understood in the sense that e.g. two objects or regions touch without being

connected. A common example is a glass on a table: the glass and the table do

not share any boundary, they are closed (at least to this side), but there is also no

other object (even air) between the glass and the table it stands on.

(A12) ∃x, y [WCont(x, y)]

Existence of a unique open neighborhood for every element.

(A13) ∀x∃y [P (x, y) ∧OP (y) ∧ ∀z [(P (x, z) ∧OP (z))→ P (y, z)]]

2.5. Enhancing concepts. Here we list the concepts that are de�ned as part

of the theory RT by Asher and Vieu, but that are not necessary for the model

construction. The extensions of these concepts can be directly derived from the

extension of the other concepts. Since no axioms are enforcing restrictions onto
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them, we can wait for their evaluation until all other extensions are determined. In

this sense they are enhancing - they try to capture some intuitive notion but are

not directly used in the axioms.

Proper Part PP(x,y). It is the irre�exive subset of the extension of parthood,

i.e. PP (x, y)→ P (x, y) and P (x, y) ∧ x 6= y → PP (x, y).

(D2) PP (x, y) ≡def P (x, y) ∧ ¬P (y, x)

Tangential Part TP(x,y). It is the counterpart of the before-mentioned rela-

tion non-tangential part. In this sense, every parthood relation either describes a

tangential- or non-tangential parthood relation as well show by a theorem later on.

(D5) TP (x, y) ≡def P (x, y) ∧ ∃z [EC(z, x) ∧ EC(z, y)]

Self-connectedness CON(x). The de�nition of a self-connected individual x, i.e.

〈x〉 ∈ CONM in D10 is a variation of Clarke's de�nition [Cla81, Cla85] used to

classify individuals as being self-connected or disconnected. For an element to be

disconnected in means it can be partitioned into at least two sets of parts where

there is no connection between them. Self-connectedness is one of the motives

for the introduction of mereotopologies, since it describes a notion that neither

parthood nor connectedness alone can express by itself. However, for the model-

theoretic analysis it is of less importance, since it poses no actual restrictions on

the models. Its extension can be determined after a model has been constructed.

(D10) Con(x) ≡def ¬∃y, z [x = y + z ∧ ¬C(cy, cz)]

3. Intended Models RTT of Asher and Vieu

In the original paper [AV95], the intended models of the axiom system RT0 that

we just summarized are given in terms of topological spaces. Each model must be

build from a non-empty topological space (X, T ) with T denoting the set of open

sets of the space and with all standard de�nitions of interior and closure operators

int and cl as well as open and closed as properties in the topological interpretation

and ∼ as relative complement with respect to X. The (intended) mereotopological

models are then de�ned as the structures RTT = 〈Y, f, JK〉 where the set Y must

meet the following conditions (i) to (viii).

(i) Y ⊆ P(X) and X ∈ Y

(ii) ∀x ∈ Y (int(x) ∈ Y & int(x) 6= ∅& int(x) = int(cl(x))) (full interiors)
(iii) ∀x ∈ Y (cl(x) ∈ Y & cl(x) = cl(int(x))) (smooth boundaries)

(iv) ∀x ∈ Y (int(∼ x) 6= ∅ →∼ x ∈ Y )
(v) ∀x, y ∈ Y (int(x ∩ y) 6= ∅ → (x ∩∗ y) ∈ Y )
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(vi) ∀x, y ∈ Y ((x ∪∗ y) ∈ Y )
(vii) ∃x, y ∈ Y ((x ∩ y) 6= ∅& int(x ∩ y) = ∅)
(viii) ∃x, y ∈ Y ((cl(x) ∩ cl(y)) = ∅&∀z ∈ Y [(open(z) &x ⊆ z)→ y ∩ cl(z) 6= ∅])

where the operations ∪∗ and ∩∗ are de�ned in the following way;

(EQ1) x ∪∗ y = x ∪ y ∪ int(cl(x ∪ y))

(EQ2) x ∩∗ y = x ∩ y ∩ cl(int(x ∩ y))

With respect to this characterization of the models, Asher and Vieu provide a

completeness and soundness proof in their paper [AV95]. However, the proof is not

very helpful for understanding the models of the theory.. The conditions as stated

above are a mere rephrasing of the axioms. We can easily show how the conditions

are re�ected in the axioms in a mapping one by one. Only the connections structures

characterized by A1 to A3 are de�ned independently of these conditions.

(1) Condition (i) translates to axiom A4 as the existence of a universally

connected element (the set X is an element of the theory);

(2) Condition (ii) entails the existence of a non-empty interior of all elements

like A8 does;

(3) Condition (iii) entails the existence of a closure for all elements which is

implicitly given by the de�nition D7 of the closure in terms of the uniquely

identi�ed interiors and complements, together with A9 to ensure that the

universal element has a closure;

(4) Condition (iv) directly entails the existence of a unique complement for

every element in Y ;

(5) Condition (v) guarantees the existence of a unique intersection for any pair

of elements as long as this intersection is not empty. This is a translation

of axiom A6;

(6) Condition (vi) guarantees the existence of unique sums for every pair of

element and is thus equivalent to A5 in RT0

(7) Condition (vii) entails the existence of at least a pair of externally con-

nected elements which is equivalent to A11 if we replace it with the de�-

nition of EC;

(8) Condition (viii) requires the existence of a pair of weakly connected el-

ements in the same way A12 formulates it with the de�nition of weak

contact from D11.

But this characterization of the models of RT by their intended models is far from

being su�cient in order to evaluate these models. The conditions as given do
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not form any known properties from which we can derive common properties and

theorems about the models. For instance, it is not clear how the conditions relate to

each other and put additional, non-obvious constraints on another. For this reason,

we want to get a better understanding of the models by characterizing them as

some class of well-known and well-understood structures.

For the rest of the thesis we rely on the model-theoretic equivalence of RTT and

RT0. For this reason, we refer to the system simply as RT where the reader can

choose which de�nition is preferred or more adequate. We use both RTT and RT0

for the proofs depending on which allows a more elegant solution. Usually the

characterization RTT can be applied in a more direct way. In chapters 4 and 5 we

only consider �nite models. By showing that every �nite model of RT− (a subset of

RT0) gives rise to a �nite model of a restricted RTT , we prove equivalence between

the �nite models of RT− and the restricted models of RTT .

4. JEPD Relations

For a �rst step of a characterization of the models of RT0, we try to �nd a set of

jointly exhaustive, pairwise disjunct (JEPD) basic relations. This has been done

successfully for the RCC [RCC92, CBGG97b] resulting in a hierarchy with a set

of 8 basic relations (called RCC-8): PO (partial overlap), TPP (tangential proper

part), NTPP (non-tangential proper part) and the inverse of both, equality (i.e.

�x is part of y� and �y is part of x� entails that x and y are equal), EC (external

connection) and DC (disconnected) [RN07]. For these eight basic relations of RCC

it is easily provable that they satisfy the JEPD condition. Similar basic relations

have been found for Allan's interval calculus [All83] and for Schlieder's oriented line

segment calculus [Sch95]. For Egenhofer's mereotopological framework [Ege91]

based on boundaries, nine such basic relations have been detected.

However, the semantics of the primitive C in the RCC deviates from Clarke's con-

ception [Cla85]: two individuals are considered connected in RCC if their closures

share a common point. On the contrary, the individuals itself have to share a

common point in Clarke's and Asher and Vieu's axiomatization. This leads to

a distinction between closed and open regions by the axioms we use here; this

distinction is not present in RCC. Further implications of this richer theory are

discussed in detail in [CBGG97b]. Since some of the oddness of Clarke's axioms

has been eliminated by Asher and Vieu, the theorems given by Clarke in [Cla81]

and [Cla85] cannot been taken for granted anymore in the modi�ed theory. The

next sections develop a set of JEPD relations for the dyadic relations of the theory

RT0, i.e. C,O, P, TP, NTP, EC and WCont. Obviously, the monadic relations
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Open OP and Closed CL will not be represented in this JEPD lattice and need

special attention.

4.1. Clarke's theorems. A lattice of JEPD relations relies on the subsump-

tion of one relation through another. We start with the relations that are easily

identi�ed from the axioms. From the de�nition of TP and NTP we see that both

are subsumed by P . Consequently TP−1 and NTP−1 (note both TP and NTP

are not symmetric, but actually antisymmetric) are subsumed by P−1. The def-

initions of TP and NTP entail that they and their inverses are both exhaustive

subsets of P respectively P−1. Further, we easily see that EC is subsumed by C.

Additional subsumption relations are identi�ed by some of the theorems taken from

[Cla81] as listed below. All the theorems are directly entailed by the axioms A1

to A10 and A13 together with necessary de�nitions. The proofs are only outlined

in parentheses.

Properties of parthood.

T0.5 ∀xP (x, x) (Re�exivity of P , proof by D1)

T0.6 ∀x, y, z [(P (x, y) ∧ P (y, z))→ P (x, z)] (Transitivity of P , proof by D1)

T0.7 ∀x, y [(P (x, y) ∧ P (y, x)) ≡ x = y] (Antisymmetry of P , requires P and

P−1 to be disjunct except for the case P ∩ P−1 = I, proof by D1 and

A3)

T0.37 ∀x, y [TP (x, y)→ ¬NTP (x, y)] (TP and NTP are disjunct, directly

follows from T0.7 and D5, D6)

T0.40 ∀x, y [P (x, y) ≡ TP (x, y) ∨NTP (x, y)] (TP and NTP are exhaustive

with respect to P , proof by contradiction from D5 and D6)

Relation between parthood and connection.

T0.9 ∀x, y, z [(P (x, y) ∧ C(z, x))→ C(z, y)] (from D1: substitute P (x, y) by

∀w (C(w, x)→ C(w, y)) and choose w = z)

T0.10 ∀x, y [C(x, y) ≡ ∃z (P (z, y) ∧ C(x, z))](direction→ follows directly from

T0.9 and use D1 for the other direction and choose z = y)

T0.11 ∀x, y [P (x, y)→ C(x, y)] (P subsumes C, directly follows from T0.10

with T0.9)

Properties of overlap.

T0.17 ∀xO(x, x) (Re�exivity of O, prove by substituting O(x, x) with its def-

inition from D3 and choosing z = x)

T0.18 ∀x, y [O(x, y)→ O(y, x)] (Symmetry of O, prove using D3 for both oc-

currences of O and choosing z = x)
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T0.19 ∀x, y [O(x, y)→ C(x, y)] (O subsumes C, prove from D3 and substitute

the left side of the equivalence with T0.11, choose z = x and use A1)

Relation between parthood and overlap.

T0.21 ∀x, y [P (x, y)→ O(x, y)] (P subsumes O,prove from D3 with z = x)

Properties of external connection.

T0.24 ∀x [¬EC(x, x)] (Irre�exivity of EC, prove from D4, A1, D3, and T0.5)

T0.25 ∀x, y [EC(x, y)→ EC(y, x)] (Symmetry of EC, proof by D4 and sym-

metry of C and O in A2, T0.18)

Relation between external connection and overlap.

T0.27 ∀x, y [EC(x, y)→ ¬O(x, y)] (EC and O are disjunct, directly follows

from D4)

T0.28 ∀x, y [C(x, y) ≡ EC(x, y) ∨O(x, y)] (EC and O are exhaustive with re-

spect to C, proof: the direction ← follows directly from D3 and D4,

the direction → follows from EC(x, y) ∨ O(x, y) by using D4 and thus

obtaining EC(x, y) ∨ O(x, y) ≡ (C(x, y) ∨ O(x, y). Hence C(x, y) →
EC(x, y) ∨O(x, y))

4.2. JEPD lattice. Using these theorems, in particular theorems T0.7, T0.11,

T0.37, T0.40, T0.19, T0.21, T0.27, and T0.28, we are able to build the subsumption

lattice. Notice that with T0.19 we have a subsumption relation between O and C.

We previously noted that C is also subsumed by EC (see de�nition of EC in D4).

Through D4 we know that O and EC are disjunct T0.27. With D4 we entailed

through T0.28 that O and EC are jointly exhaustive and disjunct with respect to

C.

However, we cannot determine the exhaustive disjoint subsets of the overlap re-

lation O. We already showed that P and P−1 subsume O, but by no guarantee

exhaustively. Thus we introduce an additional predicate partial overlap PO as in

[RCC92] that contains 〈x, y〉 if it is neither in the extension of P nor of P−1,

but 〈x, y〉 ∈ O (not to be mistaken for the proper overlap relation as de�ned by

[BGM96]).

(3) PO(x, y) ≡def O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x)

Finally, we want to �nd a place of WCont in the lattice. Its underlying intuition

is quiet clear: two individuals that are in weak contact are not connected, nor

are their closures, but nothing �separates� their closures. Thus we are tempted

to de�ne a disconnected relation ¬C and attach WCont as a child. However, the
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Figure 2. Complete subsumption lattice for the dyadic predicates
of the mereotopological theory of Asher and Vieu [AV95]

model theoretic implication of the axiomatization with respect to the closure of any

individual is far from obvious. Instead of drawing premature conclusions, we opt

to postpone checking models with respect to WCont at a later stage.

The JEPD subsumption lattice contains seven relations: TP , TP−1, NTP ,

NTP−1, PO, EC, ¬C. Deviating from the RCC relations, we do not have an

equality relation as additional basic relation, although it can be easily be de�ned

as the intersection of TP and TP−1 as well as NTP and NTP−1. Nevertheless,

equality cannot be easily distinguished in the lattice.

5. Subtheories of RT0

In this thesis we approach the models of Asher and Vieu's axiomatization in a

modular way. Because the mereotopology of Asher and Vieu follows the strategy

�Topology as Basis for mereology� [CV99], it can be broken down into a �core�

topology and axioms and de�nitions that extend it with mereology. In the follow-

ing chapters, especially the lattice-theoretic part, we consider models of simpli�ed

theories that satisfy only a subset of the axioms A1 to A13. Only towards the

end of the lattice-theoretic characterization, we work with the full theory RT0. To

distinguish the di�erent subsets of RT0 (i.e. subsets of the axioms A1-A13 of Asher

and Vieu) we use the following notations.

RTC the topological theory of the connection relation C consisting of the ax-

ioms A1 to A3 which corresponds to ground topology (T) (see [CV99])

that is extensional by axiom A3. E�ectively, it is equivalent to a Strong

Mereotopology (SMT) as de�ned in [CV99] and to a extensional weak

contact algebras as de�ned in [DW06], satisfying the axioms C0 - C3

and C5e of [DW06], and hence C is a contact relation (see [DWM99]).
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RTP the mereological theory consisting of the axioms A1, A2, and A4-A8.

It also assumes the de�nitions D1 to D4. Notice that axiom A3 is not

assumed to hold here. E�ectively, it is partial order by P (or irre�exive

partial order by PP ). It is mainly referred to in the graph-theoretic

characterization in chapter 5.

RT− ≡ RT0 \ {A11, A12}. This theory excludes the axioms that require

existence of an external connection and existence of a weak contact.

Obviously this theory is a superset of RT0 with equivalent structural

properties, but eliminating trivial models (as claimed by [AV95]).

RT−EC ≡ RT0 \ {A12} ≡ RT− ∪ {A11}. This theory only considers models

that contain at least one external connection, but does not put any

restrictions on the existence of weak contact. We will later see that the

step from RT− to RT−EC is the most crucial one as it adds a complexity

to the models that is reluctant to be captured nicely.

RT0 ≡ RT−EC ∪ {A12}. It is the full mereotopological theory as de�ned by

Asher and Vieu [AV95]. If we explicitly mean the models of RT , we

refer to the the set of all structures RTT .

Throughout the thesis, the unary operation ∼ denotes the topological complement

as de�ned in a model of RT0 or a subset thereof. The unary operation orthocomple-

ment is denoted by ⊥ and pseudocomplements are denoted by ′ as long as they are

unambiguous. To di�erentiate between join- and meet-pseudocomplements, they

are referred to as jpc and mpc, respectively. Variables are written in italic, whereas

in models, concrete individuals (or the respective lattice elements or vertices in

graphs) are written upright.
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RT−dd
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Figure 3. Relations between subtheories of the axioms



CHAPTER 3

Topological Characterization

This chapter is dedicated to an analysis of the topological spaces that arise from

the mereotopology of Asher and Vieu. This is a very natural approach taking into

account the construction of the intended models of RT from topological spaces. So

the question arises whether the conditions imposed on the models can be described

in terms of the rich taxonomy of separation in topological spaces. All the con-

cepts de�ned in the models, e.g. complements, interiors, and closures, are directly

taken from the underlying topological spaces. However, Asher and Vieu did not

restrict themselves to any class of topological spaces. Nevertheless, some common

characteristics of topological spaces such as separation is inherent in the conditions

and the resulting axioms. Despite, we show why this approaches gives only limited

insight into the models and fails to fully characterize them.

The chapter follows the idea of Düntsch and Winter [DW05] who characterized

the models of the Region Connection Calculus [RCC92, CBGG97a] in terms

of topological spaces. Düntsch and Winter conclude that earlier assumptions of

the topological representations of RCC being regular spaces is in fact too strong.

Their proof shows that even regularity alone (i.e. T3) is not always satis�ed. This

is ascribed to various possible ways of constructing topological spaces from a model

of the RCC. Asher and Vieu's mereotopology exhibits the same issue: di�erent

topological spaces can be constructed from the theory RT0 for a single modelM.

For this reason, we de�ne an embedding topological space that is limited to the

necessary points of the topological space (X, T ). One could arbitrarily enlarge any

point set X with the e�ect of every closed subset of X containing every additional

point.

The �rst section of this chapter gives an overview over relevant topological con-

cepts and theorems. The following section considers the spaces constructed in the

completeness of [AV95], whereas section 3 tries to �nd properties of the result-

ing spaces of Asher and Vieu using the classical notion of separation axioms. The

chapter concludes with a special consideration of the in�nite models allowed in

RT . Regularity is translated to the topological de�nitions of semi-regular; in con-

trast it is shown that regularity cannot be mapped to local connectedness in the

23
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embedding spaces. Finally, we compare the results to some previous topological

characterizations obtained for the RCC.

1. Topological Spaces

This section provides basic de�nitions and results for topological spaces as found

in the standard literature. For more details on general topology we refer e.g. to

[HY88, Mun00, Men90]. The de�nitions and concepts are introduced for the

purpose of the upcoming characterization of the models of RT from a topological

perspective.

Definition 3.1. [HY88] Let S be a non-empty set and O a collection of subsets

of S, called open sets, such that

(O1) S ∈ O and ∅ ∈ O,

(O2) The union of any number of open sets is an open set,

(O3) The intersection of a �nite number of open sets is an open set.

O is called a topology on S, the underlying set, and the ordered pair 〈S,O〉 is called
a topological space. By de�nition any subset of O is an open element (where ∅ and
S are open). A set N ∈ O is called a neighborhood of a point p ∈ S if N contains

p, i.e. the set N is an open set containing the point p. A subset N ⊆ S of the

topological space 〈S,O〉 is de�ned to be closed if the di�erence S − N is an open

set, i.e. (S −N) ∈ O. Note that a set can be open and closed at the same time,

it is then called clopen. Similarly, a subset of S can be neither open nor closed. If

the empty set ∅ and the set S are the only sets that are both open and closed, the

space is connected. A characterization of the set of closed sets C equivalent to the

de�nition of topological spaces can be derives as follows.

Theorem 3.2. [HY88] The closed sets C of a topological space 〈S,O〉 satisfy the

following properties:

(C1) S ∈ C and ∅ ∈ C,

(C2) The intersection of any number of closed sets is an closed set,

(C3) The union of a �nite number of closed sets is an closed set.

Two important concepts for topological spaces are the interior and the closure of

a subset A of S.
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Definition 3.3. [HY88, Men90] Let A ⊆ S be a subset of a topological space

〈S,O〉. A point p is in the closure of A if for each neighborhood N of p, N ∩A 6= ∅.
The closure of A is denoted by Ā = Cl(A).

The point p is in the interior of A if there is a neighborhood N ⊆ A so that N

contains p. The union of all open sets contained in A is called the interior Int(A)
of A.

From this de�nition, the de�nition of topological spaces, and the closure of closed

sets, we immediately can show that the following holds.

Theorem 3.4. [Mun00] The interior of A is the largest open set N contained in

A, i.e. N ⊆ A.

The closure of A is the smallest closed set C containing A, i.e. C ⊇ A.

Obviously, the subsumption relation Int(A) ⊆ A ⊆ Cl(A) always hold for any

A ⊆ S. Moreover, the following fact follows immediately.

Theorem 3.5. [Bou66] A set A is open if and only if it coincides with its interior,

A = Int(A).

A set A is closed if and only if it coincides with its closure, i.e. A = Cl(A).

Further concepts and theorems are introduces as needed.

2. Embedding Topological Space

In the upcoming considerations, we focus on the embedding of the structure RTT =
〈Y, f, JK〉 in a topological space as stated in the completeness proof of Asher and

Vieu [AV95]. In particular, we consider the set of points X = a∗ where a∗ de-

notes the unique universal individual in a model of RTT that is identi�ed through

axiom A4. Using the notation of the original paper, we choose X = ΣU =def⋃ {
Ω[cn]|cn ∈ ΣC

}
, the set X over which the space ranges being the union of all

points occurring in any of the relevant individuals (an individual is represented by

the equivalence class [ck] over constants ΣC occurring in the sentences Σ of a RT0-

consistent saturated set) of a speci�c model of RT0. Intuitively, we understand the

set of points X of the topological space to contain exactly those points that are

contained in some set contained in Y . The set of points Ω[cn] for each equivalence

class [cn] representing an individual in the theory is de�ned in terms of ultra�lters

in [AV95]. Each set of points is chosen maximal with respect to the set of points

that could be chosen. Notice the di�erence between �niteness in the models of RT0

and �niteness of the point set X which underlies the intended model as captured
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by RTT . For �nite models of RT0, meaning that the extension of CM is �nite

and equivalently that the number of individuals is �nite, one can still construct an

underlying topological space over an in�nite point-set. However, as we will see, the

resulting space is not T0. Vice versa, topological spaces over in�nite point sets do

not necessarily yield models with in�nite number of individuals.

Analogously, we can de�ne the topology that is created when embedding a structure

RTT in a topological space as:

(EQ1) T = ΣT
U = {∅} ∪

{
Ω[cn]|cn ∈ ΣC ∧ Σ ` OP (cn)

}
∪

{⋃
Z|Z ⊆

{
Ω[cn]|cn ∈ ΣC ∧ Σ ` OP (cn)

}}
This is simply the empty set (explicitly not needed in structures of the mereotopol-

ogy but required in any topological space by de�nition, see axiom O3 of de�nition

3.1), together with the set of open sets contained in Y of the structure RTT (the

sets that are open in a model of RTT by being in the extension of OP ) and arbi-

trary unions of sets of open sets of Y (last part of the above de�nition). Notice

that by the last part it is implied that the union of any possible combination of

open sets is included. Then this topology T is uniquely identi�ed for each given set

X and point sets Ω[cn]. Since the points included in the equivalence classes can be

chosen freely, the topology T is not uniquely identi�ed through X and the classes

[cn] alone. The identi�cation of the points included in Ω[cn] for each equivalence

class [cn] is crucial.

We summarize that every model of RT0 is embeddable in some topological space.

This is an expected result, since the completeness proof of [AV95] shows elementary

equivalence between the models of RT0 and RTT , i.e. every sentence Φ consistent

with RT0 can represent a model of RT .

3. Separation Axioms

Definition 3.6. [HY88] Separation axioms Tx:

(Axiom T0) Given two points of a topological space S, at least one of them is

contained in an open set not containing the other.

(Axiom T1) Given two points of S, each of them lies in an open set not containing

the other.

(Axiom T2, Hausdor� axiom) Given two points of S, there are disjoint open sets,

each containing just one of the two points.

(Axiom T3) If C is a closed set in the space S, and if p is a point not in C, then

there are disjoint open sets in S, one containing C and the other containing p.
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Notice that a space satisfying axiom T3 does not necessarily satisfy T1. A space

satisfying both T1 and T3 is called a T3-space or regular space [HY88].

We call the topological space (X, T ) = (ΣU ,ΣT
U ) the embedding space that RTT

yields for a given T . It is minimal with respect to the set X, but not minimal in

the number of points it contains. If any of the atomic elements is assigned a set of

points, then these points will be topologically indistinguishable unless each point is

a closed set by itself and thus each subset of points in X is an open set. Otherwise

the indistinguishable points in an atom prevent the topology even from satisfying

T0.

If we have an in�nite number of atoms in a model of RT , then we need an in�nite

set of points in X as well. On the other extreme, assign each atomic individual

exactly a single point and assign each individual containing proper parts the sum of

the points contained in their proper parts (with any additional point if it has only

a single proper part in order to distinguish it from its single proper part; the same

applies if two sets have the same proper parts, then each needs an extra point to

distinguish it from another). Then, if the set of atoms is �nite in the original model,

the set of points will be �nite as well. So for �nite models, the embeddable space is

always a discrete topology over all the points. In general, if the topology T contains

all possible unions of subsets of open sets in a model of RTT , the topology must be

discrete if it is T0. Notice that the universal element is denoted by a constant, e.g.

a∗, in any set ΣC . Since by de�nition this set contains exactly the points of X, the

last part of the de�nition of T can take unions of arbitrary open sets of points. In

particular, if we take each point p ∈ X as open set, we always obtain the discrete

topology that satis�es T0, T1, and T2.

On the contrary, if any set A representing an atomic individual in a model of RT0

contains more than a single point, and the topology would not include single point

sets, then it is obviously not T0. We can �nd two points in A, e.g. a1 and a2 that

are not in distinct subsets of A, and thus are topologically indistinguishable. Note

that no other set B with B 6⊇ A can contain these points: (1) if int(A ∩ B) 6= ∅,
then for the intersection it holds (A ∩∗ B) ∈ Y , (2) otherwise int(A ∩ B) = ∅ and
since A and B share a point, A∩B 6= ∅. In case (1) A was not atomic, in (2) A was

not in OP , i.e. A is not an open set in the model of RT0 (A is externally connected

to B). In both cases our assumption is contradicted.

So for any �nite set of individuals [cn] or, equivalently, for all the sets of points Σ[cn]

of every class [cn] being �nite, the resulting topology must be discrete. Furthermore,

it holds in general:
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Proposition 3.7. The complete topological space as de�ned in the completeness

proof of [AV95] is a discrete topology and thus Hausdor� (T0, T1, and T2) if the

model of RT0 is �nite or all atoms are represented by �nite point sets.

The discrete space is also totally disconnected and compact because it is �nite.

Considering proper subsets of the union of open sets in the de�nition of a topology

(X, T ) on a set X, we can distinguish the following cases. For an in�nite set of

points Σ[cn] of a single equivalence class [cn] without the number of classes [cn]
being in�nite, the resulting topological space contains indistinguishable points and

thus is not T0.

Proposition 3.8. If the number of equivalence classes cn of individuals is �nite, but

any of its atomic regions contains an in�nite number of points Σ[cn], the incomplete

topology formed from it does not satisfy T0.

This leaves us with the case of a model of RT0 containing an in�nite number of

atoms. We analyze this case in more details in the next section.

4. Models With In�nite Sets of Atoms

As we have seen, the only interesting case - in terms of the arising topological spaces

- are models on in�nite number of individuals, i.e. models that contain an in�nite

number of atomic individuals. These models are characterized by an in�nite number

of sets in Y . This case subsumes the case of an atomless model - the most extreme

variation of it (with uncountable number of individuals). A special, �atomic� case

is a model with in�nite number of atoms.

In general we cannot verify whether a topology T as constructed by the embedding

is T0.

The embedding topological space (X, T ) is the minimal space with respect to the

number of open sets for a given set X and given point sets Ω[cn]If we assume the

topology to be T0, we can characterize the embedding topological space (X, T ) more

speci�cally in terms of semi-regular spaces.

4.1. Semi-regularity. Semi-regularity is a weaker property than regularity

which has been proved for the topological spaces of the RCC. Regularity turned

out to be too strong for the topological spaces built from the models of RCC. This

result can be carried over to the models of RT , since then all sets must be regular

open for which we have no justi�cation.
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Definition 3.9. [SS78, Bou66] A set A is called regular open if A = Int(Cl(A)).

A set A is called regular closed if A = Cl(Int(A)).

Obviously, the open sets in Y of a model of RTT are regular open as well as the

closed sets in Y are regular closed (follows from fact 3.5, the de�nition of regular

open sets (de�nition 3.9), and the full interior condition (ii) of the model de�nition

of RTT for all open sets A):

(EQ2) A = int(A) ⊃ A = int(cl(A))

(EQ3) A = cl(A) ⊃ A = cl(int(A))

The de�nition of the models gives a much stronger assumption, the so-called as-

sumption of smooth boundaries: every part of the objects in a given n-dimensional

space must be n-dimensional as well [AV95]. Together with the assumption of

full interiors [AV95] this is equivalent to regular in the sense of Cohn et al.

[CBGG97a]: Cl(Int(x)) = Cl(x) and Cl(Int(x)) = Cl(x). However, in RCC

this is an assumption, since no explicit relation between individuals and their re-

spective interior and closure are made. Therefore, it comes for free and is not

re�ected in the axioms of the theory of RCC [RCC92]. The same notion of this

interpretation of regular is not captured adequately by regular open and regular

closed sets as expressed above. Instead of the above equations, Asher and Vieu

assume as well the unrestricted version favored by Cohn et al.

Nevertheless, we can prove semi-regularity for the embedding topological spaces

from the following simple lemma and its corollary. Semi-regularity is a weaker prop-

erty of topological spaces than regularity. The topological spaces arising from RCC

were in [DW05] shown to be semi-regular, but not regular, i.e. not T3. We can

prove semi-regularity only for the in�nite models of Asher and Vieu's mereotopol-

ogy.

Definition 3.10. [Bou66] A topological space X is called semi-regular (as well as

its topology T ) if the regular open subsets form a base of its topology T .

Lemma 3.11. The topology T of the topological space (X, T ) embedding a model of

RT0 with in�nite number of individuals contains only open sets and their unions

(also open sets) in Y in the respective structure RTT .

Corollary 3.12. For a given model of RT0 with in�nite number of individuals,

in the resulting structure RTT (with in�nite Y ) the set of open sets in Y de�nes a

base (also called basis) of the topological space (X, T ).
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Figure 4. Smallest model of RT−EC with the boundary point pxy

Theorem 1. For a given model of RT0 with an in�nite number of individuals, the

topological space (X, T ) is semi-regular.

Proof. Recall that theorem 3.5 requires the set of open sets contained in Y to

form a base of the topological space X. Since all open sets of Y are regular open,

the regular open sets, T , form trivially a base of (X, T ). �

Example 1. Consider two closed, externally connected elements x and y: they

need to share a boundary point pxy that lies on the boundary of x and y, i.e. not

in the interiors int(x), int(y) but in the closures cl(x) = x, cl(y) = y, compare

�gure 4.1. In short: pxy ∈ x,y and pxy /∈ int(x), int(y). With x and y being

closed, their sum (union) x ∪∗ y must be closed as well (see theorem 3.2). If we

now assume pxy /∈ (x ∪∗ y), then there must exist a relative complement of (x ∪∗ y)
with respect to X, i.e. an open element containing pxy. Then T1 is satis�ed again

for the choice of any pair of points that includes pxy and another point from either

x or y. Contrary, if we assume pxy ∈ (x ∪∗ y) and x ∪∗ y being a clopen set of

points, the complementary open set (since (x ∪∗ y) is a closed set) does not include

the point pxy. In other words, the model does not require the existence of an open

set that includes pxy but is does not include int(x) and int(y). However, due to

the closure of a topology under arbitrary unions, the topology must include the set

x ∪ y as an open set.

This model satis�es A11 (x and y are externally connected) and with no additional

individuals except for the universal a∗ = (x ∪∗ y), it is equivalent to the model

characterized as L6 in the lattice-theoretic part, chapter 4 with x =∼ int(y) and

y =∼ int(x). A further extension with a disjoint region containing a weak contact

will make it a model of RT without changing the point-wise interpretation of the

submodel containing int(x), int(y),x,y,a∗. Notice this model is in fact not T0 if
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U = V1 ∪∗ V2
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Figure 5. Model of RT−EC whose embedding topological space is
not locally connected

the set of points for x and y each contain more than a single point. If they both

contain exactly a single point, the space is T0 but not T1.

However, if we conceive the sets x, y, x∪∗y as subsets of Y of a model with in�nite

number of individuals, the unions still form a base for the topology and all open

sets in the base are regular open. Hence, the space is semi-regular. This follows

immediately from the construction of the topology T ′. Moreover, we can easily verify

that then the space is T1 and T2.

4.2. Local connectedness. In the previous subsection we showed how the

condition of �smooth boundaries� prevents objects of di�erent dimensions. This

condition rules explicitly the existence of classical geometric objects of increasing

dimensions out, such as points of zero dimension, lines of one dimension, surfaces

of two dimensions, etc. Moreover, the condition of �full interiors� was expressed

for the models of RT . The notion of local connectedness seems to correspond to

this requirement that in an n-dimensional space no individual of fewer dimensions

can exist. However, we give a small counterexample that proves this assumption

wrong.

Definition 3.13. [Mun00, HY88] A space S is locally connected at a point x if

for every open set U containing x there is a connected open set V with V ⊆ U

containing x. The space S is locally connected if it is locally connected at each

point.

Proposition 3.14. The minimal topological space (X, T ) that embeds a model of

RT0 is not necessarily locally connected even if Y is in�nite and each atom in Y is

connected.
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Example 2. Consider the following substructure, see �gure 4.2: two open sets

V1 and V2, e.g. V1 = (0, 1) and V2 = (1, 2) with explicit closure cl(V1) = [0, 1]
and cl(V2) = [1, 2]. Now their sum is U = V1 ∪∗ V2 = (0, 2) which is the universal

element and therefore is clopen. Although this model does not satisfy the existential

requirements for external connection and weak contact, it is still valid with respect

to all other conditions of RT0. In particular are the conditions (ii) and (iii) satis�ed

because U is clopen. Moreover is the resulting topology semi-regular with all the

sets U , V1, V2 being regular open. Notice however that the two sets V1, V2 alone do

not form a basis of the topology. The given example corresponds to the six element

lattice described in chapter 4.

So even if the atoms (in the proof V1 and V2) are locally connected, for the entire

embedding topological local connectedness is not ensured.

4.3. Relation to RCC. Comparing this to the results of Düntsch and Winter

[DW05], we are not surprised to see that the models of Asher and Vieu are only T1

and semiregular (as the models of RCC are) if the number of atoms in the theory

is in�nite. It is well-known that the RCC is an atomless mereotopology (with most

models being even uncountable), therefore all models have an in�nite number of

individuals [LYL05, XL06, DWM99, Ste00]. Contrary, the �nite models, i.e.

atomic models, of Asher and Vieu cannot be captured properly by an analysis using

topological spaces. The forced discreteness of the resulting topologies makes the

analysis in the �nite case practically worthless.

The notion of weakly regular spaces arises in [DW05]. It is not clear yet, whether

the minimal topological spaces considered here are weakly regular. However, weak

regularity implies semi-regularity [DW05], but weak regularity is less stringent

than regularity in topological spaces.

Definition 3.15. [DW05] A weakly regular space is a topological space (X, T )
that is semiregular and for each non-empty set S1 in T there exists a non-empty

set S2 in T so that Cl(S2) ⊆ S1.

Düntsch andWinter, however, remark that a weakly regular space can be considered

as the pointless version of semiregular spaces. They compare their de�nition to the

notion of inexhaustibility as used in [LY03]. Since inexhaustibility is justi�ed by

RCC requiring atomless models, it can most likely not be applied to the spaces

resulting from RT0.
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5. Conclusion

The topological characterization does not give much insights into the models of the

mereotopology. In particular, only atomless theories can be analyzed in a mean-

ingful way using topological spaces. Moreover, the notions of regularity applied by

Asher and Vieu as well as the Manchester group are di�erent from regularity in a

topological sense.

For the �nite models of Asher and Vieu - the ones that are particularly interesting

from a knowledge representation and reasoning perspective - the characterization

of their corresponding topological spaces always lead to discrete topologies, which

are valid spaces but does not uncover many interesting properties of the models of

RT . The unsatisfactory satisfactory characterization as topological spaces lets us

turn our focus towards other characterization approaches, namely using lattices and

graphs in the next chapters. Those structures have their strengths in representing

�nite models.

Notice that the topological approach is a feasible way to tackle in�nite models of the

theory RT. Neither lattices nor graphs are very well suited to captures those mod-

els. Although - as we see in the next chapter - the lattice properties generalize to

in�nite cases, the upcoming characterization focuses on �nite models. In this light,

the results for the special cases of in�nite models which are equivalent to atomless

instances of the theory are still valuable. From the methodological perspective we

showed limitations of the topological characterization of mereotopological theories.

It might be useful for those theories that force all models to be atomless (e.g. the

RCC ), but is only of limited help for �nite models. Moreover, the characteriza-

tions are very di�erent from those topological spaces usually considered in theory:

the mereotopological models of Asher and Vieu are not Hausdor�, whereas mathe-

maticians usually consider the Hausdor� property as very general and di�erentiate

much more restricted spaces.



CHAPTER 4

Lattice-Theoretic Characterization

In this chapter we represent the �nite models1 of Asher and Vieu's mereotopology

[AV95] as lattices over the set of individuals of a model of RT0 supplemented by

the empty set ∅ as in�mum of the lattice. Recall that the goal in mereotopology

is to model part-whole relations. Relative complementation is the most important

concept to achieve this: one can express that an individual and its complement

together make up the whole. Complementation is a characteristic property of lat-

tices as well. Complementation and modularity are the most important means to

classify lattices. Utilizing complementation in lattices allows us to characterize the

�nite models of RT− up to isomorphism. For �nite models showing isomorphism

amounts to proving elementary equivalence to the associated lattices. In general, el-

ementary equivalence is a weaker notion than isomorphism and only expresses that

two structures satisfy the same set of sentences of a given language, here �rst-order

logic.

Definition 4.1. [Mar02] We say that two L-languages M and N are elementarily

equivalent if M |= Φ ⇐⇒ N |= Φ.

In particular, we analyze the lattices with respect to the complementation properties

collected in Stern [Ste99]. More general lattice properties, such as completeness

and atomicity give us a homomorphic characterization of the models RT−EC as

complete atomic (doubly) pseudocomplemented ortholattices, or in short complete

atomic p-ortholattices On the contrary, unique complementation is explicitly ruled

out as property for the models of Asher and Vieu.

In lattice theory, apart from complementation two commonly used properties are

distributivity and a weaker form thereof, modularity. Modularity is a necessary but

not su�cient condition for distributivity and further weakenings exist as well, such

as semimodularity, weak modularity, and orthomodularity [Ste99]. A less well-

known concept is semidistributivity (see [Ste99] for de�nitions). However, we show

that the lattices of the full theory RT0 are never modular and never distributive.

1By �nite we mean the models with �nite number of individuals, not models that yield �nite topo-
logical spaces. In particular, as shown in the previous chapter, we can always �nd an embedding
in an in�nite space, but with the consequence that the space will not even be T0.

34
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Some of the weaker properties such as semi-modularity and orthomodularity are

not satis�ed in any of the lattices whereas weak modularity and semi-distributivity

(a weakening of distributivity in a di�erent direction) apply to some of the lattices.

Notice that this can be solely attributed to axiom A11 requiring the existence of

an external connection. Removing this axiom as done in RT− gives models that

are p-ortholattices, including the models that satisfy any of the before-mentioned

specialized modularity properties. For the �nite models of RT−, we prove in section

6 that they are isomorphic to the �nite (complete atomic) p-ortholattices.

Contrary to the characterization of Clarke's system obtained by Biacino and Gerla

[BG96] and the results on RCC obtained in [DW05], the models of Asher and

Vieu's mereotopology do not simply correspond to Boolean algebras. The di�erence

to Clarke's Calculus of Individuals this is not surprising, since [AV95] already noted

problems with his de�nition of external connection that allows external connection

to be mapped to overlap. Without any externally connected elements, the lattices

of Asher and Vieu's mereotopology would not imply strictly non-modular lattices

as well. The de�nitions of external connection of Asher and Vieu and RCC are

identical, but since in RCC there is no requirement to always model interiors and

exteriors as speci�ed elements of the domain, any element can have external con-

nections, but separate non-open regions (as interiors) are not forced by the axioms.

Only elements that are non-tangential parts of themselves cannot be externally

connected. This thesis reveals that the de�nition of external connection in�uences

the models signi�cantly and underlines the necessity to put more emphasis on the

evaluation of external connection relations in their respective mereotopologies.

1. Prerequisites

This section introduces the basic concepts used throughout the remainder of the

chapter. We show how each model of RT0 (and thus of RT ) can be associated with

a unique algebraic structure that is a lattice. Some standard properties of lattices

are then carried forward to the models of RT0.

Definition 4.2. [Grä98] A partially ordered set (poset) is a binary relation over

a set that is re�exive, antisymmetric, and transitive.

A lattice is a poset in which each pair of elements has a unique supremum (the

least upper bound of their join) and a unique in�mum (the greatest lower bound

of their meet).

Notice that the de�nition refers to strict partially ordered sets, also called re�exive

partially ordered sets as opposed to irre�exive partial orders. In the subsequent
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work we assume re�exivity when using the term partial order or poset unless oth-

erwise stated. By de�nition lattices satisfy associative, commutative, absorption,

and idempotent laws [Grä98].

We consider the lattices formed from the structures RTT = 〈Y, f, JK〉 with Y being

the set of individuals (or regions, or point sets). There exists then some corre-

sponding modelM of RT0 with the partial order given by its parthood extension,

i.e. x ≤ y ⇐⇒ 〈x,y〉 ∈ PM). For any such model of RT0 we de�ne an algebraic

structure L over the poset (Y ∪ ∅,≤) that is a lattice with the join de�ned as the

union of two individuals (as de�ned by axiom A5) in RT0, and the intersection

being de�ned as the intersection of two individuals in RT0 (by A6). Thus, the

algebraic structures can be always regarded as lattices

(EQ4) L = (Y ∪ ∅,∧,∨) ≡ (Y ∪ ∅,+, ·) ≡ (Y ∪ ∅,∪∗,∩∗)

The �rst part expresses uses the classic lattice de�nition over the poset Y ∪ ∅ (the
partial order is implicitly assumed) with ∨ being the join (union) operator and ∧
being the meet (intersection) operator. The second notation refers to the same

lattice in terms of models of RT0 (the axioms from section 2) , where + is the

union of two individuals (equivalent to the lattice join) and · is their intersection
(equivalent to the lattice meet). The third notation refers to the intended models

of the structure (de�ned by the conditions of RTT , see section 3) in terms of their

topological operations �regular sum� and �regular intersection� of two individuals.

Elementary equivalence between the theories RT0 and RTT has been established

by Asher and Vieu through their completeness proof, therefore we can refer to RT0

and RTT synonymously as long as we consider the full class. However, for the �nite
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models of RT− and RT−EC we show there always exist equivalent �nite models of

subsets of the conditions of RTT , so we can use the de�nitions of RTT instead of

RT0 if we restrict ourselves to �nite models of RT0. Each lattice L = (Y ∪∅,∪∗,∩∗)
resulting from a modelM of RTT uses the union and intersection ∪∗ and ∩∗ de�ned
by Asher and Vieu as join and meet operators, respectively:

(EQ5) x ∪∗ y = x ∪ y ∪ int(cl(x ∪ y))

(EQ6) x ∩∗ y = x ∩ y ∩ cl(int(x ∩ y))

Lemma 4.3. For any modelM of RT , the algebraic structure LM = (Y ∪∅,∪∗,∩∗)
is a lattice.

Proof. Clearly, the de�ned structure is a lattice, since the parthood relation

PM for any modelM of RT0 gives a structure of RTT and hence a poset 〈Y ∪∅,PM〉:
We proved previously that the binary relation P is always re�exive, antisymmetric,

and transitive (see T0.5, T0.6, and T.0.7 in section 4.1) and thus is the extension

PM for any modelM. That each pair in the poset Y ∪ ∅ has a unique supremum

and in�mum with the join operation ∪∗ and the meet operation ∩∗ is enforced by

the conditions (v) and (vi) of RTT . �

Here we see the inherent similarity between lattices and mereotopological systems

in general: both are based on a partial order and de�ne unique sums (though not all

mereotopological theories do) and unique intersections. A lattice to a single model

M of RT0 is denoted by LM in the following whereas the class of lattices that can

be associated to some model of RT0 will be referred to as LRT . I.e. LM ∈ LRT

if and only if M is a model of RT0. Since we restrict our analysis to the �nite
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models of RT0, we assume every lattice LM to be that of a �nite modelM unless

otherwise stated.

Remark 2. The question what kind of mereotopological models other latticed

structures might yield naturally arises, especially considering meet-semi-lattices.

This could give rise to a mereotopology that considers relevant individuals on a

coarse scale and makes assumptions about the individuals that exist as their re-

spective intersections, but that does not require the existence of arbitrary sums of

pairs of individuals, as criticized frequently in mereotopology. Common examples

argue that the sum of e.g. my right thumb with the peak of the CN tower usually

do not make sense at all. A meet-semi-lattice could �x this issue by only requiring

intersections to exist, but not necessarily sums of every pair of individuals.

1.1. Finite models of RT− and RT−EC . First, we claim that there actually

exist �nite models of the theory RT0. Notice that the class of lattices LRT is non-

empty. At the moment we are unable to prove that. But we are able to prove the

weaker fact about the classes LRT− and LRT−EC
.

Lemma 4.4. There exist �nite, non-trivial models satisfying RT− and RT−EC .

Proof. The model de�ned by 〈a∗, b〉, 〈a∗, c〉 ∈ CM (with all re�exive and

symmetric tuples also contained inCM) satis�es all axioms of RT− and is of �nite

domain {a∗, b, c} and hence is a �nite model of RT−.

The model de�ned by 〈a∗, b〉, 〈a∗, ib〉, 〈a∗, c〉, 〈a∗, ic〉, 〈b, ib〉, 〈c, ic〉, 〈b, c〉 ∈ CM (again

with all re�exive and symmetric tuples also contained in CM) with 〈b, c〉, 〈c, b〉 ∈
ECM satis�es all axioms of RT−EC and has a �nite domain {a∗, b, c, ib, ic} and thus

is a �nite model of RT−EC . �

For the lattices of these two smallest models of RT− and RT−EC , see �gure 1.

Now in a second step we show that every model of RT− and every model of RT−EC

is isomorphic to a �nite structure satisfying the conditions (i) to (vi) of RTT , and

(i) to (vii) RTT , respectively. I.e. any �nite model of RT− is isomorphic to a

model of RTT = 〈Y, f, JK〉 with the conditions (i) to (vi), where Y is a �nite set of

individuals. The soundness and completeness proofs of [AV95] only say that any

model of RT0 is elementary equivalent to a model of RTT . It does not guarantee

that a �nite model of RT0 necessarily yields a �nite model of RTT . That this is

true at least for the �nite models of RT− (yielding �nite models of (i) to (vi) of

RTT ) is shown in the next proof.
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Theorem 2. Every �nite model of RT− is isomorphic to a structure RTT =
〈Y, f, JK〉 over a topological space (X, T ) satisfying conditions (i) to (vi) where

Y ⊆ P(X) and Y is �nite.

Proof. We follow along the lines of the completeness proof of [AV95]. We

know that a �nite model of RT0 can be captured by a �nite set of (�nite)2 sentences

Σ which can only contain a �nite number of equivalence classes [cn]. We then

can construct the topological space (ΣU ,ΣT
U ) according to the embedding in a

topological space, see 2. Reconsider the topology ΣT
U we can construct

ΣT
U = {∅} ∪

{
Ω[cn]|cn ∈ ΣC ∧ Σ ` OP (cn)

}
∪

{⋃
Z|Z ⊆

{
Ω[cn]|cn ∈ ΣC ∧ Σ ` OP (cn)

}}
Since the number of equivalent classes of open elements, i.e. the cardinality of

{[cn] |cn ∈ ΣC ∧ Σ ` OP (cn)}, is �nite, the second set of the union is �nite. More-

over are arbitrary �nite union of such sets �nite as well, and hence ΣT
U is �nite.

Then (ΣU ,ΣT
U ) is a structure that satis�es the conditions of RTT which has been

proved for the general case in the completeness proof of [AV95].

We claim that there always exists a �nite set Y if ΣT
U is a �nite set for the following

reason: it is clear that the number of open sets in Y is �nite, and so is the number

of closed sets in Y (each closed set must be the complement of an open set in

ΣT
U , but only a �nite number of these exist). It is less clear that there always

exists a model with a �nite number of individuals that are neither open nor closed.

But recall that ΣU =
⋃ {

Ω[cn]|cn ∈ ΣC

}
. If we use the maximal point sets Ω[cn],

Ω[−cn] for the equivalence classes [cn] and [−cn], then X = Ω[cn] ∪ Ω[−cn] must

always hold. Otherwise either Ω[cn] or Ω[−cn] are not maximal. But then all sets

Ω[cn] ∈ ΣT
U are not only open but also closed, because Ω[−cn] ∈ ΣT

U . So every set

in the topology ΣT
U is clopen. If we choose the minimal embedding space (ΣU ,ΣT

U ),
it will be T0, and immediately the topology ΣT

U is discrete (compare to the results

from chapter 3). We claim that such topology ΣT
U with only clopen sets always

satis�es the conditions (i) to (vi) if we choose ΣT
U = Y . By de�nition of ΣU and

ΣT
U , condition (i) of RTT holds. Conditions (ii) and (iii) hold trivially because

int(x) = x and cl(x) = x hold for every x ∈ Y . Condition (iv) is satis�ed because

all sets in ΣT
U are clopen; conditions (v) and (vi) are satis�ed because we can �nd

a minimal embedding space that gives a discrete topology ΣT
U which contains all

2Axiom schemata are not allowed in standard FOL
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possible subsets of X = ΣU and therefore all unions and all intersections of sets in

ΣU . With �nite ΣU , we thus have constructed a model of RTT with �nite Y . �

Theorem 2 now allows us to use the speci�cations of RTT and RT0 interchangeable

even if we restrict ourselves to �nite models of RT−. The same applies for RT−EC ,

where the proof is analogue to the above proof, but for all pairs of individuals

x, y that participate in the extension of EC, i.e. 〈x, y〉 ∈ ECM, the non-empty

point sets Ωxy = Ω[x] ∩Ω[y] (which are not closed because their complement is not

in ΣU ) representing the intersections x ∩∗ y are removed from the �nite topology

ΣU to form Y . Notice that they have to be in ΣU to ensure closure under �nite

intersections. The new set Y = ΣU \
(
Ω[x] ∩ Ω[y]|〈x, y〉 ∈ ECM)

still satis�es all

conditions (i) to (vi), but now additionally condition (vii) because if the extension

of ECM is not empty, i.e. there exists some pair x, y so that 〈x, y〉 ∈ ECM, then

Ωxy = Ω[x] ∩Ω[y] is a non-empty set, but it is not in Y and so is no subset thereof.

Hence int(Ω[x] ∩ Ω[y]) = ∅.

1.2. Existence of non-open, non-intersecting individuals. In the char-

acterization of the structures RT in terms of lattices the following proposition is

based on a simple observation but is momentous in its e�ect on the models of RT .

Recall that by de�nition two individuals x and y being externally connected means

their set-theoretic intersection is non-empty (i.e. they have at least one point in

common) but the sets do not overlap, i.e. there exists no common subset z ∈ Y

of x and y. Intuitively, it is understood as two individuals being connected but

not overlapping in any part. As an example, consider a spatial interpretation: two

countries share a boundary by which they are externally connected, but there is no

place (in particular no county, city, house, street, or garden) that belongs to both

countries at the same time.

Proposition 4.5. In each model of RT−EC and RT0 two non-open, non-intersecting

(but connected) individuals must exist.

Proof. Condition (vii) of RTT requires the existence of x, y ∈ Y s.t. x ∩ y 6=
∅ ∧ int(x ∩ y) = ∅ (de�nition of external connection). It requires two regions

x and y to share at least a point, but to not share an interior point (note that

int(x∩y) = int(x)∩int(y)), i.e. they share only boundary points. This is equivalent
to the verbal explanation given in Clarke's work [Cla81]. Since for open regions

o = int(o) holds, if either one of x and y would be open, it could not contain

any boundary points that it can potentially share. Thus for the existence of two

externally connected regions x and y, these regions must be non-open (but not

necessarily closed). The non-intersection of x and y with respect to a common
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parts follows trivially, since this common part would have a non-empty interior (by

condition (ii) of RTT ) and thus violate the condition of external connection EC in

the equivalent model of RT0 or RT−EC . �

Later, we will see that this proposition is a key argument for proving non-unique

complementation, non-modularity, and non-orthomodularity. Asher and Vieu argue

that the axiom A11 (or similarly the condition (vii)) prevents trivial models. How-

ever, only the prevented trivial models can be modular, orthomodular, and uniquely

complemented. The proofs show that all non-trivial models are non-modular, non-

orthomodular, and not uniquely complemented. In section 6 we actually show

that RT− = RT0 \ {A11, A12} would allow modular, orthomodular, and uniquely

complemented lattices.

Before turning our attention to complementation and modularity, we prove that

the lattices are complete and atomic for all �nite models. This will also help to

simplify other proofs.

2. Completeness

As we have just seen, the sum ∪∗(+ in RT0) and the intersection ∩∗ (· in RT0)

translate to join and meet in the associated lattices. But we know more about the

sum and intersections: for any pair of individuals in a model of RT0 a unique sum

and a unique intersection (if not empty) must exist. In lattices the closely related

concepts of completeness exists. Completeness in a lattice essentially tells the same:

for any pair of lattice elements, there must exist a unique join and meet.

Theorem 4.6. [Grä98] Let P be a poset in which
∧

H exists, for all H ⊆ P . Then

P is a complete lattice.

Fact 4.7. [Grä98] The following are equivalent by duality of completeness

(1) P is a complete lattice

(2)
∧

H exists for all H ⊆ P

(3)
∨

H exists for all H ⊆ P

Theorem 3. Every �nite lattice in LRT is a complete lattice.

Proof. Condition (3) is satis�ed by the models of the mereotopology due to

condition (vi), ∀x, y ∈ Y [x ∪∗ y ∈ Y ], in [AV95]. Thus the lattices associated with

the �nite models of the mereotopology as de�ned in EQ4 are complete lattices. �
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The proof shows that completeness of the lattices is nothing but the complete

existence of sums, the so-called arbitrary mereotopological sum of two individuals,

and the existence of arbitrary intersections of any two individuals in the models

of RT . Having both operations (join and meet) in the algebraic system makes

completeness a dual property: we can either take arbitrary (�nitely) many joins

of atoms of the lattice or arbitrary (�nitely) many intersections of dual-atoms (see

de�nition 4.8) in the lattice. Hence the existence of both join and meet distinguishes

the structures from the more generic semi-lattices. Notice that in general �nite

lattices are complete. Since we only consider the �nite models of RT , completeness

can always be assumed.

Remark 3. Completeness does not necessarily apply to in�nite models, since even

though the join and meet of every pair of individuals must exist, this is not clear

for arbitrary unions or intersections. However, if we cannot prove completeness

for all models, including the in�nite ones, of RT , then the models arising from

RT are not in the subclass of models of Clarke's connection structures, which

are complete ortholattices. Completeness for Clarke's system follows from the

unrestricted fusion operator. But Asher and Vieu eliminated it from their theory,

while claiming that it is unnecessary. However, if that allows incomplete lattices,

the models are actually changed by this step. This needs further investigation.

3. Atomicity

A lot of theorems and de�nitions about special kinds of lattices rely on lattices

being atomic or atomistic, where the latter one is a strengthening of atomic. Espe-

cially when considering symmetries in lattices, these concepts are important, but

also for certain kinds of complementation, e.g. relative complementation. From

a mereotopological perspective we are interested to know whether the lattices are

atomic or even atomistic to understand how individuals are built from smaller parts.

Definition 4.8. [MM70] In a lattice we say that b covers a and write a ≺ b when

a < b and moreover a < c < b is not satis�ed by any c. An element p of a lattice L

with 0 is called an atom if 0 ≺ p.

A lattice L with 0 is called atomic when every non-zero element a ∈ L contains an

atom.

L is called atomistic when every non-zero element a ∈ L is the join of atoms

contained in a.

An element d of a lattice with top element 1 is called a dual-atom (or a hyperplane)

if d ≺ 1.
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Notice that every �nite lattice is atomic, hence we immediately derive from consid-

ering �nite models only that all lattices in LRT are atomic.

Theorem 4. Every �nite lattice in LRT is atomic.

The in�nite models of the theory of Asher and Vieu are more tricky to handle. If

the in�nity is restricted to the number of atoms, then we can still prove that such

a model yields an atomic lattice. However, if we deal with atomless models of RT

then we cannot prove that the resulting lattices are atomic. This underlines the

equivalence between non-atomic lattices and atomless mereotopological theories as

expressed in the following corollary.

Corollary 4.9. A modelM satisfying the axioms of RT is atomic if and only if

the lattice LM is atomic.

Now, consider atomicity. Unfortunately atomicity does not hold for models of RT

and even not for �nite models. The lattices of the �nite models are not atomistic

because we can must have individuals that only di�er by the external connections

from their interior. Because external connections are not re�ected in the lattices,

an individual can cover another individual without having an extra part. Then

this �greater� individual is not simply the join of atoms, since it contains something

(the di�erence to its �smaller� individual containing the same set of atoms) that is

not re�ected in some atom. Consider two elements x and y in a modelM of RT0

that overlap, i.e. have a common part z. Nothing prevents x and y to have z as

their only part. Even if z is atomistic, the elements x and y are not required to
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be, since they are �more� than joins of atoms. Otherwise they would be identical.

But they can be externally connected to di�erent elements, and by axiom A3 be

then not identical. The same occurs if an element has an interior, but this interior

is its only part. Then the element itself must be distinguished from its interior by

some external connection, but is not simply the join of atoms (i.e. the interior or

the atoms the interior consists of), otherwise it would again be identical with its

interior.

The proof for non-atomicity of all lattices of RT can be extremely simpli�ed by

a relation between atomistic pseudocomplemented, section-semicomplemented lat-

tices and Boolean lattices. Then it follows directly that all models (not just the

�nite models) of RT are strictly not associated to atomistic lattices. See subsection

4.4 for the proof.

4. Complementation

Relative complements are a standard notion in topological spaces. Moreover, the

models of RT de�ne complements for each individuals with respect to the �whole�.

The purpose of this chapter is to �nd a meaningful description of these complements

in terms of lattices. Fortunately, complementation is a very common property for

lattices as well and there exist several specialized kinds of complementation. We

analyze which of these complementation properties hold for the lattices in LRT in

order to characterize the models of RT in terms of classes of complemented lattices.

Definition 4.10. [Grä98] A complemented lattice is a bounded lattice (with the

in�mum 0 and supremum 1) in which each element x has a complement y s.t.

x ∧ y = 0 and x ∨ y = 1.

Notice that this holds even for models that are atomless. If a model has an in�nite

set of individuals, then the universally connected individual must be still de�ned and

can serve as supremum. Moreover, because we add the empty set to the individuals

in the lattice and de�ne it to be covered by all and only atoms. Therefore the

lattice is still bounded although it might contain an in�nite set of atoms.

Notation 4.11. We use the complementation operations ∼ x and −x when refer-

ring to the models of RTT and RT0, respectively. In lattices, x′ denotes a (not

necessarily unique) complement.
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Theorem 5. Let M be a model of RT0. Then LM is a complemented lattice with

(a∗)′ = ∅ and (∅)′ = a∗. In LM, a′ = b holds if −a = b holds inM.

Proof. Assume there exists an individual a′ being greater (in the partial or-

der P ) than the universal individual a∗, i.e. 〈a∗, a′〉 ∈ PP : by de�nition D1 every

individual that a∗ is connected, a′ must be connected to as well. Since by A4 a∗

is connected to all other individuals in the theory, a′ is hence also connected to all

other individuals in the theory. However, then by A3 a∗ = a′ follows immediately

and a∗ cannot be part of a′. This also shows that the supremum of the lattice is

unique. On the other side we de�ne ∅ to be the in�mum, i.e. that every other ele-

ment in the lattice is greater than ∅. Hence the lattices LM = (Y ∪ ∅,∩∗,∪∗, ∅, a∗)
in LRT are upper- and lower-bounded, i.e. are bounded lattices.

The last step required shows that there exists a complement for each element sat-

isfying the condition mentioned in de�nition 4.10. From condition (iv) of RTT we

know that such a complement exist for a set A if the interior of the complement of

A is not empty. To cover the case that the interior of the complement is the empty

set, we have de�ned the lattice over the set Y ∪ ∅. �

This theorem links together the topological complement −x for individuals in mod-

els of RT with the lattice complement x′ in the associated lattices in LRT . We can

further derive following corollary to connect the models of RT with the lattices

they yield.

Corollary 4.12. Each model M of RT gives rise to a complemented lattice LM

with the zero element (empty set) removed.

Throughout the rest of the thesis, we will reference the complemented lattices not

by their long de�nition LM = (Y ∪ ∅,∩∗,∪∗, ∅, a∗) that explicitly speci�es the

in�mum (�zero element�) ⊥= ∅ and the supremum (�top element�) > = a∗, but

abbreviate it by LM.

The next subsections take a closer look at di�erent kinds of complementation. We

use a classi�cation of complemented lattices from [Ste99] (see also [BJ72]), �gure

1.14, with an error corrected. Notice that this is speci�c to bounded lattices.
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4.1. Unique complementation.

Definition 4.13. A uniquely complemented lattice is a complemented lattice in

which for each element x only one element x′ = y exists such that x ∧ y = 0 and

x ∨ y = 1.

The theorem 6 demarcates the models of RT0 from the uniquely complemented

lattices. It is a stronger version of theorem 5 proved above.

Theorem 6. Every lattice in LRT is complemented, but no lattice in LRT is

uniquely complemented.

Proof. Assuming 5, only the part that the lattices cannot be uniquely com-

plemented is still open. We now show that the proposition 4.5 yields at least two

individuals that do not have unique complements. From proposition 4.5 we know

at least two non-open regions, call them x and y, exist. From the fact that for open

regions x = int(x) holds and from the condition (ii) of RTT (existence of an interior

for every individual) we know the interiors xint = int(x) and yint = int(y) are dis-
tinct from x and y, respectively. Let us now denote the (topological) complement

of x as ∼ x, it follows (a) x∪∗ ∼ x = a∗ and (b) x∩∗ ∼ x = ∅ (from the criteria of

a complement). We claim that then (a') xint∪∗ ∼ x = a∗ and (b') xint∩∗ ∼ x = ∅
must also hold. Since xint ≤ x ≤ cl(x), it (b') follows immediately from (b). Now

let us assume that ∃c [xint∪∗ ∼ x = a∗ − c], i.e. that the join of xint with ∼ x is a

proper part of a∗ and there exists a set of points c that distinguished the join of

xint with ∼ x from a∗. Then c ∈ Y must be a part of x, but not of xint in terms

of point set inclusion, i.e. c ⊂ x and c 6⊂ xint. Again by the existence of interiors

a∗
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Figure 10. Failure of unique complementation in models of RT
xint and yint must exist, but both y and yint are complements of x and, vice

versa, x and xint are both complements of y.
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(condition (ii) of RTT ) int(c) ∈ Y and int(c) 6= ∅. Then int(c) ⊂ x and both xint

and int(c) are open sets. Thus xint ∪ int(c) is an open set and x ⊇ xint ∪ int(c).
However, this violates the de�nition of the interior as the largest open set, since

xint ⊆ xint ∪ int(c). So either xint is not the interior of x or c = ∅. The �rst

case contradicts our assumption, and in the latter case xint∪∗ ∼ x = a∗ − c then

yields (a') xint∪∗ ∼ x = a∗ which is also a contradiction to our assumption. With

(a') and (b') proved, we know that ∼ x is the complement of x and xint. Vice

versa, we now know that both x and xint are complements of ∼ x. The same

argumentation applies for y. Thus condition (vii) of RTT requiring the existence

of an external connection forces the associated lattices to be strictly not uniquely

complemented. �

Notice that the proof uses the structures de�ned by RTT and not by the axioms of

RT0. However, because we previously showed the equivalence between them, the

proof also applies for the models satisfying the axioms RT0.

Remark 4. Notice that the notions of a complement −x in the topological sense

and in the lattice-theoretic x′ sense are quite di�erent. The elements of the

models of RT have unique topological complements (the complement is de�ned

set-theoretic) whereas the lattices containing the same elements are not uniquely

complemented since the complement is only de�ned in terms of the join and meet

operations.

From the lattices being never uniquely complemented, we can derive that they

are not Boolean lattices, since all Boolean lattices are uniquely complemented, see

�gure 4. A more general result was obtained in [McL56]:

Theorem 4.14. [McL56] Every complemented, atomic lattice with unique compa-

rable complements is modular.

Later we provide alternative proofs that shown that the models of RT are not

associated to modular nor distributive lattices.

4.2. Pseudocomplementation. Pseudocomplementation is a common prop-

erty for lattices that relaxes the conditions of unique complementation. Every

uniquely complemented lattices is also join- and meet-pseudocomplemented, but the

converse is not always true. Intuitively, pseudocomplementation captures that every

element in a lattice should have a unique greatest (for meet-pseudocomplementation)

and a unique smallest (for join-pseudocomplementation) pseudocomplement in the

sets {x ∈ L|x ∧ a = ∅} and {x ∈ L|x ∨ a = ∅}, respectively. In fact, we can show

that these elements are related to the closure and interior of individuals in the
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Figure 11. Example of a double pseudocomplemented lattice
In this example yint is the join-pseudocomplement of xcl and xint whereas ycl is
the meet-pseudocomplement of xcl and xint. The lattice is neither uniquely

complemented nor orthocomplemented.

topological understanding. For an example of meet- and join-pseudocomplemented

lattice see �gure 11.

Definition 4.15. [Grä98] Let L be a lattice with in�mum 0, an element a′ is

a meet-pseudocomplement (or simply pseudocomplement) of a ∈ L if and only if

a ∧ a′ = 0 and ∀x (a ∧ x = 0⇒ x ≤ a′).

[Ste99] Let L be a lattice with supremum 1, an element a′ is a join-pseudocomplement

of a ∈ L if and only if a ∨ a′ = 1 and ∀x (a ∨ x = 1⇒ x ≥ a′).

[Ste99] A lattice that is meet-pseudocomplemented and join-pseudocomplemented

is often called a double p-lattice.

Lemma 4.16. In any lattice in LRT for any complement a′ of a, cl(a′) and int(a′)
are complements of a.

Proof. With int(a′) ≤ a′ ≤ cl(a′) it is clear that int(a′)∧a = 0 and cl(a′)∨a =
1. Thus we only proof (i) cl(a′) ∧ a = 0 and (ii) int(a′) ∨ a = 1 follows by duality.

Assume contrary to (i) that cl(a′)∧ a > 0 then there exists a common part - call it

b - of both a and cl(a′), i.e. b ≤ a and b ≤ cl(a′), but b 6≤ a′. But then b needs to

have an interior int(b) de�ned. Notice that moreover a′ has some interior int(a′)
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that is distinct from int(b′). So reconsider a′, int(a′) 6= int(cl(a′)) holds because

int(a′) ∪∗ int(b) ⊆ cl(a′). Hence we have a violation of condition (ii) of RTT and

our assumption that cl(a′) ∧ a > 0 was wrong.

From duality of meet and join in the lattice every cl(a) having an orthocomplement

that is an interior, i.e. int(a′) if cl(a′) ∧ a = 0 holds then also int(a′) ∨ a = 1
holds. �

Lemma 4.17. Any lattice in LRT is meet- and join-pseudocomplemented.

Proof. We know every lattice in LRT is complemented, hence there exists for

every a some a′ so that a ∧ a′ = 0 and a ∨ a′ = 1. From the lemma 4.16 we know

that for every a′, int(a′) and cl(a′) are also complements of a. Now we have two

claims: (i) �rst every element b with b > cl(a′) has a non-zero meet with a and

thus cannot be meet-pseudocomplement, and every element c with c < int(a′) has
a join with a that is not 1. (ii) second we claim that every element b with a∧ b = 0
or a ∨ b = 1 satis�es the condition b ≤ cl(a′) or b ≥ int(a′), respectively.
(i) Assume b with b > cl(a′) and b∧a = 0 exists. Then the extension of C in which

b participates must subsume the extension of C in which cl(a′) participates. If the
extensions of O where b or cl(a′) participate are the same then either cl(a′) is not
closed (b has an additional another external connection) or b and cl(a′) have the

same extensions of C and are by A3 identical. If the extension of O in which b

participates is strictly greater than the one of cl(a′), then b must overlap with some

part of a and b∧a = 0 does not longer hold. In both cases we derive a contradiction.

(ii) From (i) we know there exists no such b with b > cl(a′) so that b∧a = 0. Now we

have to prove that no other element b exists with b∧ a = 0 that is incomparable to

cl(a′). Notice that every element b is either comparable to a or −a, see proposition

6.3 in chapter 6. Assume a′ to be the orthocomplement of a (in the next subsection

we will show that such an element must always exist). If b is comparable to a

then obviously a ∧ b = 0 does not hold. Therefore b must be comparable to −a.

The trivial case is cl(a′) = −a. Otherwise the sum b ∪∗ cl(a′) overlaps in some

part(s) with a (cl(a′) is already maximally connected to a without overlap, see the

argument for (i)), which in turn requires one part (either of b or cl(a′), or of a third
element) to overlap with a. That would mean either b or cl(a′) overlaps with a and

a ∧ b = 0 or a ∧ cl(a′) = 0 does not hold. Hence no such b can exist. From (i) and

(ii) together with lemma 4.16, cl(a′) must be the meet-pseudocomplement of a.

The proof for the join-pseudocomplements is analogous, we omit it here. �

From the proof it follows directly that cl(a′) is the meet-pseudocomplement of any a

and equivalently int(a′) to be the join-pseudocomplement of any a. We summarize

this in the following theorem.
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Theorem 7. Every lattice in LRT is a double p-lattice where for any comple-

ment x′ of x the individuals denoted by cl(x′) and int(x′) are the meet- and join-

pseudocomplements of x.

Notice that not in general not every pseudocomplement must be a complement,

i.e. a meet-pseudocomplement x′ of x needs not to satisfy x ∨ x′ = 1 and a join-

pseudocomplement x′ of x needs not to satisfy x∧x′ = 0. However, in the lattices in

LRT every pseudocomplement is also a complement, which is a direct consequence

of theorem 7 and lemma 4.16.

Corollary 4.18. In any lattice in LRT all meet- and join-pseudocomplement are

complements.

In terms of the mereotopology the theorem shows that all possible (lattice) com-

plements of an individual have the same closure (and interior), which is also always

the greatest (smallest) of all possible complements in the lattice.

Meet- and join-pseudocomplementedness does not imply complementedness, due to

the simple fact the the meet-complement can be di�erent from the join-complement.

In [Ste99], p.26 such an example is given. However, Chameni-Nembua and Mon-

jardet [CNM93] proved the following fundamental relation between meet- and

join-pseudocomplementedness in complemented lattices.

Theorem 4.19. [CNM93] For a complemented lattice L, the following conditions

are equivalent:

(1) L is meet-pseudocomplemented

(2) L is join-pseudocomplemented

(3) L is a double p-lattice (dual pseudocomplemented)

Note 4.20. Chameni-Nembua and Monjardet use for condition (3) of 4.19 the term

pseudocomplemented when referring to both meet- and join-pseudocomplemented.

We occasionally use it if it is unambiguous. Since the lattices we are concerned

with are all complemented, meet-pseudocomplemented and double pseudocomple-

mented imply one another anyways. Nevertheless, note that in the literature it is

more common to use the terms pseudocomplement and meet-pseudocomplement

synonymously and pseudocomplementedness does then not generally imply join-

pseudocomplementedness.
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4.3. Orthocomplementation. Another type of complementation in lattices

is orthocomplementation. It is usually covered in the context of orthomodularity

which we will consider later, since so far we are only interested in complementa-

tion in the lattices. We know that the lattices corresponding to the models of RT

are pseudocomplemented, but strictly not uniquely complemented. However, as we

have seen in the previous section, pseudocomplementation is a rather weak kind

of complementation. For instance is the lattice is �gure 11 pseudocomplemented,

but does not resemble a model of RT . Using orthocomplementation, we will bridge

this gap. Orthocomplemented lattices have been used previously in [BG96] for the

characterization of the connection structures of Clarke's mereotopological system.

Moreover, Iturrioz [Itu83, Itu86] demonstrated that there exists nice topologi-

cal representations of orthomodular lattices, which are by de�nition orthocomple-

mented. We should notice that orthocomplementation and orthomodularity do

not receive much attention in general lattice theory, but are mainly applied in the

description of quantum-mechanical systems in the �eld of quantum logic. Ortho-

modular and orthocomplemented lattices emanated from lattice-theoretical work by

Birkho� and von Neumann in the 1930s on the logical structure of physical theories,

in particular that of quantum mechanic systems equivalent to the characterizations

of Hilbert space [BvN36].

Definition 4.21. [Bly05] An involution lattice is a bounded lattice L together

with an antitone mapping ⊥ : L→ L such that x = x⊥⊥ for every x ∈ L.

An ortholattice (i.e. orthocomplemented lattice) is an involution lattice (L,⊥) in

which the involution is an orthocomplementation in the sense that x ∧ x⊥ = 0 for

every x ∈ L.

Theorem 4.22. [Kal83] A bounded lattice is an ortholattice if and only if there

exists a unary operation ⊥ : L→ L so that (1) to (3) hold:

(1) ∀x
[
x = x⊥⊥

]
(involution law)

(2) ∀x
[
x ∧ x⊥ =⊥

]
and ∀x

[
x ∨ x⊥ = >

]
(complement laws)

(3) ∀x, y
[
x ≤ y ≡ x⊥ ≥ y⊥

]
(order-reversing law)

Note since the lattices are bounded, ∀x
[
x ∨ x⊥ = >

]
follows from ∀x

[
x ∧ x⊥ =⊥

]
and vice versa by duality. One could substitute property (3) with an equivalent

property ∀x, y
[
(x ∩ y)⊥ = x⊥ ∪ y⊥

]
[Nob06].

To prove orthocomplementation for the lattices in LRT , we �rst have to �nd an

suitable orthocomplementation function ⊥ that satis�es the properties (1) to (3).

Obviously, both the de�nition of the (not-unique) complement as in section 4 and

of the pseudocomplement as in section 4.2 do not satisfy the involution condition.
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However, the topological complementation ∼ seems to satisfy the properties. Just

its lattice-theoretic formalization is nontrivial. We need to �nd a way to distinguish

the topological complement from the other potential complements for each lattice

element. For the moment it is su�cient to show that the topological complement

is always an orthocomplement in a lattice LM, since we know that the topological

complement must exist for any individual except a∗ in a structure RTT . The unary

operation orthocomplement ⊥in the lattices will be the (topological) complement

relation ∼ in RTT with ∼ (a∗) = ∅ and ∼ (∅) = a∗.

Theorem 8. Every lattice in LRT is orthocomplemented when choosing the topo-

logical complement ∼ as orthocomplementation (involution) operation ⊥.

Proof. In order to determine whether ∼ satis�es the conditions of an or-

thocomplementation operation, we check the properties from theorem 4.22 for the

topological complement:

(1) Involution law: ∀x [x =∼∼ x]

(2) Complement law: ∀x [x∩∗ ∼ x = ∅] (or the dual of it)

(3) Order-reversing law: ∀x, y [x ≤ y ≡∼ x ≥∼ y]

Choosing ∼ a∗ = ∅ and ∼ ∅ = a∗ makes ∼ a complete function on the set Y ∪∅. For
the topological complement property (1) applies naturally (from its set-theoretic

de�nition). For (2), we know that for the topological complements x∩∗ ∼ x = ∅
holds (by its set-theoretic de�nition). Thus, if the lattices satisfy property (3),

then the topological complement ∼ makes the lattices that are associated with the

models of RT ortholattices. Again, we apply the set-theoretic de�nition of the

topological complement de�ned over an topological space. Consider x and y as sets

of points: x ≤ y (in the lattice) if and only if x ⊆ y. If x = y then ∼ x =∼ y and

(3) holds trivially. Hence assume x ⊂ y, then all the points in y \ x (nonempty)

must be part of the complement of x, i.e. y \ x ⊆∼ x. Since all points that are in

both x and y are in neither complement and all points in neither sets are in both

complements, ∼ y must be a proper subset of ∼ x, i.e. ∼ x = a∗ \ (x ∩ y) and

∼ y = a∗ \ (x ∩ y) \ (y \ x). And it follows: a∗ \ (x ∩ y) \ (y \ x) ⊆ a∗ \ (x ∩ y)
and with y \ x being distinct from x ∩ y and by the assumption being non-empty:

a∗ \ (x ∩ y) \ (y \ x) ⊂ a∗ \ (x ∩ y) and thus ∼ y <∼ x, and the order-reversing law

(3) is satis�ed. �
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Lemma 4.23. [Kal83] (p. 26) Let L be an ortholattice. The following statements

are equivalent:

(1) L is a Boolean algebra,

(2) L is uniquely complemented.

Since each lattice associated with the mereotopology is not uniquely complemented,

it is not Boolean. Later we use the properties of modularity to show in a di�erent

way that the lattices are non-distributivity. This result gives us a major and maybe

surprising distinction from the characterization of the RCC and Clarke's system.

Both were proved to yield distributive pseudocomplemented lattices, whereas now

we showed that the lattices resulting from models of RT are pseudocomplemented

and orthocomplemented, but not uniquely complemented and hence not distributive

and not Boolean (like the models of Clarke's system).

In the literature complemented, pseudocomplemented lattices are commonly ab-

breviated double p-lattices (or algebras), see theorem 4.19. Orthocomplemented

lattices are shortly called ortholattices. Conform to this convention, we refer

to the (double) pseudocomplemented, orthocomplemented lattices in short as p-

ortholattices. That they are complemented follows immediately from orthocomple-

mented (recall that complementedness does not follow from double pseudocomple-

mentedness). Hence the p-ortholattices are always doubly pseudocomplemented by

theorem 4.19.

4.4. Section-semicomplementation. In a relatively complemented lattice

every element e has a relative complement in any interval [a, b] containing the ele-

ment [Grä98] (a ≤ e ≤ b). For the lattices in LM being relatively complemented

that would mean that every individual is relatively complemented (in the topolog-

ical sense) to any element that it is a part of. One can easily see that this does not

hold in general for the lattices in LM since an individual and its interior (or closure)

can have the exactly same parts. For an example see �gure 10: the elements of

the interval [xint, x] are clearly not relatively complemented. The weaker notions

section-semicomplementation and section-complementation are listed only for the

purpose of a complete classi�cation in terms of the complementation properties

from �gure 4 and by showing not section-semicomplementedness we can easily rule

out the stronger properties..

Janowitz related pseudocomplemented and section-semicomplemented lattices to

the Boolean algebras.

Theorem 4.24. [Jan68] Every pseudocomplemented section-semicomplemented lat-

tice is a Boolean algebra.
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All the lattices in LRT are not Boolean, therefore we can use this result to de-

rive that the lattices in LRT are not section-semicomplemented because we just

proved pseudocomplementation. Additionally, section-complemented lattices must

be section-semicomplemented and relatively complemented lattices must be section-

complemented, see �gure 4

Theorem 9. No lattice in LRT is section-semicomplemented, section-

complemented, or relatively complemented.

Proof. In section 3 we proved that the lattices associated to models of RT

and subsets thereof are atomic, but not atomistic. (see theorem 4). Hence, they

cannot be section-semicomplemented. It immediately follows from subsumption of

the lattice properties (see �gure 4) that they are not section-complemented and

thus not relatively complemented. �

Theorem 4.25. [MM70] An atomic lattice L is atomistic if and only if L is

section-semicomplemented.

We can use this result to immediately show that the lattices associated to models

of RT are not atomistic, since we proved in section 3 that the lattices associated

to �nite models are atomic. If an in�nite model does not correspond to an atomic

lattice, it cannot correspond to an atomistic lattice either.

Remark 5. The lattices are not atomistic due to the existence of overlaps

O(x, y) = z between elements x and y that have no other parts than the part

z they overlap in. To allow the existence of such elements, they need to be exter-

nally connected in a di�erent fashion. Intuitively this is a neglect of their other

parts that actually distinguish x and y. Since if x is externally connected to an-

other element w and y is not, then there is something in x that it connects to w

but that is not in y. E.g. this can be some part of the border, therefore x and

y still have the same interior - the element z that they overlap in. One should

therefore consider a change in the mereotopology by adding following axiom. In-

tuitively, this enforces the existence of distinct parts when two elements partially

overlap (i.e. neither is part of the other). It can be conceived as a weak form of

relative complementation.

(EQ7) ∀x, y, z [[O(x, y) ∧ ¬P (x, y) ∧ ¬P (y, x)]→ ∃v (P (v, x) ∧ ¬C(v, y))]
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Theorem 10. No lattice in LRT is atomistic.

5. Non-modularity and Non-distributivity

In this section we deal with lattice properties that are commonly found in mathe-

matical literature besides complementation. These are amongst others modularity

and weaker forms thereof. We �rst take a closer look at general modularity, since

this is a strong lattice property that gives well-understood lattices.

Theorem 4.26. [Grä98] A Boolean lattice is a complemented distributive lattice.

We already showed that the mereotopological structures of Asher and Vieu to-

gether with the empty set form complemented lattices. However, since the lattices

are not uniquely complemented, they cannot be Boolean as we argued in section

4.1. Alternative proofs for the lattices in LRT being non-Boolean were provided

by the properties of section-semicomplementation in pseudocomplemented lattices

and unique complementation in orthocomplemented lattices. However, none of

those directly disproved distributivity. That is one goal of this section. A large set

of lattices, such as Boolean, Heyting, Brouwerian, and Stone lattices are subsets of

distributive lattices. In [Sto36], Stone gave a representation theorem for distribu-

tive lattices and proved the more general Stone duality as correspondence between

posets and certain topological spaces that could had linked back the lattice struc-

tures to topological spaces. On the opposite, non-distributivity has far-reaching

implications, i.e. none of the lattices can be in any subset of distributive lattices.

Failing to prove modularity, we are interested in weaker properties.

Subsequently we will turn our attention to orthomodular lattices. Orthomodular

lattices are a re�ned set of ortholattices that have nice topological representations

as demonstrated by [Itu83, Itu86]. Previously we showed orthocomplementedness

of all lattices in LRT , so looking at a well-known specialized set thereof is rather

natural. Orthomodular lattices are in general not necessarily modular, [Ber85]

gives an example of a non-modular orthomodular lattice. But in the reverse, prov-

ing non-orthomodularity implies non-modularity. Nevertheless, the separate proof

showing why the lattices cannot be modular gives valuable insight into the forbidden

sublattices of the theory RT .

Finally, we consider weaker types of modularity apart from orthomodularity. Amongst

others we consider semimodular lattices, which include geometric lattices (also
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Figure 12. Forbidden sublattices for distributive lattices

known as matroid lattices) that received a signi�cant amount of attention. Semi-

modularity is important in particular for geometric spaces. However, we see that

due to the distinction of elements just by their borders, the models of RT are not

even semimodular. Moreover, we show by examples that weak modularity and

semidistributivity is not satis�ed for all lattices in LRT .

5.1. Modularity. Modular lattices are most commonly characterized by the

absence of the pentagon (�gure 5.1(a)) as sublattice (theorem 4.28). Moreover,

[Ded00] showed that every modular non-distributive lattice has the diamond lattice

M3 (�gure 5.1(b)) as sublattice. A direct consequence is the characterization of

distributive lattices by the absence of pentagon and diamond as sublattices.

Definition 4.27. [Grä98] A lattice satisfying either

(i) x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) or

(ii) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

is a distributive lattice.

[DP90] A lattice is modular if it satis�es

(i') x ≥ z ⇒ x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)

In fact, we will show that the models of RT are not modular, and thus not dis-

tributive. Note that the condition (i') of modular lattices is the unrestricted from

of condition (i) for distributive lattices. An alternative characterization goes back

to the work of Dedekind [Ded00], who showed that every non-modular lattice

contains a pentagon as sublattice.

Theorem 4.28. [Grä98] A lattice L is modular if and only if it does not contain

a pentagon N5.
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in order to demonstrate that there exist lattices in in LRT that are non-modular

and hence not distributive we �rst give a counterexample that contains a sublattice

isomorphic to the pentagon N5. Afterward, we show that non-modularity is a strict

property for the lattices in LRT , i.e. that none of the lattices in this class can be

modular.

Example 3. We give a modelM of RT−EC whose lattice contains a pentagon sub-

lattice and thus is non-modular. This model is actually the smallest model of RT−EC .

We use the set Y M = {a∗,b, c,d, e} and the extension of C as following:

(EQ8) {{〈x,y〉 : x,y ∈ Y } \ {〈b, e〉, 〈c,d〉, 〈d, e〉}} ∈ CM

i.e. all individuals are connected to another except for the disconnected pairs

〈b, e〉, 〈c,d〉, 〈d, e〉. The tedious work showing that all axioms (except A12) are

satis�ed byM is omitted here, but can be easily done by the reader. The respective

lattice L is formed over the set Y = Y M ∪{∅} = {a∗,b, c,d, e, ∅}, �gure 5.1 shows

its Hasse diagram. In the model 〈b, c〉 ∈ ECM must hold to simultaneously satisfy

A11 and A3.

By removing e.g. c from this lattice we obtain a sublattice LS isomorphic to the

pentagon N5. Hence by theorem 4.28 the lattice is non-modular. Further notice

that we can easily extend this modelM to satisfy the existential requirement of A12

(existence of weak contact) by adding an independent lattice over some set Z with

no element in Z being connected to any of the elements b, c,d, e. This structure

can contain a weak contact following the de�nition D11 of [AV95]. Since none of

the elements in Z are connected we can de�ne joins {〈y, z〉 : y ∈ Y, z ∈ Z} on top

of the two lattices over Y and Z. Furthermore, complements to these joins can be

de�ned without interference with the sublattices over Y and Z. Then the described

sublattice LS over the set Y ′ = {a∗,b,d, e, ∅} is still a valid sublattice. Therefore

M is a model of the full theory RT0 whose lattice LM is not modular.

The next part shows that in fact all lattices in LRT are non-modular and hence non-

distributive. We �rst prove that the lattice LM of any modelM of RT (and RT−EC)

contains a special 6-element sublattice L6 (see �gure 5.1(a)) and that this sublattice

always contains a sublattice isomorphic to the pentagon N5 (�gure 5.1(b)).

Lemma 4.29. Every model M of the axioms of RT0 entails the existence of a 6-

element sublattice L6 of LM = (Y ∪ ∅,∩∗,∪∗, ∅, a∗) with following properties:

(1) L6 is a sublattice of LM over some set Y ′ = {a,b1,b2, c1, c2, ∅} ⊆ Y M

(2) a = bn ∪∗ cm, for n, m ∈ {1, 2}, is the supremum of L6

(3) ∅ = bn ∩∗ cm, for n, m ∈ {1, 2}, is the in�mum of L6
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Figure 13. Benzene L6 that is a sublattice of any lattice over a
model of RT

(4) b1 ∩∗ b2 = b2 and c1 ∩∗ c2 = c2

(5) b1 ∪∗ b2 = b1 and c1 ∪∗ c2 = c1

(6) a ∪∗ x = a and a ∩∗ x = x for all x ∈ L6

(7) ∅ ∪∗ x = x and ∅ ∩∗ x = ∅ for all x ∈ L6

Thus L6 is actually a lattice closed under ∩∗ and ∪∗.

Proof. Since the axioms force the existence of a pair of externally connected

individuals which are non-open by proposition 4.5. Let us call these b1 and c1.

Because of their non-openness, two open regions b2 = int(b1) and c2 = int(c1)
must exist as interiors according to (ii) of RTT . These regions b2 and c2 are part

of and connected to the element they are interior of, b1 and c1, respectively. b2

and c2 are not connected to each other in order to satisfy the condition of external

connection for b1 and c1 (see D4 or (vii) of RTT ). This set of regions Y ′ with

a = b1 ∪∗ c1 (for a = a∗ it is actually the smallest model allowed by RT−EC)

together with the empty set forms a sublattice with a as supremum, two branches

consisting of b1 and b2 = int(b1) respectively c1 and c2 = int(c1), and the zero

element ∅. Any model of RTT contains at least these elements. If the lattice

contains additional elements, L6 always forms a sublattice of it, since the elements

a,b1,b2, c1, c2, ∅ are closed under ∪∗ and ∩∗. Hence the axioms force any model

of RT0 or RT−EC to have L6 as sublattice. �

Corollary 4.30. RT0 entails the existence of a pentagon sublattice L5
∼= N5 of

the lattice LM for every modelM.

Proof. By removing an arbitrary element of the set {b1, c1,b2, c2} from the

sublattice L6 entailed by lemma 4.29 for any lattice in LRT , we obtain a sublattice

L5 that is still closed under join and meet and is a pentagon N5. �
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Figure 14. Six element sublattice contained in every lattice LM
and one possible pentagon sublattice

It follows immediately that all the lattices that can be associated to models of RT

are non-modular, since they contain a pentagon N5 as sublattice.

Theorem 11. No lattice in LRT is modular.

5.2. Orthomodularity. Orthomodularity extends the concept of ortholat-

tices. Each orthomodular lattice is orthocomplemented, but the converse does not

hold in general. Orthomodular lattices are used primarily to describe the structure

of physical elements in quantum-mechanic systems.

Since we proved orthocomplementedness for all lattices in LRT , checking for ortho-

modularity seems like an obvious continuation of this characterization.

Definition 4.31. [Itu86] An orthomodular lattice L is an orthocomplemented

lattice which satis�es the orthomodular law, i.e. for all x, y ∈ L, if x ≤ y and

x⊥ ∧ y = 0 then x = y.

[Bly05] An orthomodular lattice is an ortholattice in which the orthomodular iden-

tity x ≤ y → y = x ∨ (y ∧ x⊥) holds.

Lemma 4.32. [Kal83] Let L be an ortholattice. The following statements are equiv-

alent:

(1) L is orthomodular,

(2) For all x, y ∈ L, if x ≤ y and y ∧ x⊥ = ∅ then x = y

(3) O6 is not a subalgebra of L. (O6 is the benzene depicted in �gure 5.1).
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Definition 4.33. [Kal83] A subalgebra of an ortholattice L is a subset M which

is closed under the operations ⊥,∧, ∨, and which contains 0 and 1.

Beware that not every sublattice of an ortholattice is closed under orthocomple-

mentation again, but a subalgebra of an ortholattice needs to be closed under

orthocomplementation.

It is not di�cult to see that condition (2) is violated for the lattices in LRT . We

already showed that every lattice in LRT is not uniquely complemented. If we

let x1 and x2 be both (comparable) complements of an open individual x (think

of x2 being the interior of the externally connected individual x1), where w.l.g.

−x ∼= x⊥ ∼= x1 (x1 is the topological complement, hence closed), then x2 < x1 and

x = x⊥1 . By complementation x2∧x = ∅ holds, thus x2∧x⊥1 = ∅ and it would follow

x1 = x2. However, we know that there must exist such pair of distinct individuals

x1 and x2 by proposition 4.5.

Theorem 12. No lattice in LRT is orthomodular.

Proof. Every lattice LM is not uniquely complemented, and then it cannot be

orthomodular because it must contain a pair of elements b1,b2 that are comparable

but have a common complement. Reconsider the model from lemma 4.29 of the sub-

lattice that must exist in every structure RTT : this sublattice requires b2 ≺ b1 with

∼ b2 ∩∗ b1 = ∅. In the contrary, (2) of lemma 4.32 requires b1 = b2, an obvious

contradiction to b2 ≺ b1. Proposition 4.5 forces the existence of two non-open ex-

ternally connected individuals b1 and c1with interiors int(b1) and int(b2) that are
proper parts of b1, c1 and no relative complements with respect to b1, c1 exist, i.e.

in the corresponding modelM of RT0 [〈b3, b1〉 ∈ PP → 〈b3, b2〉 ∈ P ∨ 〈b2, b3〉 ∈ P )]
(see proof of theorem 8). Further (b1 ∩∗ c1) /∈ Y must hold for b1, c1 to be exter-

nally connected inM. But then int(b1) ∩∗ c1 = ∅ and int(c1) ∩∗ b1 = ∅ directly
follow. Thus the elements b1 and int(b1) will satisfy the condition on the left

side of the orthomodular law, but not the conclusion. Thus every model must be

non-orthomodular. �

Now we show that there are orthocomplemented, non-orthomodular lattices that

do not correspond to any model of RT . In particular, the lattice L6 obviously has

O6 as subalgebra and thus is non-orthomodular, but it does not correspond to a

model of RT .
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We previously proved (lemma 4.29) that each modelM of RT0 yields a sublattice

LM6 . However, this sublattice does for not necessarily yield O6 as subalgebra of

LM: �rst LM6 is not closed under orthocomplementation when more elements are

added, i.e. a⊥1 = b2 and a⊥2 = b1 do not always hold; and second LM6 does not

necessarily contain the empty set ∅ and the universal element a∗. However, we

can say that the lattice LM6 = LM associated wit the smallest model of RT−EC is

isomorphic to O6. But this model is explicitly ruled out by A12 (or condition (viii)).

From this example of an orthocomplemented non-orthomodular lattice we showed

that the class of lattices LRT is not isomorphic to the class of orthocomplemented

non-orthomodular lattices, but forms a proper subset thereof.

Corollary 4.34. Each lattice in LRT is in the class of orthocomplemented, non-

orthomodular lattices. I.e. there exist non-orthomodular ortholattices that cannot

be associated to a model of RT .

We remarked before that orthomodularity is just a weaker form of modularity.

By showing that the lattices are strictly not orthomodular it is implied that they

are strictly non-modular - con�rming the result from the previous subsection. To

demonstrate that, we use the equational characterizations of modular and ortho-

modular lattices:

Modularity [Grä98]:

(EQ9) x ∧ (y ∨ (x ∧ z)) = (x ∧ y) ∨ (x ∧ z)

Orthomodularity [Kal83]:

(EQ10) x ∨
(
x⊥ ∧ (x ∨ z)

)
= x ∨ z

Since modularity is a dual lattice property, we can rewrite equation EQ9 as x ∨
(y ∧ (x ∨ z)) = (x ∨ y) ∧ (x ∨ z), and consider the special case y = x⊥. It follows:

x∨
(
x⊥ ∧ (x ∨ z)

)
= (x∨x⊥)∧ (x∨z) and consequently the orthomodular equation

x ∨
(
x⊥ ∧ (x ∨ z)

)
= (x ∨ z).

5.3. Semimodularity. Semimodularity is yet another weakening of modular-

ity. Semimodular lattices are covered extensively in [Ste99]. Semimodular lattices

were �rst analyzed by Birkho� who considered a�ne incidence geometries that

are no longer modular, but retain some properties of modular lattices. Wilcox

then showed a slightly stronger property for the axiomatization of a�ne geome-

try that are atomless (pointless). The ensuing lattices are M-symmetric [Wil39],

which is equivalent to upper semimodularity with an additional condition, referred

to as Wilcox condition [Ste99]. For �nite lattices, upper semimodularity and M-

symmetry coincide.



5. NON-MODULARITY AND NON-DISTRIBUTIVITY 63

A�ne geometry (see for a lattice theoretic account e.g. [Ben83]), a generalization

of Euclidean geometry, is a natural way to represent e.g. spatial models (incidence

geometries) of mereotopology. Therefore without modularity holding in the models,

the geometric interpretation of semimodular lattices points to their applicability to

mereotopology. Though, we show that even this weaker property does never hold

in the models of RT−EC . Notice further that semimodular lattices are a special case

of geometric lattices [Ste99].

Definition 4.35. [Ste99] A lattice is called (upper) semimodular if it satis�es the

following condition

a ∧ b ≺ a→ b ≺ a ∨ b

A lattice is lower semimodular if it satis�es

a ∧ b ≺ a and a ∧ b ≺ b together imply a ≺ a ∨ b and b ≺ a ∨ b.

Theorem 13. No lattice in LRT is upper or lower semimodular.

Proof. Recall the existence of LM6 , �gure 5.1(a), in any modelM of RT from

lemma 4.29. The elements of LM6 do not satisfy the conditions for semimodularity.

In particular, c2 ∧ b2 ≺ b2 but c2 6≺ c2 ∨ b2; and b2 ∧ c2 ≺ b2 and b2 ∧ c2 ≺ c2

but b2 6≺ c2 ∨ b2 = a. �

Remark 6. We also deduce that the lattices LRT are not geometric or matroid

lattices.

Definition. [Grä98] A lattice L is called geometric if and only if L is semimod-

ular, L is algebraic, and the compact elements of L are exactly the �nite joins of

atoms of L.

5.4. Weak modularity. Weakly modular lattices are not always semimodu-

lar, but all semimodular lattices are weakly modular. Weak modularity is de�ned by

a rather complicated condition, but it can be simpli�ed for �nite lattices [Grä98].

We use the following de�nition in terms of modular pairs (introduced by Wilcox)

that make the relationship to M-symmetric and thus semimodular lattices visible.

Definition 4.36. [MM70] Let a and b be elements of a lattice L. We say (a, b)
is a modular pair, in short (a, b)M , if ∀c ≤ b [(c ∨ a) ∧ b = c ∨ (a ∧ b)]. If a pair is

not weakly modular, we write (a, b)M̄ .
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Figure 15. Examples of lattices associated to models of RT−

A lattice L with zero element 0 is weakly modular if in L, (a ∧ b 6= 0) implies

(a, b)M .

A lattice L with 0 is called ⊥-symmetric if in L, (a, b)M and a ∧ b = 0 together

imply (b, a)M .

A lattice L is called M-symmetric if (a, b)M implies (b, a)M .

We just give an example, compare �gure 5.4(b), of a model of RT− whose lattice

LM is not weakly modular. But there also exist lattices in LRT that result in

weakly modular lattices, e.g. �gure 5.4(a). Hence we cannot state something

about weak modularity as strong as we did for modularity, orthomodularity, and

semimodularity for the lattices in LRT .

Note 4.37. Not all lattices LRT are weakly modular.

Example 4. Consider the lattice in �gure 5.4(b). It is a model of RT−EC with the

following extensions: the extension PM of parthood is given by the lattice with its

transitive closure and re�exivity implied. Further ECM = {〈b, f〉, 〈f ,b〉}, OPM =
{a∗, c,d, e,g,h, i}, CLM = {a∗,b, c,d, e, f ,g,h}, and TPM = {〈b,b〉, 〈f , f〉}. All
other extension can be easily deduced from these.

Now consider b and c. Because b ∧ c = g 6= ∅, (b, c)M and (c,b)M must be

satis�ed for LM to be weakly modular. But then the equivalence of weak modularity
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Figure 16. Hasse diagrams of forbidden sublattices in semi-
distributive lattices

must hold, (c,b)M ⇐⇒ ∀x ≤ b [(x ∨ c) ∧ b = x ∨ (c ∧ b)]. Checking x = e

(notice e ≤ b), we get the following: (e ∨ c) ∧ b = e ∨ (c ∧ b) ⇐⇒ a∗ ∧ b =
e ∨ g ⇐⇒ b = e. This is obviously false, therefore LM is not weakly modular.

On the other side, considering the lattice in �gure 5.4(a), this is weakly modular,

since we only need to check for each totally ordered chain in the lattice ((b,d)M
and (c, e)M), which are trivially weakly modular.

However, the example (c, b)M does not violate ⊥-symmetry for the lattice in �gure

5.4(b). We need to show that (b, c)M does not hold as well: (b, c)M ⇐⇒ ∀x ≤
c [(x ∨ b) ∧ c = x ∨ (b ∧ c)]. As possible cases for x only g, f, i need to be checked.

In fact, f makes the condition for (b, c)M fail (f ∨ b) ∧ c = f ∨ (b ∧ c) ⇐⇒
a = f ∨ g ⇐⇒ a = c. This particular example suggests that the lattices might

be ⊥-symmetric, we some interesting consequences [MM70, BJ72]. A complete

proof or counterexample remains open. Since we already know that the lattices are

not M-symmetric, ⊥-symmetry would de�ne the �nest possible of the models with

respect to symmetry/modularity properties.

Conjecture 1. All lattices in LRT are ⊥-symmetric.

5.5. Semidistributivity. Semidistributivity is a lattice property weaker than

distributivity but independent of modularity. Every distributive lattice is also

meet- and join-semidistributive. Like orthomodularity is a stricter property of

orthocomplementation, semidistributivity is stricter than pseudocomplementation

as observed by [Ste99].

Lemma 4.38. [Ste99] (Meet-/join-) semidistributive lattices are (meet-/join-) pseu-

docomplemented.
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Figure 17. Example of a lattice associated to a model of RT−EC

that is not semidistributive

Proving semi-distributivity for all lattices in LRT would then verify the property

of pseudocomplementedness. But we show that the lattices in LRT are not always

semidistributive. That draws a clear boundary between pseudocomplementedness

and the stronger property of semidistributivity for the class LRT . Similar to mod-

ularity or distributivity, failure of semidistributivity can be detected through a set

of sublattice. Most importantly, this set contains the diamond, thus admitting a

straightforward example of a lattice in LRT that is not semidistributive.

Definition 4.39. [Grä98] A lattice is called meet-semidistributive if and only if

(SD∧) u = x ∧ y = x ∧ z → u = x ∧ (y ∨ z)

A lattice is called join-semidistributive if and only if

(SD∨) u = x ∨ y = x ∨ z → u = x ∨ (y ∧ z)

A lattice that is both meet-semidistributive and join-semidistributive is called

semidistributive.

Theorem 4.40. [DPR75] A lattice L of �nite length is semi-distributive if and

only if it contains no sublattice isomorphic to M3, L2, L3, Ld
3, L4, and Ld

4.

Example 5. Take the example of �gure 5.5, it is a model of RT−EC , but it contains

the diamond M3 as sublattice, e.g. the sublattice formed from b,d, e, f , j is a dia-

mond. In this diamond it holds that d∧e = d∧f = j but j 6= d∧(e∨f) = d∧b = d.

An similar example violating join-semidistributivity can be made using d, e, f .

Note 4.41. Not all lattices in LRT are semi-distributive (i.e. join- and meet-semi-

distributive).
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Atomic covering property (AC)
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Figure 18. Relationship between lattice properties (modularity
and distributivity) used in this section

The relations are only captured for complete lattices.

An open question here is whether there exist models that are semidistributive.

We know that the 6-element lattice L6 which corresponds to a model of RT−EC

is semidistributive. However, it is not clear whether the combination with weak

contact yields strictly non-semidistributive lattices.

5.6. Summary. This section shows that any common kind of modularity or

distributivity either completely fails for the lattices in LRT or we cannot make a

precise statement forcing certain kinds of modularity or ruling it out. Failure of

orthomodularity draws a clear boundary of lattices in LRT being always ortho-

complemented, but never orthomodular. Similarly for pseudocomplementation: we

know all lattices in LRT are doubly pseudocomplemented, but we know of examples

that are not semidistributive. Another borderline exists at the most general level in

�gure 18: we know that the models are not semimodular, but we conjectured that
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they are ⊥-symmetric. Because any kind of modularity and distributivity fails, we

consequently ask whether all of the models of RT−EC are isomorphic to the atomic

non-modular p-ortholattices. In chapter 6 it will turn out that this is true and it is

also isomorphic to the not uniquely complemented atomic p-ortholattices.

Remark 7. The class of complete atomic orthocomplemented lattices (without

pseudocomplementation) has been investigated by [Mac64] with respect to mod-

els in Hilbert space. �The lattice of all closed subspaces of a separable Hilbert

space has the following properties. It is complete, atomic, irreducible, semi-

modular, and orthocomplemented.� [Mac64]. Our characterization of the class

LRT is closely related: complete atomic orthocomplemented pseudocomplemented

lattices. However, by non-semimodularity, they form a disjoint class with the mod-

els of separable Hilbert space (which are strictly semimodular). Nevertheless we

can apply some of the results obtained by MacLaren. In particular the following

theorem about the center of such a lattice holds in the lattices in LRT as well.

Theorem 4.42. [Mac64] If P is a complete atomic orthocomplemented lattice,

the center of P is a complete atomic Boolean algebra.

6. Models of RT− as Lattices

So far, in this chapter we established that the lattices in LRT are complemented

lattices (by theorems 3, 4, 5). Every lattice in LRT is further double pseudo-

complemented and orthocomplemented (theorems 7 and 8), which together impose

quite restrictive constraints on the class LRT . Moreover, we excluded lattices with

stronger properties of orthomodularity and semimodularity (theorems 12 and 13),

and hence modularity and distributivity. We also ensured that the lattices are never

atomistic, uniquely complemented, nor section-semicomplemented. With regard to

weak modularity and semidistributivity we can only say that there exist models that

do not satisfy these properties, but on the other side some of the lattices in LRT

do (or might, in the case of semidistributivity) satisfy it. The following corollary

summarizes the results of this chapter.

Corollary 4.43. All models of RT−EC are orthocomplemented double-p-lattices

(with the empty set removed) that are neither orthomodular nor semimodular.

In short we call these lattices non-modular p-ortholattices. Notice that since �nite

lattices are always complete and atomic, we do not explicitly state this. Neverthe-

less, we focus on the �nite models of RT−EC which we can assume to be complete

and atomic.
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From non-distributivity we learned that the lattice structures corresponding to

models of RT are not a subclass of distributive pseudocomplemented lattices, hence

neither Boolean algebras, Brouwerian lattices, Heyting algebras, nor Stone lattices.

This result distinguishes the structures from the characterization of Clarke's models

by Biacino and Gerla [BG96]. In [BG96], it was demonstrated that Clarke's

Calculus of Individuals is isomorphic to the atomless Boolean algebras with the

empty set removed (called a mereological �eld in [Ger95]) and that the connection

structures (R,C) of Clarke's theory (satisfying the axioms A1-A4 of [BG96]) are

equivalent to complete orthocomplemented lattices.

A note on mereological �elds

Remark 8. Di�erent authors called the mereology in the sense of Le±niewski (see

[Lus62]) and Leonard and Goodman [LG40] a Boolean algebra with the zero el-

ement removed. The term mereological �eld was coined for such a structure,

apparently �rst used by Gerla in [BG96, Ger95], but it lacks a clear de�ni-

tion. It is implied that it does not make a di�erence whether to consider Boolean

algebras or the mereological �elds . However, they are remarkably di�erent con-

sidering following perspective: a Boolean algebra is uniquely complemented and

orthocomplemented. Supremum and in�mum of a Boolean algebra are each oth-

ers complement: 1′ = 0 and 0′ = 1. By removing the in�mum (the empty set

in mereotopology) the supremum lacks a complement. Suddenly, the resulting

structure is not complemented anymore. If we choose an awkward variation of

complementation: 1′ = 1, the complementation law x ∩ x′ = 0 is not satis�ed.

The point here is that describing mereological (an mereotopological) structures in

terms of Boolean algebras with the in�mum removed is rather problematic. What

is required here is an exact (re)de�nition of mereological �eld to accommodate the

fact that in a mereological �eld the supremum does not have a complement de�ned

in the �eld itself.

Proposition 4.44. A mereological �eld is a Boolean algebra without in�mum and

the supremum being not complemented.

This chapter proves that the mereotopological structures RT are indeed a proper

subclass of Clarke's connection structures formed by A1-A4 of [BG96]. The lattices

corresponding to models of RT are not only orthocomplemented but also pseudo-

complemented and thus a specialization of Clarke's connection structures. How-

ever, the lattices in LRT are more general than the Boolean lattices corresponding

to Clarke's complete Calculus of Individuals. These two classes are in fact disjoint:
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Figure 19. Clarke's models and the models of RT interpreted as lattices

the Boolean lattices being uniquely complemented, whereas the models of RT are

strictly not uniquely complemented.

7. Isomorphic Characterization of the Models of RT−

The previous description of the models of RT−EC as lattices is too weak for a

characterization. Instead, we are aiming for a characterization up to elementary

equivalence as achieved by Asher and Vieu for RT0 in terms of the structures

RTT . We only know that all the models of RT0, RT−, and RT−EC give rise to

p-ortholattices where the models of RT−EC are characterized by a more restricted

set of p-ortholattices as summarized in corollary 4.43. The models of RT0 must be

again be a subset thereof.

Here, we take a step backwards in order to reach the desired isomorphic characteri-

zation of RT−EC and ultimately RT0. We take advantage of the fact that a lot of the

proofs, in particular for failure of unique complementation, orthomodularity and

semimodularity rely on the existence of at least two non-open individuals that are

externally connected according to proposition 3.5. If we remove axiom A12 from

the theory and consider the less restricted variant RT−, the consequences proved in

the theorems 6, 11, 12, and 13 suddenly do not hold anymore. We conjecture that

each �nite model of RT− is isomorphic to a �nite (complete atomic) p-ortholattice

without any restrictions on modularity and distributivity and prove it in this sub-

section. In particular, this means that any �nite p-ortholattice can be associated to

a model of RT− regardless of semi- and orthomodularity and regardless of unique

complementation. If it is uniquely complemented or distributive, then it is auto-

matically a Boolean lattice. Therefore any speci�c p-ortholattice, i.e. a Boolean

lattice, gives a model of RT− although it might not yield a model satisfying a more

restricted set of axioms such as RT−EC or RT0.
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Theorem 14. The lattices in LRT− are isomorphic to p-ortholattices.

Proof. The proof contains two directions; LRT →p-ortholattices is already

done, since we showed that each lattice in LRT for a model M is a p-ortholattice

(notice the proofs for pseudocomplementedness and orthocomplementedness do not

rely on �niteness of the models).

Corollary 4.45. The �nite lattices in LRT− are isomorphic to �nite p-

ortholattices with an interior function int de�ned on it so that int(a) 6= 0
holds for all a.3

Recall that we can only use this alternative de�nition of the �nite models of RT

because we proved that every �nite model of RT0 can be associated to a �nite

structure RTT , satisfying conditions (i) to (vi) of the intended models. The com-

pleteness proof in [AV95] showed elementary equivalence of the models of RT0 and

the structures RTT . However, that also gives in�nite models of RTT for some mod-

els of RT0. Nevertheless, for RT− we can use RT0 and RTT synonymously, since

we proved by theorem 2 that every �nite model of RT− (expressed in terms of the

axioms of RT0) gives rise to at least one �nite model as expressed by conditions (i)

to (vi) on the topological space (ΣU ,ΣT
U ). In the unrestricted case (theorem 14)

the completeness proof itself is su�cient for the elementary equivalence between

models of RT− and models in the respective subset of conditions of a structure

RTT .

Now we focus on the direction p-ortholattices→ LRT of the theorem: we show that

all pseudocomplemented ortholattices can be associated to structures satisfying the

conditions (i) to (vi) of RTT . For the purpose of the proof, conditions (ii) and (iii)

are split up into more manageable subconditions. Except for the conditions (ii.3)

and (iii.2) the proofs are straightforward and shortly outlined here. The proofs

for (ii.3) and (iii.2) are separately treated afterward. Moreover, we can derive the

following corollary about the �nite models of RT−.

(i) Y ⊆ P(X) and X ∈ Y

Satis�ed if we map the top element of the lattice (guaranteed by bound-

edness and completeness of the lattices) to the set X.

3We need the last restriction to non-empty interiors because it is not clear whether every p-
ortholattices gives some possibility to de�ne the interior function in such a way. Moreover,
we deal here with special p-ortholattices, since we earlier proved that the meet- and join-
pseudocomplements are also complements.
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(ii.1) ∀x [int(x) ∈ Y ]
We know each element x′ is the orthocomplement of some other element

x (by involution property of orthocomplementation). Setting the unique

join-pseudocomplement of x′ to int(x) (theorem 7) gives us an interior

for all elements.

(ii.2) ∀x [int(x) 6= ∅]
With jpc(x) ∨ x = 1 it follows that the join-pseudocomplement jpc(x)
of x cannot be ∅, unless x = 1. However, then top element always has

itself as interior.

(ii.3) ∀x [int(x) = int(cl(x))] - See separate proof further down.

(iii.1) ∀x [cl(x) ∈ Y ]
We know each element x′ is the orthocomplement of some other element

x (by involution property of orthocomplementation). Setting the unique

meet-pseudocomplement of x′ to cl(x) (theorem 7) gives us a closure

for all elements.

(iii.2) ∀x [cl(x) = cl(int(x))] - See separate proof further down.

(iv) int(∼ x) 6= ∅ →∼ x ∈ Y

Forced by orthocomplementation each element in the lattice has a unique

orthocomplement. If the orthocomplement is the empty set (follows

from the interior being empty), then the element is not in Y .

(v) ∀x, y [int(x ∩ y) 6= ∅ → (x ∩∗ y) ∈ Y ]
We simply use the element representing the greatest lower bound (meet)

of x and y to map to x ∩∗ y. Since the lattice must be complete, this

greatest lower bound exists for any pair of elements x, y. If the meet is

∅, then x ∩∗ y is not an element of Y .

(vi) ∀x, y [(x ∪∗ y) ∈ Y ]
We choose the element representing the least upper bound of x and y to

map to x∪∗ y. Completeness again ensures the existence of this element

for every pair x, y.

To prove (ii.3) and (iii.2) we restate these conditions in purely lattice-theoretic

terms. To achieve that, we use the notions of orthocomplementation as well

as the meet- and join-pseudocomplements. In particular, we claim that replac-

ing the standard topological operations interior and closure by their correspond-

ing lattice-theoretic formulations (using join- and meet-pseudocomplements) as

stated in the theorem 7, leads to a theorem setting orthocomplementation and

the two forms of pseudocomplementation in relation. We express int(x) as the

join-pseudocomplement of x⊥ (the orthocomplement of x). int(cl(x)) is then the
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join-pseudocomplement of the orthocomplement of the meet-pseudocomplement of

x⊥. I.e. (ii.3) can be rewritten as jpc(x⊥) = jpc
[(

mpc(x⊥)
)⊥]

. Equally (iii.2)

can be rewritten as mpc(x⊥) = mpc
[(

jpc(x⊥)
)⊥]

where x⊥ represents the ortho-

complement of x. Removing the innermost orthocomplements from the formulae

simpli�es them to

(EQ11) jpc(x) = jpc
[
(mpc(x))⊥

]
(EQ12) mpc(x) = mpc

[
(jpc(x))⊥

]
For proving these we need the following general theorem for complete p-ortholattices

(applies not just for the �nite ones, but also in�nite complete p-ortholattices).

Theorem 15. In every complete p-ortholattice jpc(p) ≤ p⊥ ≤ mpc(p) holds for

any lattice element p where ⊥ : Y → Y is the orthocomplement, jpc : Y → Y the

join-pseudocomplement, and mpc : Y → Y the meet-pseudocomplement operation

in the lattice.

Proof. Assume the contrary, i.e. p⊥ � jpc(p): with p∨p⊥ = 1 this violates the
de�nition of the join-pseudocomplement in 4.15. The same applies for p⊥ � mpc(p)
and p ∧ p⊥ = 0. �

Corollary 4.46. In every complete p-ortholattice mpc(p)⊥ ≤ p ≤ jpc(p)⊥ holds

for any lattice element p where ⊥ : Y → Y is the orthocomplement, jpc : Y → Y the

join-pseudocomplement, and mpc : Y → Y the meet-pseudocomplement operation.

Proof. Follows directly from the order-reversing law of orthocomplementa-

tion: a ≤ b→ (a⊥ ≥ b⊥). See e.g. [Ber85]. �

Using the notation of MacLaren [Mac64], one could restate the theorem and corol-

lary in a more elegant way.

Definition 4.47. [Mac64] Two elements a and b are said to be orthogonal if

a ≤ b⊥. In this case we write a ⊥ b. The relation of being orthogonal is obviously

symmetric.

Corollary 4.48. In a complete p-ortholattice p ⊥ mpc(p) and p ⊥ jpc(p) holds

for any lattice element p, where jpc : Y → Y the join-pseudocomplement, and

mpc : Y → Y the meet-pseudocomplement operation.
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Finishing the proof of theorem 14. Now we can prove the equations EQ11

and EQ12 from above. In the following we show that these are immediate con-

sequences in any �nite p-ortholattice where the orthocomplementation ⊥ is the

topological complement. The proof (we show it for EQ12) is by contradiction: we

show that if for any element p of the lattice, m = mpc(p) and m′ = mpc
[
(jpc(p))⊥

]
are satis�ed, then m = m′. We distinct the following cases depending on the relative

position of m and m′ in the lattice:

(a) assume m incomparable to m′,

(b) assume m > m′ and

(c) assume m < m′.

All three cases lead to a contradiction, thus the only valid solution being m =
m′. Note hereby that the corollary 4.46 can be restricted to: p < jpc(p)⊥ and

p > mpc(p)⊥, otherwise m = m′ would follow immediately from p = jpc(p)⊥ and

p = mpc(p)⊥, respectively. In the following we do the proof for equation EQ12

only, for equation EQ11 it is analogous.

Case (a) assume that m and m′ are incomparable.

We know that jpc(p)⊥ ≥ p: jpc(p) ≤ p′ (the join-pseudocomplement is the smallest

of all complements of p), in particular it then holds jpc(p) ≤ p⊥ and thus by the

order-reversing law of ortholattices jpc(p)⊥ ≥ p follows. Then naturally it follows

that mpc(jpc(p)⊥) ≤ mpc(p). Hence m′ ≤ m and m and m′ are comparable -

contrary to the assumption.

Case (b) assume that m > m′ holds.

Assuming m ∧ jpc(p)⊥ = ∅ with m > m′ would lead to a contradiction because m′

can no longer be the meet-pseudocomplement of jpc(p)⊥. Hence, m ∧ jpc(p)⊥ > ∅
must hold. By completeness of the lattice, this intersection results in some element,

let us denote it by z, s.t. m ∧ jpc(p)⊥ = z. Since (i) m′ ∧ jpc(p)⊥ = ∅ and (ii)

m ∧ p = ∅, the element z must further satisfy following properties: (iii) z ∧m = z,

(iv) z∧jpc(p)⊥ = z, (v) z∧p = ∅, and (vi) z∧m′ = ∅ (because jpc(p)⊥∧m′ = ∅ and
z < jpc(p)⊥). Now let us consider the element (z ∨m): From (ii) and (v) it follows

(z∨m)∧p = ∅ (by DeMorgan laws which apply for all orthocomplemented lattices,

see [Kal83]) with (z ∨m) ≥ m, hence m cannot be the meet-pseudocomplement

of p unless z = m and we derive a contradiction again: no such z can exist that is

distinct from m, hence m = m′.

Case (c) assume that m < m′ holds.
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Again m′ ∧ p = ∅ would lead to a contradiction because m can no longer be the

meet-pseudocomplement of p. Hence, m′∧p > ∅. We know jpc(p)⊥ ≥ p from corol-

lary 4.46, and therefore m′ ∧ jpc(p)⊥ ≥ m′ ∧ p (notice that a ≥ b → c ∧ a ≥ c ∧ b

holds in any complete lattice, thus in the �nite lattices). With m′∧ jpc(p)⊥ = ∅ we
obtain m′ ∧ p = ∅, which is contradictory to our previous assumption m′ ∧ p > ∅.

From the cases (a), (b), and (c) all resulting in a contradiction, m = m′ must hold.

Thus mpc(p) = mpc
[
jpc(p)⊥

]
for any element p in the lattice. Analogous one can

prove EQ11. Together, EQ11 and EQ12 �nish the proof for (ii.3) and (iii.2) and

thus for theorem 14. �

Theorem 14 then leads to the following representation theorem for RT−.

Theorem 16. (Representation Theorem for RT−) The lattices arising

from models of RT− are isomorphic to p-ortholattices.

So far, our lattice-theoretic results can be summarized as:

1. The lattices arising from models of RT− are isomorphic to p-ortholattices;

2. The lattices arising from �nite models of RT− are isomorphic to the set

of �nite (complete atomic) p-ortholattices;

3. The lattices arising from models of RT0 are not atomistic, semimodular,

orthomodular, nor uniquely complemented.

Since we have no tools to deal with external connection or weak contact in lattices

directly, we need a di�erent approach to characterize the models of full RT0 or even

RT−EC . We extend the characterization given here to the �nite models of RT−EC in

chapter 6 by providing a simple way of �nding a suitable extension of EC. How-

ever, we �rst need a graph-theoretic representation of the models of RT0 to fully

account for external connection. Recall that EC cannot be represented appropri-

ately in purely lattice-theoretic terms. Most importantly, we show that every �nite

(complete atomic) p-ortholattice can be extended by a non-empty extension EC in

order to form a model of RT−EC .
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Isomorphism to models of convex regions

Remark 9. We use special properties of convex regions to satisfy the above

properties. From [Lin06], p. 24 we know that convex regions satisfy (ii.3) un-

conditionally and (iii.2) if the interior is non-empty (always satis�ed by (ii.2)).

Thus if all elements of an arbitrary complete atomic p-ortholattices can be asso-

ciated to convex regions, this will result in a topological space of convex regions

satisfying the conditions (i) to (vi) of RT0. Vice versa if we have a topological

space de�ned as in RT0, then each non-convex region can be transformed to an

isomorphic convex regions. However, convexity is not a characteristic property of

topological operations: think of a piece of stretch material: if it can be stretched

to cover a convex region, but it can always be stretched to cover a non-convex

region. In the mereotopology of Borgo et al. [BGM96] convexity is explicitly

models through a predicate. Hence, the observation that the models of RT−

seem to always correspond to models with only convex regions causes the ques-

tion whether for some applications the theory RT is not powerful enough and

one should consider instead the theory presented in [BGM96]. First this theory

needs to be characterized model-theoretically as well.

Conjecture 2. Any model satisfying the axioms RT− (or the equivalent condi-

tions (i) to (vi) of RT0) is isomorphic to a model that satis�es these axioms but

in which every region is convex.



CHAPTER 5

Graph-Theoretic Characterization

In the introduction we mentioned the possibility of di�erent approaches when char-

acterizing mereotopological models. After �rst attempting a characterization via

topological spaces, we turned in the previous chapter to a lattice-theoretic approach.

Although this approach was much more successful than the use of topological spaces

in capturing essential structural properties, in particular of the parthood relation,

it only resulted in an isomorphic characterization of the models of RT− as com-

plete atomic p-ortholattices. We were able to prove additional properties such as

non-modularity for the more restrictive models of RT−EC , but eventually failed to

characterize these models up to isomorphism. In particular, the constructed lat-

tices fail to capture the essential relation external connection. This prompts taking

a di�erent perspective on the models of RT−EC by means of graphs. Graphs have

a long tradition in discrete mathematics and are successfully applied in di�erent

contexts in computer science. In particular they are useful for characterizing �nite

structures based on binary relations between elements in a domain of interest. Be-

cause the theory RT relies on a single dyadic primitive connection, C, a look at

the models of RT−EC as graphs is suggested. Since C is a re�exive and symmetric

relation, all the models can be represented as undirected simple graphs. Note that

throughout the remaining chapters of the thesis we only consider �nite models of

the theory, as the in�nite models are more di�cult to capture by graphs and are of

less practical importance considering reasoning with RT0.

Again, we will �rst consider subsets of the axioms that account for the theory

RT0 and characterize the corresponding models. But instead of weakening the

theory, we separate �rst its topological core, the connection structures (or contact

structures), and characterize its graphs in terms of modules. Afterward we regard

the mereological structures which include concepts such as parthood and overlap

and characterize the resulting posets in terms of chordal (and presumably com-

parability) graphs. Finally we look again at the theory RT−EC including external

connection. It turns out to be problematic, since the resulting graphs are not even

perfect anymore. We can give a classi�cation in terms of dually chordal graphs but

at the same time we show how maximum neighborhood orderings are too weak to

capture essential inheritance properties of the parthood structures underlying the

77
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graphs. Instead we de�ne in section 4.4 a stronger vertex ordering: a maximum

neighborhood inclusion ordering. The graphs in GRT−EC
that admit such orderings

have the striking property that always a partial order on the neighborhoods of the

vertices can be found. In fact, we prove in section 4.5 how the search algorithm

Cardinality LexBFS (CLBFS) can �nd such an ordering in linear time if it exists.

In the appendix we demonstrate that these orderings have additional nice proper-

ties on the graphs in GRT−EC
, e.g. for determining topological complements of the

models.

1. Representing Models of RT0 as Graphs

We adhere to the terminology for graphs as used in [BLS99]. Open neighborhoods

denoted by N(v) = {u|uv ∈ E(G)} do not include vertex v itself whereas closed

neighborhoods denoted by N [v] = N(v) ∪ {v} do include it.

Proposition 5.1. Each model M of RT0 (or a subset of the axioms) can be as-

sociated to a graph G(M) = (V,E) where VG = Y M and xy ∈ EG ⇐⇒ 〈x,y〉 ∈
CM) ⇐⇒ JxKg ∩ JyKg 6= ∅.

The last part of the equivalence uses the notation de�ning the intended models of

RT . By GRT−EC
we denote the class of graphs containing all graphs that can be

associated to a model of RT−EC . All graphs in GRT−EC
are simple, i.e. contain no

parallel edges and no self-loops, and are directed and connected graphs. n is the

number of vertices and m the number of edges for any graph. Further concepts are

introduced as needed.

Throughout this chapter we use the example modelM of RT−EC as shown in �gure

20.

2. Graphs of the Connection Structures

2.1. Connection structures. The axioms A1 to A3 of RT0 de�ne an exten-

sional ground topology T in the sense of [Var96, CV99], with axiom A3 forcing

extensionality. At the same time this theory is e�ectively a Strong Mereotopology

[CV99]. All properties we prove about the connection structures here generally

apply to all strong mereotopologies and extensional ground topologies.

Alone from the de�nition of the graphs in GRT−EC
, we derive the following simple

lemma.

Lemma 5.2. In a modelM of RT0 for two elements x,y ∈ Y M, 〈x,y〉 ∈ CM holds

if and only if xy ∈ EG in the graph G(M) arising fromM.
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Figure 20. Example of a modelM of RT−EC , represented as lattice
PP (e,b), PP (f ,d), PP (f , c), etc. Additionally, b and f are externally connected
in this model, i.e. EC(b, f). In this example b is the orthocomplement of i, e of

f , c of h, and d of g.

From a graph-theoretic perspective, axiom A1 is super�uous in a simple graph and

axiom A2 allows to only consider undirected graphs. Thus any undirected simple

graph immediately satis�es A1 and A2. Hence we only need to capture A3 through

the notion of twins as we show next.

2.2. Twin modules.

Definition 5.3. [BLS99] Let G = (V,E) be a graph. The subset M ⊆ V is a

module (or homogeneous set) in G if for all vertices u, v ∈ M and w ∈ V \M ,

uw ∈ E if and only if vw ∈ E. M is a trivial module in G if M = V , M = ∅, or
|M | = 1. If G contains only trivial modules, it is a prime graph.

Two vertices x, y ∈ V are twins if {x, y} is a module in G. Twins x, y are true

twins if xy ∈ E, otherwise x, y are false twins.

A graph is twin-free if it contains no module of size two. Note that deviating

de�nitions excluding only false twins exist, e.g. in [KL96, Kot97, FK02]. An

alternative characterization of twin-free graphs can be given using neighborhoods,

where two separate cases cover (a) false twins and (b) true twins. Note that neither

of the conditions itself is su�cient alone. In the case of true twins x, y , y ∈ N(x)
but y /∈ N(y) and in the case of false twins y /∈ N [x] but y ∈ N [y].
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(a) connection graph G(M) for
the modelM from 20

(b) transitive orientation G′(M)
of G(M). The dashed edges
represent proper overlap, so b
and e must �separate� their
non-connected neighborhoods
{c,g} and {d,h} from

transitivity.

Figure 21. Connection graph G(M) of the modelM from �gure
20 and an exemplary transitive orientation of the graph

Lemma 5.4. A graph G is twin-free if and only if G has no pair of vertices x, y ∈ G

such that

(a) N(x) = N(y) or

(b) N [x] = N [y]

Surprisingly, twin-free graphs have only been considered from a combinatorial point

of view in the context of �identifying codes� [CHHL07]. There, twin-free graphs

guarantee the existence of a unique code for each vertex. However, twin-free in

[CHHL07] is limited to being free of false twins. Apparently, there is no com-

mon characterization of twin-free graphs comparable to the separation axioms in

topological spaces that guarantee di�erent degrees of unique (�separated�) neigh-

borhoods for every pair of points. For an example take �gure 2.2(a), there no two

vertices have a common open or closed neighborhood (notice that bf ∈ EG).
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3. Graphs of Mereological Structures

Throughout this section, we consider the parthood structures while ignoring the

connection structures for the moment. We already know that the connection struc-

tures are isomorphic to the class of twin-free graphs. So if a given parthood struc-

ture is twin-free, it will satisfy the axioms imposed on the connection structures.

Notice that by choosing undirected graphs, axiom A2 is implicitly assumed, whereas

we still choose axiom A1 to be satis�ed, although without further implications.

However, axiom A3 is not assumed to be satis�ed in the mereological structures.

On the opposite, the axioms A5 to A8 characterizing mereological notions are as-

sumed to hold. From T0.9, we can derive the following relation between proper

parthood in a modelM of RT0 and the neighborhoods in G(M).

Lemma 5.5. In a model M of RT0 for two elements x,y ∈ Y M, 〈x,y〉 ∈ PPM

holds if and only if N [x] ⊂ N [y] in the graph G(M) arising fromM.

Since PP puts a partial order on the elements of a model, the neighborhoods in

the corresponding graphs will be partially ordered as well. This leads us directly to

the next subsections, de�ning the graphs of the mereological structures as chordal

(and presumably comparability) graphs.

3.1. Overlap Cliques (O-clique). For further explanations we need one cru-

cial concept in the graphs in GRT− and also GP : a O-clique. An O-clique arises

when two or more lattice elements have a meet in the lattice that is not the zero

element, i.e. a non-empty intersection of individuals in a model M of RT− or

the axioms in RTP = {A1, A2, A4, A5, A6, A7, A8}. Then the overlapping elements

together with all their parents form a clique in the corresponding graph GP (M).
This is an important observation for these models, since every pair of elements in

such a clique that are not connected to distinct elements outside the clique forms a

module of size two in the graph. Hence the graph is not twin-free. We call such an

O-clique maximal if no other vertex can be added without maintaining the clique

property.

Definition 5.6. For a model M of RT− or RTP , the elements in a set VO form

an O-clique if and only if ∀x, y ∈ VO [O(x, y)]. An O-clique is maximal if ¬∃z /∈
VO,∀x ∈ VO [O(x, z)].

Example 6. Reconsider the lattice in �gure 20, the sets {a∗,b, c, e,g}, {a∗, c,d, f , i},
{a∗,b,d, e,h} are all maximal O-cliques. If two elements x, y are exactly in the

same maximal O-cliques, then their neighborhoods are identical: N [x] = N [y] and
the graph is not twin-free. In the example this applies to the pair b, e and the pair



3. GRAPHS OF MEREOLOGICAL STRUCTURES 82

f , i (see �gure 2.2(a) without the external connection). Making the graph G(M)
twin-free while maintaining the partial order given by PP of the modelM requires

to add unique extensions of external connection for every such pair of elements. We

will discuss the construction of such an extension in the next chapter. Notice that

a graph Gp can contain cliques that are not O-cliques, for instance {a∗,b, c,d, e}
is such a clique in �gure 2.2(a).

3.2. Comparability graphs. Posets can be represented as comparability

graphs. De�ne the graph GP (M) = (V (G(M)), E(G(M)) \ EECM) that con-

tains edges between any two individuals overlapping in the model M. The set of

edges EECM represents the extension of external connection inM. All such graphs

GP (M) make up the class GP .

If we further restrict this graph to a subgraph GPP
P (M) ⊆ GP (M) containing only

edges for parthood relations between individuals (without overlap), we immediately

get the underlying graph (see e.g. [MS91]) of the poset (V, P ) with P being the

parthood relation over a set V . Every such graph GPP
P is hence a comparability

graph.

Comparability graphs are de�ned through the existence of a transitive orientation.

By an orientation G′ = (V,E′) of a graph G = (V,E), we mean that for each xy ∈ E,

either xy ∈ E′ or yx ∈ E′ holds. An orientation G′ = (V ′, E′) is transitive if E′ is

a transitive relation on V . Ghouila and Houri proved the following equivalence, see

[BLS99]. This theorem is now commonly conceived as de�nition of a comparability

graph.

Theorem 5.7. [BLS99] A graph is a comparability graph if and only if it has a

transitive orientation.

Any graph GPP
P (M) is transitively orientable simply by being the underlying graph

of the poset. It might be possible to even create transitive orientations for all

graphs in GP . Notice that for every O-clique in a graph in GP there exists a set

of transitive orientation independent. In principle every edge between two vertices

can be directed in such an O-clique arbitrary, but with direct consequences on the

other vertices. In general it is far from obvious whether all graphs contained in

GP this class are comparability graphs. We can easily verify from the de�nition

D4 that the theorem ∀x, y [EC(x, y)→ ¬O(x, y)] always holds. Without external

connection relations in the graphs in GP , the extension of C is then equivalent to

the extension of O, thus the edges in a graph in GP represent exactly the overlap

relations between elements x, y that have a part z with z ≤ x and z ≤ y in common.

Of course either z = y or z = x can hold (equivalent to 〈y, x〉 ∈ P or 〈y, x〉 ∈ P ), but
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equality x = y = z is not re�ected in the graph. When referring to GP we mean the

class of graphs associated with models of RTP = {A1, A2, A4, A5, A6, A7, A8} that
additionally satisfy the axiom ∀x, y [C(x, y) ≡ O(x, y)] and each contained graph

has a (irre�exive) partial order de�ned on it by P (PP ).

For instance, each of the sets of vertices {a∗,b, c, e,g}, {a∗, c,d, f , i} in �gure 20

forms an O-clique. However, two vertices that are complements in the model M
cannot be connected, but some vertices can be in the neighborhood of both. For ex-

ample is g =∼ d and 〈g,d〉 /∈ CM, but b, e ∈ N [g] and b, e ∈ N [d]. For the transi-
tive orientation of any graph GP in GP this leads to a more general requirement: ev-

ery vertex x that both a vertex v and its complement ∼ v are connected to cannot be

on a directed path from v to ∼ v, i.e. vy1, y1y2, . . . , yix, xyi+1, yi+1yi+2, . . . , yk ∼ v

cannot form a directed path in the extension of EG′P
. For example ge, ed ∈ EG′P

is not allowed. Otherwise by transitivity v and ∼ v would have to be connected.

We claim that for every model such a transitive orientation can be found taking

the following approach: direct the vertices in general against the parthood order,

i.e. 〈x, y〉 ∈ PPM leads to yx ∈ EG′P
. But for all overlapping O-cliques, it has to

be ensured that the elements in both cliques do not lead to new transitive edges

that are not part of the connection relation of the original modelM. To guarantee

that, we can use each such overlapping element only as source of outgoing edges

or only as sink for incoming edges. Exceptions are only acceptable and necessary

between two or more elements that are in the intersection of two O-cliques: they

can be arbitrarily directed while violating the only-source or only-sink principle.

The universal edge a∗ can be either completely sink or completely source in any

model of RT without e�ecting any other directed edges in G′
P .

Conjecture 3. The graphs in GP are comparability graphs.

Notice that the converse is de�nitely not true: there are comparability graphs that

are not satisfying the axioms, i.e. not all posets are parthood structures.

Example 7. Take �gure 2.2(b) as example, it gives a transitive orientation of

2.2(a) with both b and e being purely sources of outgoing edges except for eb. In

this sense, these two elements separate the cliques {a∗,b, c, e,g} and {a∗,b,d, e,h}
from each other. The same applies for the O-cliques {a∗,b, c, e,g} and {a∗, c,d, f , i}
that intersect in c. c is purely a source in G′

P . It can only be source because there

are already outgoing edges cb, ce ∈ EG′P
from c. The only exception is cd which

can be directed arbitrarily because c and d are only in the O-clique {a∗, c,d, f , i}
together.
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However, it remains unclear whether all graphs GP have such a transitive ori-

entation. Nevertheless, comparability graphs capture structural properties of the

models of RTP .

3.3. Chordal graphs. The graphs in GP are furthermore chordal graphs.

Besides the usual de�nition as graphs without induces k-cycles of for k ≥ 4, chordal
graphs can be de�ned in terms of the vertex orderings they admit.

Definition 5.8. [BLS99] Let G = (V,E) be a graph. The vertex v ∈ V is

simplicial in G if N(v) is a clique in G.

The ordering (v1, v2, . . . , vn) of the vertices in V is a perfect elimination ordering

of G if for all i ∈ {1, 2, . . . , n}, the vertex vi is simplicial in Gi = G({vi, . . . , vn}).

Theorem 5.9. [FG65] A graph is chordal if and only if it has a perfect elimination

ordering (peo).

Notice that for every chordal graph, lexicographic breadth-�rst search (LexBFS)

[RTL76] and maximal cardinality search (MCS) [TY84] are guaranteed to yield

the reverse of a perfect elimination ordering (peo) [RTL76]. Using either search

algorithm we can recognize chordal graphs in linear time.

Proposition 5.10. The graphs in GP are chordal (triangulated).

Proof. A graph is chordal if and only if it has no induced chordless cycle of

four or more vertices. Assume the contrary, i.e. there exists a induced chordless

cycle Cn of four or more vertices x0, x1, . . . , xn−1 with xixi+1 ∈ E (assume + to be

mod(n−1)). For any pair of adjacent vertices xi, xj it holds that O(xi, xj). Consider
all the P3 induced on the Cn with xk, xk+1, and xk+2 and xkxk+1, xk+1xk+2 ∈ EP .

If (1) they are transitively oriented as PP (xk, xk+1) and PP (xk+1, xk+2) or vice

versa, then by transitivity PP (xk, xk+2) (resp. PP (xk+2, xk)) follows immediately

and Cn has in xkxk+2 a chord.

Otherwise (2) for no i ≤ n− 1 such induced P3 with transitive proper parthood ex-

ists, then w.l.g. one has to orient the vertices as PP (xk+1, xk) and PP (xk+1, xk+2)
for all P3 induced on the Cn. But then xk and xk+2 overlap in xk+1 according to

D4, i.e. O(xk, xk+2) and, by T0.19, C(xk, xk+2). Hence xk and xk+2 are adjacent

in the corresponding graph GP and the induced cycle Cn has a chord. �
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3.4. Chordal comparability graphs and strongly chordal graphs. From

the last two subsection it follows immediately GP ⊆ chordal ∩ comparability, pro-

vided the conjecture that all the graphs in GP are comparability graphs holds.

Conjecture 4. The graphs in GP are chordal comparability graphs.

Chordal comparability graphs can be recognized by a linear-time algorithm of com-

plexity O(n + m) [HM99, MS91]. The recognition algorithm �rst transitively

orients the graph in O(n + m) according to a modular decomposition approach

from McConnell and Spinrad [MS94] and then uses the algorithm proposed in

[MS91] to test directed chordal graphs for transitivity with linear complexity.

Chordal comparability graphs not only admit a peo, but also a simple elimination

ordering (short seo, or simple elimination scheme as they are called in [BS99]).

The authors in [BS99] utilize the algorithm Cardinality LexBFS (CLBFS), which

is a deviation of a traditional LexBFS (see section 4.5 for details), to generate a seo

for any chordal comparability graph. However, not all graphs that admit a seo are

chordal comparability graphs. Instead, Farber proved much earlier that a graph

admits a seo (as well as a strong elimination ordering) if and only if it is strongly

chordal.

Definition 5.11. [Far83] A chord xixj in a cycle C = (x1, x2, . . . , x2k) of even

length 2k is an odd chord if the distance in C between xi and xj is odd.

A graph G is strongly chordal if G is chordal, i.e. G has no induced cycle Ck of

length k ≥ 4, and each cycle of even length k ≥ 6 has an odd chord.

An abundance of equivalent characterizations of strongly chordal graphs exist:

Theorem 5.12. [Far83, BCDV98, McK00] The following are equivalent for a

graph G:

(a) G is strongly chordal;

(b) G is chordal and every k-cycle with k ≥ 6 has an odd chord;

(c) G admits a strong elimination ordering;

(d) every induces H E G has a simple vertex;

(e) every induced H E G is the clique graph of a chordal graph;

(f) G has a strong closed neighborhood tree;

(g) G contains no induced sun (trampoline).
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A simple, linear-time conversion algorithm to obtain a strong elimination ordering

from a seo was presented in [SS03]. Since the reverse is trivial (every strong

elimination ordering is a seo), we can go back and forth between the two orderings

in linear time. Since seos are more general than strong elimination orderings,

�nding a linear time algorithm for producing a seo on strongly chordal graphs would

immediately give a linear-time algorithm for recognition of strongly chordal graphs.

Current recognition algorithms are based on the strong elimination orderings of

strong chordal graphs with a best time complexity of O(m · log(n)) or O(k2n)
where k is the size of the largest minimal vertex separator [PK04]. Strongly chordal

graphs themselves are a subclass of doubly chordal graphs - the graphs that are

both chordal and dually chordal. The dually chordal graphs are dealt with in the

next section.

4. Graphs of Models of RT−EC

This section considers the intersection of connection structures with mereological

structures, extended by axiom A11 requiring the existence of two externally con-

nected individuals. These are exactly the graphs of the models that satisfy all

axioms of RT−EC . However, the properties of the graphs of the mereological struc-

tures cannot be transferred to this more restricted class of models. The resulting

graphs are not perfect anymore and thus cannot be a subclass of chordal nor com-

parability graphs.

Lemma 5.13. In a model M of RT0 for two elements x,y ∈ Y M, 〈x,y〉 ∈ ECM

is satis�ed if and only if in the graph GRT (M) the following holds: xy ∈ EG and

no vertex z exists so that z ∈ (N [x] ∩N [y]) and N [z] ⊆ N [x] ∩N [y].

Proof. ⇒: One can easily see that if 〈x,y〉 ∈ ECM then xy ∈ EG. As-

sume the contrary for the second condition, i.e. there exists a z such that z ∈
(N [x] ∩N [y]) and N [z] ⊆ N [x] ∩ N [y]. Then by lemma 5.5, 〈z,x〉, 〈z,y〉 ∈ PM

and thus 〈x,y〉 ∈ OM would follow. That is an obvious contradiction to D4 because

the extensions OM and ECM must be disjoint for any modelM.

⇐: By xy ∈ EG it follows 〈x,y〉 ∈ CM must hold. If no z with z ∈ (N [x] ∩N [y])
and N [z] ⊆ N [x]∩N [y] exists, then x and y share no sub-neighborhood (i.e. have

no common part), and then with 〈x,y〉 ∈ CM, 〈x,y〉 ∈ ECM follows from D4 and

D3. �

The most important property is the preservation of the parthood ordering given by

P (respectively PP ) in the models of RT−EC , thus lemma 5.5 still applies.
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4.1. Forbidden subgraphs. In graph theory, many well-known graph classes

can be characterized by a set of forbidden induced subgraphs. For example are the

chordal graphs exactly the Cn+4-free graphs whereas the comparability graphs are

described by a large set of forbidden induced subgraphs (see [BLS99]).

Although external connection follows strict rules regarding �inheritance� of part-

hood by lemma 5.5, it is impossible to capture the resulting graphs by a set of

forbidden induced subgraphs. This observation is due to the simple fact that we

can always take an arbitrarily large set of elements to construct a model in which

these elements are externally connected. Taking exactly the set of vertices repre-

senting these elements in the corresponding graph, we induce a subgraph containing

only these vertices and the external connections between them. Therefore, we can

obtain induced subgraphs with any kind of properties. With arbitrary graphs al-

lowed, no forbidden induced subgraph can be de�ned. Hence no set of forbidden

induced subgraphs characterizes these graphs. Moreover, we are assured that no

hereditary property on the graphs in GRT−EC
can be discovered. On the contrary,

many known graph classes can be characterized by a set of forbidden subgraphs.

This signi�cantly narrows the set of potential characteristic classes that have been

thoroughly analyzed in graph theory. For example the strongly chordal graphs

can be characterized as {(Cn+4, sun)}-free graphs [Far83]. However, some graph

classes purely characterized through vertex orderings are not e�ected by this re-

sult. Since we already showed for the parthood structures that they have strong

orderings (since they were chordal, they have perfection elimination orderings), we

try to characterize or at least classify the graphs of models of RT−EC through vertex

orderings they admit.

The lack of a set of forbidden induced subgraphs also leads to the following simple

but momentous conclusion. It immediately allows us to rule out all classes of graphs

that are subclasses of perfect graphs.

Note 5.14. Some graphs in GRT are not perfect.

Proof. Recall that a graph is perfect if for all induced subgraphs H E G,

χ(H) = ω(H). We know that for a cycle C5, χ(C5) 6= ω(C5). Since we can

construct a cycle C5 from a set of vertices V = {v1,v2,v3,v4,v5} by external

connections, i.e. v1v2,v2v3,v3v4,v4v5,v5v1 ∈ E with no other edges between

vertices in V . We can construct a modelM having C5 as induced subgraph: take

the individuals represented by vi as smallest externally connected individuals, i.e.

for all x in M, 〈x,vi〉 ∈ PPM implies 〈x,vi−1〉, 〈x,vi+1〉 6∈ ECM. Complete M
by adding necessary complements and interiors for all individuals and sums for all

pairs of individuals. Then G(M) is not perfect. �
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Graphs that cannot be classi�ed as perfect graphs are generally assumed to have not

many �nice� properties that can be exploited for standard (domination-like) graph

problems [BCDV98, BCD98]. However, Brandstädt et al. noticed that per-

fection does not help solving domination-like problems. As example they remind

us that for split graphs, which are a subclass of chordal graphs, the domination

problem remains NP-complete [BCD98]. Consequently, it is also NP -complete for

chordal graphs. However, for strongly chordal graphs, and hence also for chordal

comparability graphs, there are known e�cient algorithms to solve the domination

problem, see e.g. [Far84]. Unfortunately, the graphs in GRT−EC
are not completely

subsumed by the class of strongly chordal graphs, since strongly chordal graphs are

characterized by a forbidden induced subgraph, the sun. However, as we will see

now, the graphs in GRT−EC
share a lot of properties with strongly chordal graphs.

In particular, a characterization through vertex orderings is promising. In the fol-

lowing subsection we look at the more general class of dually chordal graphs that

completely contains the strongly chordal and the doubly chordal graphs. Since dou-

bly chordal graphs must be chordal as well and such have the hereditary property of

no chordless cycle of length ≥ 4, they do not contain the graphs GRT−EC
. Contrary,

dually chordal graphs are not necessarily perfect and our results in fact prove that

no set of forbidden induced subgraphs can exist.

4.2. Dually chordal graphs. Dually chordal graphs have like strongly chordal

graphs a wide range of equivalent de�nitions, see [BCDV98]. From an alternative

de�nition of a graph G being chordal if and only if its clique hypergraph C(G) is a
dual hypertree, the naming of dually chordal graphs becomes clear.

Definition 5.15. [BCDV98] A graph G = (V,E) is dually chordal if and only if

its clique hypergraph C(G) forms a hypertree.

Another way to de�ne dually chordal graphs is through clique graphs of chordal

graphs. One of the most formal de�nitions involves the Helly-property: dually

chordal graphs are clique-Helly and clique chordal. One of the more common de�-

nitions uses maximum neighborhood orderings (mno), see 5.16(b). We cover mnos

in-depth in the next subsection. Others again use duality in hypergraphs by repre-

senting a chordal graph as a hypergraph and taking its dual by switching vertices

and hyperedges. The following equivalences have been proved for dually chordal

graphs.

Theorem 5.16. [BCD98] Let G = (V,E) be a graph. Then the following condi-

tions are equivalent

(a) G is a dually chordal graph;
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(b) G has a maximum neighborhood ordering;

(c) N (G) is a hypertree;

(d) D(G) is a hypertree;

(e) C(G) is a hypertree;

(f) G is the underlying graph of a hypertree.

Most importantly, dually chordal graphs are not closed under any induced sub-

graphs and one can construct any kind of graph as induced subgraph by adding

new universally connected vertices to an arbitrary graph [BCD98].

Although dually chordal graphs generalize chordal, doubly chordal, strongly chordal,

and chordal comparability graphs which are all perfect, dually chordal graphs are

not necessarily perfect. Dually chordal graphs have been proposed primarily as a

more general class of graphs in which domination problems are still easily solvable.

Like chordal comparability graphs, dually chordal graphs can be detected in lin-

ear time with O(|E|) for connected graphs [BCD98]. An even more general class

of graphs is de�ned through the existence of a homogeneous elimination ordering

[BDN97]. These homogeneously orderable graphs include besides dually chordal

graphs also distance-hereditary, and homogeneous graphs.

4.3. Maximum neighborhood orderings. Chordal graphs have been char-

acterized by peos, strongly chordal graphs by seos, and their generalization to dually

chordal graphs can be characterized by a vertex ordering as well, the so-called max-

imum neighborhood orderings (mno). Moreover, if a mno exists for a graph, it can

be constructed in linear time [BCD98].

Definition 5.17. [BCD98] A vertex ordering (v1, . . . , vn) is a maximum neigh-

borhood ordering (mno) of G if for all i ∈ {1, . . . , n− 1}, the vertex vi has a

maximum neighbor ui ∈ Ni[vi] in Gi = G \ {v1, . . . , vi−1}, i.e. for all w ∈ Ni[vi],
Ni[w] ⊆ Ni[ui].

Theorem 5.18. [BCDV98] A graph G is dually chordal if and only if it admits a

maximum neighborhood ordering.

In [BCDV98, BCD98] it is also shown that recognizing whether a graph admits a

mno can be done in linear time with O(|V |+|E|). It uses an algorithm for detecting

α-acyclicity of a hypergraph. A mno can also be found on a dually chordal graph in

linear time using a slightly modi�ed Maximum Cardinality Search (MCS) algorithm

(the search paradigm itself is not altered).
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Definition 5.19. [DHMO94] A vertex ordering (v1, . . . , vn) is a domination elim-

ination ordering (deo) of G if for all i ∈ {1, . . . , n− 1}, there is a j > i such that

the vertex vi is dominated by vj in Gi = G \ {v1, . . . , vi−1}, i.e. Ni(vi) ⊆ Ni[vj ].

Just by the de�nition it seems that every mno is also a deo. In particular, in a

deo every vertex vi is dominated by some vertex vj with j > i whereas in a mno

each vertex vi is dominated by a vertex vj that is in the neighborhood of vi. Notice

however that a vertex can dominate itself in a mno, but not in a deo. Therefore

not every mno is also a deo.

Corollary 5.20. A mno is a deo if each vertex vi in the ordering is dominated by

some vertex in Ni(vi).

Moreover, notice the close relation to cop-win orderings as de�ned in [NW83],

they have for each vertex vi a dominating vertex vj in N [vi]. In a cop-win ordering,

every vertex vi with i < n must have some vertex vj with j > i such that Ni[vi] ⊆
Ni[vj ]. Obviously, vj must be in the neighborhood of vi. A cop-win ordering is a

generalization of a mno: in a mno every vertex vi with i < n must have a vertex

vj in its neighborhood so that Ni[vi] ⊆ Ni[vj ] and the neighborhoods of all other

vertices in Ni[vi] must be subsumed by Ni[vj ]. Hence, every mno is automatically

also a cop-win ordering.

4.4. Maximum neighborhood inclusion orderings. With respect to the

class GRT−EC
, each graph yields a set of vertex orderings with vn = a∗, which

all are deos and mnos. This is for the reason mentioned in [BCD98]: a∗ is a

universally connected vertex, so any graph extended by it will be a dually chordal

graph. It is easy to see why: a∗ is in the neighborhood of all other vertices and

subsumes the neighborhoods of all other vertices. Hence every vertex has in a∗ a

trivial maximum neighbor that dominates it in Gi. But we are looking for a more

restricted kind of vertex ordering in which the vertices are at least partially ordered

by their neighborhoods, we call it maximum neighborhood inclusion ordering or

short mnio.

Definition 5.21. A vertex ordering VG = (v1, . . . , vn) on G is a maximum neigh-

borhood inclusion ordering (mnio) if and only if

(1) for all i ∈ {1, . . . , n− 1}, there is a j > i such that vertex vi has a maximum

neighbor vj ∈ Ni[vi] in Gi = G \ {v1, . . . , vi−1} and

(2) for all i ∈ {1, . . . , n− 1}, there exists no j with j > i such that N(vj) ⊂ N [vi].

As one can easily see, condition (1) de�nes an mnio to be an mno as well which

leads to the following immediate consequence.
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Proposition 5.22. Graphs with a mnio are dually chordal.

Condition (2) gives the desired ordering of neighborhoods: any vertex vi with a

neighborhood N([v] subsuming the neighborhood N(vj) of vj must appear after

vj in the ordering, i.e. i > j. Moreover, this condition captures implicitly that

a graph with an mnio must be twin-free. In this way we merge the connection

structures that correspond to twin-free graphs with the mereological structures

that we generalized from GP being chordal graphs with peos (and maybe also seos)

to GRT−EC
being dually chordal graphs with mnios. Hence, mnios seem to capture

the essential properties of the graphs in GRT−EC
.

Proposition 5.23. Graphs with mnios are twin-free (free of false and true twins).

Proof. Assume G is not twin-free, i.e. there exist at least two vertices x, y ∈ V

s.t. either (a) N [x] = N [y] (true twins) or (b) N(x) = N(y) (false twins). Assume

(a) holds, then N(x) ⊂ N [y] and N(y) ⊂ N [x] so no matter whether we order x

before or after y, condition (2) of the de�nition of a mnio is violated. Assume (b)

holds, then N [x] ⊃ N(y) and N [y] ⊃ N(x) and condition (2) can again not be

satis�ed independent of how x and y are ordered relatively to another. �

A main motive for the de�nition of mnios is that the proper parthood ordering is

preserved by a mnio. We can easily see from lemma 5.5 holding for all graphs in

GRT−EC
that an individual of a modelM of RT has all its parts ordered before itself

in any mnio.

Theorem 5.24. Any mnio σ on a graph GRT−EC
preserves the parthood ordering of

all pairs of vertices x, y ∈ Y M, i.e. PP (x, y) implies x <σ y.

Note that this property applies even when external connections are present. More-

over, we remark that for any chordal comparability graph that arises from an acyclic

poset, the algorithm gives an order-preserving vertex ordering. That means that

any so-found mnio preserves the partial ordering of all potential underlying orders

of a chordal comparability graph (or a graph in GRT−EC
). Interestingly, that may

help generating all potential partial orders or e.g occurrence trees embedding all

potential partial orders.

It is not clear whether twin-free graphs with a peo (i.e. twin-free chordal graphs)

automatically also yield a mnio. We know they have a mno, but condition (2) of

an mnio is not trivially satis�ed. If every twin-free graph with a peo also yields a

mnio, one could ask whether each peo of such a graph itself is a mnio. The same

questions apply to the relation to seo, and strong elimination orderings. We leave

these as open problems for future research. Notice that reversely, the graphs in
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Algorithm 1 Cardinality Lexicographic Breadth-First-Search (CLBFS)

input: graph G(V,E)
output: an ordering σ of G

create one partition class and place all vertices in it
order the vertices decreasingly by their cardinality
for i← 1 to n do
choose and remove the �rst vertex v from the �rst class
σ(i)← v
foreach class C do
split class C into two classes, C ′ = C ∩N(v) followed by C ′′ = C \ C ′

(maintain the relative order of vertices in C within C ′ and C ′′)
if C ′ is empty, delete it; if C ′′ is empty, delete it
end for
end for

GRT−EC
are not forced to have any peo, seo, or a strong elimination ordering, since

all of these are restricted to some subset of perfect graphs. Notice further, that

every graph in GRT must also have such a characteristic mnio.

4.5. CLBFS for �nding mnios on graphs in GRT . Apart from their def-

inition by some elimination scheme, vertex orderings such as peo or seo are used

to characterize a certain class of graph. We want to show that every graph in

GRT yields an mnio. We achieve this by giving a concrete algorithm, Cardinality

LexBFS, that always �nds such an mnio for any graph in GRT .

Cardinality LexBFS (CLBFS) is a slightly changed version of the traditional LexBFS

algorithm as proposed by Rose, Tarjan, and Lueker [RTL76]. In LexBFS whenever

the next vertex is selected, it is chosen randomly from those with lexicographically

largest label. In CLBFS the vertices are then ordered in decreasing order of their

cardinality (i.e. their vertex degree), and a vertex of highest lexicographic label

and highest cardinality is chosen (not to be confused with selecting vertices with

highest visited cardinality as applied in MCS). Notice that if two or more vertices

have the same lexicographic label and equivalent degrees, one of it is chosen at

random again.

Practically, the algorithm applies a degree ordering before conducting the search

using traditional LexBFS to ensure e�ciency. Counting the degrees of all vertices

and sorting them (i.e. bucket sorting) has linear-time complexity, and since LexBFS

has also linear-time complexity, we know that Cardinality LBFS is also a linear-

time search algorithm. In algorithm 1 we use pseudo-code to sketch out CLBFS in

the style of [Kru05].

Inspired by the use of CLBFS for the linear time recognition of chordal compara-

bility graphs and the fact that a lot of the assumptions underlying the modular
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decomposition algorithm can be extended to the graphs in GRT although these

are not chordal comparability graphs (in fact neither chordal nor comparability

graphs), we conduct CLBFS on the graphs in GRT . Notice that twin-freeness as

de�ned in lemma 5.4 is derived as a special property of prime graphs in the recog-

nition algorithm for chordal comparability graphs [HM99]. Moreover, we strongly

belief that we can characterize the graphs in GRT by a stronger vertex ordering

than mnos. As we saw in the previous subsection, mnos characterize the complete

class of dually chordal graphs, whereas we can intuitively de�ne stronger orderings

on graphs in GRT . Here we make the relationship between CLBFS and maximum

neighborhood inclusion orderings (mnio) for the graphs in GRT .

Theorem 5.25. On every graph in GRT , CLBFS yields the reverse of an mnio.

Proof. Condition (1) of an mnio holds: As one easily sees, the universal

vertex a∗ is selected �rst by the CLBFS algorithm: initially, no vertex is labeled,

but the a∗ is the vertex with highest degree in the graph and no other vertex can

have the same degree, unless it is equal to a∗ or violates A3. Hence, the reverse of

any possible vertex ordering σ in a graph of a model of RT generated by CLBFS

contains a∗ as vertex with largest index and thus is a mno. Consequently, it satis�es

condition (1) of the de�nition of a mnio.

Condition (2) of an mnio holds: Assume there exists an ordering σ that is generated

by CLBFS and a pair of vertices vi, vj ∈ σ with j <σ i such that N(vj) ⊂ N [vi].
Since the graph must be twin-free, |N(vj)| < |N(vi)|. Every vertex vk with k < i

in the neighborhood of vj must also be in the neighborhood of vi. So if vj has

the lexicographic largest label at any point k of the search while k < i, then vi

has the same lexicographic label. Since vi has the greater cardinality of the two, it

will always be preferred to vj and thus i <σ j, contrary to the assumption. Hence

the assumption was wrong and for the reverse π = σ−1 of any vertex ordering of

resulting from CLBFS, j <π i holds for N(vj) ⊂ N [vi], and condition (2) of the

de�nition of an mnio is satis�ed.

With both conditions (1) and (2) always satis�ed, the reverse π = σ−1 of a CLBFS

ordering on a graph in GRT is always an mnio. �

As outlined before, CLBFS can be conducted in linear time. That means if an

CLBFS on a given graph G does not obtain the reverse of a mnio, we de�nitely

know that the graph is not a model of RT−EC . However, this process involves

checking a given order for the mnio properties. We know from section 4.3 that any

mno can be recognized at least in quadratic time, maybe even more e�cient. Hence

property (1) of a mnio can be tested with the same e�ciency. In a similar fashion
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Figure 22. Example of graph GRT (M) after selecting four ver-
tices using CLBFS

one can test for property (2) with at worst O(n2), so the overall recognition of a

mnio is at worst bounded by O(n2) and hence polynomial.

However, it is not di�cult to see that the reverse of the theorem above is not true:

there are graphs on which CLBFS yield the reverse of a mnio, but that are not

in GRT . This is mainly due to the axioms A5 to A8 that require the existence of

unique complements and interiors for vertices and unique sums for every pair of

vertices.

Example 8. Consider the graph GRT (M) from �gure 2.2. It has the following

cardinality ordering that will be used for the CLBFS: {a∗, {c,d,b}, e, f , {h, i,g}}
with the degrees (cardinalities) {8, {7, 7, 7}, 6, 5, {4, 4, 4}} in the same order. The

algorithm must start by selecting a∗ because initially not vertex has a lexicographic

label. Afterward it is free to choose amongst b, c,d. But must choose all of those

subsequently, because they are included in their appropriate neighborhoods. After

four steps we get e.g. σ = {a∗, c,b,d} and the graph as shown in 22 with the labeling

l remains. Notice that we use labels instead partitions for better illustration. At this

point e and f have the same lexicographically largest label, namely ”9876”. However,
the cardinality of e is greater than that of f , therefore e must be chosen next. In

a standard LexBFS, either vertex could have been chosen. Afterward, the vertices

f ,g, i,h must be selected in this order due to their distinct labels. Here we already

see that the second half of the vertices will always be chosen in a prede�ned order

depending on the order of the �rst half set of vertices; that motivates the complement

discussion in the next subsection. The vertex ordering σ = {a∗, c,b,d, e, f ,g, i,h}
results, which is the reverse of an mnio for the graph GRT of the model M. The

reverse σ−1 is a mno because a∗ dominates all other vertices as previously explained.

Moreover, one can easily verify that the neighborhood of no vertex subsumes the

neighborhood of any of the vertices appearing later in σ−1.
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5. Conclusion

From the proof of theorem 5.25 and the knowledge that each mnio is always an mno

just from their de�nitions, we know that the graphs in GRT are a subclass of the

dually chordal graphs. Furthermore, the mnio of such a graph has certain special

properties which can be exploited to �nd complements and the partial ordering on

neighborhoods in linear time as demonstrated in the appendix �Complements as

Dominating Pairs in Graphs in GRT �. We summarize our results in the following

theorem.

Theorem 17. Each graph in GRT has an mnio. Moreover, the class GRT is a

subclass of the dually chordal graphs.

The restrictions on the connection structures are fully embodied in the graphs

with mnio, i.e. every graph with a mnio is twin-free and therefore a connection

structure (satisfying the axioms of a Strong Mereotopology). In the reverse, not

every connection structure necessarily yields an mnio. Moreover we accounted

for the neighborhood inclusion in the graphs in GRT : every graph with an mnio

is guaranteed to have a neighborhood inclusion ordering that is a partial ordering.

However, the characterization throughmnios is not strong enough either; it does not

give a isomorphic characterization of the graphs in GRT . Dually chordal graphs are

a very general class of graphs that contains graphs that are not corresponding to any

model of RT0. The mnio of the graphs provide a more restricted characterization,

but we doubt that the graphs with an mnio are exactly the graphs in GRT . The

graphs with an mnio do not in general ensure that a sum for every pair of individuals

exists and that every individual has a unique complement and interior.

But recall the motivation for this chapter: we wanted to provide adequate means

to represent the models of the full theory RT0 in a mathematical way and found

simple undirected graphs appropriate. Nevertheless, we have not considered the

edges caused by external connection in any detail. This was mainly caused by the

lack of adequate graph classes apart from the graphs with maximum neighborhood

inclusion orderings that we de�ned ourselves. Since even these orderings are not

su�cient for an isomorphic characterization, we try a combined graph- and lattice-

theoretic approach in the next chapter. This combination of lattices and graphs

enables us to give a full characterization (up to isomorphism) of the models of

RT−EC and extend that to a characterization of the models of RT0.



CHAPTER 6

Characterization of RT−EC and RT as Graphs of

Lattices

Chapter 4 shows that a complete characterization up to isomorphism even of the

�nite models of RT−EC solely in terms of lattices is di�cult to achieve. Never-

theless, we already obtained an isomorphic characterization of the �nite models

of RT−. Together with the models of RT−EC being representable as non-modular

p-ortholattices, we aim for a construction that guarantees to �nd a non-empty

extension of EC for any of these lattices. Notice that we need to overcome an

intrinsic limitation of lattices: they can only model a partial order, not arbitrary

connections. We represent the partial order given by the proper parthood relation

PP of a model as a lattice, but there is no room for modeling additional rela-

tions in the lattice. For this reason the last chapter uses graphs in an attempt to

characterize the �nite models of RT−EC . Although we were able to extract some

interesting properties about the connection structures and the mereological struc-

tures, we failed to completely characterize the �nite models of RT−EC . Graphs are

in general not suitable to deal with mereotopological operations as interior, closure,

complement, union, etc. To overcome this problem and to pro�t from the peculiar

advantages of graphs and lattices, we combine the two approaches: characterizing

the models of RT−EC in terms of lattices that give rise to a certain class of graphs.

Again, we restrict ourselves to the �nite models of RT−EC . In particular, we can

choose the class of �nite p-ortholattices, represent them as graphs and �nd a way to

extend them to models of RT−EC . This leads us to a result of the following format:

each graph obtained from a non-semimodular, non-orthomodular, and non-uniquely

complemented �nite p-ortholattice extended by additional edges (representing ex-

ternal connection) that satis�es some graph properties is a model of RT−EC where

the vertices are individuals and the edges de�ne the extension CM. We formalize

the approach by giving a construction that describes how to obtain a model of

RT−EC from any such restricted �nite p-ortholattice. Then we can eventually say

that the �nite models of RT−EC are isomorphic to non-modular (or not uniquely

complemented) �nite p-ortholattices.

96
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Figure 23. Proof that graphs of non-modular �nite p-
ortholattices yield models of RT−EC

The isomorphism between the class of �nite models of RT−EC and the class of
non-modular �nite p-ortholattices is proved indirectly through the equivalence on
the right. The equivalence at the bottom is used as foundation for the proof of

theorem 18. The graphs in GL are not twin-free, but the graphs
GL

EC =
(
V (GL), E(GL) ∪ EEC

)
in GL

EC are twin-free and EEC is guaranteed to
be non-empty.

1. Characterization of P-ortholattices as Graphs

1.1. Notation. With GL we refer to a graph that results from a �nite p-

ortholattice L (not semimodular, orthomodular, nor uniquely complemented). It is

the graph of the overlap relation O of a model of RT−EC . The class of such graphs is

referred to as GL. In GL each graph GM is also a graph of the connection relation

C (but not necessarily a connection structure, i.e. it is not twin-free) of a model

M of RT−EC where each edge xy represents the two incident vertices x, y to be

connected, i.e. 〈x, y〉 ∈ CM, in the corresponding model of RT−.

GL
EC refers to a graph that can be constructed from a graph GL in a later de�ned

way. GL
EC is an extension of GL in the sense that it includes edges for the external

connection relation EC of a model of RT−EC . All the graphs GL
EC together constitute

the class GL
EC . The objective of this chapter is to prove that for �nite models

GRT−EC

∼= GL
EC , i.e. the class of graphs constructed from the non-modular �nite

p-ortholattices with uniquely-de�ned, non-empty sets EEC (disjoint from EGL) and

the class of all graphs representing the connection relation C for some �nite model

of RT−EC are isomorphic.

1.2. Graphs of lattices of RT−EC . Let L be a non-modular �nite p-ortholattice

over the elements Y ′ = Y ∪ ∅. We construct a graph GL from it in the following

way. Note that the empty set ∅ is discarded in the graph. The �rst rule de�nes

the vertices of GL as all elements of the lattice L except the in�mum of the lattice

(the empty set). The second step introduces edges for all overlap relations, i.e. the

cliques represented by maximal O-cliques are connected.
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Definition 6.1. Given a p-ortholattice L, de�ne the undirected graph GL =
(V,E) with y ∈ Y ⇐⇒ y ∈ V (GL) (or simpli�ed V ∼= Y ) and x, y, z ∈
Y [z ≤ x ∧ z ≤ y] ⇐⇒ xy ∈ E(GL). Notice that ∅ /∈ Y . G(L) is simple and

�nite if L is �nite.

We can give an alternative de�nition in terms of the overlap relation that de�nes

the set of edges in GL as 〈x, y〉 ∈ OM ⇐⇒ xy ∈ E(GL). Remember that two

individuals overlap if they have a nonempty meet. Then each O-clique (de�ned

in subsection 3.1 of the previous chapter) is a clique in the graph and no other

edges are added. Notice that a O-clique is only de�ned by the number of vertices it

contains and by the relation position in the lattice to the other vertices (given by the

parthood relation that is the same for all vertices in the O-clique towards outside

vertices). Therefore the sublattice associated with a O-clique is not necessarily

unique and can consist of di�erent orderings. Hence we cannot reconstruct the

lattice L from a graph GL and not every lattice constructed from a graph GL

is then in fact in the restricted subset of the complete p-ortholattices or even a

complete atomic p-ortholattice.

Lemma 6.2. For every lattice L the graph GL is uniquely de�ned.

Proof. Follows directly from the unique de�nition of V (GL) and E(GL). �

Example 9. See e.g. �gure 1.2, its lattice is not orthocomplemented but has the

same graph GL as the lattices in �gures 5.5 and 1.2. From the graphs alone, the

lattice cannot be uniquely determined. Figure 1.2 can be easily extended to a model

of RT−EC by choosing e⊥ = i, f⊥ = h, d⊥ = g, b⊥ = k, and c⊥ = j as orthocom-

plements and introducing 〈d, j〉, 〈e, i〉, 〈f ,h〉, 〈e,h〉, 〈b,g〉, 〈b,h〉, 〈b, i〉, 〈c,d〉, 〈c, e〉,
〈c, f〉, 〈b, c〉 ∈ ECM (with the symmetric ones in ECM as well).

1.3. Unique extension of any �nite GL with a set EEC . The graphs

in GL constructed from the �nite p-ortholattices are elementary equivalent (while

choosing adequate extensions of the parthood and overlap relations) to the �nite

models of RT−. But for any not uniquely complemented �nite p-ortholattice, the

corresponding graphs in GL are not twin-free and are missing at least one edge

representing an external connection in the corresponding model of RT−EC . In order

to make the graphs twin-free while remaining the partial ordering by neighborhood

inclusion as observed in lemma 5.5, the neighborhoods of any set of elements that are

in all the same maximal O-cliques need to be extended uniquely while maintaining

the proper parthood ordering, i.e. if 〈x, y〉 ∈ ECM and 〈x, z〉 ∈ PPM then 〈y, z〉 ∈
CM must hold.
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Figure 24. Example of an non-orthocomplemented lattice that
can be constructed from the graph GL of the lattice in �g. 5.5
that can never be extended to a model of RT−EC
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We then construct the set of edges EEC in GM
EC =

(
V (GM), E(GM) ∪ EEC

)
where EEC ∩ E(GM) = {}. For any such graph GM

EC to actually be the graph

of the connection relation of a model of RT−EC it must be ensured that the O-

cliques are treated appropriately. In particular, one element in each maximal

O-clique must remain open, i.e. in the extension of OPM, to serve as inte-

rior for the smallest non-open elements in the O-clique. This is only possible,

if it is not externally connected to any other element. Therefore one element

of each maximal O-clique must be no endpoint of any edge in EEC . Further-

more, we need a greatest element in each O-clique. This is the element that

subsumes all external connection relations in the O-clique. Intuitively, this el-

ement is the common �parent� part of all the elements in the O-clique. For-

malizing the existence of an interior and of a maximal element in any maximal

O-clique: for all maximal O-cliques VO, ∃v ∈ VO (∀w ∈ V (GP ) [vw /∈ EEC ]) and

∃v ∈ VO [∀w ∈ VO (xw ∈ EEC → vw ∈ EEC)]. Further, each maximal O-clique VO

must be closed under sum and intersection in the following way: ∀x, y ∈ VO∃z ∈
VO (N [x] ∪N [y] = N [z]) and ∀x, y ∈ VO∃z ∈ VO (N [x] ∩N [y] = N [z]). This corre-
sponds to the axioms A5 and A6 of RT0.

Remark 10. Here we present some properties between individuals and their com-

plements expressed both in terms of the models of RT as well as properties of

the resulting graphs. These observations lead to the de�nition of the extension of

EC in the following section.

Proposition 6.3. In a model M of RT it holds for an individual x and its

complement −x:

(1) ∀x [¬C(x,−x)]
(2) ∀x, y [C(x, y) ∨ C(−x, y)] and
(3) ∀x, z [PP (x, z)→ C(−x, z)]
(4) ∀x, z 6= a∗ [P (z, x) ≡ ¬P (z,−x)] and
∀x, z 6= a∗ [P (x, z) ≡ ¬P (−x, z)].

In the graph-theoretical expression, by (2) such pairs x,−x form dominating sets,

whereas the universal vertex is a dominating set by itself.

Proposition 6.4. Any individual x and its complement −x in a graph GRT (M)
of a modelM of RT satisfy the following conditions

(1) ∀x [−xx /∈ E(GRT )]
(2) ∀x [N [x] ∪N [−x] = V (GRT (M))] and
(3) ∀x, z [N [x] ⊂ N [z]→ z ∈ N [−x]]
(4) ∀x, z 6= a∗ [N [z] ⊆ N [x] ⇐⇒ N [z] 6⊆ N [−x]] and
∀z 6= a∗ [N [x] ⊆ N [z] ⇐⇒ N [−x] 6⊆ N [z]].
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2. De�nition of EEC Through Orthocomplements

In the following we present a result that is based on the observation that connected-

ness and disconnectedness (i.e. in graph-theoretic terms non-adjacency) is primarily

based on orthocomplementation. In fact, each element in a complete p-ortholattice

has a unique orthocomplement. It is not always uniquely identi�ed in the lattice,

e.g. in �gures 5.5, 1.2, and 1.2, the elements b,d, e, f , j have in c,g,h, i,k inter-

changeable orthocomplements because their neighborhoods in the respective graph

GL are identical. But we claim that in such cases, it does not matter which one is

the actual orthocomplement, since the relative order to all other elements is sim-

ilar. But recall that an element in a model of RT−EC cannot be connected to its

own topological complement. By identity of a topological complement in a model

M of RT0 with its orthocomplement in the corresponding lattice LM, any element

for a model of RT0 cannot be connected to its orthocomplement in the lattice LM.

Now if an element is not connected to its orthocomplement, it can obviously not

be connected to the parts of its orthocomplement (i.e. all elements the orthocom-

plement covers in the lattice by lemma 5.5). But intuitively, anything larger than

the topological complement must be connected to the element itself. We formalize

this idea in the following and prove that a set of edges EEC constructed for any

non-modular �nite p-ortholattice satisfying this condition is non-empty and gives

a graph GL
EC that is elementary equivalent to a �nite model of RT−EC .

We de�ne the set EEC as

(EQ13) EEC =
{
xy|y 6≤ x⊥

}
\ E(GL)

and hence the graph GL
EC to a graph GL of a non-modular �nite p-ortholattice LM

(of a modelM of RT−EC) as

(EQ14) GL
EC =

(
V (GL), E(GL) ∪ EEC

)
= GL ∪

{
xy|y 6≤ x⊥

}
(EQ15) GL

EC = K|V (GL)| \
{
xy|y ≤ x⊥

}
where x⊥ is the orthocomplement of an element x in the lattice LM. The charac-

terization in EQ15 describes the class of models in terms of complete graphs, but

with the additional precondition that the graph GL itself must be constructed from

a non-modular �nite p-ortholattice. Not all arbitrary complete graphs give models

of RT−EC by the last characterization.

Theorem 6.5. The set of edges EEC that extends a graph GL resulting from a

non-modular �nite p-ortholattice is always non-empty.
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Proof. Assume otherwise, i.e. EEC = {} for some graph GL. Then by the

de�nition of EEC the set of edges
{
xy|y 6≤ x⊥

}
⊆ E(GL). But then we claim that

every element in the lattice is uniquely complemented, since E(GL) ⊆
{
xy|y 6≤ x⊥

}
because no individual can be connected to its complement or parts thereof, and

each element x in the graph has then a unique neighborhood N [x] =
{
xy|y 6≤ x⊥

}
.

This is in fact a model of RT− that arises from a uniquely complemented �nite

p-ortholattice and hence does not satisfy the property of being in the class of the

non-modular �nite p-ortholattices. �

Theorem 18. Each non-modular �nite p-ortholattice L resulting in a graph GL

gives in GL
EC = GL ∪

{
xy|y 6≤ x⊥

}
the graph of the connection relation CM of

some �nite modelM of RT−EC .

Corollary 6.6. Each �nite p-ortholattice extendable by a non-empty set EEC ={
xy|y 6≤ x⊥

}
\ E(GL) is a model of RT−EC .

Both formulations can be used synonymously. The next lemmas prove that every

such constructed graph GL
EC satis�es all axioms of RT−EC and therefore is a model

thereof. Assume for all the lemmas that GL is the graph of a non-modular �nite

(complete atomic) p-ortholattice L where non-modular means non-semimodular,

non-orthomodular, and not uniquely complemented. We know from the previous

chapters that for any �nite p-ortholattice the graph GL is a model of RT−. Surpris-

ingly, all the graphs of non-modular lattices yield non-empty edge sets EEC and thus

models of RT−EC and all graphs of uniquely complemented �nite (modular) lattices

give models of RT− but not of RT−EC . Remember the proof of theorem 14 show-

ing the isomorphism between the �nite models of RT− and �nite p-ortholattices

relies on the implicit assumption of a prede�ned set EEC that ensures for each

such lattice that is non-modular a resulting twin-free graphs GL
EC or, equivalently,

a model satisfying A3. From this observation it also becomes clear that axiom A3

is not explicitly represented in the de�nition of a structure RTT because the proof

of theorem 14 works without worrying about the uniqueness of the extension of C

for every element in the domain.

Lemma 6.7. Every �nite graph GL
EC = GL ∪

{
xy|y 6≤ x⊥

}
is twin-free and hence

satis�es the axioms A1 to A3.

Proof. Assume there exist two elements x, y ∈ V (GL
EC) such that N [x] =

N [y]. Since xx⊥ /∈ E and thus x⊥ /∈ N [x] it follows that x⊥ /∈ N [y]. The same for
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y⊥, i.e. y⊥ /∈ N [x]. Then by the de�nition of GL
EC , both y⊥ ≤ x⊥ and x⊥ ≤ y⊥

must hold. This is an obvious contradiction. Hence our assumption that two

elements x, y in the graph GL
EC with N [x] = N [y] can exists is falsi�ed. �

Lemma 6.8. Every graph GL
EC = GL ∪

{
xy|y 6≤ x⊥

}
satis�es axiom A4.

Proof. By de�nition of a p-ortholattice: ⊥= >⊥ = (a∗)⊥. Any element

d < a∗ has an orthocomplement in the graph that it is not connected to and

therefore is not universally connected in GL
EC . �

For some of the proofs it is essential to know that every non-modular �nite p-

ortholattice L can be extended to a graph GL
EC by a non-empty set EEC , while the

extension OM of the model M associated to the graph GL
EC is given already by

the lattice L. In other words, the extension of the overlap relation of the resulting

model of RT−EC is not altered when adding the edges EEC to the graph GL. Since

overlap is uniquely de�ned by D3 through the extension of parthood PM, it is

su�cient to prove that the parthood extension remains unchanged when adding

EEC to the graph.

Moreover, we use a fundamental observation which can be proved from the interac-

tion of orthocomplementation with pseudocomplementation directly from proposi-

tion 6.3(4).

(EQ16) ∀x, y
[
〈x, y〉 ∈ OM ∨ 〈−x, y〉 ∈ OM]

Lemma 6.9. The extension PM of the parthood relation inM is given by the lattice

L, i.e. x ≤ y ⇐⇒ 〈x, y〉 ∈ PM.

Proof. Assume x ≤ y for some pair x, y. That means N [x] ⊆ N [y]. Now

whenever a third element z is connected to x, it will also be connected to y, since

by order-reversing law, y⊥ ≤ x⊥ holds and if z 6≤ x⊥ then z 6≤ y⊥. So N [x] ⊆ N [y]
is preserved by adding EEC to the graph and thus 〈x, y〉 ∈ PM. On the reverse,

if 〈x, y〉 ∈ PM in a model of RT−EC , then N [x] ⊆ N [y] in the graph GL
EC . If now

N [x] ⊆ N [y] do not hold in the graph GL of the lattice L, then x 6≤ y. However,

then also y⊥ 6≤ x⊥. That means some z can be connected to x without being

connected to y for the extension EEC . In particular, either y⊥ > x⊥ or y⊥, x⊥

are incomparable. In the �rst case z ∈ N [x] but z /∈ N [y]. In the second case,

y⊥ ∈ N [x] but obviously y⊥ /∈ N [y]. �

Lemma 6.10. Every graph GL
EC = GL ∪

{
xy|y 6≤ x⊥

}
satis�es axiom A5.

Proof. Let z ∈ V (GL) be the sum of some pair of elements x, y ∈ V (GL) with
z = x ∪∗ y ≥ x, y. We prove each direction of the equivalence in A5 individually.
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(a) ∃v [(C(v, x) ∨ C(v, y))→ C(v, z)]
Since z ≥ x, either z = x with zv ∈ E ⇐⇒ xv ∈ E, or z > x and by lemma 5.5 it

follows xv ∈ E ⇒ zv ∈ E. The same holds for y. Hence in any case, whatever x, y

are connected to, it is ensured that z is connected to it as well.

(b) ∃v [(C(v, x) ∨ C(v, y))← C(v, z)]
Assume the contrary, i.e. there exists an element v s.t. zv ∈ E but xv, yv /∈ E. If

v is comparable to z it is not necessarily comparable to x and/or y. However, this

can only occur if v < z and v is disjoint with both x and y. If there is a common

proper part u, i.e. u < v, x or u, v, y then v and x or y are in a common O-clique

and by de�nition connected. If no such u exists, there are three or more atoms in

this subbranch of the lattice. Then the lattice is not pseudocomplemented, since

any other dual-atom would not have a unique join-pseudocomplement. In all other

cases if v is comparable to z, it is comparable to at least one of x or y.

If v is not comparable to z, then we consider two subcases again: v ≤ z⊥, in this

case v cannot be connected to z by de�nition. If v > z⊥, it is either comparable

to one of x⊥ or y⊥ or incomparable to either one. If v is incomparable to both,

there must exist three distinct dual-atoms in this subbranch of the lattice and the

lattice would not be meet-pseudocomplemented. If v is comparable to only one of

them, i.e. w.l.g. to x then yv ∈ E since v 6≤ y⊥. If v is comparable to x and y and

smaller then them, i.e. v < x⊥, y⊥ then it v = x ∩∗ y and thus v⊥ = x ∪∗ y by the

order-reversing law. Hence z is not the sum of x and y. If v > x⊥, y⊥ (note that if

x and y are comparable with each other, they are ordered and z is not the sum of

x and y) then v > z⊥ and xv, yv, zv /∈ E would follow contrary to our assumption

that zv ∈ E. �

Lemma 6.11. Every graph GL
EC = GL ∪

{
xy|y 6≤ x⊥

}
satis�es axiom A6.

Proof. Recall that by lemma 6.9, the parthood relation is prede�ned by the

lattice. So is the overlap relation, which is entirely dependent on the parthood

extension. Therefore we only have to prove that if the previously unique intersection

z = x ∩∗ y given by the lattice L with z < x, y has an additional element in its

neighborhood, both x and y have it as well. This is straightforward: assume v

with zv ∈ E, then v 6≤ z⊥. Since z⊥ ≥ x⊥, y⊥ it follows that v > x⊥, y⊥ or v is

incomparable to x⊥, y⊥. The latter case also implies v 6≤ x⊥ and v 6≤ x⊥. Such in

any case, vx, vy ∈ E. �

Lemma 6.12. Every graph GL
EC = GL ∪

{
xy|y 6≤ x⊥

}
satis�es axiom A7.

Proof. This follows naturally from the use of the orthocomplement as topo-

logical complement. The complement x⊥ is supposed to be connected to everything
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that x is not connected to by A7. All the elements y with y ≤ x⊥, x⊥ is already

connected to (by parthood). Since everything else x is connected to in GL
EC , axiom

A7 is then immediately satis�ed. �

Lemma 6.13. Every graph GL
EC = GL ∪

{
xy|y 6≤ x⊥

}
satis�es axiom A8.

Proof. Since the underlying lattices are atomic, each element x has a smaller

element y s.t. y ≤ x that is an atom, i.e. y �⊥. This element y is not connected to

any other element beyond its overlap relation by de�nition: its orthocomplement

y⊥ is a dual-atom (by orthocomplementation) and ∀z
[
z 6> y → y⊥ ≥ z

]
and yz /∈ E

follows (and
{
yz|z > y⊥

}
= ∅). Otherwise the lattice would not be pseudocomple-

mented. Thus y is the element that satis�es both directions of the implication in

axiom A8. Notice that in particular no element can be externally connected to y

and thus 〈y, y〉 ∈ NTPM and further 〈x, y〉 ∈ CM since y ≤ x in the lattice. �

Lemma 6.14. Every graph GL
EC = GL ∪

{
xy|y 6≤ x⊥

}
satis�es axiom A9.

Proof. Trivially satis�ed. �

Lemma 6.15. Every graph GL
EC = GL ∪

{
xy|y 6≤ x⊥

}
satis�es axiom A10.

Proof. By de�nition an element x is in the extension OPM of some modelM
(which can be associated to the graph GL

EC) if and only if
{
xv|v 6≤ x⊥

}
= {}. The

same applies for y. Therefore ¬∃v
[
v ≤ x⊥, y⊥|xv ∈ EEC or yv ∈ EEC

]
follows.

Taking z = x ∩∗ y ≤ x, y then {〈z, v〉 ∈ EEC} ⊆ {〈x, v〉 ∈ EEC} , {〈y, v〉 ∈ EEC}.
Because the latter two sets are empty, so is {〈z, v〉 ∈ EEC}. Hence z is with-

out any external connections. Then because zz⊥ /∈ E and and z⊥ ≥ x⊥, y⊥,

¬∃v
[
v ≤ z⊥|zv ∈ E

]
follows immediately and z is in the extension of OPM as

well. If z = x (or z = y) then y < x (or x < y) then z is trivially in OPM. If

there exists another element u s.t. w.l.g. z⊥ > u > x⊥ then u⊥ < x and therefore{
uv|v 6≤ u⊥

}
= ∅. But then with x and u being comparable, they would have the

same closed neighborhood and violate twin-freeness. �

Lemma 6.16. Every graph GL
EC = GL ∪

{
xy|y 6≤ x⊥

}
satis�es axiom A11.

Proof. Remember that the lattices are not uniquely complemented, i.e. there

exists some element x in the lattice so that y and z are complements of it. Since the

lattice is pseudocomplemented, all the potential complements must be comparable

to each other, i.e. y to z. That means y and z have initially the same closed

neighborhood. But then, either (1) y > z and thus z⊥ > y⊥ and yz⊥ ∈ E but yz⊥ /∈
E. Then yz⊥ ∈ EEC because otherwise, if yz⊥ ∈ E(GL), then the assumption of

same neighborhoods of y, z in GL would force zz⊥ ∈ E which is a contradiction to
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topological complementedness. Alternatively, (2) y and z are incomparable, then

y⊥and z⊥are also incomparable and yz⊥, zy⊥ ∈ E, but yy⊥, zz⊥ /∈ E by de�nition.

Then yz⊥, zy⊥ ∈ EEC must hold to not violate the assumption of same closed

neighborhoods N [y] = N [z] in GL. �

Lemma 6.17. Every graph GL
EC = GL ∪

{
xy|y 6≤ x⊥

}
satis�es axiom A13.

Proof. The axiom A13 states that for each element x in a model of RT−EC ,

there exists an open element y (not to be confused with y in the de�nition of GL
EC) so

that y ≥ x in the lattice (equivalent to P (x, y) in the model) and ∀z [z ≥ x→ y ≥ z].
On the reverse, the axiom is violated if and only if there exist two (or more) elements

y and z that are both in the extension OPM, i.e. y, z ≥ x and y, z are incomparable.

Note that if 〈x〉 ∈ OPM, then the axiom A13 is trivially satis�ed. The only case

where the axiom can be violated is in an O-clique containing all of x, y, and z

(compare subsection 3.1 of chapter 5). Then, by de�nition 6.1 it follows for the

neighborhoods N [y] = N [z]. However, this contradicts the lemma proving that the

resulting graph is twin-free. In particular y and z would form a module. Hence,

axiom A13 must be satis�ed in every graph GL
EC . �

Altogether compliance with all axioms of RT−EC is proved and theorem 18 follows

immediately. Now we have a way to construct all �nite models of RT−EC from the

not-uniquely complemented �nite p-ortholattices. Moreover, this equivalence shows

that the property of a complete atomic p-ortholattice being not uniquely comple-

mented, being not semimodular, and being non-orthomodular are all equivalent,

because all ensure that the set EEC becomes non-empty and thus gives a valid

model of RT−EC . This is a specialized case of the result from [McL56] that every

atomic uniquely complemented lattice is modular. For the isomorphism we there-

fore choose to characterize the lattices as not uniquely complemented (or short: not

unicomplemented).

Theorem 19. Any graph GL
EC in the class of graphs GL

EC containing all graphs

GL
EC = GL∪

{
xy|y 6≤ x⊥

}
, where each GL is a graph representation of a �nite non-

unicomplemented p-ortholattices L, is elementary equivalent to a graph in GRT−EC

that represents the connection relation CM of some �nite modelM of RT−EC .
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3. Incorporation of Weak Contact Through Products of Lattices

Having characterized the �nite models of RT−EC up to isomorphism in terms of

graphs of lattices, a single step is left to complete the characterization of the �nite

models of the full axiom system RT0 of Asher and Vieu. This requires the inclu-

sion of the concept weak contact WCont into our analysis. In particular, we are

interested in how weak contact a�ects the models. All the examples given so far

of size up to 11 elements in the domain do not allow any weak contacts. In other

words, all the small models considered so far are �too trivial� for being considered

a true mereotopological model by Asher and Vieu.

3.1. Basic properties on Weak Contact. Recall the de�nition and expla-

nation of weak contact from chapter 2, section 2. Two elements x and y are in weak

contact (connection) if their closures are not connected but any open neighborhood

greater than (subsuming, i.e. strictly greater) one of x and y is always connected

to both x and y.

(A12) WCont(x, y) ≡def ¬C(c(x), c(y))∧ ∀z [(OP (z) ∧ P (x, z))→ C(c(z), y)]

Notice that if an element x is clopen, then it cannot be in weak contact because

cl(x) = x and 〈cl(x), cl(y)〉 /∈ CM then translates to 〈x, cl(y)〉 /∈ CM but since x

is always open and trivially contains itself, 〈x, cl(y)〉 ∈ CM is supposed to hold

as well. By similar reasoning we collected the following simple theorems for weak

contact.

Lemma 6.18. The theory RT0 entails the following theorems

(W1) ∀x, y [WCont(x, y)→ ¬C(cx, cy)]
(W2) ∀x, y [WCont(x, y)→ ¬C(x, y)]
(W3) ∀x, y [WCont(x, y)→ ¬P (x, y) ∧ ¬P (y, x)]
(W4) ∀x, y [WCont(x, y)→ ¬EC(x, y)]
(W5) ∀x, y [WCont(x, y)→ ¬O(x, y)]
(W6) ∀x, y [WCont(x, y)→ ¬OP (x) ∧ ¬OP (y)]
(W7) ∀x, y [WCont(x, y)→ ∃u, v (EC(x, u) ∧ EC(y, v))]
(W8) ∀x, y [WCont(x, y)→ ∃u, v (ix = u ∧ iy = v)]

W1 follows directly from the de�nition of WCont; for W2 we have given an informal

argument. One can derive W3, W4, W5, W6 fromW2 by applying the subsumption

relations proved for the JEPD lattice. Theorems W7, W8 are direct implications

of W6 considering that any open individual has no external connection and any

individual that has some open element as interior must distinguish itself from it

through some external connection.
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(W9) ∀x, y [WCont(x, y) ≡ ¬C(cx, cy) ∧ C(x, c(ny))] [AV95]

This is fact 3 of [AV95]. Negating it, rewrites it as W9'.

(W9') ∀x, y [¬WCont(x, y) ≡ (C(x, c(ny))→ C(cx, cy))]
∀x, y [¬WCont(x, y) ≡ (¬C(x, c(ny)) ∨ C(cx, cy))]

Observe that always x ≤ cx and y ≤ cy ≤ ny ≤ c(ny) must hold. The latter

one follows because cy is not open, hence it is externally connected and everything

greater than it (up to its closure) is externally connected as well. Moreover, the

open neighborhood must be strictly greater (unless it is the universal element, i.e.

cy = ny = a∗). Its closure is greater or equal than n(cy) again.

∀x, y [WCont(x, y)→WCont(cx, y)] holds then in any model of RT0, which is eas-

ily veri�able from cx ≥ x substituted intoW9. Then immediately with C(x, c(ny))→
C(cx, c(ny)), W10 follows as a theorem.

(W10) ∀x, y [WCont(x, y)→WCont(cx, y)]

Consequently, in order to satisfy axiom A12, we only have to consider the case where

〈x〉, 〈y〉 ∈ CLM with 〈x, y〉 ∈ WContM, since WCont a is symmetric relation and

any other weak contact for elements x, y with x < cx and y < cy implies then

〈cx, cy〉 ∈ WContM directly. Substituting this knowledge into W9, we deduce

W11 and we alter axiom A12 to A12'.

(W11) ∀x, y [WCont(cx, cy) ≡ ¬C(cx, cy) ∧ C(cx, c(n(cy))) ∧ C(cy, c(n(cx)))]
(A12') ∃x, y [WCont(cx, cy)]

Moreover, RT entails ∀x, y [PP (−x, y)→ C(x, y)] and as a special case thereof

(both condition and consequence are generalized): ∀x, y [P (−x, y)→ C(cx, cy)].
For a weak contact to exist between x and y, both cannot be open, therefore

−x,−y cannot be closed and for every y ≥ −x it holds 〈x, y〉 ∈ CM. Assume now

y = −x then because neither x nor y can be open, neither can be closed as well

(the complement of a closed element must be open). It would follow that cx > x or

cy > y and then 〈cx, cy〉 ∈ CM with the consequence that 〈x, y〉 /∈ WCont. Hence

equality cannot hold and we conclude y > −x and x > −y if there exists a weak

contact between x and y.

(W12) ∀x, y [WCont(x, y)→ PP (y,−x) ∧ PP (x,−y)]

Finally we can express a relationship resulting from weak contact between the

neighborhood ny and the orthocomplement x⊥ (equivalent to the complement −x

in RT0). This gives a unique biggest element y that contains all elements in weak

contact to x. This y is the greatest element fully contained in the orthocomplement

of x (remember that the neighborhood ny is uniquely de�ned as shown in [AV95]).
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Figure 26. Failed attempt of an p-ortholattice satisfying all ax-
ioms of RT

(W13) ∀x, y [WCont(x, z)→ ∃y (P (z, y) ∧WCont(x, y) ∧ −x = ny)]

W13, W11, and A12' give as a very restricted view on the existence of weak contact;

it allows us to only care about this greatest element y that is in weak contact to

x (and vice versa) and has the special property −x = ny (and −y = nx). This

translates back to orthocomplements as x⊥ = ny and y⊥ = nx and is closed.

We conclude that if a weak contact exists at all, it must exist between two meet-

pseudocomplements x and y, where one of them, e.g. y, is smaller (in the lattice)

than the (ortho)complement of x. In fact, there must exist a maximal closed part

y of x⊥ for any weak contact to exist.

Example 10. A model of the full theory RT0 needs to have the smallest model of

RT−EC as submodel (compare �gure 5.4(a)) and an additional element connected to

one of the elements by weak contact. In order to satisfy the above conditions, we

need an element f that is not open, thus has a speci�ed distinct interior if = int(f).
To maintain orthocomplementedness, we need the di�erence between f and if to

be explicitly modeled as another element, we call it bf = f − if (the border of

f). This gives us as minimum model a p-ortholattice with 4 atoms as shown in

�gure 3.1. Here a complete list of the orthocomplements in the lattice: d⊥ = c ∪ f ,

e⊥ = b ∪ f , f⊥i = b ∪ c ∪ fb, f⊥b = b ∪ c ∪ fc, b⊥ = e ∪ f , c⊥ = d ∪ f , f⊥ = b ∪ c,

(d ∪ fi)
⊥ = c ∪ fb, (e ∪ fi)

⊥ = b ∪ fb, (d ∪ fb)⊥ = c ∪ fi, (e ∪ fb)⊥ = b ∪ fi.



3. INCORPORATION OF WEAK CONTACT THROUGH PRODUCTS OF LATTICES 110

In this example, 〈b, c〉, 〈b ∪ fi, c ∪ fb〉, 〈b ∪ fb, c ∪ fi〉 ∈ ECM (and the symmetric

equivalents are also in ECM). We want the extension of weak contact WContM to

include the pairs 〈b, f〉, 〈b, fb〉, 〈c, f〉, 〈c, fb〉 and their symmetric equivalents. Note

that this model arises if for instance we want only b and f to be in weak contact

in a two-dimensional spatial model. Unproblematic is that then 〈b, fb〉 ∈WContM

follows. However, one could not conclude that c and f are in weak contact as

well. The problem with this model is that b ∪ c has no unique interior than itself.

That would mean again that it is open and by de�nition D11 it would follow that

〈f ,b ∪ c〉 ∈ CM if 〈f ,b〉 ∈ WContM or 〈f , c〉 ∈ WContM. Hence we need to

de�ne a interior of b ∪ c that is distinct from b ∪ c. Intuitively it would be d ∪ e.

This interior will need a complement, call it f ′, that is greater than f (by order-

reversing law). Moreover, for f ′ to not be the closure of f , we need an element that

is their di�erence f ′ − f . This is intuitively the border bcb of c ∪ b. The border

bcb must be further split into two separate atoms: bb and cb.

This example demonstrates that just extending the lattices of models of RT−EC by

additional elements to construct a model of RT is not a very successful strategy.

It is more or less left to chance whether extending a given model of RT−EC leads

to a model of RT0 by adding some additional elements. In the next subsection, we

approach the construction of models of RT0 more systematically by using products

of lattices.

3.2. Characterization of the �nite models satisfying A12. The previous

example demonstrates that constructing models with weak contact successively

by adding more atoms leads to an exponential growth in the overall number of

elements (with respect to the number of atoms) since sums of every pair of elements

must exist. A similar phenomenon appears in lattice products: consider two small

models of RT−EC represented as lattices L1,L2 that we join by a direct product

L1 × L2 = L1,2 where 〈x1, x2〉 ∈ L1,2 for all combinations of x1 ∈ L1 and x2 ∈ L2.

We show here what conditions must be satis�ed to ensure that a weak contact

is build instead of joining two separate, disconnected spaces just by sums. That

results in the following conjecture that we approach step-by-step.

Conjecture 5. The �nite models of RT0 are direct (Cartesian) products of �nite

p-ortholattices.

Indeed, we only obtain a weaker result that direct products of �nite p-ortholattices

gives (again �nite) models of RT only under certain restrictions and by applying

slight changes to the original lattices. We will discuss these in more detail in the

following. However, we cannot prove the forward direction of the conjecture (every
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�nite mode of RT is a product of �nite p-ortholattices), even when maintaining the

restrictions. However, a more general result is suggested.

First of all, it is necessary to show that the product of two p-ortholattices is

a p-ortholattice again. This is a rather obvious theorem when looking at two

�nite (complete) bounded lattices L1,L2: in each of them the intersection and

sum of any pair of elements is de�ned as the greatest lower bound and the low-

est upper bound. Moreover do both lattices have a unique in�mum and supre-

mum de�ned. Orthocomplementedness follows directly for the product lattice

L1,2 = L1×L2 since x1 ∈ L1 and x2 ∈ L2 result in an element (x1, x2) ∈ L1,2 which

has the unique orthocomplement (x⊥1 , x⊥2 ) ∈ L. Any meet-pseudocomplement

and any join-pseudocomplement is uniquely de�ned in the product lattice L1,2:

if mpc(x1) is the meet-pseudocomplement of x1 in L1 and mpc(x2) is the meet-

pseudocomplement of x2 in L2, then (mpc(x1),mpc(x2)) ∈ L1,2 is the uniquely

de�ned meet-pseudocomplement of (x1, x2) ∈ L1,2. Note that it is comparable to

any complement y1 of x1 where y1 < mpc(x1): (y1,mpc(x2)) < (mpc(x1),mpc(x2)).
Then same applies for the join-pseudocomplements.

Theorem 20. The direct product L1,2 = L1 × L2 of two �nite p-ortholattices L1,

L2 is a �nite p-ortholattice itself.

Proof. The ortholattices form a variety that is closed under product taking.

Hence, the product of two ortholattices is again orthocomplemented. The meet-

pseudocomplemented semi-lattices and their dual, the join-pseudocomplemented

semi-lattices each form a variety. Hence the product of two p-ortholattices is again

meet- and join-pseudocomplemented and thus a double p-lattice. �

We already know that the �nite p-ortholattices are isomorphic to the �nite models

of RT−, but it is not guaranteed that there exists an external connection in the

product. Although the uniquely complemented lattices do not form a variety, the

�nite ones are closed under product taking. Hence if L1 and L2 do not entail an

external connection, then so does L1 × L2 from the following lemma.

Lemma 6.19. The direct product L1,2 = L1×L2 of two �nite uniquely complemented

p-ortholattices L1,L2 is a �nite uniquely complemented lattice.

Proof. Consider elements x, x′ ∈ L1 and y, y′ ∈ L2 where x′, y′ are the unique

complements of x and y in L1 and L2. Then (x′, y′) is the unique complement of

(x, y) in ∈ L1,2. �
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This further restricts the class of models to direct products of p-ortholattices, where

at least one of the lattices, call it L1, is in the not uniquely complemented class

of complete atomic p-ortholattices, i.e. L1 is a model of RT−EC . Notice that two

lattices with their direct (Cartesian) product taken do not automatically create a

weak contact, i.e. simply applying the Cartesian product assumes the space (or

whatever model) represented by L1 being totally separate from the elements in L2

and vice versa. This occurs exactly when the suprema of the two lattices L1 and L2

are clopen and hence cannot be in weak contact according to the earlier discussion.

To create a weak contact between them, the suprema >1 and >2 of L1 and L2 must

be closed but not open. Openness for >1 and >2 is guaranteed if they have unique

interiors int(>1) 6= >1 and int(>2) 6= >2 in L1 and L2, respectively. Generalized

to arbitrary elements x1 ∈ L1 and x2 ∈ L2, i.e. 〈(x1,⊥2), (⊥1, x2)〉 ∈ WContM,

int(x1) 6= x1 and int(x2) 6= x2 must hold. Moreover, all parents of x1 and x2 in

L1 and L2, e.g. y1 > x1, cannot be open (trivially true for x1 =⊥1 and x2 =⊥2),

since the union with the empty set, i.e. (y1,⊥2), is still a parent of x1, but not

connected to x2. Otherwise in this example (x1,⊥2) would be a part of (y1,⊥2), and
thus (y1,⊥2) would be an (open) neighborhood of (x1,⊥2) that is not connected

to (⊥1, x2). Therefore both L1 and L2 must be extended by additional elements to

lattices L′1 and L′2 that satisfy these conditions.

To achieve that we extend both lattices by explicit closures of their suprema, i.e.

cl(>1) to L1 and cl(>2) to L2. The resulting lattices L′1 and L′2 are still pseu-

docomplemented, but not orthocomplemented anymore. However, we claim that

the product L1,2 = L′1 × L′2 extended by another element x is orthocomplemented

again. To show that we need to de�ne the orthocomplement of each element in

L1,2. To distinguish in L1,2 the neighborhood of ((cl(>1), e2) from ((>1, e2), and
((e1, cl(>2)) from ((e1,>2), we introduce an element x modeling the di�erence

between a∗ = ((cl(>1), cl(>2)) and ((>1,>2). x is an atom and the orthocom-

plement of ((>1,>2) in L1,2. The union of x with any other element (e1, e2),
with e1 6= cl(>1) ∈ L1 and e2 6= cl(>2) ∈ L2, needs to be added to L1,2 as

well. With all these elements we call the lattice L′1,2. Then it is ensured that

each such union x ∨ (e1, e2) also has an orthocomplement in (−e1,−e2). Hence

the resulting lattice is orthocomplemented again. Each element (cl(>1), e2) with

e2 6= cl(>2) ∈ L2 has in (∅, e2) an orthocomplement and so does each element

(e1, cl(>2)) with e1 6= cl(>1) ∈ L1 has in (e1, ∅) an orthocomplement. The proof

that the resulting lattice L′1,2 is pseudocomplemented is lengthy, but not di�cult:

show that in the set of all unions of x has only pseudocomplements outside the set

and vice versa. In the lattice L′1,2 the elements (cl(>1), ∅) and (∅, cl(>2)) are then
in weak contact and we have in L′1,2 a lattice representation of a model of RT .
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In the following we demonstrate how to construct in this way the smallest model

of the full theory RT .

Example 11. Let L1 be the lattice of the �ve elements b, c,d, ic, id as shown in

�gure 3.2(a). Previously, we demonstrated that this is the smallest model of RT−EC .

Let L2 be a three-element p-ortholattice e, ie, ce of an element with its interior,

its complement, and the empty set, see �gure 3.2(b). A possible interpretation is

as following: L1 is a model of two elements c,d that are externally connected and

have their distinct interiors ic, id. L2 is a simple region e with a speci�ed interior

ie and its complement ce where the two cannot be broken down any further (the

top element is the region itself, the bottom element the empty set). Note that only

two non-open elements can be in weak contact. Therefore the only feasible elements

for creating a weak contact are b and e which must have a distinct interior. L2 is

already the minimal model of RT− without external connection whereas L1 is the

minimal model of RT−EC with external connection.

Now extend L1 and L2 to non-ortholattices L′1 and L′2 by adding cl(b) and cl(e).
The resulting lattices are depicted in �gure 3.2. Most importantly, the elements

cl(b) and cl(e) are not open. The product L1,2 = L′1×L′2 then needs to be extended

by an element bediff = a∗ − (b, e) and all unions thereof. We get L′1,2 as a model

of RT with

Y = {(y, x)|y ∈ L′1, x ∈ L′2} ∪ {bediff} ∪ {bediff ∨ (y, x)|y ∈ L′1, x ∈ L′2}

as (�nite) set of elements and the partial order satisfying the following axioms:

∀x, z ∈ L′1∀y ∈ L′2
[
〈x, z〉 ∈ PL′1 → 〈(x, y) , (z, y)〉 ∈ PL′1,2

]
and

∀x, z ∈ L′2∀y ∈ L′1
[
〈x, z〉 ∈ PL′2 → 〈(y, x) , (y, z)〉 ∈ PL′1,2

]
and

∀x ∈ L′2
[
〈bediff , (cl(b), x)〉 ∈ PL′1,2

]
and

∀x ∈ L′1
[
〈bediff , (x, cl(e))〉 ∈ PL′1,2

]
and

∀ (x, y) ∈ L′1,2

[
〈bediff ,bediff ∨ (x, y)〉 ∈ PL′1,2

]
and

∀ (x, y) ∈ L′1,2

[
〈(x, y) ,bediff ∨ (x, y)〉 ∈ PL′1,2

]
and

∀ (x, y) , (z, y) ∈ L′1,2

[
〈x, z〉 ∈ PL′1 → 〈bediff ∨ (x, y) ,bediff ∨ (z, y)〉 ∈ PL′1,2

]
and

∀ (x, y) , (x, z) ∈ L′1,2

[
〈y, z〉 ∈ PL′2 → 〈bediff ∨ (x, y) ,bediff ∨ (x, z)〉 ∈ PL′1,2

]
Because L1 and L2 are the smallest models of RT−EC and RT−, respectively, L′1,2

is in fact the smallest model of RT . It contains 5 · 7− 1 + 1 + 4 · 6 = 59 elements

(the product L1,2 contains 5 ·7−1 elements, bediff counts as one, and the products

of bediff with any element in L1,2 that does neither contain cl(b) nor cl(e) add 4 ·6
elements).
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Figure 27. Models of RT− and RT−EC as lattices for the exem-
plary construction of a model of RT
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Figure 28. Extended lattices of models of RT− and RT−EC with
explicit closures of the suprema

Thus products of two �nite p-ortholattices with one of them being not uniquely

complemented are models of RT .

Theorem 21. The product L1,2 = L′1 × L′2 of two arbitrary �nite p-ortholattices

L1 and L2, extended by explicit closures of their suprema to L′1 and L′2, is a �nite

model of RT if at least one of the models represented by L1 and L2 contains an

external connection.



3. INCORPORATION OF WEAK CONTACT THROUGH PRODUCTS OF LATTICES 115

Figure 29. Multiple product lattice L1,2,3 = (L′1 × L′2)× L′3
In this example, the product (L′1 × L′2) creates a weak contact, but on the top
level the product of (L′1 × L′2) with L′3 (assume that L3 contains some external
connection) does not need to con�rm to the described conditions. Simply the

product without any further extension can be taken.

The reverse cannot be stated for the following reason: We can have models with

several nested sets of products, but not on the top level of the products of L′1 and

L′2. But on some level we need a product that results in a weak contact, but we do

not necessarily need to have an external connection in the participating submodels.

The external connection can be added on a later (or earlier level), see for example

�gure 29.

To capture these more complicated structures, we propose the following conjecture:

Conjecture 6. Every �nite model of RT can be constructed recursively: take

�nitely many products of �nite p-ortholattices (either with or without extending

their suprema by separate closures). At least for one of the products one of the

multiplicand must be a not uniquely complemented p-ortholattice, and at least one

product is taken of two lattices that are extended by additional closures of their

suprema.

Since the result of �nitely many products is again a p-ortholattice, the �nite models

of RT are then a proper subset of the �nite p-ortholattices. Since moreover, the

proves for pseudocomplementedness and orthocomplementedness do not rely on

�niteness of the models, all models of RT are in the class of p-ortholattices.



CHAPTER 7

Conclusion

Let us recapitulate the line of argument throughout the thesis. We have tried three

strategies for characterizing the models of increasingly larger subsets of RT . The

�rst approach, using topological spaces, was only partly successful. We exhibited

parallels to the characterizations of Clarke's Calculus of Individuals as well as of

the RCC, but the characterization was far too imprecise and standard tools of

topology like the separation axioms failed altogether. Only semi-regularity, which

seems to correspond to the condition of smooth boundaries can be proved for the

in�nite models of RT . Even when considering only the in�nite models, local con-

nectedness fails to capture the second critical part of regularity, the property of full

interiors. Most problematic is the characterization's inability to adequately capture

�nite models by their embedding topological spaces: the spaces reduce to discrete

topologies. But we should be reminded that the models are originally de�ned using

topological spaces, but without any restrictions upon the spaces. Further research

questions arise here if we consider mereotopological models constructed using more

restricted topological spaces such as Hausdor� or even regular spaces. Overall, the

results were less than satisfactory.

In the next chapter, we used methods and de�nitions from universal algebra by

interpreting the models of RT− as lattices. The similarity between posets that

underlie lattices and mereological concepts like parthood and overlap is striking. It

turned out that characteristic properties of the models of RT− can be captured by

orthocomplementation and pseudocomplementation which together give an isomor-

phic description of the models of RT− as p-ortholattices. However, there was no

room for the distinctive mereotopological concepts of external connection and weak

contact as required for representing models of RT−EC and RT . These concepts were

introduced with existential axioms by [AV95] but the lattices alone could not ac-

count for them. Existence of external connection prohibits uniquely complemented

lattices and equally any kind of modularity for models of RT−EC . The lattices of any

model of RT are thus strictly not uniquely complemented which delimits the models

from the Calculus of Individuals and from the RCC. The former were characterized

as Boolean lattices which are equivalent to the uniquely complemented distributive

pseudocomplemented lattices (distributive pseudocomplemented is not enough, this

116
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Figure 30. Asher and Vieu's mereotopology, Clarke's Calculus of
Individuals, and the RCC as subclasses of complete lattices

All models are complete lattices because the sum of any pair of elements in
required. The models of RCC are the atomless distributive pseudocomplemented

lattices, the models of the Calculus of Individuals are the distributive
orthocomplemented lattices, and the models of RT−EC are the atomic

not-unicomplemented, pseudocomplemented orthocomplemented lattices.

class contains Heyting and Stone lattices as well) and models of RCC were char-

acterized as inexhaustible distributive pseudocomplemented lattices, where inex-

haustible corresponds to our understanding of atomless, see �gure 30. Both sets of

models can be represented as distributive, uniquely complemented lattices. This is

partly caused in Clarke's system by the error in the de�nition of external connection

that maps it to overlap and in RCC by the lack of any distinction between open

and closed elements as separate individuals of the models. This greatly simpli�es

the models of RCC sacri�ces a higher expressiveness o�ered by the system of RT .

Empirical approaches will be necessary to evaluate in which cases this is acceptable

and which applications or domains require the higher expressiveness of Asher and

Vieu's theory.

In order to completely characterize the full models of RT (including the extensions

of external connection and weak contact), we tried a third approach by representing

models as undirected graphs. This is perhaps the most natural way to examine the

models build from a single dyadic primitive C. Since all other extensions depend

solely on the extension of C, such a graph uniquely characterizes a model. Connec-

tion structures which are de�ned by A1 to A3 and which are common throughout

mereotopological systems are isomorphic to twin-free graphs. Remarkably, twin-

freeness as we de�ne it (free of true and false twins) has not received much attention

in graph theory and therefore no additional properties are known. Separately from

the connection structures, we described the mereological features of the models in
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terms of chordal (and presumably comparability) graphs. However, the general-

ization of such a description to the models of RT−EC fails. We can extract that

all the models of RT−EC are dually chordal graphs, but at the same time we gave

evidence that this is only a very general classi�cation. Inspired by the use of vertex

orderings for all the considered graph classes, we de�ned a new vertex ordering

called maximum neighborhood inclusion order (mnio) and demonstrated that this

ordering de�nes a class of graphs that includes all graphs of RT−EC , but itself is a

much smaller subset of the dually chordal graphs. We supported our conjecture

that these orderings are characteristic for the graphs of RT−EC and showed a way

to �nd such an ordering in linear time for every model of RT−EC by the search algo-

rithm CLBFS. However, we suspect that not all properties de�ned by the axioms

of RT are captured, especially the existence of sums, intersections, and interiors is

not properly translated to graphs withs mnios. Nevertheless, the graph-theoretic

characterization gives us valuable insight into the models of the mereotopology and

their substructures and we collected characteristic properties that might generalize

to other mereotopological theories.

The two chapters on lattices and graphs show the advantages and disadvantages

of both approaches: lattices easily capture the existence of unique sums and in-

tersections of pairs of elements as well as the underlying parthood ordering that

makes up the mereological part of the models, while graphs are capable of rep-

resenting the full set of specialized JEPD relations of the connection relation C.

Consequently, we brought both representations together, which led to a full char-

acterization of the models of RT−EC in terms of graphs of lattices: every �nite

not unicomplemented p-ortholattice L is equivalent to a �nite model M of RT

where 〈x, y〉 ∈ OM ⇐⇒ ∃z [z ≤ x ∧ z ≤ y ∧ z 6= ∅] ⇐⇒ xy ∈ E(GL) and

〈x, y〉 ∈ ECM ⇐⇒
{
xy ∈

(
E(GL

EC) \ E(GL)
)
∧ y 6≤ x⊥

}
. In this way all the

lattice properties are maintained while we can easily extend the graphs to twin-free

graphs by adding a uniquely de�ned extension ECM. This extension of external

connection again reuses the orthocomplement de�ned in the lattice as a straight-

forward, constructive way to build models of RT−EC .

Eventually, we included the last missing axiom requiring the existence of a weak

contact. We showed how �nite models of RT can be obtained from direct products

of �nite p-ortholattices. Altogether, these models are too large to give any examples.

We only provide two lattices whose product will be the smallest model of RT .

Nevertheless, we were able to discuss what additional properties the lattices must

satisfy in order to ensure that their product contains a weak contact. The existence

of a weak contact is reduced to the existence of a weak contact between two closed,

non-open individuals. Taking two �nite p-ortholattices of which at least one must
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be not uniquely complemented, and extending them by separate closures of their

suprema, the product of such extended lattices is a (�nite) model of RT , but the

proof that any model of RT can be obtained in this way is still open. Hence we

cannot provide yet a proof up to isomorphism of the class of model of RT .

Apart from that, recalling the objectives of our work, we achieved our chief goals.

We gave a representation theorem for the models of RT− and a partial charac-

terization of the models of RT . On the way we obtained valuable insights into

the characteristic properties of all models. From the given characterization it is

now easy to construct p-ortholattices that correspond to models and even more

importantly, we can easily identify the extensions of all relations from the lattice

alone. Orthocomplements in the lattices map to complements in the models, the

join and meet of pairs of elements in the lattice represent the unique sum and

intersection in the models. The closure and interiors are equivalent to the meet-

and join-pseudocomplements of the orthocomplement. Overlap relations produce a

meet distinct from the empty set and external connections for a given individual are

identi�ed by all the elements not part of the orthocomplement that the individual is

not connected to by any other means. We also presented alternative properties such

as non-orthomodularity and non-semimodularity for the restricted class of complete

atomic, not unique complemented p-ortholattices. Where applicable, we compared

our analysis to similar analyses of other mereotopological systems. Some of the

characterizations generalize well to connection structures (as twin-free graphs) and

we show that the �nite models are a proper subset of Clarke's contact algebras

which were characterized as complete orthocomplemented lattices. An open ques-

tion here is whether it can be proved that all models of RT including the in�nite

ones give complete lattices. If not, the theory RT actually weakens Clarke's un-

restricted fusion axiom. Otherwise, we obtain a proof that the unrestricted fusion

can be replaced equivalently by the sum axiom A5 without impacting the in�nite

models.

Moreover, we provided a methodological outline for thorough analysis of other

mereotopologies to enable a model-theoretic comparison of mereotopological theo-

ries (as opposed to a comparison by the axioms and theorems of a mereotopology).

Instead of questioning underlying philosophical foundations, we take the theory it-

self for granted and analyze it from the perspective of their models. For further

research in the same direction, a lattice-based approach is most promising since

it captures essential mereological concepts such as parthood and topological con-

cepts such as complements. All mereotopological theories that depend on a single

primitive can be also modeled as graphs or graphs of lattices in a similar fashion

as demonstrated here.
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For further research, two major directions are possible. First of all, a model-

theoretic analysis of other mereotopologies can help to understand di�erences and

commonalities between di�erent axiomatizations. We think in particular of the

systems of Borgo, Guarino, and Masolo [BGM96] that explicitly distinguishes a

topological (simple region) and a mereological primitive (parthood) and comprises

a notion of convexity. Other interesting candidates that have not yet treated in

a model-theoretic way are the mereotopologies of Smith [Smi96] and of Pratt

and Schoop [PS97]. Another option for future research is the reverse perspective:

choosing a promising class of lattices and showing whether it yields su�ciently

expressive mereotopological systems, maybe on a generic level (subsuming other

mereotopological systems) or restricted to certain clearly de�ned application do-

mains. Some candidates that we identi�ed throughout the thesis are semimodular

lattices, geometric lattices, and the full class of p-ortholattices (from the isomor-

phism we already know that the class of p-ortholattices gives the theory de�ned

by RT−). However, this list can be extended arbitrarily (Stone lattices, Heyting

lattices, or the full class of pseudocomplemented distributive lattices) and it might

turn out selecting the most suitable lattices for modeling mereotopology is too dif-

�cult or cumbersome. However, in a similar fashion the search for a useful lattice

representation of pointless topology could be conducted in the future.



Appendix

Complements as Dominating Pairs in Graphs in GRT

The graph-theoretic analysis detected some useful properties of the mnio found by

CLBFS that utilize the characterization of the set EEC obtained in chapter 6. Here,

we give more details why this vertex ordering is special for the graphs in GRT .

The CLBFS algorithm gives a linear-time algorithm to �nd a mnio for every graph

of a model of RT−EC . But these vertex orderings have additional useful properties,

e.g. for �nding all the complements of a given model in linear time. For the proof

of that property, we �rst show that in fact every individual and its complement

are connected to a �xed number of other individuals. We already know that any

individual and its complement are a dominating pair just from the de�nition of a

topological complement. But here we identify the number of other individuals that

both elements are connected to in the resulting graphs.

Theorem 22. For every graph GRT every vertex x ∈ V (GRT ), x 6= a∗ satis�es

|N [x]|+ |N [−x]| = 3n−5
2 , where −x is its complement de�ned by A8.

Proof. x is in parthood relation to n+1
2 elements including itself, i.e. in GRT it

is adjacent to n−1
2 other vertices. The same applies for −x. The sum of the number

of vertices adjacent to x and −x (those adjacent to both count double) caused by

proper parthood relations is then n− 1. By order-reversing of the resulting lattice

structures half of those relations (removing both instances of the previously double

counted universal element), i.e. 1
2 (n − 1) − 1 account for the cases where x or −x

is proper part of some other element, and half of those account for the cases where

the other element is proper part of x or −x. Then by (2) and (3) above exactly

half of those adjacencies cause the complement to be adjacent to the same vertices.

Then we get: 3
2 (n− 1)− 1 = 3n−5

2 for the sum of the degrees of x and −x. �

Theorem 7.1. On every graph G in GRT , the reverse σ−1 = v1, v2, . . . , vn of any

Cardinality LexBFS (CLBFS) ordering on G contains dominating pairs vi, vn−i

where vi = −vn−i.
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For the proof we show �rst that the following claims hold. Claim 1 is used to prove

claim 2, and both of them are needed for the complete proof of the theorem. The

proof is recursive; starting with the elements of highest degree and working its way

down along the proper parthood ordering of the lattice.

Claim 1. If PP (x, y) holds then |N [x]| < |N [y]|.

Follows directly from lemma 5.5 by the assumption PP (x, y) which translates in

the corresponding graph to N [x] ⊂ N [y].

Claim 2. Assume |N [x]| ≥ |N [−x]| and x and −x have the same lexicographic

label, then selecting x as next vertex in a CLBFS ensures that all elements z ∈ N(x)
are selected before −x into the vertex ordering. In particular, all y with PP (−x, y)
are selected before −x in the resulting ordering.

If x and −x previously had the same lexicographic label, then choosing x as the

next vertex for the ordering labels all vertices in the neighborhood of x, but not

−x, since x and −x are never adjacent (see proposition 6.4(1)). That all parents

of −x (in the meaning of proper parts) are selected before −x follows directly from

the fact that by the de�nition of EEC (theorem 18) x must be externally connected

to all parents of −x. Since the parents of −x are all in the neighborhood of x, but

−x itself is not, all parents get a lexicographic larger label than −x. Hence, all

such parents must be selected into the vertex ordering before −x by any CLBFS

algorithm.

Proof. Consider the start of the search: CLBFS �rst selects u1 = a∗ because

all vertices are lexicographically unlabeled and a∗ has the highest cardinality. Af-

terward, one of the vertices with the next highest cardinality is chosen. If two or

more vertices with the same cardinality exist and they are adjacent, then they will

be selected for the ordering consecutively. However, in any case whatever vertex

was chosen �rst, call it u2, its neighborhood has to be exhaustively added to the

vertex ordering before any vertex in its non-neighborhood can be selected into the

ordering. Moreover, by claim 2, −u2 must be selected after the complete neighbor-

hood of u2 and all parents of −u2. Notice that u2 must be a dual-atom because of

claim 1 and then −u2 is an atom. With the set X containing all vertices that are not

comparable to −u2, and the other elements in X \{−u2} being comparable but not

proper part of −u2 (because it is an atom an has no proper parts), i.e. −u2 must

be part of every element in X \ {−u2}. By the de�nition of the set EEC (theorem

18) u2 is connected to all other vertices in X \ {−u2} and thus N [u2] = V \ {−u2}.
Consequently, by claim 2, −u2 is selected as the last vertex by the CLBFS.
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Similarly, all other dual atoms are selected subsequently and their complements

are selected as relative last elements, i.e. the last element before the complements

of the already ordered vertices. Afterward all vertices uk that are covered in the

lattice by a dual-atom (i.e. those that satisfy for some dual-atom d the following

PP (uk, d) ∧ ¬∃v [PP (v, d) ∧ PP (uk, v)]) are selected and their complements are

relatively last1. In the resulting order σ = u1, u2, . . . , un it holds that −ui+1 =
un−i+1 for all i with 1 ≤ i ≤ n−1

2 . The reverse σ−1 then satis�es vi = −vn−i1

for all 1 ≤ i ≤ n−1
2 and because of symmetry it also holds for 1 ≤ i ≤ n. By

proposition 6.3(2) each such pair vi, vn−i is then a dominating pair. �

This gives us a very simple way (linear-time O(n) algorithm) for determining com-

plements in models of RT . This can be used for practical reasoning application

that would use such a mereotopology for modeling e.g. space. The orderings are

furthermore degree orderings, as one can derive from the last two theorems.

Corollary 7.2. On every graph GRT , any ordering σ obtained through CLBFS is

a descending degree ordering, i.e. ∀j < i, |N(vj)| ≥ |N(vi)|.

Beware that this is di�erent from what a MCS would generate: any ordering σ

produced by CLBFS can also be obtained by MCS, but the reverse is not true,

since MCS only considers cardinalities for the subgraphs Gi for i = {1, . . . , n}.
Notice furthermore how easy a degree ordering is recognizable: a simple linear-

time algorithm will do it.

1Relatively last because all the vertices uj with j < k already have a complement that must be
selected later. Relatively to all the elements from which we are still free to choose.
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Notation

Symbolic:

∅ empty set, usually used as the bottom element of a lattice arising from

models of RT

{} empty set as used in set-theoretic discussions

⊥ bottom element (in�mum) of a bounded lattice

> top element (supremum) of a bounded lattice

a∗ unique universal element of a model of RT

−x set-theoretic complement of the point-set x in a topological space

x unique topological complement of the individual x in a model of RT (or

a subset thereof)

x⊥ uniquely identi�ed orthocomplement of x in an orthocomplemented lat-

tice

AM extension of relation A for a speci�c modelM of RT

¬X unary predicate negation in FOL

∃x existential quanti�cation in FOL

∀x universal quanti�cation in FOL

x + y unique sum of the two individuals x and y in a model of RT

x · y intersection of the two individuals x and y in a model of RT , usually

means the non-empty intersection

L1 × L2 direct (Cartesian) product of two lattices, i.e. for any tuple a, b with

a ∈ L1 and b ∈ L2 the element (a, b) ∈ L1 × L2

a ≺ b b covers a (or a is covered by b) in a lattice if a < b and no c exists with

a < c < b exists

x ⊂ y x is a proper subset of y

x ⊆ y x is a subset of y

A→ B A implies B, implication in FOL

A← B B implies A, implication in FOL

A ≡ B logical equivalence: A ⇒ B and A ⇐ B; also used for elementary

equivalence between two (classes of) models
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A ∼= B A is isomorphic to B

A ⇐⇒ B if and only if

x ⊃ y x is a proper superset of y

x ⊇ y x is a superset of y

x < y x is strictly smaller than y with respect to the partial order given by P

or the lattice

x ≤ y x is smaller than or equal to y with respect to the partial order given

by P or the lattice

x 6≤ y x > y, or x and y are incomparable

x > y x is strictly greater than y with respect to the partial order given by P

or the lattice

x ≥ y x is greater than or equal to y with respect to the partial order given

by P or the lattice

x 6≥ y x < y, or x and y are incomparable

A−B set-theoretic di�erence of A and B

A ∨B A or B hold (FOL)

x ∨ y join of x and y in a lattice

A ∧B A and B hold (FOL)

x ∧ y meet of x and y in a lattice

x ∪ y standard sum of two point sets

x ∪∗ y sum of two sets in RT

x ∩ y standard intersection of two point sets

x ∩∗ y intersection of two sets in RT

(a, b)M modular pair 〈a, b〉 in a lattice L satisfying x ≤ b implies x ∨ (a ∧ b) =
(x ∨ a) ∧ b for all x ∈ L

〈x, y〉 ∈ CM x and y are in the extension of C for the model M, analog for all

other predicates in the theory RT

〈S,O〉 topological space de�ned over the set S with O as set of open sets (the

topology)

(X, T ) alternative notation for a topological space over X with T as topology,

usually referring to the topological space underlying a model of RT0
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(ΣU ,ΣT
U ) topological space over the set ΣU with the topology ΣT

U

[cn] the equivalence class of a constant cn in a set of sentences Σ consistent

with RT0, i.e. [cn] = {cj : Σ `RT0 cj = cn}

Ω[cn] the points in the topological space associated with the equivalence class

of a constant cn in a set of sentences Σ satisfying RT

Σ maximal set of sentences consistent with RT0

ΣC set of constants ck occurring in the set Σ

ΣU the set of points that forms the topological space for a model; de�ned

as ΣU =def

⋃ {
Ω[cn] : cn ∈ ΣC

}
ΣT

U the set of open sets (the topology) ⊆ P(ΣU ) over a maximal, saturated

set of sentences Σ consistent with RT0

Non-symbolic (in alphabetical order):

C extension of connection in RT

C set of closed sets in a topological space

c(x), cx the closure of an element as de�ned by RT0

cl(x) closure operation in RTT

Cl(x) closure of an element in standard topology

CL extension of the unary predicate closed in RT

Con extension of the unary predicate self-connected in RT

EC extension of external connection in RT

G(M) graph of a model M, which depending on the context can be a model

of RT , RT−EC , or RT−

GL graph GL = (V,E) resulting from a given complete atomic, not uniquely

complemented p-ortholattice L over a poset Y by the de�nition y ∈
Y ⇐⇒ y ∈ V (GL) and x, y, z ∈ Y [z ≤ x ∧ z ≤ y] ⇐⇒ xy ∈ E(GL)

GL class of all graphs GL = (V,E) that result from a complete atomic, not

uniquely complemented p-ortholattice L

GC class of graphs that are models of A1 to A3, identical with the twin-free

graphs

GL
EC graph constructed from a not uniquely complemented complete atomic

p-ortholattice with a non-empty induced extension EEC
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GL
EC class of graphs GL

EC constructed from not uniquely complemented com-

plete atomic p-ortholattices

GP class of graphs satisfying the axioms of RTP

GPP
P class of graphs satisfying the axioms of RTP where only the extension

of proper parthood PP represents edges in a graph GPP
P in GPP

P

GRT−(M) graph of the modelM of RT− where edges represent the extension of

CM

GRT− class of graphs that can be constructed from models of RT− where edges

represent the extension of CM for each modelM

GRT−EC
(M) graph of the model M of RT−EC where edges represent the extension

of CM

GRT−EC
class of graphs that can be constructed from models of RT−EC where

edges represent the extension of CM for each modelM

GRT class of graphs that can be constructed from models of RT where edges

represent the extension of CM for each modelM

i(x), ix interior function in RT0

int(x) interior operation in RTT

Int(x) interior of an element in topology

jpc(x) join-pseudocomplement of x in a join-pseudocomplemented lattice

L denoting a lattice

LM denoting a lattice associated to a �nite modelM

L = (Y ∪ ∅,∩∗,∪∗, ∅, a∗) denoting the lattice constructed from a model of RT with

the set of individuals Y

L6 6-element lattice that is neither modular nor uniquely complemented

L2,L3,L4 special lattices prohibited as sublattices in semi-distributive lattices

LRT class of lattices arising from models of RT

mpc(x) meet-pseudocomplement of x in a meet-pseudocomplemented lattice

M3 diamond lattice prohibited in distributive lattices and required in mod-

ular non-distributive lattices

N5 pentagon lattice prohibited in modular lattices
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NTP extension of non-tangential part in RT , something is a non-tangential

part of another individual if their closures do not overlap

NTP−1 inverse of the extension of non-tangential part in RT , i.e. if 〈x, y〉 ∈
NTPM then 〈y, x〉 ∈

(
NTP−1

)M
for any modelM of RT

O extension of overlap in RT

O set of open sets in a topological space

OP extension of the unary predicate open in RT

open(x) Boolean operation to test for open elements in RT0

P extension of parthood in RT

P(X) powerset of the set X

PO extension of proper overlap, also used in RCC

〈x, y〉 ∈ PO partial overlap de�ned as 〈x, y〉 ∈ PO ⇐⇒ 〈x, y〉 ∈ O ∧ 〈x, y〉 /∈
P ∧ 〈y, x〉 /∈ P

PP extension of proper parthood in a model of RT

RT = 〈Y, f, JK〉 theory RT de�ned in terms of the intended models of RTT

RT full theory of mereotopology as de�ned by Asher and Vieu (RT0)

RT0 the axiomatic theory of RT

RT− theory de�ned by the axioms A1 to A10 and A13

RTC theory that is axiomatized by the set of axioms A1 to A3 (extensional

ground topology)

RT−EC theory de�ned by the axioms A1 to A11 and A13

RTT de�nition of an structure satisfying the conditions of Asher and Vieu's

mereotopology over a topological space with topology T

T0 separation axiom T0 (Kolmogorov)

T1 separation axiom T1 (Fréchet or accessible), equivalent to T0 and R0

(symmetric)

T2 separation axiom T2 (Hausdor� or separated), implicitly implying T0,

T1, and R1 (preregular)

T3 separation axiom T3 (Vietoris), implicitly implying T0 and regular

TP extension of tangential part in RT , something is a tangential part of

another individual if their closures overlap
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TP−1 inverse of the extension of tangential part in RT , i.e. if 〈x, y〉 ∈ TPM

then 〈y, x〉 ∈
(
TP−1

)M
for any modelM of RT

WCont extension of weak contact in RT

Terminology

anti-symmetric a binary relation R is antisymmetric if and only if for every tuple

x, y, never both 〈x, y〉 ∈ R and 〈y, x〉 ∈ R hold

atom an element in a lower-bounded lattice that covers only ⊥= ∅

atomless a theory that forces in�nitesimal elements, i.e. each individual must

have a proper part

bottom element the zero element 0 =⊥= ∅ of a lattice

boundary the di�erence between an individual's closure and its interior

Cardinality LexBFS same as CLBFS

closure the closure is the smallest closed set containing the individual itself

(set-theoretic)

connection binary relation C of a mereotopology that expresses that two indi-

viduals are in contact

connection structure structure equivalent to a model of RTC ∪ {A4}; can be

regarded as contact algebra with universal element

contact same as connection

contact algebra structure equivalent to a model of RTC , de�ned through vari-

ous set of axioms as in [DW06, DW05]

diamond special lattice M3 containing four elements that is modular but not

distributive

dual-atom an element d such that d ≺ 1 in a bounded lattice

element usually used for elements of a lattice, otherwise synonymous with indi-

vidual

Elementary Equivalence two L-languages M and N are elementary equivalent

if M |= Φ ⇐⇒ N |= Φ

FOL �rst-order logic

full interior referring to condition (ii) of RT0: no object in the n-dimension

space can have �holes� of a lower dimension
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incomparable if in a lattice neither x ≥ y nor y ≥ x holds, x and y are incompa-

rable

individual element (region) of a mereotopological model that is represented by a

point set

infimum minimum (zero) element of a lattice

interior the smallest (open) neighborhood contained (set-theoretic) in the indi-

vidual

irreflexive a binary relation R is irre�exive if and only if for all x,〈x, x〉 /∈ R

isomorphism a structure-preserving mapping between two objects; i.e. two lattices

L1 and L2 are isomorphic if there is a bijective function between the

elements of L1 and L2 that preserves the partial order on the lattices;

between di�erent kind of objects (e.g. a mereotopological model and a

lattice) it is important that there is a function f and its inverse f−1

that preserve the structure of either object when the function itself or

the inverse is applied

join the lowest upper bound of two elements in a lattice

JEPD jointly exhaustive, pairwise disjunct

CLBFS cardinality lexicographic breadth-�rst search algorithm for graphs, which

uses the same technique as LexBFS but with an additional tie-breaking

mechanism based on the cardinality of the vertices

LexBFS lexicographic breadth-�rst search algorithm for graphs, see [RTL76]

MCS maximum cardinality search algorithm for graphs, see [TY84]

meet the greatest lower bound of two elements in a lattice

modular pair if (a, b)M , then a and b form a modular pair in a lattice

partial order a binary relation, usually denoted by ≤, that is re�exive, antisym-

metric, and transitive; if it irre�exive, it is explicitly noted

partial overlap two elements of a model of RT partially overlap if neither is

part of the other, but they share a common part

pentagon special lattice N5 containing �ve elements that is not modular

poset a set with a partial order de�ned on it

RCC Region Connection Calculus as developed by Cohn, Randell, et al.

reflexive a relation is re�exive if and only of for all x, 〈x, x〉 ∈ R
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regular according to Cohn et al. [CBGG97a], a mereotopological model is

regular if Cl(Int(x)) = Cl(x) and Cl(Int(x)) = Cl(x) hold for every

individual x; this notion of regularity is identical with the conditions

of full interiors and smooth boundaries imposed by (ii) and (iii) in

RT0; however, the topological representations of the models of both

mereotopologies are not necessarily regular

Regular_closed a set in a topological space is called regular closed if A =
Cl(Int(A))

Regular open a set in a topological space is called regular open if A = Int(Cl(A))

regular space topological space in which for a point in any open set O is con-

tained in some closed subset of O; only if a regular space is Hausdor�,

it is also a T3-space

semi-regular space topological space whose regular open sets form a base of the

space

smooth boundaries condition (iii) of RT0: every part of an object in an n-

dimensional space must be n-dimensional as well

sublattice subset of the elements of the original lattice that is closed under join

and meet

supremum top element > of a lattice s.t. for all element in the lattice x ∨ > = >
holds

symmetric a relation R is symmetric if and only if for all x, y, 〈x, y〉 ∈ R implies

〈y, x〉 ∈ R

top element the one element 1 = > of a lattice

transitive a relation R is transitive if and only of for all x, y, 〈x, z〉, 〈z, y〉 ∈ R

implies 〈x, y〉 ∈ R

universal_element the (unique) element in a mereotopology that everything

else is connected to

universe space (point set) covered by the universal element in a mereotopological

model

weakly regular space topological space (X, T ) that is semiregular and for each

non-empty set S1 in T there exists a non-empty set S2 in T so that

Cl(S2) ⊆ S1 [DW05]
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Classes of Lattices

atomic every element x contains an atom, i.e. ∀x∃a [x ≥ a] where a is an atom

atomistic each element is representable as the join of some set of atoms

Boolean distributive complemented lattice; it is satis�es all stronger types of

complementation (uniquely complemented, pseudocomplemented, or-

thocomplemented, and relatively complemented)

bounded lattice with unique in�mum 0 =⊥ and supremum 1 = > so that for all

a ∈ L: a ∧ 0 = 0, a ∨ 0 = a, a ∧ 1 = a, and a ∨ 1 = 1

Brouwerian relatively pseudocomplemented lattice; subclass of the distributive

pseudocomplemented lattices; usually it is assumed to have no zero

element ⊥, otherwise it is a Heyting lattice

complemented each element a ∈ L has a complement −a ∈ L so that a∧−a =⊥
and a ∨ −a = >

complete for every tuple of elements, there exists a join and meet; every �nite

lattice is complete

distributive (i) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) is satis�ed for all a, b, c ∈ L, or

(ii) the lattice contains no sublattice isomorphic to a pentagon or a

diamond

doubly pseudocomplemented join- and meet-pseudocomplemented lattice, i.e.

for each element a there exists a meet-pseudocomplement mpc(a) and

a join-pseudocomplement jpc(a) so that for all complements a′ of a it

holds that mpc(a) ≥ a′ and jpc(a) ≤ a′

double p-lattice abbreviated name for a doubly pseudocomplemented lattice

Geometric (i) semimodular, algebraic lattice where the compact elements are ex-

actly the �nite joins of atoms

(ii) complete, atomistic, semimodular lattice where all atoms are com-

pact

Heyting Brouwerian lattice with a zero element; hence a subclass of the distribu-

tive pseudocomplemented lattices

involution bounded lattice L together with an antitone mapping ⊥ : L→ L such

that a = a⊥⊥ for every a ∈ L

join-semidistributive d = a∨ b = a∨ c→ d = a∨ (b∧ c) holds for any quadruple

of elements a, b, c, d ∈ L

lower semimodular a∧b ≺ a and a∧b ≺ b together imply a ≺ a∨b and b ≺ a∨b

for any a, b ∈ L
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Matroid di�erent name for geometric lattices

meet-semidistributive d = a∧b = a∧c→ d = a∧(b∨c) holds for any quadruple
of elements a, b, c, d ∈ L

modular (i) a ≥ c⇒ a∧ (b∨ c) = (a∧ b)∨ (a∧ c) is satis�ed for all a, b, c ∈ L, or

(ii) (a, b)M holds for any a, b ∈ L, or

(iii) the lattice contains no sublattice isomorphic to a pentagon

M-symmetric (a, b)M implies (b, a)M for any a, b ∈ L; �nite upper semimodular

lattices are M-symmetric lattices

non-modular used in the context of thesis to describe the non-semimodular, non-

orthomodular, and not uniquely complemented lattices. In general ap-

plies only to the strong kind of modularity (see modular) found in lat-

tices

not uniquely complemented at least one element a in the lattice has two dis-

tinct complements a′1 and a′2 so that a ∧ a′1 = a ∧ a′2 =⊥ and a ∨ a′1 =
a ∨ a′2 = >

orthocomplemented involution lattice (L,⊥) in which the involution is an or-

thocomplementation in the sense that a ∧ a⊥ = 0 for every a ∈ L

ortholattice abbreviated name of an orthocomplemented lattice

orthomodular ortholattice in which the orthomodular identity a ≤ b → b =
a ∨ (b ∧ x⊥) holds for all a, b ∈ L

⊥-symmetric a ∨ b =⊥ and (a, b)M together imply (b, a)M for all a, b ∈ L

p-lattice abbreviated name for a doubly pseudocomplemented lattice

p-ortholattice abbreviated name for a (doubly) pseudocomplemented and or-

thocomplemented lattice

pseudocomplemented short for meet-pseudocomplemented lattice, i.e. for each

element a in the lattice there exists a meet-pseudocomplement mpc(a)
so that mpc(a) ≥ a′ for all complements a′ of a

relatively complemented every interval of the lattice is a complemented sub-

lattice, or equivalently every element has a relative complement in any

interval containing it

section-complemented lattice with in�mum ⊥ so that for every a ∈ L, the

interval [⊥, a] is complemented

section-semicomplemented every interval of the lattice is a semicomplemented

sublattice
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semicomplemented every element a ∈ L with a 6= > has a semicomplement b 6=⊥
so that a ∧ b =⊥

semidistributive meet- and join-semidistributive lattice

semimodular short name for upper semimodular lattice

Stone distributive pseudocomplemented lattices in which mpc(a) = mpc(mpc(a))
is satis�ed for all a ∈ L, or equivalently in which mpc(a∧ b) = mpc(a)∨
mpc(b) holds for all tuples a, b ∈ L

unicomplemented abbreviated name for a uniquely complemented lattice

uniquely complemented every element a in the lattice has a unique comple-

ment, i.e. a ∧ a′1 = a ∧ a′2 =⊥ and a ∨ a′1 = a ∨ a′2 = > imply a′1 = a′2

upper semimodular a∧b ≺ a→ b ≺ a∨b holds for any tuple of elements a, b ∈ L

weakly modular a ∨ b 6=⊥ implies (a, b)M for all a, b ∈ L
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