
Hasso Plattner Institute
for Software Systems Engineering

Final year bachelor project
WS 2005/2006

Semantic SOA – Realization of the

Adaptive Services Grid

Dynamic Supply Chain Scenario
for Internet Service Providers

February 28, 2006

Bastian Steinert, Jan Möller, Philipp Sommer,
Sebastian Steinhauer, Stefan Hüttenrauch,

Tobias Queck, Torsten Hahmann

2

Dynamic Supply Chain Scenario for Internet Service Providers

Tables of Contents
 LIST OF FIGURES...IV

 LIST OF LISTINGS..V

1 INTRODUCTION...1

2 BUSINESS PERSPECTIVE...2

2.1 B2C SOLUTION..2

2.2 B2B SOLUTION..2

2.3 BUSINESS REQUIREMENTS..3

2.4 ADVANTAGES OF ASG..3

3 TECHNICAL PERSPECTIVE...4

3.1 SERVICE LANDSCAPE...5

3.1.1 DOMAIN SERVICES...5

3.1.2 PAYMENT SERVICES..6

3.1.3 WEB HOSTING SERVICES..6

3.2 EXEMPLARY SERVICE COMPOSITIONS...7

4 SCENARIO ONTOLOGY..8

4.1 ONTOLOGY CONCEPTS...9

4.2 RELATIONS BETWEEN ONTOLOGY CONCEPTS...10

5 ATOMIC SERVICES..10

5.1 DIRECTI CHECK DOMAIN - CHARACTERISTICS..11

5.1.1 SHORT SEMANTIC DESCRIPTION...11

5.1.2 FORMAL SEMANTIC SPECIFICATION...12

5.1.3 TECHNICAL DETAILS..13

5.2 VERISIGN CHECK DOMAIN - CHARACTERISTICS..14

5.2.1 SHORT SEMANTIC DESCRIPTION...14

5.2.2 FORMAL SEMANTIC SPECIFICATION...14

5.2.3 TECHNICAL DETAILS..16

5.3 DENIC CHECK DOMAIN - CHARACTERISTICS..16

5.3.1 SHORT SEMANTIC DESCRIPTION...16

5.3.2 FORMAL SEMANTIC SPECIFICATION...17

5.3.3 TECHNICAL DETAILS..18

5.4 DIRECTI REGISTER DOMAIN - CHARACTERISTICS..18

5.4.1 SHORT SEMANTIC DESCRIPTION...18

5.4.2 FORMAL SEMANTIC SPECIFICATION...19

5.4.3 TECHNICAL DETAILS..21

III

Dynamic Supply Chain Scenario for Internet Service Providers

5.5 SAFERPAY CREDIT CARD AUTHORIZATION - CHARACTERISTICS...22

5.5.1 SHORT SEMANTIC DESCRIPTION...22

5.5.2 FORMAL SEMANTIC SPECIFICATION...22

5.5.3 TECHNICAL DETAILS..24

5.5.4 PROBLEMS AND REMARKS..25

5.6 SAFERPAY PAYMENT - CHARACTERISTICS..25

5.6.1 SHORT SEMANTIC DESCRIPTION...25

5.6.2 FORMAL SEMANTIC SPECIFICATION...26

5.6.3 TECHNICAL DETAILS..27

5.6.4 PROBLEMS AND REMARKS..28

5.7 PAYPAL DIRECT PAYMENT – CHARACTERISTICS...28

5.7.1 SHORT SEMANTIC DESCRIPTION...28

5.7.2 FORMAL SEMANTIC SPECIFICATION...29

5.7.3 TECHNICAL DETAILS..31

5.7.4 PROBLEMS AND REMARKS..31

5.8 UPDATE LOCAL NAMESERVER - CHARACTERISTICS..32

5.8.1 SHORT SEMANTIC DESCRIPTION...32

5.8.2 FORMAL SEMANTIC SPECIFICATION...33

5.8.3 TECHNICAL DETAILS..33

5.8.4 PROBLEMS AND REMARKS..34

6 APPENDIX – SCENARIO ONTOLOGY IN FLORA..34

 REFERENCES..37

IV

Dynamic Supply Chain Scenario for Internet Service Providers

LIST OF FIGURES

FIGURE 1: B2C SOLUTION..2

FIGURE 2: B2B SOLUTION..4

FIGURE 3: STAKEHOLDER OF THE SCENARIO..5

FIGURE 4: SERVICE IDENTIFICATION FOR DOMAIN SERVICES...6

FIGURE 5: SERVICE IDENTIFICATION FOR PAYMENT SERVICES..6

FIGURE 6: SERVICE IDENTIFICATION FOR WEB HOSTING SERVICES...7

FIGURE 7: EXEMPLARY COMPOSITION...7

FIGURE 8: EXEMPLARY COMPOSITION WITH RENEGOTIATION..8

FIGURE 9: EXEMPLARY COMPOSITION WITH REPLANNING...8

FIGURE 10: CONCEPTS FOR SEMANTIC SERVICE SPECIFICATIONS OF CHECK- AND REGISTER DOMAIN
ATOMIC SERVICES...9

FIGURE 11: CONCEPTS FOR SEMANTIC SERVICE SPECIFICATIONS OF PAYMENT ATOMIC SERVICES.......9

FIGURE 12: DIRECTI CHECK DOMAIN ATOMIC SERVICE - USE CASE DIAGRAM...................................11

FIGURE 13: DIRECTI CHECK DOMAIN ATOMIC SERVICE - CLASS DIAGRAM.......................................13

FIGURE 14: DIRECTI CHECK DOMAIN ATOMIC SERVICES - SEQUENCE DIAGRAM................................13

FIGURE 15: VERISIGN CHECK DOMAIN ATOMIC SERVICE - USE CASE DIAGRAM.................................14

FIGURE 16: VERISIGN CHECK DOMAIN ATOMIC SERVICE - CLASS DIAGRAM.....................................16

FIGURE 17: VERISIGN CHECK DOMAIN ATOMIC SERVICE - SEQUENCE DIAGRAM...............................16

FIGURE 18: DENIC CHECK DOMAIN ATOMIC SERVICE - USE CASE DIAGRAM.....................................17

FIGURE 19: DENIC CHECK DOMAIN ATOMIC SERVICE - CLASS DIAGRAM..18

FIGURE 20: DENIC CHECK DOMAIN ATOMIC SERVICE - SEQUENCE DIAGRAM....................................18

FIGURE 21: DIRECTI REGISTER DOMAIN ATOMIC SERVICE- USE CASE DIAGRAM................................19

FIGURE 22: DIRECTI REGISTER DOMAIN ATOMIC SERVICE - CLASS DIAGRAM...................................21

FIGURE 23: DIRECTI REGISTER DOMAIN ATOMIC SERVICE - SEQUENCE DIAGRAM.............................21

FIGURE 24: SAFERPAY ATOMIC SERVICES - USE CASE DIAGRAM..22

FIGURE 25: SAFERPAY CREDITCARD AUTHORIZATION ATOMIC SERVICE - CLASS DIAGRAM.................24

FIGURE 26: SAFERPAY CREDITCARD AUTHORIZATION ATOMIC SERVICE - SEQUENCE DIAGRAM...........25

FIGURE 27: SAFERPAY ATOMIC SERVICES - USE CASE DIAGRAM..26

FIGURE 28: SAFERPAY PAYMENT ATOMIC SERVICE - CLASS DIAGRAM..27

FIGURE 29: SAFERPAY PAYMENT ATOMIC SERVICE - SEQUENCE DIAGRAM..28

FIGURE 30: PAYPAL DIRECT PAYMENT ATOMIC SERVICE - USE CASE DIAGRAM..................................29

FIGURE 31: PAYPAL DIRECT PAYMENT ATOMIC SERVICE - CLASS DIAGRAM......................................31

FIGURE 32: PAYPAL DIRECT PAYMENT ATOMIC SERVICE - SEQUENCE DIAGRAM................................31

V

Dynamic Supply Chain Scenario for Internet Service Providers

FIGURE 33: UPDATE LOCAL NAMESERVER ATOMIC SERVICE - USE CASE DIAGRAM............................32

FIGURE 34: UPDATE LOCAL NAMESERVER ATOMIC SERVICE - CLASS DIAGRAM.................................34

FIGURE 35: UPDATE LOCAL NAMESERVER ATOMIC SERVICE - SEQUENCE DIAGRAM...........................34

LIST OF LISTINGS

LISTING 1: FLORA SPECIFICATION FOR DIRECTI CHECK DOMAIN..13

LISTING 2: FLORA SPECIFICATION FOR VERISIGN CHECK DOMAIN..15

LISTING 3: FLORA SPECIFICATION FOR DENIC CHECK DOMAIN..17

LISTING 4: FLORA SPECIFICATION FOR DIRECTI REGISTER DOMAIN..20

LISTING 5: FLORA SPECIFICATION FOR SAFERPAY CREDIT CARD AUTHORIZATION..............................24

LISTING 6: FLORA SPECIFICATION FOR SAFERPAY PAYMENT...27

LISTING 7: FLORA SPECIFICATION FOR PAYPAL DIRECT PAYMENT...30

LISTING 8: FLORA SPECIFICATION FOR UPDATE LOCAL NAMESERVER...33

LISTING 9: FLORA ONTOLOGY FOR PERSONS...35

LISTING 10: FLORA ONTOLOGY FOR DOMAINS...35

LISTING 11: FLORA ONTOLOGY FOR PAYMENT...36

VI

Dynamic Supply Chain Scenario for Internet Service Providers

1 INTRODUCTION

Today’s European telecommunication industry is increasingly competitive with many new
entrants to the market and a challenging regulatory environment. Along with the ongoing
recovery from the technology boom-and-bust, these factors add up to a tough business
environment. Price erosion means that providers and operators have realized that they must
radically transform the way they do business in order to reduce costs and remain
competitive. At the same time, a number of new challenges are emerging, including product
innovation, aggressive new market entrants, and the blurring of the boundary between IT
and traditional telecommunications. Companies are seeking to grow new business while
defending traditional core revenues. The industry suffers from high manpower costs due to a
lack of automation, poor time-to-market due to inflexible business processes and poor
customer service due to a lack of integrated support systems.
Thus the industry is seeking urgently to reduce IT costs, more than 35% of which are
attributable to integration1. Furthermore, there is a focus on faster time to market via more
flexible business processes and services and a need to reconfigure system components
quickly and efficiently in order to satisfy market needs and to provide fully integrated
support systems for increasingly sophisticated services.
On the other hand, customers are demanding integrated services, tailored to their specific
needs. The market is becoming increasingly federated due both to regulatory pressures and
to companies’ attempts to catch market opportunities with tailored, bundled services. In this
market, the number of Business-to-Business (B2B) relationships between telcos, internet
service providers (ISP) and special content and service providers has dramatically increased.
All these factors have led many telcos and ISPs to radically rethink the way they operate.
They have realized that the new environment requires tighter yet more flexible management
of processes and services.
In this document we present the work in developing a B2B service framework for automated
reselling of ISP products based on the “Adaptive Services Grid” (ASG)2 platform. First we
motivate for the B2B solution for the ISP from a business perspective and define a set of
requirements, both business and technical requirements. In chapter 3 we switch to a more
technical point of view, define a concrete set of Atomic Services and demonstrate their use
in exemplary compositions. The main focus of this document lies on a detailed description
of the dynamic supply chain scenario for internet service providers including technical
information of implemented services for scenario realization. Therefore chapter 4 defines
the common ontology and the resulting data-types. Finally all services we implemented are
described with a formal semantic description, technical details and remarks on
implementation.

1 Gartner Group, 2004

2 http://asg-platform.org, funded under the 6FP, EC Contract No. 004617

1

Dynamic Supply Chain Scenario for Internet Service Providers

2 BUSINESS PERSPECTIVE

The scenario we present here is an example based on the business-to-business (B2B)
wholesale model of an Internet Service Provider (ISP). In our study the ISP specializes on
products like domain registration and web hosting, not on providing internet access. To
understand requirements for a sophisticated B2B solution a look at the existing Business-to-
Customer application can be of great avail. By analyzing the current B2C web shop1 and its
underlying provisioning system, basic functionality required for the B2B model can be
identified.

2.1 B2C SOLUTION

The present B2C solution based on a web shop allows ordering of domains, emails, and web
space. The ISP must provide functionality for domain registration, operating & maintaining
DNS information, web hosting configuration, and payment bundled to end-customer
products. Selection of domain registration interfaces depends on the specific top-level
domain. Assignment of domains with .com or .org endings is governed by ICANN while
e.g. national domains are assigned by DENIC in Germany or NICAT in Austria. Registrars
accredited by the supervising organizations can register subordinate domains. Web hosting
services encapsulate interfaces for web hosting systems. They allow allocation of web space
to users while enforcing fine-grained restrictions on data volume, traffic and email
configuration.
The goal of developing a B2B solution is the reuse of already available elementary business
capabilities. The vision of an enlarged market drives the ISP to shift the existing end-
customer-centric application to a more flexible platform that can be used through various
front-end solutions operated by resellers. Moreover, service reuse in a flexible environment
reduces customer acquisition costs and support costs for the ISP. The underlying internet
service provisioning system requires extensions to support a more generalized Business-to-
Business approach instead of a restricted B2C application. Currently the complexly
interweaved subtasks of product ordering in the web shop and provisioning of these
products through a backend system hinders the reuse of provisioning capabilities through
varying order processes.

2.2 B2B SOLUTION

Market research shows that there is already a sizable demand for combining domain
registration and web hosting services. Especially the association with peregrine products is
an interesting market with growth potential. It is anticipated that B2B customers act as
resellers that integrate added-value web hosting services (domains, web space, emails) into
their existing product portfolio (newspaper subscriptions, broadband internet, community

1 http://www.chillydomains.com

2

Dynamic Supply Chain Scenario for Internet Service Providers

Figure 1: B2C Solution

portals). As part of its product bundles, resellers select services offered by the ISP as free
add-ons, for bonus programs or as additional features at attractive prices. For example a
reseller may order for its customer web space at a special rate or provide them with a
domain of their choice when they decide to sign up for a long-term internet access contract.
Service provisioning must thus be highly flexible. For the convenience of the resellers,
payment services shall be offered as well. Resellers without own billing system or not
wanting to deal with payment chooses payment options from the ISP’s service pool.

2.3 BUSINESS REQUIREMENTS

The wide range of potential reseller necessitates the development of a solution independent
of resellers’ order processes and its products. The time-consuming definition of static
processes should be avoided. In order to instantly add new resellers that can profit from
services offered by the ISP, reseller integration costs must be reduced to a minimum. If each
joining reseller requires high investments in order to deliver customized products, the costs
would probably be covered not adequately by expected revenues.

Generally three kinds of flexibility can be identified as necessary for implementing the
described business model:

(BR1) an interface allowing fast and cost-efficient integration of resellers with various
background and diverse products; resellers want to offer internet services
without massive changes to their own application

(BR2) resellers and/or their customers want to customize products requiring a flexible
product management and product composition; minimizing the effort required to
define/redefine product bundles

(BR3) a flexible extension mechanism to offer new elementary services quickly to all
resellers without having to manually change processes

All three types of flexibility together permit reduced time-to-market – essential for business
success. Finally business success depends heavily on the ability to ensure maximum
availability and in the consideration of quality of services expressed as non-functional
requirements that serve the ISP’s and reseller’s goals best.

Most problematic is the fact that there is no point in time where all possible processes can be
designed beforehand. The number of possible product combinations is exhaustive; static
predefined processes cannot cover all combinations within reasonable costs. Dependencies
between elementary services will lead to exponentially growing efforts. We derived
following technical requirements:

(TR1) separation of order processes from supply chain processes

(TR2) on-demand composition of supply chain processes to cover all possible product
combinations and integrate new services automatically

(TR3) adaptive processes for higher availability and consideration of new services at
run-time

2.4 ADVANTAGES OF ASG

Service-oriented computing is a paradigm trying to solve the business requirements BR1
and BR3. By providing high-level interfaces that abstract from concrete operations service-
oriented architectures aim to loosen coupling (compare to TR1) between components on a

3

Dynamic Supply Chain Scenario for Internet Service Providers

service provider’s part from those on the service consumer’s side. Services in Service
Oriented Architecture (SOA) should be reusable and replaceable; it focuses on the
scalability for “Internet-scale provisioning and use of services and the requirement to reduce
costs in organization to organization cooperation” [1]. The service consumer must compose
services in her applications manually. The reference model for SOA does not demand
semantics allowing automated service composition [1]. But SOA is only a first step towards
rapid application development [2], other research projects like the Web Service Execution
Environment (WSMX)1 tackle the questions of dynamic selection and semantic web services
composition and invocation using ontology mediation.
Formal semantic specifications of services enable the ASG platform to compose supply
chain processes. Arbitrary products of the ISP defined by the reseller are expressed through
goals in the context of ASG. These goals are used by the platform to compose provisioning
processes on-demand. It is for this reason possible to integrate new services dynamically.
This resolves TR2 through a very flexible mechanism and is also highly adaptable to
changes in the service landscape.
Higher availability is achieved by the renegotiation and replanning feature of ASG. During
enactment a monitor detects failures, e.g. service unavailability or violations of service level
agreements contracted with atomic services. In such cases, renegotiation of the elementary
service with equivalent capability is triggered. If no alternative service fulfill demanded
requirements, re-planning takes place in order to adapt the initially planned process to
service availability.

3 TECHNICAL PERSPECTIVE

In the previous chapters we introduced a business view on the dynamic supply chain for
ISPs. We described the business requirements and explained the advantages of ASG. In the
following part we will change the point of view to a more technical perspective.
In general the ASG development process consider two major roles. On the one hand the
application provider implements an application, consisting of graphical user interface and a
set of request for ASG. On the other hand the service provider offers its functionality
through Atomic Services. Due to our business scenario the ISP acts in both roles, because it
uses ASG as an internal platform for provisioning of its products (see figure 3). The service
pool of the ISP mainly contains wrappers to functionality from external service providers,
but also Atomic Services with own functionality. The reseller develops its own end
customer application, which defines order processes and uses an API of the ISP to create
request for the ASG platform.

1 www.wsmx.org

4

Dynamic Supply Chain Scenario for Internet Service Providers

Figure 2: B2B Solution

3.1 SERVICE LANDSCAPE

According to the methodology for developing applications based on ASG described in [3] a
service landscape can be of great help throughout the whole development process. It evolves
over time, beginning with rudimentary capability descriptions. A consistent service
landscape enhances knowledge transfer between participants – as it collects knowledge from
both domain experts and service engineers. In particular, it proved helpful for the tasks of
ontology definition and semantic service definition.
The first step towards a complete service landscape is the identification of services. Most
important for a service is the balance between highly reusable functionality and strongly de-
coupled software components containing inseparable logic. Granularity and composability
of individual services must be evaluated according to specific business requirements. The
following sections will explain services of three major categories for the dynamic supply
chain scenario.

3.1.1 DOMAIN SERVICES

In our scenario a category of atomic services are the domain services. There exist different
service providers dependant on certain top level domains. The services can be subdivided
into three major categories. The group of check services is used to determine whether a
particular domain is available. A domain can than be registered using the register services.
To complete a domain registration name server services are used to update certain name
servers with the name-IP mapping. The input data of the atomic services for registration
evolved through analysis of the interfaces provided by domain registrars like Denic or
Directi and will be refined in chapter 4 and 5.

5

Dynamic Supply Chain Scenario for Internet Service Providers

Figure 3: Stakeholder of the scenario

Service PoolEnd Customer

Internet Service Provider

Reseller

B2C Webshop

saferpay

PayPal

InstantCreditCardPayment

CreditCardAuthorization

Payment

directi

CheckDomain

RegisterDomain

SOAP

...

HTTP

order process

supply-chain process

denic

CheckDomain

RegisterDomain

Webbrowser

3.1.2 PAYMENT SERVICES

For dynamic supply chains a essential part is the billing. Therefore we defined a set of
services which provide basic functionality to charge common credit cards. Exemplary
Paypal and Saferpay are used. Figure 5 shows the difference between these two providers.
Saferpay uses two steps to charge a credit card. First it authorizes an amount of money on
the credit card, and in a second step a transaction handle is used to finalize the payment. The
authorization services can be reused for electronic debiting. Payment with the Paypal-API is
done in a single step. Analysing the interfaces of these external service providers in detail,
we recognised that Paypal only supports US dollars as a currency. A separate service to
covert from other currencies like Euro can be provided. In general payment services are
applicable for every scenario where payment is mandatory.

3.1.3 WEB HOSTING SERVICES

The last category are the web hosting services. In our scenario these services are provided
by the ISP itself. A web hosting account has several features, e.g. world-wide-web, e-mail,
ftp, databases, and so forth. Plesk is a server management software offering a comfortable
XML-API to administrate and configure server-side software (Apache, Postfix, mySQL).
Figure 6 shows a minimum set of services to provide basic web hosting functionality.

6

Dynamic Supply Chain Scenario for Internet Service Providers

Figure 4: Service Identification for Domain Services

Figure 5: Service Identification for Payment Services

Payment Services

saferpay
Payment

Payment
TransactionData

AmountOfMoney

Saferpay
TransactionHandle

saferpay
CreditCard

Authorization

Saferpay
TransactionHandle

orderId

CreditCardInfo for MC, VISA,
AMEX, Diners or JCB

AmountOfMoney

saferpay
Refund

Payment

Payment
TransactionData

orderId

CreditCardInfo for MC, VISA,
AMEX, Diners or JCB

AmountOfMoney

Currency
Converter

AmountOfMoney
in USD or EUR

AmountOfMoney
in USD or EUR

payPal
Instant

CreditCard
Payment

Payment
TransactionData

orderId

AmountOfMoney

Person

CreditCardInfo for MC,
VISA, Amex, Discover

payPal
Refund

Payment

Payment
TransactionData

AmountOfMoney

payPalTransactionId

Domain Services

update
Nameservers

set of
updated
nameservers

Set of domain
 names and

respective
IP addresses

denic
CheckDomain

DomainState.de domain

directi
CheckDomain

.com, .net, .org,
.biz, .name., .info,

.jobs domain

nicat
CheckDomain

.at domain

verisign
CheckDomain

.com, .net,
 domain

denic
Register
Domain

.de domain

directi
Register
Domain

.com, .net, .org, .biz, .name.,
.info, .jobs domain

contacts

nicat
Register
Domain

.at domain

contact

contact

DomainState

DomainState

DomainState

DomainState

DomainState

DomainState

nameServers

3.2 EXEMPLARY SERVICE COMPOSITIONS

An crucial requirement of the dynamic supply chain scenario is the possibility, that the
reseller can define arbitrary products and the ASG platform composes appropriate supply
chain processes. While developing an application based on ASG, manually created
exemplary compositions proved to be very helpful to determine dependencies between
single Atomic Services. These dependencies are explained in chapter 5 in detail. Here we
just want to clarify the requested tasks and how the composition component of ASG plans
possible processes. Further we show simple examples how the features renegotiation and
replanning can increase availability.

A request to ASG may looks like: “Register domain lehmann.de for our customer Max
Lehmann and provide him with 100MB web space. He wants to pay with his Discover
Credit Card”. The request contains two main parts specified in a semantic language - Flora
in case of the current ASG prototype. The initial state is the customer, his contact details and
credit card information. The requested goal state contains the registered domain, provided
web hosting and a billed credit card. Figure 7 shows how the Atomic Services defined in the
previous section can be combined.

Alternatively another reseller can define a request just to register a domain and a forwarding
of the domain to an already existing web space. In this case the initial state only consists of
contact details. The goal state is a registered domain with forwarding. Figure 8 shows the
generated process and how renegotiation can compensate a failure while executing the
process in the enactment component. The failed service directiCheckDomain can be
replaced by a service with equivalent capabilities. In our case verisignCheckDomain.

7

Dynamic Supply Chain Scenario for Internet Service Providers

Figure 6: Service Identification for Web Hosting Services

Domain Services

plesk create
Webhosting

Account
PleskUser

contact

plesk
CreateDomain

PleskDomainPleskUser

plesk Setup
Forwarding

boolean
PleskDomain

plesk
SetupEmail

boolean
PleskDomain

loginname
password

DomainName
Set of DomainNames
and corresponding
IP-addresses

ForwardingConfiguration

EmailConfiguration

Figure 7: Exemplary composition

denic
Check

Domain

denic
Register
Domain

plesk
CreateWebhosting

Account

plesk
CreateDomain

update
Nameserver

plesk
SetupPhysical

Hosting

payPalInstant
CreditCard
Payment

Payment is a good example for accomplishing dependencies between services. There are
two points of view about paying for a product. The customer can pay before or after the
supply chain process execution. Hence, the ISP wants to let the reseller choose the time of
payment. Thus this dependency cannot be expressed in semantic service specification. A
possible solution is to decouple the payment process from the supply chain process.

Figure 9 shows an example for such a decoupled process. Furthermore in case of
unavailability of one payment service replanning is triggered because there is no other
single Atomic Service with the same capability.

4 SCENARIO ONTOLOGY

For semantic service specification a scenario ontology is required. This ontology can be
derived from the domain model containing data types used by the interface definition of
Atomic Services. The types are represented by concepts in the domain ontology, developed
specifically for the purpose of the dynamic supply chain scenario. In addition the ontology
defines a full description of the relations between types. A Flora representation of the
domain ontology used for the scenario including all types and relations can be found in the
appendix.

8

Dynamic Supply Chain Scenario for Internet Service Providers

Figure 8: Exemplary composition with renegotiation

directi
CheckDomain

directi
RegisterDomain

plesk
Create

Webhosting
Account

plesk
Create
Domain

plesk
Setup

Forwarding

update
Nameserver

verisign
CheckDomain

failure

Figure 9: Exemplary composition with replanning

saferPay
CreditCard

Authorization

saferPay
Payment

payPalInstant
CreditCard
Payment

Replanning

failure

4.1 ONTOLOGY CONCEPTS

9

Dynamic Supply Chain Scenario for Internet Service Providers

Figure 10: Concepts for semantic service specifications of Check- and Register Domain Atomic Services

Figure 11: Concepts for semantic service specifications of Payment Atomic Services

4.2 RELATIONS BETWEEN ONTOLOGY CONCEPTS

The ontology for the domain of internet service supply chains is more complex than the
domain model. In the domain model as seen above only data types are defined. It expresses
composition, aggregation, as well as inheritance relations between types. Relations defining
semantic associations between types are not represented. Therefore the ontologies contain
additional descriptions, specifically for giving services and their results a meaning. For
these purposes the following set of relations between ontology concepts has been defined in
Flora syntax that is used for semantic description of the atomic services.
hasDomainState(domainName, domainState):relation.

Attaches an domainState to a domainName object, that indicates the state (“unchecked”,
“available”, “unavailable”, “registered”). Domain check services delivers results “available”
or “unavailable”, the value of “registered” should be set in a domainState of a successfully
registered domainName. Each domainName can be associated only one domainState through
this relation.
domainNameservers(domainName, nameServers):relation.

States that a certain domainName is registered with the given nameServers.
creditCardOwner(creditCard, contact):relation.

States that a person described through the contact is the legal owner of a creditCard. Each
creditCard instance can have only one contact.
paymentTransaction(paymentData, paymentTransactionData):relation.

The paymentData has been charged through a transaction expressed as
paymentTransactionData. Each paymentTransactionData must be associated to exactly one
paymentData. However, each paymentData can relate to more than one
paymentTransactionData in a sense that a paymentData (i.e. a credit card) has been used for
different payments.
amountCharged(amountOfMoney, paymentTransactionData):relation.

States that the handle expressed as paymentTransactionData has charged an amount of
amountOfMoney. Each paymentTransactionData must be associated exactly to one
amountOfMoney that has been charged.

The relations paymentTransaction and amountCharged are usually used by payment services
in a combination to express a ternary relation between an amountOfMoney, a
paymentTransactionData, and a paymentData.
authorizedSaferpayAmount(saferpayTransactionHandle, amountOfMoney):relation.

The relation is specifically designed for saferpays atomic services. Since the services
provided by saferpay split the payment process into an authorization and an actual payment,
the payment must know the amountOfMoney a previous authorization has allowed. Each
saferpayTransactionHandle must therefore associate exactly one amountOfMoney object.

5 ATOMIC SERVICES

This chapter contains a detailed description of the atomic services, described in section 3.1,
that have so far been fully implemented for the dynamic supply chain scenario for internet
service providers.

Each service description is divided into three parts: a rather informal description of the
service functionality with its input- and output-parameters as well as pre- and post-

10

Dynamic Supply Chain Scenario for Internet Service Providers

conditions in a straight forward sense. This short semantic description contains additionally
a use case diagram specifying the service by high-level means. The description is intended
to provide an overview of the service and how a domain expert without in-depth technical
knowledge would describe the desired functionality. Especially the preconditions and
effects are far from being sufficient for semantic specifications and are completed in the
second part. The second part addresses the formal semantic service specifications in Flora,
based on the common ASG ontology. The last part is devoted to the technical service
implementation. Its purpose is the description of the actual service interfaces, its
implementation (presented as class diagram), and its interaction with external service
providers. This chapter optionally contains named “remarks and problems” addressing
specific problems of the service implementation.

5.1 DIRECTI CHECK DOMAIN - CHARACTERISTICS

5.1.1 SHORT SEMANTIC DESCRIPTION

Purpose: This service checks via Directi whether a certain domain is available for
registration.

• Parameters/Conditions:
• Input: DomainName domain
• Output: DomainState
• Core precondition: unchecked domain name

(.com, .net, .org, .biz, .name, .info, .jobs)
• Optimistic postcondition: checked domain name
• (.com, .net, .org, .biz, .name, .info, .jobs)
• Errors and Exceptions: EJBException, AssertionError

• Scenario Description: A customer wants to register the domain
myFunnyBunny.com. Certainly this can only work if the domain is not already
registered. To check the registrations status the user calls his/her ISP which calls
Directis CheckDomainService to validate whether lehmann.com is available for
registration. The service returns available for domains free for registration and
unavailable for already registered domains.

11

Figure 12: directi check domain Atomic Service - use case diagram

Dynamic Supply Chain Scenario for Internet Service Providers

5.1.2 FORMAL SEMANTIC SPECIFICATION

The formal preconditions contain sets of conditions for each possible top-level domain
describing first the optimistic postcondition and second the exceptional postcondition when
the domain is not available.
The formal precondition defines the input parameters and additional restrictions to it, here
only on the name of the top-level domains. For both cases we have positive effects
containing an domainState object that relates to the domainName and has a certain value,
which is set to “available” in the optimistic case and to “unavailable” in the exceptional
case. The complete formal specification contains pre- and postcondition in a rectified form
as well in a string form for discovery purposes.

directiCheckDomain:atomicService[

spec -> directiCheckDomainSpec:semanticServiceSpecification[

conditions ->> {

directiCheckComDomainCond:condition[

precondR -> ${DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,"com":string)}
:reification,

precondS -> "DN:domainName, DN:parameter, DN[tld -> TLD],
hasValue(TLD,""com"":string)":string,

posEffR -> ${DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,"available":string) }:reification,

posEffS -> "DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,""available"":string)":string

],

directiCheckComDomainErrorCond:condition[

precondR -> ${DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,"com":string)}
:reification,

precondS -> "DN:domainName, DN:parameter, DN[tld -> TLD],
hasValue(TLD,""com"":string)":string,

posEffR -> ${DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,"unavailable":string) }:reification,

posEffS -> "DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,""unavailable"":string)":string,

isException -> ${-1}:reification

],

directiCheckNetDomainCond:condition[

precondR -> ${DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,"net":string)}
:reification,

precondS -> "DN:domainName, DN:parameter, DN[tld -> TLD],
hasValue(TLD,""net"":string)":string,

posEffR -> ${DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,"available":string) }:reification,

posEffS -> "DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,""available"":string)":string

],

directiCheckNetDomainErrorCond:condition[

precondR -> ${DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,"net":string)}
:reification,

precondS -> "DN:domainName, DN:parameter, DN[tld -> TLD],
hasValue(TLD,""net"":string)":string,

posEffR -> ${DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,"unavailable":string) }:reification,

posEffS -> "DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,""unavailable"":string)":string,

isException -> ${-1}:reification

],

12

Dynamic Supply Chain Scenario for Internet Service Providers

...

}],

grounding -> directiCheckDomainBridge:serviceGroundingSpecification[

serviceImplRef -> "3":string,

operationName -> "directiCheckDomain":string,

inParamSeq ->> {_#:oSP[ord -> 1, str -> "DN":string]},

outParamSeq ->> {_#:oSP[ord -> 1, str -> "DS":string]}],

properties -> directiCheckDomainProps::serviceProperties[

serviceName *=> directiCheckDomainSNType:enumeration[type -> string, values ->>
{"DirectiCheckDomainService":string}],

providerName *=> directiCheckDomainPNType:enumeration[type -> string, values ->>
{"directi":string}

]]].

Listing 1: Flora specification for directi check domain

5.1.3 TECHNICAL DETAILS

13

Figure 13: directi check domain Atomic Service - class diagram

Figure 14: directi check domain Atomic Services - sequence diagram

Dynamic Supply Chain Scenario for Internet Service Providers

5.2 VERISIGN CHECK DOMAIN - CHARACTERISTICS

5.2.1 SHORT SEMANTIC DESCRIPTION

Purpose: This service checks via Verisign whether a certain domain is available for
registration.

• Parameters/Conditions:
• Input: DomainName domain
• Output: DomainState
• Core precondition: unchecked domain name (.com, .net)
• Optimistic postcondition: checked domain name (.com, .net)
• Errors and Exceptions: EJBException, AssertionError

• Scenario Description: An customer wants to register the domain lehmann.com.
Certainly this can only work if the domain is not already registered. To check the
registration status the user calls his/her ISP which calls Verisigns
CheckDomainService to validate whether lehmann.com is available for registration.
The service returns available for free domains and unavailable for already registered
domains.

5.2.2 FORMAL SEMANTIC SPECIFICATION

The formal semantic specifications of this Atomic Service corresponds to the directi domain
check, apart from its restriction to check only .com and .net domains.

verisignCheckDomain:atomicService[

spec -> verisignCheckDomainSpec:semanticServiceSpecification[

conditions ->> {

verisignCheckComDomainCond:condition[

precondR -> ${DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,"com":string)}
:reification,

precondS -> "DN:domainName, DN:parameter, DN[tld -> TLD],
hasValue(TLD,""com"":string)":string,

posEffR -> ${DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,"available":string) }:reification,

posEffS -> "DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,""available"":string)":string

],

14

Figure 15: verisign check domain Atomic Service - use case diagram

Dynamic Supply Chain Scenario for Internet Service Providers

verisignCheckComDomainErrorCond:condition[

precondR -> ${DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,"com":string)}
:reification,

precondS -> "DN:domainName, DN:parameter, DN[tld -> TLD],
hasValue(TLD,""com"":string)":string,

posEffR -> ${DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,"unavailable":string) }:reification,

posEffS -> "DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,""unavailable"":string)":string,

isException -> ${-1}:reification

],

verisignCheckNetDomainCond:condition[

precondR -> ${DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,"net":string)}
:reification,

precondS -> "DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,""net"":string)"
:string,

posEffR -> ${DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,"available":string) }:reification,

posEffS -> "DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,""available"":string)":string

],

verisignCheckNetDomainErrorCond:condition[

precondR -> ${DN:domainName, DN:parameter, DN[tld -> TLD],
hasValue(TLD,"net":string)}:reification,

precondS -> "DN:domainName, DN:parameter, DN[tld -> TLD],
hasValue(TLD,""net"":string)":string,

posEffR -> ${DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,"unavailable":string) }:reification,

posEffS -> "DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,""unavailable"":string)":string,

isException -> ${-1}:reification

]

}],

grounding -> verisignCheckDomainBridge:serviceGroundingSpecification[

serviceImplRef -> "7":string,

operationName -> "verisignCheckDomain":string,

inParamSeq ->> {_#:oSP[ord -> 1, str -> "DN":string]},

outParamSeq ->> {_#:oSP[ord -> 1, str -> "DS":string]}],

properties -> verisignCheckDomainProps::serviceProperties[

serviceName *=> verisignCheckDomainSNType:enumeration[type -> string, values ->>
{"VerisignCheckDomainService":string}],

providerName *=>verisignCheckDomainPNType:enumeration[type -> string, values ->>
{"verisign":string}

]]].

Listing 2: Flora specification for verisign check domain

15

Dynamic Supply Chain Scenario for Internet Service Providers

5.2.3 TECHNICAL DETAILS

5.3 DENIC CHECK DOMAIN - CHARACTERISTICS

5.3.1 SHORT SEMANTIC DESCRIPTION

Purpose: This service checks via Denic whether a certain domain is available for
registration.

• Parameters/Conditions:
• Input: DomainName domain
• Output: DomainState
• Core precondition: unchecked domain name (.de)
• Optimistic postcondition: checked domain name (.de)
• Errors: EJBException, AssertionError

• Scenario Description: A customer wants to check the domain lehmann.de for
availability. To check the registration status the user calls his/her ISP which calls
denic's CheckDomainService to validate whether lehmann.de is available for
registration. The service returns available for free domains and unavailable for
already registered domains.

16

Dynamic Supply Chain Scenario for Internet Service Providers

Figure 17: verisign check domain Atomic Service - sequence diagram

Figure 16: verisign check domain Atomic Service - class diagram

5.3.2 FORMAL SEMANTIC SPECIFICATION

The formal semantic specifications of this Atomic Service corresponds to the directi domain
check. It is specifically designed to check .de domains.

denicCheckDomain:atomicService[

spec -> denicCheckDomainSpec:semanticServiceSpecification[

conditions ->> {

denicCheckDeDomainCond:condition[

precondR -> ${DN:domainName, DN:parameter, DN[tld -> TLD],
hasValue(TLD,"de":string)}:reification,

precondS -> "DN:domainName, DN:parameter, DN[tld -> TLD],
hasValue(TLD,""de"":string)":string,

posEffR -> ${DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,"available":string) }:reification,

posEffS -> "DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,""available"":string)":string

],

denicCheckDeDomainErrorCond:condition[

precondR -> ${DN:domainName, DN:parameter, DN[tld -> TLD],
hasValue(TLD,"de":string)}:reification,

precondS -> "DN:domainName, DN:parameter, DN[tld -> TLD],
hasValue(TLD,""de"":string)":string,

posEffR -> ${DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,"unavailable":string) }:reification,

posEffS -> "DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,""unavailable"":string)":string,

isException -> ${-1}:reification

]

}],

grounding -> denicCheckDomainBridge:serviceGroundingSpecification[

serviceImplRef -> "2":string,

operationName -> "denicCheckDomain":string,

inParamSeq ->> {_#:oSP[ord -> 1, str -> "DN":string]},

outParamSeq ->> {_#:oSP[ord -> 1, str -> "DS":string]}],

properties -> denicCheckDomainProps::serviceProperties[

serviceName *=> denicCheckDomainSNType:enumeration[type -> string, values ->>
{"DenicCheckDomainService":string}],

providerName *=>denicCheckDomainPNType:enumeration[type -> string, values ->>
{"denic":string}

]]].

17

Dynamic Supply Chain Scenario for Internet Service Providers

Figure 18: denic check domain Atomic Service - use case diagram

Listing 3: Flora specification for denic check domain

5.3.3 TECHNICAL DETAILS

5.4 DIRECTI REGISTER DOMAIN - CHARACTERISTICS

5.4.1 SHORT SEMANTIC DESCRIPTION

Purpose: This service registers a certain domain via Directi.
• Parameters/Conditions:

• Input: DomainName domainName, Contact customer, Contact admin,
NameServers nameServers

• Output: DomainState
• Core precondition: checked domain name
• (.com, .net, .org, .biz, .name, .info, .jobs)
• Optimistic postcondition: Domain registered
• Exceptions: EJBException

• Scenario Description: A customer wants to register the domain lehmann.com. The
check for availability is already done therefore the customer enters additional to the
checked domain name his/her customer data and voluntarily the data of his/her
administrator. Afterwards his/her ISP adds at leased one name servers to complete

18

Figure 19: denic check domain Atomic Service - class diagram

Dynamic Supply Chain Scenario for Internet Service Providers

Figure 20: denic check domain Atomic Service - sequence diagram

the request for Directis RegisterDomainService. If the domain is successful
registered the service responses registered else unavailable.

5.4.2 FORMAL SEMANTIC SPECIFICATION

For each possible top-level domain the service offers two conditions: one for the regular
case that the desired domainName can be registered and one for the exceptional case that the
domain is not available at the moment. To protect the external service provider from
unnecessary high unsuccessful requests, the ordered domain must have been checked
before. In both cases – the successful and unsuccessful – the service returns a domainState
object with the appropriate value set to “registered” or “unavailable”.

directiCheckDomain:atomicService[

spec -> directiCheckDomainSpec:semanticServiceSpecification[

conditions ->> {

directiRegisterDomain:atomicService[

spec -> directiRegisterDomainSpec:semanticServiceSpecification[

conditions ->> {

directiRegisterComDomainCond:condition[

precondR -> ${DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,"com":string),
ADMINC:contact, ADMINC:parameter, DH:contact, DH: parameter, NS:nameServers,
NS:parameter, DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,"available":string)}:reification,

precondS -> "DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,""com"":string),
ADMINC:contact, ADMINC:parameter, DH:contact, DH: parameter, NS:nameServers,
NS:parameter, DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,""available"":string)":string,

posEffR -> ${DS2:domainState, DS2:parameter, hasDomainState(DN,DS2),
hasValue(DS2,"registered":string) }:reification,

posEffS -> "DS2:domainState, DS2:parameter, hasDomainState(DN,DS2),
hasValue(DS2,""registered"":string)":string],

directiRegisterComDomainErrorCond:condition[

precondR -> ${DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,"com":string),
ADMINC:contact, ADMINC:parameter, DH:contact, DH: parameter, NS:nameServers,
NS:parameter, DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,"available":string)}:reification,

precondS -> "DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,""com"":string),

19

Dynamic Supply Chain Scenario for Internet Service Providers

Figure 21: directi register domain Atomic Service- use case diagram

ADMINC:contact, ADMINC:parameter, DH:contact, DH: parameter, NS:nameServers,
NS:parameter, DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,""available"":string)":string,

posEffR -> ${DS2:domainState, DS2:parameter, hasDomainState(DN,DS2),
hasValue(DS2,"unavailable":string) }:reification,

posEffS -> "DS2:domainState, DS2:parameter, hasDomainState(DN,DS2),
hasValue(DS2,""unavailable"":string)":string,

isException -> ${-1}:reification],

directiRegisterNetDomainCond:condition[

precondR -> ${DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,"net":string),
ADMINC:contact, ADMINC:parameter, DH:contact, DH: parameter, NS:nameServers,
NS:parameter, DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,"available":string)}:reification,

precondS -> "DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,""net"":string),
ADMINC:contact, ADMINC:parameter, DH:contact, DH: parameter, NS:nameServers,
NS:parameter, DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,""available"":string)":string,

posEffR -> ${DS2:domainState, DS2:parameter, hasDomainState(DN,DS2),
hasValue(DS2,"registered":string) }:reification,

posEffS -> "DS2:domainState, DS2:parameter, hasDomainState(DN,DS2),
hasValue(DS2,""registered"":string)":string],

directiRegisterNetDomainErrorCond:condition[

precondR -> ${DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,"net":string),
ADMINC:contact, ADMINC:parameter, DH:contact, DH: parameter, NS:nameServers,
NS:parameter, DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,"available":string)}:reification,

precondS -> "DN:domainName, DN:parameter, DN[tld -> TLD], hasValue(TLD,""net"":string),
ADMINC:contact, ADMINC:parameter, DH:contact, DH: parameter, NS:nameServers,
NS:parameter, DS:domainState, DS:parameter, hasDomainState(DN,DS),
hasValue(DS,""available"":string)":string,

posEffR -> ${DS2:domainState, DS2:parameter, hasDomainState(DN,DS2),
hasValue(DS2,"unavailable":string) }:reification,

posEffS -> "DS2:domainState, DS2:parameter, hasDomainState(DN,DS2),
hasValue(DS2,""unavailable"":string)":string,

isException -> ${-1}:reification],

...

}],

grounding-> directiRegisterDomainBridge:serviceGroundingSpecification[

serviceImplRef -> "6":string,

operationName -> "directiRegisterDomain":string,

inParamSeq ->> {_#:oSP[ord -> 1, str -> "DN":string],

_#:oSP[ord -> 2, str -> "DH":string],

_#:oSP[ord -> 3, str -> "ADMINC":string],

_#:oSP[ord -> 4, str -> "NS":string]},

outParamSeq ->> {_#:oSP[ord -> 1, str -> "DS":string]}],

properties -> directiRegisterDomainProps::serviceProperties[

serviceName *=> directiRegisterDomainSNType:enumeration[type -> string, values ->>
{"directiRegisterDomainService":string}],

providerName *=> directiRegisterDomainPNType:enumeration[type -> string, values ->>
{"directi":string}]]].

Listing 4: Flora specification for directi register domain

20

Dynamic Supply Chain Scenario for Internet Service Providers

5.4.3 TECHNICAL DETAILS

21

Figure 22: directi register domain Atomic Service - class diagram

Figure 23: directi register domain Atomic Service - sequence diagram

Dynamic Supply Chain Scenario for Internet Service Providers

5.5 SAFERPAY CREDIT CARD AUTHORIZATION - CHARACTERISTICS

5.5.1 SHORT SEMANTIC DESCRIPTION

Purpose: This service authorizes a creditcard payment using the Saferpay Creditcard
Authorization Interface (CIA). It can authorize payments with credit cards of type Visa,
MasterCard, Amex, Diners and JCB.

• Parameters/Conditions:
• Input: String invoiceNumber, AmountOfMoney amount, CreditCard

creditCard
• Output: SaferpayTransactionHandle
• Core precondition: -
• Optimistic postcondition: An "authorized" payment to be used to charge the

creditcard later
• Scenario Description: A customer acquires a fee required service. The service

provider accepts only Saferpay payment. Thus he/she has to pay for the received
service using Saferpays PaymentService. But before he/she can do this he/she has to
get a creditcard authorization from Saferpays CreditCardAuthorizationService. To
get this authorization the customer has to assign his/her creditcard details and the
amount of money he/she has to pay. If the payment is authorized by Saferpay the
service returns a valid TransactionHandle which has to be used for payment later
else if he/she is not authorized an invalid TransactionHandle is responded.

5.5.2 FORMAL SEMANTIC SPECIFICATION

The saferpay credit card authorization restricts the amountOfMoney (to non-negative values
and a reasonable maximal amount) that cannot be expressed otherwise than in the semantic
service specification.

22

Dynamic Supply Chain Scenario for Internet Service Providers

Figure 24: saferpay Atomic Services - use case diagram

The service accepts an individual set of three conditions (optimistic case, case where invalid
credit card data is detected, and all other fault cases) for each credit card type (Visa,
Mastercard, American Express, Diners, JCB). The effects associates a Validity object with
the credit card data, marking it as “valid”, “invalid” or “unknown”. The optimistic case
additionally associates the amountOfMoney with the saferpay-TransactionHandle, thus
stating that this amount has been authorized by saferpay with the returned
saferpayTransactionHandle.

saferpayCreditCardAuthorization:atomicService[

spec -> saferpayCreditCardAuthorizationSpec: semanticServiceSpecification[

conditions ->> {

saferpayVisaAuthorizationCond:condition[

precondR -> ${I:invoiceNumber, I:parameter, AM:amountOfMoney, AM:parameter, AM[amount ->
A], A>0, A<1000000, CC:creditCard, CC:parameter, CC[type -> TYPE],
hasValue(TYPE,"Visa":string)}:reification,

precondS -> "I:invoiceNumber, I:parameter, AM:amountOfMoney, AM:parameter, AM[amount ->
A], A>0, A<1000000, CC:creditCard, CC:parameter, CC[type -> TYPE],
hasValue(TYPE,""Visa"":string)":string,

posEffR -> ${STH:saferpayTransactionHandle, STH:parameter, STH[validity -> PV],
hasValue(PV,"valid":string), paymentTransaction(CC,STH), STH[token ->
TOKEN], hasValue(TOKEN,"(unused)"),
authorizedSaferpayAmount(STH,AM)}:reification,

posEffS -> "STH:saferpayTransactionHandle, STH:parameter, STH[validity -> PV],
hasValue(PV,""valid"":string), paymentTransaction(CC,STH), STH[token ->
TOKEN], hasValue(TOKEN,""(unused)""),
authorizedSaferpayAmount(STH,AM)":string

],

saferpayVisaAuthorizationInvalidCond:condition[

precondR -> ${I:invoiceNumber, I:parameter, AM:amountOfMoney, AM:parameter, AM[amount ->
A], A>0, A<1000000, CC:creditCard, CC:parameter, CC[type -> TYPE],
hasValue(TYPE,"Visa":string)}:reification,

precondS -> "I:invoiceNumber, I:parameter, AM:amountOfMoney, AM:parameter, AM[amount ->
A], A>0, A<1000000, CC:creditCard, CC:parameter, CC[type -> TYPE],
hasValue(TYPE,""Visa"":string)":string,

posEffR -> ${STH:saferpayTransactionHandle, STH:parameter, STH[validity -> PV],
hasValue(PV,"invalid":string), paymentTransaction(CC,STH)}:reification,

posEffS -> "STH:saferpayTransactionHandle, STH:parameter, STH[validity -> PV],
hasValue(PV,""invalid"":string), paymentTransaction(CC,STH)":string,

isException -> ${-1}:reification

],

saferpayVisaAuthorizationErrorCond:condition[

precondR -> ${I:invoiceNumber, I:parameter, AM:amountOfMoney, AM:parameter, AM[amount ->
A], A>0, A<1000000, CC:creditCard, CC:parameter, CC[type -> TYPE],
hasValue(TYPE,"Visa":string)}:reification,

precondS -> "I:invoiceNumber, I:parameter, AM:amountOfMoney, AM:parameter, AM[amount ->
A], A>0, A<1000000, CC:creditCard, CC:parameter, CC[type -> TYPE],
hasValue(TYPE,""Visa"":string)":string,

posEffR -> ${STH:saferpayTransactionHandle, STH:parameter, STH[validity -> PV],
hasValue(PV,"unknown":string), paymentTransaction(CC,STH)}:reification,

posEffS -> "STH:saferpayTransactionHandle, STH:parameter, STH[validity -> PV],
hasValue(PV,""unknown"":string), paymentTransaction(CC,STH)":string,

isException -> ${-2}:reification

],

...

}],

grounding -> saferpayCreditCardAuthorizationBridge: serviceGroundingSpecification[

serviceImplRef -> "10":string,

operationName -> "authorizeSaferpayCreditCard":string,

23

Dynamic Supply Chain Scenario for Internet Service Providers

inParamSeq ->> {_#:oSP[ord -> 1, str -> "I":string],
_#:oSP[ord -> 2, str -> "AM":string],
_#:oSP[ord -> 3, str -> "CC":string]},

outParamSeq ->> {_#:oSP[ord -> 1, str -> "STH":string]}],

properties -> saferpayCreditCardAuthorizationProps::serviceProperties[

serviceName *=> saferpayCreditCardAuthorizationSNType:enumeration[type -> string, values
->> {"saferpayCreditCardAuthorizationService":string}],

providerName *=>saferpayCreditCardAuthorizationPNType:enumeration[type -> string, values ->>
{"saferpay":string}]]].

Listing 5: Flora specification for saferpay credit card authorization

5.5.3 TECHNICAL DETAILS

24

Figure 25: saferpay creditcard authorization Atomic Service - class diagram

Dynamic Supply Chain Scenario for Internet Service Providers

5.5.4 PROBLEMS AND REMARKS

Saferpay's payment services have to be accessed using a special API. To provide a secure
information transfer from our application server to Saferpay's gateway this API uses secure
socket layer. The implementation made by saferpay is based on implementations provided
together with SUN's JRE. Since IBM's WebSphere is based upon IBM's J9 VM it provides
its own implementation of certain security and encryption algorithms which leaded to
several interoperability problems. For that reason working with SUN's we needed to change
the application server to JBoss. Also the services we developed are not compliant to the EJB
2.1 specification. For CreditCardAuthorization and Payment the API does some file IO to
save generated keys.

5.6 SAFERPAY PAYMENT - CHARACTERISTICS

5.6.1 SHORT SEMANTIC DESCRIPTION

Purpose: Charge a previously authorized credit card.

• Parameters/Conditions:
• Input: SaferpayTransactionHandle transHandle, AmountOfMoney amount
• Output: SaferpayTransactionInformation
• Core precondition: An "authorized" payment to be used to charge

associated the credit card
• Optimistic postcondition: credit card charged

• Scenario Description: A customer acquires a fee required service. The service
provider accepts only Saferpay payment. The customer already got a creditcard
authorization from Saferpay's CreditCardAuthorizationService. Thus he/she has to
pay for the received service using Saferpay's PaymentService. To pay an invoice the
customer has to send his/her valid TransactionHandle and the amount of money

25

Figure 26: saferpay creditcard authorization Atomic Service - sequence diagram

Dynamic Supply Chain Scenario for Internet Service Providers

https://ssl.asg-platform.org/bachelor/wiki/SaferpayCreditCardAuthorization

he/she has to complete payment. If the payment is successful the service returns
information about the transaction. If not it failed and payment aborted is responded.

5.6.2 FORMAL SEMANTIC SPECIFICATION

This service requires that a payment has been authorized before with saferpay. It needs the
saferpayTransactionHandle of the authorization. The handle must reference a valid payment
data, expressed through the value “valid” of the validity object contained in the handle. The
service is restricted to a maximum of 115% of the authorized amount, with the currency
identical to the one previously authorized.

saferpayPayment:atomicService[

spec -> saferpayPaymentSpec:semanticServiceSpecification[

conditions ->> {

saferpayPaymentCond:condition[

precondR -> ${STH:saferpayTransactionHandle, STH:parameter, STH[validity -> PV],
hasValue(PV,"valid":string), authorizedSaferpayAmount(STH,AMA), AMA[amount
-> AMAV], AMA[currency -> AMAC], AM:amountOfMoney, AM:parameter, AM[amount
-> AMV], AM[currency -> AMC], AMC:=:AMAC, AMV =< 1.15*AMAV, STH[token ->
TOKEN], hasValue(TOKEN,"(unused)")}:reification,

precondS -> "SSTH:saferpayTransactionHandle, STH:parameter, STH[validity -> PV],
hasValue(PV,""valid"":string), authorizedSaferpayAmount(STH,AMA), AMA[amount
-> AMAV], AMA[currency -> AMAC], AM:amountOfMoney, AM:parameter, AM[amount
-> AMV], AM[currency -> AMC], AMC:=:AMAC, AMV =< 1.15*AMAV, STH[token ->
TOKEN], hasValue(TOKEN,"(unused)")":string,

posEffR -> ${STI:saferpayTransactionInformation, STI:parameter, STI[paymentState -> PS],
hasValue(PS,"completed"), amountCharged(AM,STI)}:reification,

posEffS -> "STI:saferpayTransactionInformation, STI:parameter, STI[paymentState -> PS],
hasValue(PS,""completed""), amountCharged(AM,STI)":string

],

saferpayPaymentErrorCond:condition[

precondR -> ${STH:saferpayTransactionHandle, STH:parameter, STH[validity -> PV],
hasValue(PV,"valid":string), authorizedSaferpayAmount(STH,AMA), AMA[amount
-> AMAV], AMA[currency -> AMAC], AM:amountOfMoney, AM:parameter, AM[amount
-> AMV], AM[currency -> AMC], AMC:=:AMAC, AMV =< 1.15*AMAV, STH[token ->
TOKEN], hasValue(TOKEN,"(unused)")}:reification,

precondS -> "SSTH:saferpayTransactionHandle, STH:parameter, STH[validity -> PV],

26

Figure 27: saferpay Atomic Services - use case diagram

Dynamic Supply Chain Scenario for Internet Service Providers

hasValue(PV,""valid"":string), authorizedSaferpayAmount(STH,AMA), AMA[amount
-> AMAV], AMA[currency -> AMAC], AM:amountOfMoney, AM:parameter, AM[amount
-> AMV], AM[currency -> AMC], AMC:=:AMAC, AMV =< 1.15*AMAV, STH[token ->
TOKEN], hasValue(TOKEN,"(unused)")":string,

posEffR -> ${STI:saferpayTransactionInformation, STI:parameter, STI[paymentState -> PS],
hasValue(PS,"aborted")}:refication,

posEffS -> "STI:saferpayTransactionInformation, STI:parameter, STI[paymentState -> PS],
hasValue(PS,""aborted"")":string,

isException -> ${-1}:reification

]

}],

grounding -> saferpayPaymentBridge:serviceGroundingSpecification[

serviceImplRef -> "11":string,

operationName -> "doSaferpayPayment":string,

inParamSeq ->> {_#:oSP[ord -> 1, str -> "AM":string],
_#:oSP[ord -> 2, str -> "STH":string]},

outParamSeq ->> {_#:oSP[ord -> 1, str -> "STH":string]}],

properties -> saferpayPaymentProps::serviceProperties[

serviceName *=> saferpayPaymentSNType:enumeration[type -> string, values ->>
{"saferpayPaymentService":string}],

providerName *=> saferpayPaymentPNType:enumeration[type -> string, values ->>
{"saferpay":string}]]].

Listing 6: Flora specification for saferpay payment

5.6.3 TECHNICAL DETAILS

27

Dynamic Supply Chain Scenario for Internet Service Providers

Figure 28: saferpay payment Atomic Service - class diagram

5.6.4 PROBLEMS AND REMARKS

Saferpay's payment services have to be accessed using a special API. To provide a secure
information transfer from our application server to Saferpay's gateway this API uses secure
socket layer. The implementation made by saferpay is based on implementations provided
together with SUN's JRE. Since IBM's WebSphere is based upon IBM's J9 VM it provides
its own implementation of certain security and encryption algorithms which leaded to
several interoperability problems. For that reason working with SUN's we needed to change
the application server to JBoss. Also the services we developed are not compliant to the EJB
2.1 specification. For CreditCardAuthorization and Payment the API does some file IO to
save generated keys.

5.7 PAYPAL DIRECT PAYMENT – CHARACTERISTICS

5.7.1 SHORT SEMANTIC DESCRIPTION

Purpose: Uses the Paypal web service API (DirectPaymentAPI) to process a credit card
payment immediately. The service supports Visa, MasterCard, Amex and Discover.

• Parameters/Conditions:
• Input: String invoiceNumber, AmountOfMoney amount, CreditCard card,

Contact contact
• Output: PayPalTransactionId
• Core precondition: -

28

Dynamic Supply Chain Scenario for Internet Service Providers

Figure 29: saferpay payment Atomic Service - sequence diagram

• Optimistic postcondition: the given creditCard is charged the stated amount
of money

• Scenario Description: A customer acquires a fee required service. To pay the
invoice the customer has to assign his/her creditcard and contact details to the service
vendor. The service vendor adds the amount and an invoice number and triggers the
payment process.

5.7.2 FORMAL SEMANTIC SPECIFICATION

This service does not require any previous authorization. Only all of the input parameters
must be given, including the users (payers) IP address for tracing credit card fraud. For the
given credit card, the holder must contain the name and address of the credit card owner to
fulfil the request.

The amount to be charged must be greater than zero and within reasonable upper bounds
(10000 USD as limited by Paypal). This service can only process US-dollar, therefore the
currency must be set to “USD”.

When finished, the service returns a payPalTransactionId, no matter whether the payment
was successful or not. In case of success, the associated Validity object has a value of
“valid”, else it will be set to “invalid”. Only when payment was successful, the association
amountCharged will express that the credit card connected with the payPalTransactionId has
been charged the amount specified in the precondition.

payPalInstantCreditCardPayment:atomicService[

spec -> payPalInstantCreditCardPaymentSpec: semanticServiceSpecification[

conditions ->> {

payPalInstantVisaPaymentCond:condition[

precondR -> ${I:invoiceNumber, I:parameter, AM:amountOfMoney, AM:parameter, AM[amount ->
A], A>0, A<1000000, AM[currency ->CY], hasValue(CY,"USD":string),
CC:creditCard, CC:parameter, CC[type -> TYPE], hasValue(TYPE,"Visa":string),
C:contact, C:parameter, creditCardOwner(CC, C)}:reification,

precondS -> "I:invoiceNumber, I:parameter, AM:amountOfMoney, AM:parameter, AM[amount ->
A], A>0, A<1000000, AM[currency ->CY], hasValue(CY,""USD"":string),
CC:creditCard, CC:parameter, CC[type -> TYPE],
hasValue(TYPE,""Visa"":string), C:contact, C:parameter, creditCardOwner(CC,
C)":string,

29

Figure 30: paypal direct payment Atomic Service - use case diagram

Dynamic Supply Chain Scenario for Internet Service Providers

posEffR -> ${PPT:payPalTransactionId, PPT:parameter, PPT[validity -> VAL],
hasValue(VAL,"valid":string), amountCharged(AM,PPT),
paymentTransaction(CC,PPT)}:reification,

posEffS -> "PPT:payPalTransactionId, PPT:parameter, PPT[validity -> VAL],
hasValue(VAL,""valid"":string), amountCharged(AM,PPT),
paymentTransaction(CC,PPT)":string

],

payPalInstantVisaInvalidDataErrorCond:condition[

precondR -> ${I:invoiceNumber, I:parameter, AM:amountOfMoney, AM:parameter, AM[amount ->
A], A>0, A<1000000, AM[currency ->CY], hasValue(CY,"USD":string),
CC:creditCard, CC:parameter, CC[type -> TYPE], hasValue(TYPE,"Visa":string),
C:contact, C:parameter, creditCardOwner(CC, C)}:reification,

precondS -> "I:invoiceNumber, I:parameter, AM:amountOfMoney, AM:parameter, AM[amount ->
A], A>0, A<1000000, AM[currency ->CY], hasValue(CY,""USD"":string),
CC:creditCard, CC:parameter, CC[type -> TYPE],
hasValue(TYPE,""Visa"":string), C:contact, C:parameter, creditCardOwner(CC,
C)":string,

posEffR -> ${PPT:payPalTransactionId, PPT:parameter, PPT[validity -> VAL],
hasValue(VAL,"invalid":string), paymentTransaction(CC,PPT)}:reification,

posEffS -> "PPT:payPalTransactionId, PPT:parameter, PPT[validity -> VAL],
hasValue(VAL,""invalid"":string), paymentTransaction(CC,PPT)":string,

isException -> ${-2}:reification

],

...

}],

grounding -> payPalInstantCreditCardPaymentBridge: serviceGroundingSpecification[

serviceImplRef -> "9":string,

operationName -> "doDirectPayment":string,

inParamSeq ->> {_#:oSP[ord -> 1, str -> "I":string],
_#:oSP[ord -> 2, str -> "AM":string],
_#:oSP[ord -> 3, str -> "CC":string],
_#:oSP[ord -> 4, str -> "C":string],
_#:oSP[ord -> 5, str -> "IP":string]},

outParamSeq ->> {_#:oSP[ord -> 1, str -> "PPT":string]}],

properties -> payPalInstantCreditCardPaymentProps::serviceProperties[

serviceName *=> payPalInstantCreditCardPaymentSNType:enumeration[type -> string, values ->>
{"payPalInstantCreditCardPaymentService":string}],

providerName *=> payPalInstantCreditCardPaymentPNType:enumeration[type -> string, values ->>
{"payPal":string}]]].

Listing 7: Flora specification for paypal direct payment

30

Dynamic Supply Chain Scenario for Internet Service Providers

5.7.3 TECHNICAL DETAILS

5.7.4 PROBLEMS AND REMARKS

Paypal provides an API - the most close configuration supported is the following:
• Sun Solaris 9.0
• Axis 1.2
• JDK 1.4.2 or later
• WSDL 1.1 Standard

Even with hard trying we failed on running the Paypal service using the given API running
on IBMs JVM. We learned that IBMs Crypto packages does not support several key sizes,

31

Figure 31: paypal direct payment Atomic Service - class diagram

Figure 32: paypal direct payment Atomic Service - sequence diagram

Dynamic Supply Chain Scenario for Internet Service Providers

among others the key size demanded from paypal. Based upon this problem we tried to
deploy the corresponding classes developed from SUN to IBMs J9, which was not possible
in the given time frame. We also failed on running the paypal API without the included
Axis package.
As an additional problem we figured out, that the API forces the programmer to pass a path
of a key file to the API. This file is opened by the API itself. Unfortunately there is no
functionality provided which gave us the possibility to avoid this file IO.
Due to that reason we developed a non-ejb object and deployed this on a JBoss application
server running on Java 1.4.2. Sadly as a consequence the result does not fit the atomic
service definition, which demands Atomic Services to be EJBs with web service interface.
Based on this issue a possible workaround would be to develop an additional level on
indirection - a secondary proxy instance. A similar sample can be found in 5.8.

5.8 UPDATE LOCAL NAMESERVER - CHARACTERISTICS

5.8.1 SHORT SEMANTIC DESCRIPTION

Purpose: Registers a passed domain name using a tcp-server which assigns an IP from it's
pool. This assignment is done by editing /etc/hosts on the machine a special tcp-servers runs
on, for test purposes.

• Parameters/Conditions:
• Input: domain to register at the local nameserver
• Output: Nameservers which contains all nameservers (nameserver) updated

by the service.
• Core precondition: -
• Optimistic postcondition: the assigned IP-Address can be looked up using

the returned nameservers
• Scenario Description: To assign lehmann.com to an IP-Address, the service can be

called with the domain parameter lehmann.com. After a correct execution of the
service lehmann.com will be resolvable on the machine which runs the tcp-server.
After successful execution the service returns an array of updated nameserves which
only contains the IP of the machine which runs the tcp-server.

32

Figure 33: update local nameserver Atomic Service - use case diagram

Dynamic Supply Chain Scenario for Internet Service Providers

5.8.2 FORMAL SEMANTIC SPECIFICATION

This service can be applied in two cases. First, if a domain is available and will afterwards
be registered (presumed that all data is correct and a service for domain registration is
executable). Second, if the domain has been registered through the internet service provider
and will be afterwards inserted into local nameservers (can be one or more). Both cases have
the effect that the returned set of nameServers lists the given domainName.

updateLocalNameserver:atomicService[

spec updateLocalNameserverSpec:semanticServiceSpecification[

conditions ->> {

updateLocalNameserver1Cond:condition[

precondR -> ${DN:domainName, DN:parameter, hasDomainState(DN,DS),
hasValue(DS,"available":string)}:reification,

precondS -> "DN:domainName, DN:parameter, hasDomainState(DN,DS),
hasValue(DS,""available"":string)":string,

posEffR -> ${NS:nameServers, NS:parameter, domainNameservers(DN,NS)}:reification,

posEffS -> "NS:nameServers, NS:parameter, domainNameservers(DN,NS)":string],

updateLocalNameserver2Cond:condition[

precondR -> ${DN:domainName, DN:parameter, hasDomainState(DN,DS),
hasValue(DS,"registered":string)}:reification,

precondS -> "DN:domainName, DN:parameter, hasDomainState(DN,DS),
hasValue(DS,""registered"":string)":string,

posEffR -> ${NS:nameServers, NS:parameter, domainNameservers(DN,NS)}:reification,

posEffS -> "NS:nameServers, NS:parameter, domainNameservers(DN,NS)":string

]

}],

grounding -> updateLocalNameserverBridge:serviceGroundingSpecification[

serviceImplRef -> "8":string,

operationName -> "updateLocalNameServer":string,

inParamSeq ->> {_#:oSP[ord -> 1, str -> "DN":string]},

outParamSeq ->> {_#:oSP[ord -> 1, str -> "NS":string]}],

properties -> updateLocalNameserverProps::serviceProperties[

serviceName *=> updateLocalNameserverSNType:enumeration[type -> string, values ->>
{"updateLocalNameserverService":string}],

providerName *=> updateLocalNameserverPNType:enumeration[type -> string, values ->>
{"local":string}]]].

Listing 8: Flora specification for update local nameserver

5.8.3 TECHNICAL DETAILS

33

Dynamic Supply Chain Scenario for Internet Service Providers

5.8.4 PROBLEMS AND REMARKS

Because of the EJB Spec which denies file I/O we added an additional level of indirection.
Based upon the additional level of indirection we gained the possibility to increase the level
of distribution. The added tcp-server listens on a socket and adds a new line to /etc/hosts if it
receives an incoming string. This string is used as domain name. An IP will be taken from a
local pool (for test purposes only one IP is used). The Bean itself just opens an outgoing tcp-
connection and sends a string containing the domain name to register to the service
described above. The developed atomic service fully fits into the atomic services
specification; we developed an EJB with web service interface. The DNS-lookup cache has
to be configured using the networkaddress.cache.ttl and networkaddress.cache.negative.ttl
properties changeable in the security/java.security file.

6 APPENDIX – SCENARIO ONTOLOGY IN FLORA

oth cases have the effect that the returned set of nameServers lists the given domainName.

// *********************************

// * Filename: personsOntology.flr *

// *********************************

?- flAdd 'asgOntology'.

// ===

// Definition of domain specific classes/records

// ===

person:record[firstName *=> string,

 lastName *=> string].

phone:record[phoneCC *=> string,

 phoneArea *=> string,

 phoneNumber *=> string].

fax:record[phoneCC *=> string,

34

Figure 34: update local nameserver Atomic Service - class diagram

Figure 35: update local nameserver Atomic Service - sequence diagram

Dynamic Supply Chain Scenario for Internet Service Providers

 phoneArea *=> string,

 phoneNumber *=> string].

address:record[city *=> string,

 zipCode *=> string,

 state *=> string,

 countryCode *=> string,

 street *=> string,

 street2 *=> string].

contact:record[contactPerson *=> person,

 organisation *=> string,

 email *=> string,

 phoneNumber *=> phone,

 faxNumber *=> fax,

 contactAddress *=> address].

customer:contact.

admin:contact.

// ===

// Definition of domain specific relationships and rules

// ===

hasAddress(person, address):relation.

Listing 9: Flora ontology for persons

cases have the effect that the returned set of nameServers lists the given domainName.

sdljslkdgjsdlgsdflgkdfgd

oth cases have the effect that the returned set of nameServers lists the given domainName.

// ********************************

// * Filename: domainOntology.flr *

// ********************************

?- flAdd 'asgOntology'.

?- flAdd 'personsOntology'.

// ===

// Definition of domain specific classes/records

// ===

domainName:record[name *=> string,

 tld *=> string].

domainState:enumeration[type -> string,

 values ->> {"unchecked":string, "available":string,

 "registered":string, "unavailable":string}].

nameServer:record[name *=> string,

 ipAddress *=> ipAddress].

nameServers:bag[type -> nameServer].

ipAddress::string.

ipAddresses:bag[type -> ipAddress].

// ===

// Definition of domain specific relationships and rules

// ===

hasDomainState(domainName, domainState):relation.

domainNameservers(domainName, nameServers):relation.

Listing 10: Flora ontology for domains

35

Dynamic Supply Chain Scenario for Internet Service Providers

// *********************************

// * Filename: paymentOntology.flr *

// *********************************

?- flAdd 'asgOntology'.

?- flAdd 'personsOntology'.

// ===

// Definition of domain specific classes/records

// ===

invoiceNumber::string.

paymentData::record[].

creditCard::paymentData[number *=> string,

 type *=> creditCardType,

 expMonth *=> ordinal,

 expYear *=> ordinal,

 cvv *=> string].

amountOfMoney::record[currency *=> string,

 amount *=> ordinal].

validity:enumeration[type -> string,

 values ->>{"valid":string, "invalid":string, "unknown":string}].

paymentTransactionData::record[validity *=> validity].

payPalTransactionId::paymentTransactionData[value *=> string].

saferpayTransactionHandle::paymentTransactionData[id *=> string, token *=> string].

saferpayTransactionInformation::paymentTransactionData[authorizationCode *=> string,

authorizationResultMessage *=> string,

date *=> string,

time *=> string,

providerName *=> string,

contractNumber *=> string,

paymentState *=> paymentState].

paymentState:enumeration[type -> string,

 values ->> {"completed":string, "aborted":string,

 "unknown":string}].

creditCardType:enumeration[type -> string,

 values ->> {"Visa":string, "MC":string, "Amex":string,

 "Diners":string, "JCB":string, "Discover":string}].

// ===

// Definition of domain specific relationships and rules

// ===

creditCardOwner(creditCard, contact):relation.

paymentTransaction(paymentData, paymentTransactionData):relation.

amountCharged(amountOfMoney, paymentTransactionData):relation.

authorizedSaferpayAmount(saferpayTransactionHandle, amountOfMoney):relation.

Listing 11: Flora ontology for payment

36

Dynamic Supply Chain Scenario for Internet Service Providers

REFERENCES

[1] MacKenzie, C., Laskey, K., McCabe, F., Brown, P., Metz, R., Reference model for service
oriented architectures. Working draft; OASIS, 09. September 2005.

[2] Laures, G., Jank K., D6.V-1: Reference Architecture: Requirements, Current Efforts and
Design; The ASG Project, Europe 2005.

[3] Hahmann, T., Möller, J., Sommer, P., Peissl, B., Wahler, A., An Adaptive solution for internet
services' supply chains; Semantics 2005, Vienna, 24. November 2005.

37

Dynamic Supply Chain Scenario for Internet Service Providers

	1Introduction
	2Business Perspective
	2.1B2C Solution
	2.2B2B Solution
	2.3Business Requirements
	2.4Advantages of ASG

	3Technical Perspective
	3.1Service Landscape
	3.1.1Domain Services
	3.1.2Payment Services
	3.1.3Web Hosting Services

	3.2Exemplary Service Compositions

	4Scenario Ontology
	4.1Ontology Concepts
	4.2Relations between ontology concepts

	5Atomic Services
	5.1Directi Check Domain - characteristics
	5.1.1Short semantic description
	5.1.2Formal semantic specification
	5.1.3Technical details

	5.2Verisign Check Domain - characteristics
	5.2.1Short semantic description
	5.2.2Formal semantic specification
	5.2.3Technical details

	5.3Denic Check Domain - characteristics
	5.3.1Short semantic description
	5.3.2Formal semantic specification
	5.3.3Technical details

	5.4Directi Register Domain - characteristics
	5.4.1Short semantic description
	5.4.2Formal semantic specification
	5.4.3Technical details

	5.5Saferpay Credit Card Authorization - characteristics
	5.5.1Short semantic description
	5.5.2Formal semantic specification
	5.5.3Technical details
	5.5.4Problems and remarks

	5.6Saferpay Payment - characteristics
	5.6.1Short semantic description
	5.6.2Formal semantic specification
	5.6.3Technical details
	5.6.4Problems and remarks

	5.7Paypal direct Payment – characteristics
	5.7.1Short semantic description
	5.7.2Formal semantic specification
	5.7.3Technical details
	5.7.4Problems and remarks

	5.8Update Local Nameserver - characteristics
	5.8.1Short semantic description
	5.8.2Formal semantic specification
	5.8.3Technical details
	5.8.4Problems and remarks

	6Appendix – Scenario Ontology in Flora

