
Hasso Plattner Institute
for Software Systems Engineering

Final year bachelor project
WS 2005/2006

Semantic SOA – Realization of the
Adaptive Services Grid

February 28,  2006

Bastian Steinert, Jan Möller, Philipp Sommer, 
Sebastian Steinhauer, Stefan Hüttenrauch, 

Tobias Queck, Torsten Hahmann



2/9

Semantic SOA – Realization of the Adaptive Services Grid



Table of Contents
1 ACKNOWLEDGEMENT................................................................................................................1

 PART I: PROJECT OVERVIEW...................................................................................................2

2 ROADMAP................................................................................................................................2

3 DOCUMENTATION STRUCTURE....................................................................................................3

4 CHRONOLOGY..........................................................................................................................4

4.1 TOOL SUPPORT FOR ATOMIC SERVICE DEVELOPMENT – MEXMAN4AS.....................................5

 PART II: EVALUATION AND IMPLEMENTATION OF ASG INFRASTRUCTURE CONCEPTS.....................6

5 DISCOVERY..............................................................................................................................6

5.1 RESTRICTIONS....................................................................................................................6

6 NEGOTIATION...........................................................................................................................7

6.1 RESTRICTIONS....................................................................................................................7

7 ENACTMENT.............................................................................................................................8

8 TESTBED INFRASTRUCTURE AND UNITS OF DEPLOYMENT.............................................................8

9 CONCLUSION............................................................................................................................9

III

Semantic SOA – Realization of the Adaptive Services Grid





1 ACKNOWLEDGEMENT

Here we present the result of the final year bachelor project “Semantic SOA – Realization of 
the Adaptive Services Grid”. The work on this project lasted from September, 1, 2005 to 
February, 28, 2006 and was conducted at the Hasso-Plattner-Institute for Software Systems 
Engineering  at  the  University  of Potsdam under  scientific  supervision of  the chairs  for 
“Business Process Technology” (head: Prof. Mathias Weske) and for “Operation Systems 
and Middleware” (head: Prof. Andreas Polze). For their contributed scientific expertise we 
especially thank Dr. Dominik Kuropka, Guido Laures, Harald Meyer, Peter Tröger and Dr. 
Martin von Löwis. The project is part of the integrated research project “Adaptive Services 
Grid” (ASG) sponsored under the sixth framework program of the European Commission1. 
We want to thank all ASG partners for their cooperation and valuable feedback that helped 
to  succeed  with  the  project.  We  especially  appreciate  the  support  and  advise  of  our 
industrial partners DaimlerChrysler Research, Ulm and NIWA Web Solutions, Vienna. With 
DaimlerChrysler Research, Dr. Ingo Melzer and his research team as well as Dr.  Ralf Hinz 
and his team contributed their valuable know-how and supported us in our project's work. At 
NIWA Web Solutions, we were helpfully advised by the whole team and in particular by 
Bernhard Peissl and Alexander Wahler.

1 http://asg-platform.org, EC Contract No. 004617

1/9

Semantic SOA – Realization of the Adaptive Services Grid



PART I: PROJECT OVERVIEW

2 ROADMAP

Because of the complexity of ASG and the great amount of ongoing research our bachelor 
project  addresses  different  topics.  These  topics  are  partly  independent  from each other. 
However, they serve the common goal to get a running ASG demonstration platform using 
an industrial scenario. With this project we

(1) show the flexibility of the ASG reference architecture in respect to exchangeable 
individual components and at the same

(2) we prove the usability for real world applications.

We aim to demonstrate ASG's flexibility using the IBM products Websphere Application 
Server  6  and  the  database  management  system  DB2  V8.1  within  the  service  grid 
infrastructure.  Additionally we replace the current process execution engine provided by 
Rodan  Systems.  Instead,  we  integrate  the  open-source  workflow  engine  PXE  with 
enactment component.

In cooperation with our industrial partner NIWA Web Solutions, Vienna we 

(3) identify, define, and implement a scenario in the field of dynamic supply chains for 
internet service providers.

For  that  purpose  we  must  identify  appropriate  service  providers  and  specify  service 
functionality  as  well  as  semantics  in  the  ASG context.  External  functionality  must  be 
wrapped by Atomic Services in order to dock them into the ASG platform.

The previous  ASG demonstration prototype does not yet  suffice our needs for dynamic 
service composition, selection, and execution. The goal of a fully functional demonstrator 
requires  us  to  extend  the  main  components  discovery,  composition,  negotiation,  and 
enactment and to integrate them appropriately. 

2/9

Semantic SOA – Realization of the Adaptive Services Grid



3 DOCUMENTATION STRUCTURE

During the bachelor project we documented our efforts and achievements in the following 
artifacts:

• Dynamic Supply Chain Scenario for Internet Service Providers.

• Open-source Workflow Engine Integration into ASG Platform.

• Integration of a Mobile Service Provider into the ASG infrastructure.
Work at DaimlerChrysler Research, Ulm (REI/VA) August and September 2005.

• Use Case “Automated Garage Service” for Integration of a Mobile Service Provider 
into the Adaptive Services Grid. Textual Version.
Work at DaimlerChrysler Research, Ulm (REI/VA) August and September 2005.

• Use Case “Automated Garage Service” for Integration of a Mobile Service Provider 
into the Adaptive Services Grid. Modelled Version.
Work at DaimlerChrysler Research, Ulm (REI/VA) August and September 2005.

• Migration of  Service  Grid Infrastructure  from  JBoss/Postgres  environment  to  an 
IBM environment (Websphere/DB2).
Work at DaimlerChrysler Research, Ulm (REI/ID) August and September 2005.

• User Guide MexMan4AS.

• Paper: "An adaptive solution for internet services' supply chains".
1st Industry Workshop on Semantic Systems at Semantics 2005, Nov. 23.-25. 2005. 

3/9

Semantic SOA – Realization of the Adaptive Services Grid



4 CHRONOLOGY

Period Main actors Tasks

Aug. - Sept. 
2005

Bastian Steinert, Sebastian 
Steinhauer

Work at DaimlerChrysler Research, Ulm:

Migration of Service Grid Infrastructure from 
JBoss/Postgres  environment  to  an  IBM 
environment (Websphere/DB2)

Aug. - Sept. 
2005

Stefan Hüttenrauch, Tobias 
Queck

Work at DaimlerChrysler Research, Ulm:

Integration of a Mobile Service Provider into 
the  ASG infrastructure  and definition of  use 
case “Automated Garage Service”

Sept. 2005 Jan Möller, Philipp Sommer, 
Torsten Hahmann

Open-Source Workflow engine evaluation for 
use with enactment

Okt. - Nov. 
2005

Jan Möller, Philipp Sommer, 
Torsten Hahmann

Work at NIWA Web Solutions, Vienna:

Scenario definition and development of service 
landscape

Okt. - Nov. 
2005

Bastian Steinert, Sebastian 
Steinhauer, Stefan 
Hüttenrauch, Tobias Queck

Main  development  phase  of  Eclipse  plug-in 
MexMan4AS

Setup  of  autonomous  testbed  infrastructure 
with Websphere Application Server 6,  JBoss 
Application Server  4,   database  management 
systems DB2 V8.1 and PostgreSQL 8.1

Nov. - Dec. 
2005 

Jan Möller, Philipp Sommer, 
Torsten Hahmann

Scenario  description  and  presentation  of 
scenario  development  methodology  in  paper 
for Semantics 2005, Vienna.

Dec. 2005 all Setup and demonstration of prototype “C4/C5 
Integration”  (enactment  and  service  grid 
infrastructure)

Dec. - Jan. 
2005/2006

Sebastian Steinhauer, Stefan 
Hüttenrauch, Tobias Queck

Atomic Service development

MexMan4AS plug-in extension

Dec. - Jan. 
2005/2006

Torsten Hahmann Semantic  Service  Descriptions  and Ontology 
development using Flora2

Jan. 2006 Bastian Steinert, Jan Möller, 
Philipp Sommer, Torsten 
Hahmann

Implementation of negotiation

Jan. - Feb. 
2006

all Integration  and  testing  of  ASG  main 
components 

Incremental  development  of  test  cases  for 
integration of all developed Atomic Services

4/9

Semantic SOA – Realization of the Adaptive Services Grid



4.1 TOOL SUPPORT FOR ATOMIC SERVICE DEVELOPMENT – MEXMAN4AS

Because for Atomic Service development a lot of knowledge about several technologies, 
especially in the realm of J2EE and build management is necessary, we decided to support 
Atomic Service developers and ourselves by implementing an Eclipse plug-in. This plug-in 
manages the most important tools (Maven and Xdoclet) and builds skeleton code used for 
Atomic Service development.

Part of the documentation is a user guide (see document User Guide MexMan4AS) for this 
plug-in facing miscellaneous aspects of Atomic Service development and explaining how to 
work with the latest version of MexMan4AS. The plug-in itself can be downloaded from 
http://tb0.asg-platform.org/~steinhauer/.

5/9

Semantic SOA – Realization of the Adaptive Services Grid



PART II: EVALUATION AND IMPLEMENTATION OF ASG ARCHITECTURE CONCEPTS

5 DISCOVERY

The ASG discovery component is responsible for executing queries on the semantic service 
descriptions  of  the  Atomic  Services.  These  semantic  descriptions  are  based  upon  an 
ontology that describes the business concepts of a limited domain and relations amongst 
those concepts. The discovery component encapsulates a Flora instance to which requests in 
logic  expressions  (F-Logic/Flora)  are  forwarded  to  extract  knowledge  about  abstract 
services functionalities and concrete invocation protocol of particular services.

When using a real discovery database, it is required to load all service specifications, the 
underlying ontology (which may consist of several partial ontologies), and the basic ASG 
ontology for service discovery. During the bachelor project efforts the discovery component 
has  been  changed  in  a  way  that,  upon loading  the  service  specifications,  all  included 
ontologies  (through  the  flAdd  command  in  Flora)  and  the  transitively  included  ASG 
ontology will be loaded as well. The now fully functional discovery database allows us to 
replace  the  previous  mock  links  of  other  ASG components  to  discovery  and  integrate 
negotiation and composition components with the discovery component.

The overall architecture of the discovery component containing the Flora reasoner and the 
methods for extracting semantic service specifications, service properties, and groundings 
has been changed to enforce the use of a single Flora instance. The reasoner as singleton 
avoids problems that might occur when running more than one Flora instance concurrently. 
On the other hand, the reasoner must additionally ensure that all method calls run isolated 
from each  other.  This  is  satisfied  by  using  Java  synchronization mechanism in critical 
sections.

5.1 RESTRICTIONS

Discovery is dependent upon the Flora reasoner. The reasoner component is realized using 
an  java-prolog  interface  (called  Interprolog)  that  interacts  with  the  external  Prolog 
interpreter XSB, which has been extended to process Flora queries. The set-up of XSB with 
Flora and an appropriate Interprolog interface is dependent upon the operating system. We 
have been able to set-up a reasoner on Windows as well as Linux. However, even on these 
systems reasoning is quite far from being stable. Since the Interprolog interface is not open-
source, debugging is difficult. Uncaught exceptions in the Java VM leads to abnormal exits 
(no stacktrace will be displayed, exit with memory access violation).

Performance  is  another  open issue  in  the  discovery  component.  Requests  on the  Flora 
reasoner take up to several seconds depending on the complexity of queries. More complex 
queries must be used with great care and only if unavoidable. The queries implemented by 
the discovery component still need optimization. Most of the time for processing an ASG 
request is consumed by the discovery component. Currently a composition of five services 
takes about one minute starting from negotiation. Since composition heavily interacts with 
the discovery component,  more than five  minutes  must  be estimated even for a simple 
composition of three services.

6/9

Semantic SOA – Realization of the Adaptive Services Grid



6 NEGOTIATION

Within the ASG execution sequence the negotiation component accomplishes its tasks after 
composition and before enactment. The input for this component is an execution plan based 
upon semantic invocations, semantic variables, and assignments. In particular, such a plan 
does not reference concrete service implementations. Instead the semantic invocations are 
specified with a set of precondition and effects. 

Negotiation is responsible for selecting concrete service implementations according to the 
condition set  of  each semantic  invocation.  Afterwards  negotiation converts  all  semantic 
variables  and assignments  according  to  the  groundings  and interface  definitions  of  the 
selected service instances.

In short, following tasks must be fulfilled by the negotiation component:

– Retrieval  of service groundings for each semantic service invocation from discovery 
component

– Instantiation of all selected services to a logical instance by using the service factory 

– Selection of an appropriate service grounding for each semantic invocation

– Attaching selected services' WSDL, which have been retrieved by service instantiation, 
to the execution plan

– Replacement of semantic variables and assignments with service variables derived from 
specified grounding (prerequisite: consistent naming for ontology concepts referenced in 
service specifications and WSDL message parameters of concrete services)

Both negotiation and enactment need WSDL data, that is now part of the execution plan 
(composed service). The negotiation component needs the interface definition of the web 
services for generation of a BPEL compliant execution plan.  The enactment  component 
needs  the  WSDL  information  for  service  invocation.  Especially,  the  execution  engine 
requires binding information (e.g. the URL of the endpoint port) expressed in the WSDL 
data. Previously WSDL could not been retrieved from the invocation layer,  it  had been 
stored separately in higher ASG layers. Now, the C5 service factory directly returns the 
whole  endpoint  reference document  during service  instantiation.  The endpoint  reference 
document will be attached to each partner link according to the standardization draft Web 
Service Addressing 1.0 – WSDL Binding1. It consists of an identifier for the created logical 
service instance, an endpoint address where the request must be sent to, and the mentioned 
WSDL document.  

6.1 RESTRICTIONS

Currently, negotiations returns the first service that fulfils the given condition (precondition 
and  effects)  and  can  be  instantiated  successfully.  Those  instances  must  be  used  for 
negotiation in future. The selection of an appropriate service grounding for each semantic 
service invocation must be based upon negotiation of Quality of Service properties.  

7 ENACTMENT

The Enactment component demonstrates the flexibility of the ASG reference architecture. 
We replaced the previously used enactment component with a component based on the 

1 http://www.w3.org/TR/ws-addr-wsdl/

7/9

Semantic SOA – Realization of the Adaptive Services Grid



open-source workflow engine PXE. The evaluation procedure and all required integration 
tasks are documented in the artifact “Open-Source Workflow Engine Integration into ASG 
Platform”. 

8 TESTBED INFRASTRUCTURE AND UNITS OF DEPLOYMENT

Our  complex  infrastructure  for  the  prototype  development,  tests,  and  demonstration  is 
shown in  Figure 1. It consists of several Linux and Solaris systems with WebSphere and 
JBoss  as  application servers.  This  heterogeneous  environment  was  chosen to  prove  the 
flexibility  of  the  ASG  architecture  to  run  both  on  commercial  IBM  and  open-source 
products. Up to now the ASG prototypes have been demonstrated solely on open-source 
products like JBoss Application Server and PostgreSQL. With the migration to commercial 
products  an important  step  towards  productive  scenarios  is  made.  In industrial  systems 
support and consulting as well as legal guarantees (for availability, etc.) are essential. 

Additionally, J2EE Application Servers of different vendors may be useful to validate the 
standard compliance of the ASG components and Atomic Services. However, some vendor-
specific difficulties occurred during Atomic Service development. 

In industrial systems the connection to external services, especially payment service, must 
be  secure  and  reliable.  These  security  demands  are  accomplished  through  encrypted 
communication and authentication of the partners. The client APIs that we use to interact 
with  the  external  payment  services  are  based  upon Sun-specific  encryption algorithms. 
Since IBM WebSphere Application Server runs on IBM's own JRE, the usage of vendor-
specific classes results in “ClassNotFoundException”s. 

Hence, our infrastructure contains two hosts for service execution, one runs JBoss AS for the 
Payment Services requiring Sun JDK and one runs WebSphere AS where all other scenario 
services are deployed. 

At the beginning of the project we set-up a dedicated host for the PXE workflow engine, 
since it needed an older version of the JBoss application server (4.0.2). Recently, we merged 

8/9

Figure 1: Testbed Infrastructure

<<device>>
: JBoss Application Server

{OS = Linux;
location = fellows}

<<device>>
: JBoss Application Server

{OS = Linux;
location = tuecke}

: Workflow Engine Container
: Web Container

Enactment

Discovery

Negotiation

Composer

GUI Servlet

HTTP

SOAP

SOAP

JMX

JDBC

SOAP<<device>>
: JBoss Application Server 

{OS = Solaris;
location = tb3-2}

: C5 Container

<<device>>
: IBM DB2 

{OS = Solaris;
location = tb3-2}

<<database>>
: C5 DataBase

<<device>>
: JBoss Application Server

{OS = Solaris;
location = tb3-1}

: Web Container

<<device>>
: JBoss Application Server

{OS = Linux;
location = seidel}

: Atomic Service Container

<<device>>
: WebSphere Application Server

{OS = Solaris;
location = tb3-2}

: Atomic Service Container

Semantic SOA – Realization of the Adaptive Services Grid



changes from the newest PXE release with our own modifications. The latest release of PXE 
supports  the  most  current  JBoss  Application  Server  (4.0.3  SP1).  However,  for  system 
stability and test/debug purposes we left PXE residing on a separate host.

9 CONCLUSION

Our  overall  goals  have  been  reached  within  the  project.  We  demonstrated  potential 
productive use in the scenario for dynamic supply chains. To reach this goal, tremendous 
efforts were required on the implementation of  ASG components. Work was required on 
following components: Composition, Discovery, Negotiation, and Enactment. We inserted 
into Enactment an open-source workflow engine and hence demonstrated the flexibility of 
the ASG reference architecture. 

Furthermore,  we developed a business scenario that is  mature for industrial  usage.  The 
development  process  encompassed  the  following  phases:  scenario  definition,  service 
identification, service landscape definition, service implementation, ontology engineering, 
and semantic service specification. Separately, a more general methodology describing the 
application  and  service  engineering  lifecycle  in  ASG  context  has  been  evolved.  We 
presented the results at Semantics 2005, Vienna.

For our scenario we also integrated with ASG several external services from providers like 
PayPal, Saferpay, Directi, Denic, and Verisign. Using test accounts the scenario demonstrate 
the ordering process of webhosting and domain products – including their payment and the 
local set-up of websites. 

Our reference application according to the specified scenario shows the capability of our 
prototype to react on a service failure (unavailability) and to renegotiate with another service 
with  similar  conditions.  This  adaptive  behaviour  increases  the  overall  system's  fault 
tolerance.

Once  a  process  is  composed  that  fulfils  a  set  of  requested  conditions,  subsequent 
components (Negotiation, Enactment) automatically generates a BPEL compliant process 
and executes it.

9/9

Semantic SOA – Realization of the Adaptive Services Grid


	1Acknowledgement
	2Roadmap
	3Documentation Structure
	4Chronology
	4.1Tool Support for Atomic Service Development – MexMan4AS

	5Discovery
	5.1Restrictions

	6Negotiation
	6.1Restrictions

	7Enactment
	8Testbed Infrastructure and Units of Deployment
	9Conclusion

