A Reconciliation of Logical Representations of Space: from Multidimensional Mereotopology to Geometry PhD Thesis Defence

Torsten Hahmann

Dept. of Computer Science, University of Toronto

December 07, 2012

T. Hahmann (DCS, Univ. of Toronto) Reconciliation of Logical Representations of Space December 07, 2012 1 / 31

Research Problem and Objective I

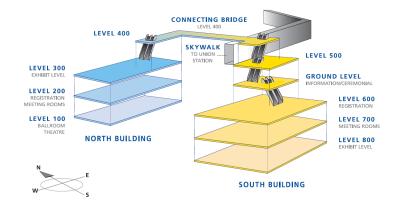
- 1st Problem: The expressiveness of current theories of qualitative space is a main hindrance for their practical use, while work on multidimensional theories weaker than classical geometries is limited.
- Objective: Develop a qualitative theory of space that: Multidimensional: allows models with entities of multiple dimensions; Commonsensical: defines an intuitive set of spatial relations, Dimension-independent: not dependent on specific combinations of absolute (numeric) dimensions, Atomicity-neutral: admits discrete and continuous models,
 - Geometry-consistent: generalizes classical geometries.
- $\rightarrow\,$ More expressive, but still intuitive logical theory
- $\rightarrow\,$ Basis for 'next-generation qualitative spatial reasoning'
 - Driven by capturing street maps, buildings, etc.

Example 1: Simplified Maps

2D: cities, municipalities, lakes, parks;

- 1D: streets, rail lines;
- 0D: intersections, bridges, rail crossings.

Example 2: Building maps



3D: entire building;

- 2D: each floor, stairs, escalators, rooms;
- 1D: walls, windows, doors;
- 0D: water fountains, telephones, internet outlets, etc.

Research Problem and Objective II

• 2nd Problem: How are the various available first-order spatial ontologies, including mereotopologies and geometries, related to the newly developed ontologies and to one another?

 Objective: Semantically integrate them according to Expressivity of their non-logical language: definability Which relations and functions are primitive?; Restrictiveness of their axioms: non-conservative extensions.

- → Construct (1) hierarchies of ontologies of equal expressivity that are partially ordered by their axioms' restrictiveness; and
 (2) partially-order the hierarchies themselves by their non-logical languages' expressivity
 - Often cannot establish full mappings
 - Comparative (relative) integration of spatial ontologies to understand shared models and shared inferences

Thesis Outline

-) Methodology: definability and interpretability
 - Literature review: Equidimensional mereotopologies
 -) Equidimensional mereotopologies with mereological closures [2]
-) The intended structures

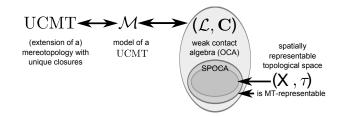
Theory of multidimensional mereotopological space

-) The basic theory $\left[1
 ight]$
 - Mereological closures operations [1]
- Relationship to other mereotopologies [2]

Extensions of multidimensional mereotopological space

- Boundaries and interiors [1,2]
-) Extension with betweenness: Geometries [1,2]
- Extension with convex hulls: Modelling voids [1]

④ Equidimensional mereotopologies with closures



- Systematic study of equidimensional theories of space through there algebraic counterparts' spatial representability
- Class of mereotopologies of spatial interest: UCMT
 - Uniquely defined closure operations (sum, intersection, complement, universal) for spatial representability
 - T 2 Every model of UCMT is homomorphic to some orthocompl. CA
 - spatially representable CAs are MT-representable (defined notion)
 - C 2 An MT-representable complete OCA is a complete SPOCA

④ Equidim. mereotopologies with closures (contd.)

What do the MT-representable CAs that have all closure operations defined mereologically or topologically look like?

- Three classes of "minimal" MT-representable OCAs:
 - T 5 An M-closed MT-representable UCMT has an algebraic structure whose lattice is Boolean and whose contact relation satisfies (C0)–(C3)
 - T 6,7 A T- or T'-closed MT-representable UCMT has an algebraic structure whose lattice is a Stonian p-ortholattice and C satisfies (C0)-(C5)
- T 8 Every MT-closed MT-representable UCMT has an algebraic structure that is an atomless BCA.
 - $\Rightarrow\,$ no new interesting equidimensional mereotopology possible; we are restricted to the expressiveness of the current ones

5 The intended structures

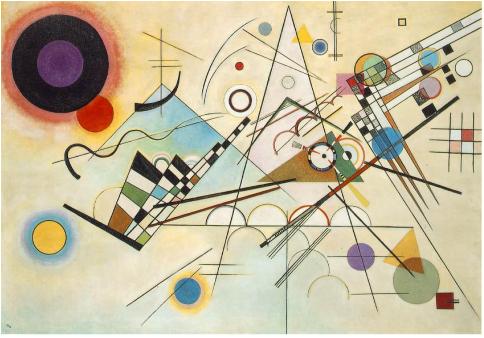
 $\label{eq:ldeal} \mbox{intended structures in \mathfrak{M} are topologically and dimensionally invariant transformations of simplicial complexes}$

- ► Allows any kind of stretching, bending, rotating, curving, folding, etc.
- Specification of the class of intended structures similar to the definition of simplicial complexes from simplexes
 - Use m-manifolds with boundaries as primitive entities
 - Composite m-manifolds = sets of m-manifolds with boundaries of uniform dimension that do not meet in the interior
 - Class of intended multidimensional structures: complex m-manifolds = sets of composite m-manifolds (with closure under intersection and complementation)
- Reference for evaluation of our ontologies in Ch. 6-9

Examples of non-atomic composite manifolds



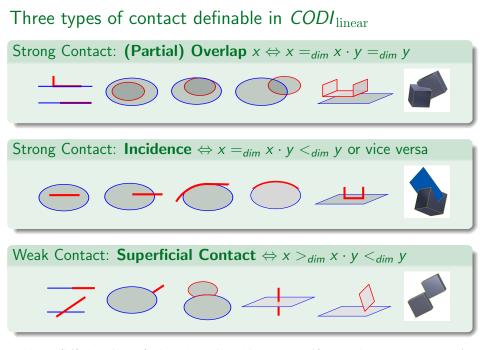
T. Hahmann (DCS, Univ. of Toronto) Reconciliation of Logical Representations of Space December 07, 2012 10 / 31



Wassily Kandinsky: Komposition VIII (1923).

6 Basic multidimensional mereotopological space

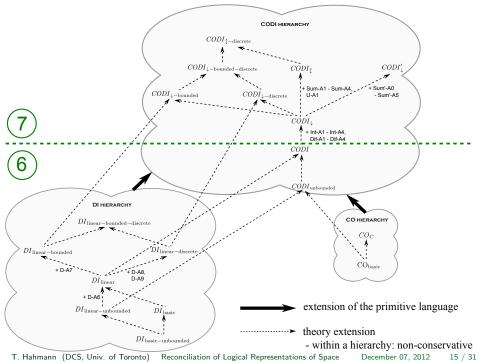
- Start building up qualitative theories by successively increasing the expressivity
- Axiomatization of linear relative dimension: *DI* hierarchy
- Axiomatization of spatial containment: CO hierarchy
- Combination to $CODI_{linear}$
 - T 1 Partial characterization of the models of $CODI_{linear}$: In a model \mathcal{M} of $CODI_{linear} \cup \{EP-D\}$, $\mathbf{P}_{\mathcal{M}}$ and $(<_{dim})_{\mathcal{M}}$ form a partition of $Cont_{\mathcal{M}}$.
 - T 2 Three jointly exhaustive and pairwise disjoint (JEPD) types of contact: Partial Overlap, Incidence, Superficial contact definable in *CODI*



T. Hahmann (DCS, Univ. of Toronto) Reconciliation of Logical Representations of Space December 07, 2012 13 / 31

⑦ Mereological closure operations in multidimensional meoreotopological space

- Extension of $CODI_{linear}$ with mereological closure operations intersection \cdot , difference -, sum +, and universal u
- T 1,2,5,7 Closure operations are defined total functions
 - Prove mathematical properties of these operations: verifies the axiomatization against our intuitions ("competency questions")
 - Strong supplementation for parthood and containment provable in CODI₁ (closed under intersection and differences): EP-E1-EP-E3
 - T 4 Satisfiability of $CODI_{\downarrow}$ w.r.t. the intended structures
 - $\star\,$ Every intended structure in ${\mathfrak M}$ is a model of ${\it CODI}_{\downarrow}$
 - Axiomatizability of $CODI_{\downarrow}$ not provable w.r.t. the intended models
 - ★ Open challenge: Is every finite model of $CODI_{\downarrow}$ in \mathfrak{M} ?
 - \blacktriangleright Distinct structures in ${\mathfrak M}$ may have equivalent models of ${\it CODI}_\downarrow$
 - T 6 Characterization of the models of $CODI_{\uparrow}$ (closed under all closure operations) as "stacks" of Boolean algebras
 - Result: Extended CODI hierarchy as basis for the remaining chapters



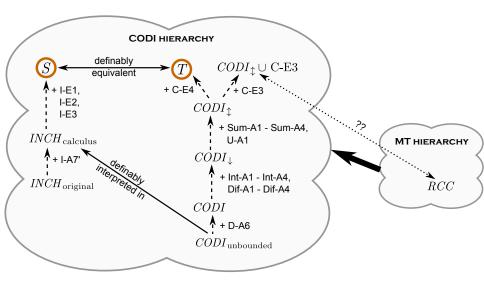
8 Relationship to other mereotopologies

- Semantically integrate other theories with the CODI hierarchy
 - show how to extend theories from the CODI hierarchy to obtain existing mereotopologies
- Equidimensional mereotopology: Region Connection Calculus
 - T 2 Every model of $CODI_{\uparrow} \cup$ C-E3 has a substructure that is a BCA (which are known to correspond to RCC models)
- $\begin{array}{ll} (\mathsf{C-E3}) & \textit{MaxDim}(x) \land \textit{MaxDim}(y) \rightarrow \\ & [x = y \leftrightarrow \forall z [\textit{MaxDim}(z) \rightarrow (\textit{C}(z,x) \leftrightarrow \textit{C}(z,y))]] \\ & (\text{extensionality of } \textit{C} \text{ amongst regions of maximal dimension}) \end{array}$
 - ► Discussion: Can every model of the RCC be extended to a model of CODI_↓ ∪ C-E3? No proof, because the extension is somewhat arbitrary.
 - * Contact in the CODI model is different from contact in the RCC model

8 Relationship to other mereotopologies (contd.)

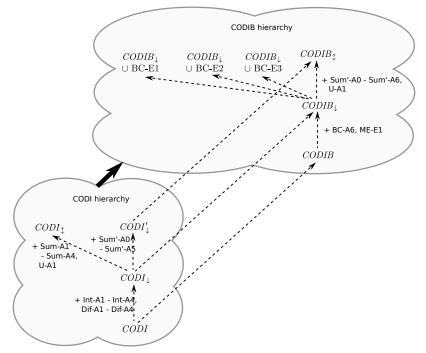
- Multidimensional mereotopology: INCH Calculus (PA7') Correction of the original INCH Calculus
 - T 3 $\mathit{CODI}_{\updownarrow} \cup$ C-E4 and $\mathit{INCH}_{\rm calculus} \cup$ {I-E1–I-E3} are definably equivalent
 - Established with the mapping axioms I-M1-I-M10 and I-M1'-I-M6'

 $\begin{array}{ll} (\mathsf{C}\text{-}\mathsf{E4}) & x \leq_{\dim} y \rightarrow \\ & \left[Z\mathsf{EX}(x) \lor \exists z, v, w[P(v,x) \land Cont(v,z) \land P(w,z) \land Cont(w,y)] \right] \\ & (\text{manifestation of relative dimension through a common entity } z) \\ & (\mathsf{I}\text{-}\mathsf{E1}) & \exists x[\neg Z\mathsf{EX}(x) \land \forall y(\neg Z\mathsf{EX}(y) \rightarrow G\mathsf{ED}(y,x))] \\ & & (\text{a non-zero entity of minimal dimension must exist}) \\ & (\mathsf{I}\text{-}\mathsf{E2}) & \exists u \forall x[INCH(u,x)] \\ & & (\text{an entity exists that includes a chunk of any other entity}) \\ & (\mathsf{I}\text{-}\mathsf{E3}) & \exists u \forall x[CS(u,x)] \\ & & (\text{an entity exists of which every entity is a constituent}) \end{array}$



9 Boundaries and Interiors

- Some distinct intended structures are not distinguishable by the primitive language of *CODI*
 - Boundary containment vs. interior containment is undefinable
- Extension: new primitive relation of boundary containment
 - T 1 defined relations tangential and interior containment are JEPD
 - T 2 Satisfiability of $CODI_{\downarrow} \cup \{BC-A1 BC-A4\}$ w.r.t. the intended structures in the restricted class \mathfrak{M}
 - T 3 defined relations tangential and interior parthood are JEPD
 - Prove interesting properties of the relations
 - Define two notions of boundary parts
- More fine-grained classification of contact relations based on whether interiors, boundaries, or both are in contact
 - T 4 C iff at least one of IO, IBC, IBC^{-1} , and BO holds
 - T 5 set of 9 JEPD binary relations, which generalize the relations from Egenhofer & Herring 1991, Clementini, et al. 1993, McKenney et al. 2005 to the finite-dimensional case with manifolds with boundaries



T. Hahmann (DCS, Univ. of Toronto) Reconciliation of Logical Representations of Space December 07, 2012 20 / 31

10 Relationship to Incidence Geometries

• Relationship to incidence structures

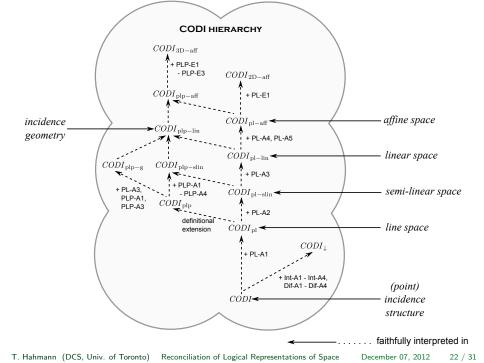
- T 1 Every model of CODI defines a (point) incidence structure
- T 2 Point incidence structures can be definably expanded to CODI models
 - * CODI faithfully interprets the theory of point incidence structures

• Relationship to planar (bipartite) incidence geometries

- T 3,5 Every model of $CODI_{\rm pl}$ ($CODI_{\rm pl-slin}$, $CODI_{\rm pl-aff}$) defines a line (semi-linear, linear, affine) space.
- T 4,6 Any line (semi-linear, linear, affine) space can be definably expanded to a model of $CODI_{\rm pl}$ ($CODI_{\rm pl-slin}$, $CODI_{\rm pl-aff}$).
 - ★ CODI_{pl} (CODI_{pl-slin}, CODI_{pl-lin}, CODI_{pl-aff}) faithfully interprets the theory of line (semi-linear, linear, affine) spaces

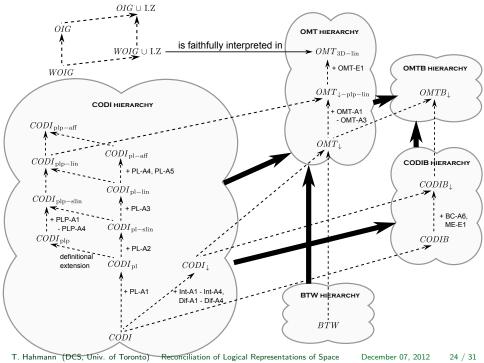
• Relationship to (tripartite) incidence geometries

- T 7 Any model ${\cal M}$ of ${\it CODI}_{\rm plp-lin}$ defines an incidence geometry.
- T 8 Any incidence geometry can be definably expanded to a model of $CODI_{\rm plp-slin}$ ($CODI_{\rm pl-lin}$, $CODI_{\rm pl-aff}$).
 - ► Shows in principle how to reconstruct any finite-dimensional geometry
 - Defines a mereotopological generalization of incidence geometry
 - Discussion of when a mereotopology becomes a geometry



10 Extension with Betweenness: Ordered Geometries

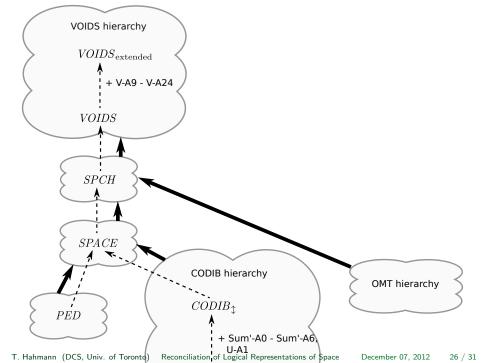
- Motivation: even when capturing space qualitatively we often want to preserve spatial orderings, for example, for street maps
- Extension: quaternary primitive relation of relativized betweenness
 - ► Not definable in the languages of CODI or CODIB
 - A multidimensional version of betweenness in a new hierarchy, *BTW*
 - ► Combining *BTW* and *CODI* results in ordered mereotopologies *OMT*
 - Discussion of the required strength of the geometry to define convexity
- Relationship to ordered incidence geometries
 - T 9 Any model of $OMT_{\rm 3D-lin}$ defines a weak ordered incidence geometry.
 - T 10 Any weak ordered incidence geometry defines a model of $OMT_{\rm 3D-lin}$.
 - ► But WOIG ∪ I.Z faithfully interpreted in OMT_{3D-lin}, that is, existence of zero region is the only difference
- Qualitative analogues to ordered incidence geometries



(11) Extension with Convex Hulls: Physical Voids

Utilize the axiomatization of abstract space in a specific setting: **Ontology of Hydrogeology** (rock formations and water bodies)

- Extend the axiomatization of abstract space by physical space (objects and matter): Layered Mereotopology (Donnelly, 2003)
 - New: axiomatize distinction between matter and objects
- Fit in convex hulls: not in the defined setting from *ordered mereotopology* but in a more general setting as primitive relation
- Classification of physical voids
 - ▶ by the void's self-connectedness (simple vs. complex void)
 - by the host's self-connectedness (gap vs. hole)
 - ▶ by the void's external connectedness (cavity vs. hollow vs. tunnel)
 - by granularity distinction (voids in matter vs. voids in objects)
- Can still prove consistency for this sizeable complex ontology (roughly 120 axioms, 60 distinct non-logical symbols, 40 existentials)

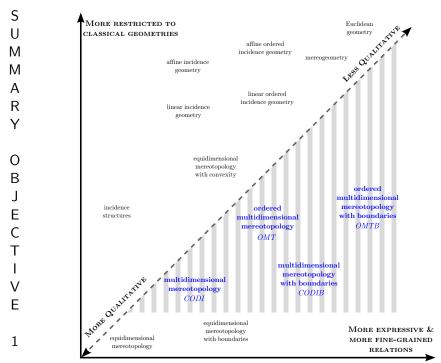


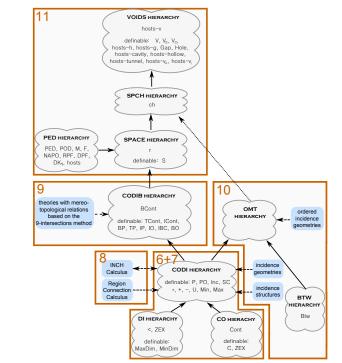
Verification of the Developed Ontologies

- JEPD relations: classification of spatial relations; lends itself to spatial calculi (6.2, 9.1, 9.3, 9.4 (not disjoint), Ch. 11)
- Model Characterization: understanding and verification of theories w.r.t. the intended structures (satisfiability, T 7.4, 9.2) or w.r.t. well-understood algebraic structures (4.2-4.10, 6.1, 7.6, 8.1)
- Cross-verification: theory relationships to other ontologies
 - Compare: integration results (next)
- **Competency questions:** proved many expected properties of certain relations; mostly automated proofs
- Non-trivial consistency: constructed models to show that any relation can have a non-empty extension

Integration Results

- **Theory Relationships:** mapping between theories that are extensions of *CODI* and external spatial theories
 - ► Full theory integration (definably equivalence between theories): 8.3
 - Faithful interpretation (conservative extension, possibly language extension) established through model expansions: 10.2, 10.4, 10.6, 10.8
 - Definable interpretation (possibly non-conservative extension) established when all models of the interpreting theory define models of the interpreted theory: 8.2, 10.1, 10.3, 10.5, 10.7, 10.9, 10.10
 - Implicit interpretability via the intended structures: 9.5
- Definability: closure operations are defined (7.1, 7.2, 7.5, 7.7)
- Non-definability: give two structures that have identical models in one language but distinct models in a more expressive language





S

M

M A

R

B

E

E

2

Summary

- Developed new qualitative ontologies of space that are more expressive than previously available mereotopologies and formally studied their expressivity and their logical relationships
 - Proposed a characterization of multidimensional qualitative space
 - First well-understood theory of multidimensional mereotopology
 - Not fixed in number of dimensions, not tied to points or regions
- Established formal relationships (theory interpretations and relationships between classes of models) to understand how various ontologies of space relate to one another
 - \Rightarrow first step toward integration of spatial data

Lessons learned

- Manual ontology verification and integration is arduous
- Automated reasoning often successful without much manual tweaking
- ⇒ Suggests ontology verification and ontology integration can be largely automated in practise