Detecting Physical Defects: A Practical 2D-Study of Cracks and Holes

Torsten Hahmann Michael Grüninger

University of Toronto

March 23, 2009

Detecting Physical Defects:, A Practical 2D-Study of Cracks and Holes

1 / 22

Qualitative Spatial Reasoning: Idea [Cohn 1997]

Common-sensical reasoning about the physical world

- In the absence of complete knowledge
- In the absence of precise quantitative descriptions
- If quantitative reasoning is intractable
- Abstracts away irrelevant properties for a certain reasoning task
 - Collapses indistinguishable values into equivalence classes of values, so-called qualitative values
 - E.g. reasoning about 'bordering' is independent of shape or regions

Qualitative Spatial Reasoning: Idea [Cohn 1997]

Common-sensical reasoning about the physical world

- In the absence of complete knowledge
- In the absence of precise quantitative descriptions
- If quantitative reasoning is intractable
- Abstracts away irrelevant properties for a certain reasoning task
 - Collapses indistinguishable values into equivalence classes of values, so-called qualitative values
 - E.g. reasoning about 'bordering' is independent of shape or regions

Benchmarks depend on the qualitative properties.

Discussion

Qualities in QSR

Various spatial qualities definable for spatial entities:

- Topology: connection/contact
- *Mereology*: parthood
- Morphology: shape (curvature, convexity, congruence, etc.)
- Dimension: point, line, surface/region, etc.
- Direction & Orientation: geographic (N, W, SW), right/left, inside/outside, parallel
- Size and Distances: small/big, close/far
- Fuzzy & approximate qualities: vagueness

Discussion

Qualities in QSR

Various spatial qualities definable for spatial entities:

- Topology: connection/contact
- *Mereology*: parthood
- Morphology: shape (curvature, convexity, congruence, etc.)
- Dimension: point, line, surface/region, etc.
- Direction & Orientation: geographic (N, W, SW), right/left, inside/outside, parallel
- Size and Distances: small/big, close/far
- Fuzzy & approximate qualities: vagueness

Unlike SAT, CSP, QBF benchmarking: varying expressiveness amongst QSR formalisms.

Example domain: Metal sheet cutting and punching

Simple Two-dimensional domain: but requires diverse spatial qualities

- Punching & drilling processes
- Cutting processes
- etc.

Example domain: Metal sheet cutting and punching

Simple Two-dimensional domain: but requires diverse spatial qualities

- Punching & drilling processes
- Cutting processes
- etc.

Detecting production errors & sorting out faulty products

Errors can be caused by:

- Loose drill
- Wrong positioning
- Moving during processing
- etc.

Queries: detecting processing faults

Queries: Did we ...

- punch only a single (connected)?
- punch in the 'center', i.e. not on the edge?
- cut all the way through the metal sheet?
- cut straight?
- cut parallel to the outer edge?

Queries: detecting processing faults

Queries: Did we ...

- punch only a single (connected)?
- punch in the 'center', i.e. not on the edge?
- cut all the way through the metal sheet?
- cut straight?
- cut parallel to the outer edge?

Need mereotopology, but what other qualities?

Qualities in QSR

Topology: connection/contact

- Mereology: parthood
- *Morphology*: shape (curvature, convexity, congruence, etc.)
- Dimension: point, line, surface/region, etc.
- Direction & Orientation: inside/outside, parallel, etc.
- Size and Distances: small/big, close/far
- Fuzzy & approximate qualities: vagueness

Benchmarking for QSR

Two dimensions when talking about benchmarking

Expressiveness benchmarking

- Not applicable to traditional benchmarks in SAT, CSP, QBF, Planning
- QSR is rich in languages: each formalisms has a different expressiveness
- Performance benchmarking
 - Assumes a common expressiveness

Benchmarking for QSR

Two dimensions when talking about benchmarking

Expressiveness benchmarking

- Not applicable to traditional benchmarks in SAT, CSP, QBF, Planning
- QSR is rich in languages: each formalisms has a different expressiveness
- Performance benchmarking
 - Assumes a common expressiveness

Define a super-language for expressing QSR problems?

- Expressiveness probably that of full first-order logic
- Then nothing else than benchmarking FOL theorem provers
- Otherwise restricted to few spatial qualities

Benchmarking for QSR

Two dimensions when talking about benchmarking

Expressiveness benchmarking

- Not applicable to traditional benchmarks in SAT, CSP, QBF, Planning
- QSR is rich in languages: each formalisms has a different expressiveness
- Performance benchmarking
 - Assumes a common expressiveness

Define a super-language for expressing QSR problems?

- Expressiveness probably that of full first-order logic
- Then nothing else than benchmarking FOL theorem provers
- Otherwise restricted to few spatial qualities
- \Rightarrow Need other ways to compare expressiveness!
 - Well-defined for Formal Ontologies

Diverse expressiveness hinders direct comparison of QSR formalisms

- Benchmarks of diverse expressiveness ⇒ everyone has their own?
- Compare only formalisms of same expressiveness?
 - Need to understand the expressiveness.
 - Need to find adequate benchmarking problems.
- Define benchmarks for each (set) of spatial qualities used?

Diverse expressiveness hinders direct comparison of QSR formalisms

- Benchmarks of diverse expressiveness ⇒ everyone has their own?
- Compare only formalisms of same expressiveness?
 - Need to understand the expressiveness.
 - Need to find adequate benchmarking problems.
- Define benchmarks for each (set) of spatial qualities used?

Example: mereotopology = mereology + topology

• Lots of theories available \Rightarrow perfect for benchmarking

Diverse expressiveness hinders direct comparison of QSR formalisms

- Benchmarks of diverse expressiveness ⇒ everyone has their own?
- Compare only formalisms of same expressiveness?
 - Need to understand the expressiveness.
 - Need to find adequate benchmarking problems.
- Define benchmarks for each (set) of spatial qualities used?

Example: mereotopology = mereology + topology

- Lots of theories available \Rightarrow perfect for benchmarking
- But difficult to think of (practical) pure mereotopological applications

Diverse expressiveness hinders direct comparison of QSR formalisms

- Benchmarks of diverse expressiveness ⇒ everyone has their own?
- Compare only formalisms of same expressiveness?
 - Need to understand the expressiveness.
 - Need to find adequate benchmarking problems.
- Define benchmarks for each (set) of spatial qualities used?

Example: mereotopology = mereology + topology

- Lots of theories available \Rightarrow perfect for benchmarking
- But difficult to think of (practical) pure mereotopological applications
- Some work on extensions of mereotopology:
 - Morphological [Borgo et al. 1996; Tarski 1956; Bennett et al., 2000]
 - Direction, Orientation [Moratz et al. 2000; Sharma 1996]
 - Distances, Size [Hernández et al. 1995]

How can formal ontologies help?

Ontology

 ${\sf Ontology} \equiv {\sf Computer-interpretable \ specification \ of \ a \ domain \ to}$

- (a) declare what terms it uses (syntax), and
- (b) what the terms mean (semantics).

How can formal ontologies help?

Ontology

 ${\sf Ontology} \equiv {\sf Computer-interpretable \ specification \ of \ a \ domain \ to}$

- (a) declare what terms it uses (syntax), and
- (b) what the terms mean (semantics).

Formal Ontology \equiv Axiomatic Theory of a Domain in First-order Logic

- No extralogical assumptions
- Can be compared model-theoretically

How can formal ontologies help?

Ontology

 ${\sf Ontology} \equiv {\sf Computer-interpretable \ specification \ of \ a \ domain \ to}$

- (a) declare what terms it uses (syntax), and
- (b) what the terms mean (semantics).

Formal Ontology \equiv Axiomatic Theory of a Domain in First-order Logic

- No extralogical assumptions
- Can be compared model-theoretically

Can establish semantic mappings between ontologies of QSR formalisms. \Rightarrow Give a formal (model-theoretic) characterization of expressiveness.

Example: A first-order mereotopological ontology [Asher, Vieu 1995]

A1.	C(x,x)	(C reflexive)
A2.	$\mathcal{C}(x,y) ightarrow \mathcal{C}(y,x)$	(C symmetric)
A3.	$\forall z (C(z,x) \equiv C(z,y)) \rightarrow x = y$	(C extensional)
A4.	$\exists x \forall u \left[C(u, x) \right]$	(Universe a^*)
÷		
D1.	$P(x,y) \equiv \forall z [C(z,x) \rightarrow C(z,y)]$	(Parthood)
D3.	$O(x,y) \equiv \exists z \left[P(z,x) \land P(z,y) \right]$	(Overlap)
D4.	$EC(x,y) \equiv C(x,y) \land \neg O(x,y)$	(External Connection)
D5.	$TP(x,y) \equiv P(x,y) \land \exists z [EC(z,x) \land EC(z,y)]$	(Tangential Part)
:		

Model-theoretic Analysis of Ontologies

Model \mathcal{M} of a first-order ontology \mathcal{T} : $\mathcal{M} = \langle \mathcal{D}, \mathcal{I} \rangle$ is a model iff it satisfies all axioms of the ontology \mathcal{T} .

Model-theory for **comparing expressiveness** of ontologies Largely independent from algorithmic complexity and performance

Model-theoretic Analysis of Ontologies

Model \mathcal{M} of a first-order ontology \mathcal{T} :

 $\mathcal{M} = \langle \mathcal{D}, \mathcal{I} \rangle$ is a model iff it satisfies all axioms of the ontology \mathcal{T} .

Model-theory for **comparing expressiveness** of ontologies Largely independent from algorithmic complexity and performance

• Relative Interpretations: Compare ontologies relatively

- Definitional extensions (subset of models)
- Definitional equivalence (equal sets of models)
- Definability: find sentences that discriminate two models
- *Representation Theory*: use other well-understood mathematical structures to capture the models up to elementary equivalence
- Classification Theorems: Identify invariants and classes of models

Discussion

Expressiveness analysis within ontologies: Definability

Let T_{Σ} be an ontology in a (first-order) language Σ .

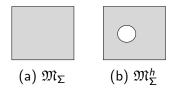
Assume \mathfrak{M}'_{Σ} and \mathfrak{M}_{Σ} to be models of T_{Σ} . I.e. $\mathfrak{M}'_{\Sigma} \models T_{\Sigma}$ and $\mathfrak{M}_{\Sigma} \models T_{\Sigma}$.

Discussion

Expressiveness analysis within ontologies: Definability

Let T_{Σ} be an ontology in a (first-order) language Σ .

Assume \mathfrak{M}'_{Σ} and \mathfrak{M}_{Σ} to be models of \mathcal{T}_{Σ} . I.e. $\mathfrak{M}'_{\Sigma} \models \mathcal{T}_{\Sigma}$ and $\mathfrak{M}_{\Sigma} \models \mathcal{T}_{\Sigma}$.


Definability

Can we discriminate \mathfrak{M}'_{Σ} from \mathfrak{M}_{Σ} by a sentence $\Phi \in \Sigma$ s.t. $\mathfrak{M}'_{\Sigma} \models \Phi$ but $\mathfrak{M}_{\Sigma} \not\models \Phi$?

If NO such sentence Φ exists, \mathfrak{M}'_{Σ} and \mathfrak{M}_{Σ} are model-theoretically equivalent (elementary equivalence for FOL).

Example I: Definability of 'holes'

Assume \mathfrak{M}^h_{Σ} and \mathfrak{M}_{Σ} to be models of the ontology \mathcal{T}_{Σ} .

Definability

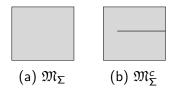
Can we discriminate $\mathfrak{M}_{\Sigma}^{h}$ from \mathfrak{M}_{Σ} by some sentence Φ_{h} s.t. $\mathfrak{M}_{\Sigma}^{h} \models \Phi_{h}$ but $\mathfrak{M}_{\Sigma} \not\models \Phi_{h}$? Is the concept of 'hole' **definable** in T_{Σ} ? $\Rightarrow \Phi_{h}$ would then be a sentence defining a 'hole'.

Example I: Qualities relating to 'holes'

- Most properties describing regions qualitatively also apply to holes: Topology, mereology, morphology, dimension, ...
- New: relation to hosting body: Topological, mereological, dimension, etc.

Discriminating these configurations allows us to answer real-world queries!

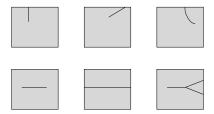
Queries: detecting processing faults


Queries: Did we ...

- punch only a single (connected)?
- punch in the 'center', i.e. not on the edge?
- cut all the way through the metal sheet?
- cut straight?
- cut parallel to the outer edge?

Example II: Definability of 'cracks'

Assume $\mathfrak{M}_{\Sigma}^{c}$ and \mathfrak{M}_{Σ} to be models of the ontology \mathcal{T}_{Σ} .

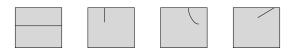

Definability

Can we discriminate $\mathfrak{M}_{\Sigma}^{c}$ from \mathfrak{M}_{Σ} by some sentence Φ_{c} s.t. $\mathfrak{M}_{\Sigma}^{c} \models \Phi_{c}$ but $\mathfrak{M}_{\Sigma} \not\models \Phi_{c}$? Is the concept of 'crack' **definable** in T_{Σ} ? $\Rightarrow \Phi_{c}$ would then be a sentence defining a 'crack'.

Example II: Qualities relating to 'cracks'

'Crack' \cong just a 'hole' of a lower dimension

- Topology: connection to host, e.g. tangential, interior, separating
- Mereology: parts of a crack, e.g. branching crack
- Morphology: curvature, congruence
- Orientation: relative to hosting body, e.g. perpendicular, parallel



Queries: detecting processing faults

Queries: Did we ...

- punch only a single (connected)?
- punch in the 'center', i.e. not on the edge?
- cut all the way through the metal sheet?
- o cut straight?
- cut parallel to the outer edge?

Approaches for comparing expressiveness

Defining a benchmark problem: Begin with the intended concept

- Give some (formal) definition capturing its intended semantics:
 x is a 'Tangential Hole' iff it is a 'negative' proper n-dimensional part of some
 n-dimensional object y; x is completely in y and the boundaries of x and y share at
 least one point.
- 2 Check whether that is definable in T_i and/or T_j

Approaches for comparing expressiveness

Defining a benchmark problem: Begin with the intended concept

- Give some (formal) definition capturing its intended semantics:
 x is a 'Tangential Hole' iff it is a 'negative' proper n-dimensional part of some
 n-dimensional object y; x is completely in y and the boundaries of x and y share at
 least one point.
- 2 Check whether that is definable in T_i and/or T_j

Benchmarking (against an existing ontology): Begin with an ontology

- Take a concept definable in T_i
 x is a 'Tangential hole' THole(x) ≡ TPart(x, y) ∧ ProperHole(x)
- ② Is 'Tangential hole' *THole*(*x*) expressible in the language of T_j ? ⇒ Definable Interpretation

Task: Categorize QSR benchmarking problems

Each (set of) benchmarking problem(s) needs to include

- Definition of terms and their semantics
 ⇒ implicitely defines the required qualities
- ② Relevant queries (benchmarking queries)
- Models that need to be distinguished

Categorize problems by expressiveness/qualities required for ...

a single benchmarking problem
 e.g. distinguishing an interior hole from a tangential hole

a benchmarking domain

e.g. detecting mereotopological properties of holes

21 / 22

Formal tools for comparing expressiveness

Tradeoff between expressiveness and complexity

- unfair to compare two formalism of different expressiveness
- more expressive ontologies, i.e. those that can distinguish more concepts, are usually computationally more expensive
- \Rightarrow Performance benchmarking is not enough.
- \Rightarrow Need (formal!) benchmarking of expressiveness.

Formal tools for comparing expressiveness

Tradeoff between expressiveness and complexity

- unfair to compare two formalism of different expressiveness
- more expressive ontologies, i.e. those that can distinguish more concepts, are usually computationally more expensive
- \Rightarrow Performance benchmarking is not enough.
- \Rightarrow Need (formal!) benchmarking of expressiveness.

Proposal: Definability as tool to compare expressiveness

- Formal notion of 'Definability'
- Comparing definability of spatial concepts within ontologies

References

Bennett, B., Cohn, A. G., Torrini, P., and Hazarika, S. M. (2000). A foundation for region-based qualitative geometry. In *Proc. of ECAI-2000*, pages 204–208.

Borgo, S., Guarino, N., and Masolo, C. (1996). A pointless theory of space based on strong connection and congruence. In *Proc. of KR'96*, pages 220–229.

Cohn, A. (1997). Qualitative Spatial Representation and Reasoning Techniques. In KI-97: Advances in Artificial Intelligence, LNCS 1303. Springer.

Hernández, D., Clementini, E., and Di Felice, P. (1995). Qualitative distances. In *Proc. of COSIT 95*, LNCS 988, pages 45–58.

Moratz, R., Renz, J., and Wolter, D. (2000). Qualitative Spatial Reasoning about Line Segments. In *Proc. of ECAI-2000*, pages 234–238.

Sharma, J. (1996). Integrated Spatial Reasoning in Geographic Information Systems: Combining Topology and Direction. PhD thesis, Univ. of Maine.

Tarski, A. (1956). Foundations of the geometry of solids. In *Logics, Semantics, Metamathematics. Papers from 1923-1938 by Alfred Tarski*. Clarendon Press.

