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1. Objective: Hierarchy of Logical Theories of
Multidimensional Qualitative & Geometric Space

• Semantically integrate logical theories of space
Here: Theories with interior-boundary distinction
• Show definability or undefinability of relations
• Verify theories with automated theorem provers

Example 1. A map with features of various dimension
depicting a part of the University campus in Toronto.

2. Weak Multidimensional Mereotopology (MMT)
(CommonSense’11)

SPATIAL CONTAINMENT Cont(x, y)
. . . x is contained in y (dimension-independent)

RELATIVE DIMENSION x ≤dim y
. . . x is of a lower or the same dimension as y

ZERO ENTITY ZEX(x)

Relationship between containment and dimension:
(CD-A1) Cont(x, y)→ x ≤dim y

⇒Weak MMT with linear dimension: CODIlinear

Definable relations:

PARTHOOD P (x, y)↔ Cont(x, y) ∧ x =dim y

CONTACT C(x, y)↔ ∃z(Cont(z, x) ∧ Cont(z, y))

⇒ Classification of contact into three types:
(PARTIAL) OVERLAP PO ⇒ x =dim x · y =dim y

. . . share a common part
INCIDENCE Inc⇒ x =dim x · y <dim y (or vice versa)

. . . only a common entity that is part of one
SUPERFICIAL CONTACT SC ⇒ x >dim x · y <dim y

. . . contact without common part

Theorem 1 ∀x, y ∈ dom(M) in a model M of CODIlinear,
C(x, y)↔ exactly one of PO(x, y), Inc(x, y) or SC(x, y).

Figure 1: 2D & 3D examples of the three contact relations.

3. Relationship to Mereotopologies, Incidence
Structures and Geometries (IJCAI’11)

CODI

Figure 2: The hierarchy of spatial theories and their inter-
pretability by external theories (arrows denote extension).

Non-conservative extensions of Tldc are interpreted by
. . . the INCH Calculus (Gotts 1996)

. . . the Region Connection Calculus (Randell et al. 1992)

. . . k-partite incidence structures

. . . (bipartite) incidence geometries

Additional primitive necessary for interpretations by or-
dered incidence geometries (incl. Hilbert’s geometry):
RELATIVIZED BETWEENNESS Btw(r, a, b, c)

. . . in r, b is strictly in between a and c

⇒ MMT with betweenness: Tbmt

4. Simple Entities as Objects of the Domain

Restriction to well-behaved n-dimensional spaces that
clearly distinguish boundary and interior of each entities.

All entities in the domain are Simple entities:

•Uniform dimension m ≤ n

•No self-intersection: No point in interior and boundary

•No singularities or missing lower-dimensional parts

•Composed of atomic (self-connected) simple entities
which are only connected in their boundaries (if at all)

• Simple atomic entities: m-manifolds (locally Euclidean
in Rm) with boundaries (possibly empty)

•Complex entities are sets of simple entities.

Figure 3: Examples of simple and non-simple entities.

Example 2. A 3D building map (simplified CAD drawing)
of the Metro Convention Centre, Toronto.

5. Closure Operations in Multidimensional Space

Ensure decomposability of models by closing them under
intersections and differences.

Definable function: INTERSECTION x · y
. . . intersection of the greatest common dimension

(Int-A1) ¬C(x, y)→ ZEX(x · y) (empty intersection)
(Int-A2) x · y = y · x (intersection commutative)
(Int-A3) ¬ZEX(x · y)→ Cont(x · y, x)

(x · y is contained in the intersecting entities)
(Int-A4) Cont(z, x) ∧ Cont(z, y)→ z ≤dim x · y

(x · y is of the greatest dimension of the intersection)
(Int-A5) Cont(z, x) ∧ Cont(z, y) ∧ z =dim x · y → P (z, x · y)

(greatest intersection of greatest dimension)

Definable function: DIFFERENCE x− y
. . . difference of the same dimension as x

(Dif-A1) P (z, x− y)↔ P (z, x) ∧ ¬PO(z, x · y)

(constitution of the difference x− y)
(Dif-A2) PP (y, x)→ PP (x− y, x)

(non-empty difference x− y if y is a proper part of x)
(Dif-A3) P (y, x) ∧ Cont(z, x) ∧Min(z)→ [Cont(z, x− y) ∨ Cont(z, y)]

(minimal entities in x contained in y or x− y)

Definable relation: SELF-CONNECTEDNESS Con(x)

(Con-D) Con(x)↔ ∀y[PP (y, x)→ C(y, x− y)]

⇒ MMT with downward mereological closures CODI↓

Figure 4: A model of CODI↓ decomposed by intersections
and differences into simple atomic entities.

6. Distinguishing Interiors from Boundaries

BOUNDARY CONTAINMENT BCont(x, y)
. . . x is contained in the boundary of y

BCont is not definable in CODI↓:

Figure 5: Four models equivalent in CODI↓ but not equiva-
lent in CODI↓B. Their extensions of BCont differ: in the left
model neither BCont(l2, a1) nor BCont(l2, a2), in the middle
models one of them holds, and in the right model both hold.

(BC-A1) BCont(x, y)→ ∃z [SC(y, z) ∧ Cont(x, y) ∧ Cont(x, z)]
(boundaries separate two distinct entities)

(BC-A2) SC(x, y)∧MaxDim(x)∧Cont(z, x)∧Cont(z, y)→ BCont(z, x)
(necessarily in boundary of x)

(BC-A3) SC(x, y) ∧ P (x, v) ∧ Cont(y, v) ∧ Cont(z, x) ∧ Cont(z, y) →
BCont(z, x) (necessarily in boundary of x)

(BC-A4) P (x, v)∧P (y, v)∧SC(x, y)∧Cont(z, x)∧Cont(z, y)∧z ≺dim v →
¬BCont(z, v) (not in boundary of v)

(BC-A5) C(x, y)∧Con(x)∧Con(y)∧¬Cont(x, y)∧¬Cont(y, x)∧P (x, v)∧
Cont(y, v)→ ∃z[BCont(z, x) ∧ Cont(z, y)]

(generalized Jordan Curve Theorem)
(BC-T1) BCont(x, y)→ Cont(x, y) ∧ x <dim y (‘thin’ boundary)

⇒ MMT with interior-boundary distinction: CODI↓B

Definable relation: INTERIOR CONTAINMENT

ICont(x, y)↔ Cont(x, y) ∧ ∀z[Cont(z, x)→ ¬BCont(z, y)]

. . . x is contained in the interior of y

Definable relation: TANGENTIAL CONTAINMENT
TCont(x, y)↔ Cont(x, y) ∧ ∃z[Cont(z, x) ∧BCont(z, y)]

. . . x is tangentially contained in y

Theorem 2 ∀x, y ∈ dom(M) in a model M of CODI↓B,
Cont(x, y)↔ exactly one of ICont(x, y) or TCont(x, y).

7. Result: 9-intersections definable in CODI↓B

•Can semantically integrate logical theories of space with
interior-boundary distinction
•Can fit those into the hierarchy of logical theories of space

y◦ ∂y y−

x◦
∃z[ICont(z, x) ∃z[ICont(z, x) ¬Cont(x, y)
∧ICont(z, y)] ∧BCont(z, y)]

∂x
symm. ∃z[(BCont(z, x) ∧∃z[BCont(z, x)

∧BCont(z, y)] ∧¬Cont(z, y)]

x−
symm. symm. ∃z[(¬Cont(z, x)

∧¬Cont(z, y)]

Example 3. Parts and wiring of a 1964 Ford Mustang as
a simplified 3D CAM drawing.
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