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1. Objective: Hierarchy of Logical Theories of
Multidimensional Qualitative & Geometric Space

e Semantically integrate logical theories of space
Here: Theories with interior-boundary distinction

e Show definability or undefinability of relations
e \erify theories with automated theorem provers
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Example 1. A map with features of various dimension
depicting a part of the University campus in Toronto.
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2. Weak Multidimensional Mereotopology (MMT)
(CommonSense’11)

SPATIAL CONTAINMENT Cont(z,y)
...z Is contained in y (dimension-independent)

RELATIVE DIMENSION x <., ¥
...x Is of a lower or the same dimension as y

ZERO ENTITY ZEX (x)

Relationship between containment and dimension:
(CD-A1) Cont(x,y) — « <gjm Y
= Weak MMT with linear dimension: CODI};,,cqr

Definable relations:

PARTHOOD P(z,y) < Cont(z,y) A& =4m y
CONTACT C(z,y) < 3z(Cont(z,z) A Cont(z,y))
= Classification of contact into three types:

(PARTIAL) OVERLAP PO = 2 =gim & - Y =dgim Y
. share a common part

INCIDENCE Inc = x =gim 2 -y <am y (OF Vice versa)
. only a common entity that is part of one

SUPERFICIAL CONTACT SC = 2 >gim & - Y <dim Y
... contact without common part

Theorem 1V, y € dom(M) in a model M of CODI;;y,c0rs
C(x,y) < exactly one of PO(x,y), Inc(x,y) or SC(z,y).
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Figure 1: 2D & 3D examples of the three contact relations.

3. Relationship to Mereotopologies, Incidence
Structures and Geometries (IJCAI'11)
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Figure 2: The hierarchy of spatial theories and their inter-
pretability by external theories (arrows denote extension).

Non-conservative extensions of 7;,. are interpreted by
... the INCH Calculus (Gotts 1996)
... the Region Connection Calculus (Randell et al. 1992)
... k-partite incidence structures
... (bipartite) incidence geometries

Additional primitive necessary for interpretations by or-
dered incidence geometries (incl. Hilbert’'s geometry):

RELATIVIZED BETWEENNESS Btw(r,a,b,c)
...inr, bis strictly in between a and ¢

= MMT with betweenness: T;,,;

4. Simple Entities as Objects of the Domain |

Restriction to well-behaved n-dimensional spaces that
clearly distinguish boundary and interior of each entities.

All entities in the domain are Simple entities:

e Uniform dimension m < n

e No self-intersection: No point in interior and boundary
e No singularities or missing lower-dimensional parts

e Composed of atomic (self-connected) simple entities
which are only connected in their boundaries (if at all)

e Simple atomic entities: m-manifolds (locally Euclidean
in R™) with boundaries (possibly empty)

e Complex entities are sets of simple entities.
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Figure 3: Examples of simple and non-simple entities.

CONNECTING BRIDGE
LEVEL 400

LEVEL 400

TO UNION
STATION

// SKYWALK
¥/ LEVEL 500

LEVEL 300
EXHIBIT LEVEL . GROUND LEVEL

i INFORMATION/CEREMONIAL

LEVEL 200 |
REGISTRATION i

: LEVEL 600
MEETING ROOMS

REGISTRATION

LEVEL 100
BALLROOM
THEATRE

LEVEL 700
MEETING ROOMS

LEVEL 800
EXHIBIT LEVEL

SOUTH BUILDING

Example 2. A 3D building map (simplified CAD drawing)
of the Metro Convention Centre, Toronto.

‘ 5. Closure Operations in Multidimensional Space |

Ensure decomposability of models by closing them under
Intersections and differences.

Definable function: INTERSECTION z -y
... Intersection of the greatest common dimension

(Int-A1l) =C(z,y) — ZEX (z - y)
(Int-A2)z-y=y-x
(Int-A3) - ZEX (z - y) — Cont(x - y, )

(x - y is contained in the intersecting entities)
(Int-A4) Cont(z,x) A Cont(z,y) — 2z <gim T - Y

(x - y is of the greatest dimension of the intersection)

(Int-AS) Cont(z,x) A Cont(z,y) N\ 2 =gim © -y — P(z,z - y)

(greatest intersection of greatest dimension)

(empty intersection)
(intersection commutative)

Definable function: DIFFERENCE x — vy
... difference of the same dimension as «
(Dif-Al) P(z,x — y) <> P(z,2) A =PO(z,x - y)
(constitution of the difference = — )
(Dif-A2) PP(y,z) — PP(x — y, )
(non-empty difference x — y if y is a proper part of x)
(Dif-A3) P(y,x) A Cont(z,x) AN Min(z) — [Cont(z,x —y) V Cont(z,y)]
(minimal entities in x contained in y or x — y)

Definable relation: SELF-CONNECTEDNESS Con(x)
(Con-D) Con(x) < Vy|PP(y,z) — C(y,x —y)]

= MMT with downward mereological closures CODI
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Figure 4: A model of CODI| decomposed by intersections
and differences into simple atomic entities.
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‘ 6. Distinguishing Interiors from Boundaries |

BOUNDARY CONTAINMENT BCont(z,y)
... x is contained in the boundary of y

BCont is not definable in CODI [
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Figure 5: Four models equivalent in CODI, but not equiva-
lentin CODI| B. Their extensions of BCont differ: in the left
model neither BCont(12,al) nor BCont(12,a2), in the middle
models one of them holds, and in the right model both hold.

(BC-A1l) BCont(x,y) — 3z |SC(y, 2) A Cont(x,y) N\ Cont(z, )]
(boundaries separate two distinct entities)
(BC-A2) SC(x,y) N MaxDim(x) A Cont(z,x) ANCont(z,y) — BCont(z, )
(necessarily in boundary of z)
(BC-A3) SC(x,y) N P(x,v) A Cont(y,v) A Cont(z,x) N Cont(z,y) —
BCont(z, x) (necessarily in boundary of x)
(BC-A4) P(x,v)ANP(y,v) ANSC(x,y) NCont(z,x) N\Cont(z,y) Nz <gim v —
—BCont(z,v) (not in boundary of v)
(BC-AS) C(x,y) NCon(x) ANCon(y) N—~Cont(x,y) N—Cont(y,x) N P(x,v)A

Cont(y,v) — 3z[BCont(z,x) A Cont(z,y)]

(generalized Jordan Curve Theorem)

(BC-T1) BCont(x,y) — Cont(x,y) Nx <gim Yy (‘thin” boundary)
= MMT with interior-boundary distinction: CODI | B

Definable relation: INTERIOR CONTAINMENT
ICont(x,y) <> Cont(z,y) ANVz|Cont(z,x) — -BCont(z,y)]
...z is contained in the interior of y

Definable relation: TANGENTIAL CONTAINMENT
TCont(z,y) < Cont(x,y) A Iz[Cont(z,x) N BCont(z,y)]
... x is tangentially contained in y

Theorem 2Vz,y € dom(M) in a model M of CODI,| B,
Cont(x,y) < exactly one of ICont(z,y) or T'Cont(x,y).

| 7. Result: 9-intersections definable in CODI B |

e Can semantically integrate logical theories of space with
Interior-boundary distinction

e Can fit those into the hierarchy of logical theories of space

Y dy Y
Az[ICont(z,x)  Fz[ICont(z,x)

* N Cont(z,y)] ABCont(z,y)]

P Az[(BCont(z,x)  AJz[BCont(z,x)
ABCont(z,y)] A=Cont(z,y)]

- Az[(=Cont(z, )

A=Cont(z,y)]

Example 3. Parts and wiring of a 1964 Ford Mustang as
a simplified 3D CAM drawing.
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