
1Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

CSC384: Introduction to Artificial Intelligence

Constraint Satisfaction Problems
(Backtracking Search)

• Chapter 6

– 6.1: Formalism

– 6.2: Constraint Propagation

– 6.3: Backtracking Search for CSP

– 6.4 is about local search which is a very
useful idea but we won’t cover it in class.

2Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Acknowledgements

•Much of the material in the lecture slides comes from
Fahiem Bacchus, Sheila McIlraith, and Craig Boutilier.

• Some slides come from a tutorial by Andrew Moore via
Sonya Allin.

• Some slides are modified or unmodified slides provided
by Russell and Norvig.

3Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Constraint Satisfaction Problems (CSP)

•The search algorithms we discussed so far had no
knowledge of the states representation (black box).

– For each problem we had to design a new state
representation (and embed in it the sub-routines we pass
to the search algorithms).

• Instead we can have a general state representation
that works well for many different problems.

•We can then build specialized search algorithms that
operate efficiently on this general state representation.

•We call the class of problems that can be represented
with this specialized representation:
CSPs – Constraint Satisfaction Problems.

4Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

•The idea: represent states as a vector of feature
values.

– k-features (or variables)

– Each feature takes a value. Each variable has a
domain of possible values:

• height = {short, average, tall},

• weight = {light, average, heavy}

•In CSPs, the problem is to search for a set of values
for the features (variables) so that the values satisfy
some conditions (constraints).

– i.e., a goal state specified as conditions on the
vector of feature values.

Constraint Satisfaction Problems (CSP)

5Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example: Sudoku

6Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

•81 variables, each representing the value of a cell.

•Values: a fixed value for those cells that are
already filled in, the values {1-9} for those cells that
are empty.

•Solution: a value for each cell satisfying the
constraints:

– No cell in the same column can have the same value.

– No cell in the same row can have the same value.

– No cell in the same sub-square can have the same value.

Example: Sudoku

7Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

•More formally, a CSP consists of

– A set of variables V1, …, Vn
– For each variable a domain of possible values
Dom[Vi].

– A set of constraints C1,…, Cm.

– A solution to a CSP is an assignment of a value
to all of the variables such that every constraint
is satisfied.

– A CSP is not satisfiable, if no solution exists.

Formalization of a CSP

8Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

• Each variable can be assigned any value from its
domain.

• Vi = d where d ∈ Dom[Vi]

• Each constraint C
– Has a set of variables it is over, called its scope;

• e.g., C(V1,V2,V4) ranges over V1, V2, V4

– Has a restriction on the values of the variables in the scope;

• e.g. C(V1,V2,V3) = ‹(V1,V2,V3), V1≠ V2 ^ V1 ≠V4 ^ V2 ≠ V4 ›
or (shorter) C(V1,V2,V3): V1≠ V2, V1 ≠V4, V2 ≠ V4

– Is a Boolean function that maps assignments to the variables in
its scope to true/false.

• e.g. C(V1=a,V2=b,V4=c) = True

– this set of assignments satisfies the constraint.

• e.g. C(V1=b,V2=c,V4=c) = False

– this set of assignments falsifies the constraint.

Formalization of a CSP

9Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

• Unary Constraints (over one variable)

– e.g. C(X):X=2; C(Y): Y>5

• Binary Constraints (over two variables)

– e.g. C(X,Y): X+Y<6

– Can be represented by Constraint Graph

• Nodes are variables, arcs show constraints.

• e.g. 4-Queens:

• Higher-order constraints: over 3 or more variables

– We can convert any constraint into a set of binary
constraints (may need some auxiliary variables).

• Look at the exercise in the book.

Formalization of a CSP

10Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

• Variables: V11, V12, …, V21, V22, …, V91, …, V99

• Domains:
– Dom[Vij] = {1-9} for empty cells
– Dom[Vij] = {k} a fixed value k for filled cells.

•Constraints:
– Row constraints:

• CR1(V11, V12, V13, …, V19)
• CR2(V21, V22, V23, …, V29)
•, CR9(V91, V92, …, V99)

– Column Constraints:
• CC1(V11, V21, V31, …, V91)
• CC2(V21, V22, V13, …, V92)
•, CC9(V19, V29, …, V99)

– Sub-Square Constraints:
• CSS1(V11, V12, V13, V21, V22, V23, V31, V32, V33)
• CSS1(V14, V15, V16,…, V34, V35, V36)

Example: Sudoku

11Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

•Each of these constraints is over 9 variables, and they
are all the same constraint:

– Any assignment to these 9 variables such that each variable
has a unique value satisfies the constraint.

– Any assignment where two or more variables have the same
value falsifies the constraint.

•Special kind of constraints called ALL-DIFF constraints.

– An ALL-DIFF constraint over k variables can be equivalently
represented by (k choose 2) “not-equal constraints” (NEQ)
over each pair of these variables.

– e.g. CSS1(V11, V12, V13, V21, V22, V23, V31, V32, V33) = NEQ(V11,V12),
NEQ(V11,V13), NEQ(V11,V21) …, NEQ(V32,V33)

– Remember: all higher-order constraints can be converted into
a set of binary constraints

Example: Sudoku

12Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

•Thus Sudoku has 3x9 ALL-DIFF constraints, one
over each set of variables in the same row, one
over each set of variables in the same column,
and one over each set of variables in the same
sub-square.

Example: Sudoku

13Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

• CSPs can be solved by a specialized
version of depth-first search.
– Actually depth-limited search. Why?

• Key intuitions:
– We can build up to a solution by searching through the
space of partial assignments.

– Order in which we assign the variables does not matter –
eventually they all have to be assigned. We can decide
on a suitable value for one variable at a time!

� This is the key idea of backtracking search.
– If during the process of building up a solution we falsify a
constraint, we can immediately reject all possible ways of
extending the current partial assignment.

Solving CSPs

14Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

CSP as a Search Problem

• Initial state: empty assignment

• Successor function: a value is assigned to
any unassigned variable, which does not

conflict with the currently assigned variables

• Goal test: the assignment is complete

• Path cost: irrelevant

15Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Solving CSPs – Backtracking Search

• Bad news: 3SAT is a finite CSP and known to be
NP-complete, so we cannot expect to do better in
the worst case

• Backtracking Search: DFS with single-variable
assignments for a CSP
– Basic uninformed search for solving CSPs
– Gets rid of unnecessary permutations in search tree and

significantly reduces search space:
• Time complexity: reduction from O(dn!) to O(dn)

d … max. number of values of some variable (braching factor)
n … number of variables (depth)

• Sudoku example: order of filling a square does not matter
– […, (2,3)=7, (3,3)=8, …] = […, (3,3)=8, (2,3)=7, …]

– 981 states instead of 981! states

16Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

•These ideas lead to the backtracking search algorithm

BT(Level)

If all variables assigned

PRINT Value of each Variable

RETURN or EXIT (RETURN for more solutions)

(EXIT for only one solution)

V := PickUnassignedVariable()

Variable[Level] := V

Assigned[V] := TRUE

for d := each member of Domain(V) (the domain values of V)

Value[V] := d

for each constraint C such that V is a variable of C

and all other variables of C are assigned:

IF C is not satisfied by the set of current

assignments: BREAK;

ELSE BT(Level+1)

return

Backtracking Search: The Algorithm BT

17Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

•The algorithm searches a tree of partial assignments.

Root {}

Vi=a Vi=b Vi=c

Vj=1 Vj=2

The root has the empty
set of assignments

Children of a node are
all possible values of

some (any) unassigned
variable

Subtree

Search stops
descending if the
assignments on
path to the node

violate a constraint

Backtracking Search

18Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

•Heuristics are used to determine
– the order in which variables are assigned:
PickUnassignedVariable()

– the order of values tried for each variable.

•The choice of the next variable can vary from
branch to branch, e.g.,
– under the assignment V1=a we might choose to
assign V4 next, while under V1=b we might choose
to assign V5 next.

•This “dynamically” chosen variable ordering has
a tremendous impact on performance.

Backtracking Search

19Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example: N-Queens

• Place N Queens on an N X N chess board so that no
Queen can attack any other Queen.

20Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example: N-Queens

• Problem formulation:

– N variables (N queens)

– N2 values for each variable representing the
positions on the chessboard

21Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example: N-Queens

• Q1 = 1, Q2 = 15, Q3 = 21, Q4 = 32,
Q5 = 34, Q6 = 44, Q7 = 54, Q8 = 59

22Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example: N-Queens

• This representation has (N²)N states
(different possible assignments in the
search space)
– For 8-Queens: 648 = 281,474,976,710,656

• Is there a better way to represent the N-
queens problem?
– We know we cannot place two queens in a
single row � we can exploit this fact in the
choice of the CSP representation already

23Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example: N-Queens

• Better Modeling:

– N variables Qi, one per row.

– Value of Qi is the column the Queen in row i
is placed; possible values {1, …, N}.

• This representation has NN states:

– For 8-Queens: 88 = 16,777,216

• The choice of a representation can decided
whether or not we can solve a problem!

24Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example: N-Queens

• Q1 = 1, Q2 = 7, Q3 = 5, Q4 = 8,
Q5 = 2, Q6 = 4, Q7 = 6, Q8 = 3

25Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example: N-Queens

• Constraints:

– Can’t put two Queens in same column

Qi ≠ Qj for all i ≠ j

– Diagonal constraints

|Qi-Qj| ≠ i-j

•i.e., the difference in the values assigned
to Qi and Qj can’t be equal to the
difference between i and j.

26Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example: N-Queens

27Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example: N-Queens

28Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example: N-Queens

29Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Solution!

Example: N-Queens

30Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Problems with Plain Backtracking

Sudoku: The 3,3 cell has no possible value.

31Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

• In the backtracking search we won’t detect that the
(3,3) cell has no possible value until all variables of the
row/column (involving row or column 3) or the sub-
square constraint (first sub-square) are assigned.
So we have the following situation:

• Leads to the idea of constraint propagation

Variable has no possible
value, but we don’t
detect this. Until we try
to assign it a value

Problems with Plain Backtracking

32Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

• Constraint propagation refers to the technique
of “looking ahead” at the yet unassigned
variables in the search .

• Try to detect obvious failures: “Obvious” means
things we can test/detect efficiently.

• Even if we don’t detect an obvious failure we
might be able to eliminate some possible part
of the future search.

Constraint Propagation

33Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

• Propagation has to be applied during the
search; potentially at every node of the search
tree.

• Propagation itself is an inference step which
needs some resources (in particular time)
– If propagation is slow, this can slow the search down
to the point where using propagation actually slows
search down!

– There is always a tradeoff between searching fewer
nodes in the search, and having a higher
nodes/second processing rate.

• We will look at two main types of propagation.

Constraint Propagation

34Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

• Forward checking is an extension of
backtracking search that employs a “modest”
amount of propagation (look ahead).

• When a variable is instantiated we check all
constraints that have only one uninstantiated
variable remaining.

• For that uninstantiated variable, we check all
of its values, pruning those values that violate
the constraint.

Constraint Propagation: Forward Checking

35Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

FCCheck(C,x)

// C is a constraint with all its variables already

// assigned, except for variable x.

for d := each member of CurDom[x]

IF making x = d together with previous assignments

to variables in scope C falsifies C

THEN remove d from CurDom[V]

IF CurDom[V] = {} then return DWO (Domain Wipe Out)

return ok

Forward Checking Algorithm

•For a single constraint C:

36Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

FC(Level) /*Forward Checking Algorithm */

If all variables are assigned
PRINT Value of each Variable
RETURN or EXIT (RETURN for more solutions) (EXIT for only one solution)

V := PickAnUnassignedVariable()
Variable[Level] := V
Assigned[V] := TRUE
for d := each member of CurDom(V)

Value[V] := d

DWOoccured:= False

for each constraint C over V that has one unassigned variable

in its scope (say X).
if(FCCheck(C,X) == DWO) /* X domain becomes empty*/

DWOoccurred:= True /* no point to continue*/

break

if(not DWOoccured) /*all constraints were ok*/

FC(Level+1)
RestoreAllValuesPrunedByFCCheck()

return;

Forward Checking Algorithm

37Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

44--Queens ProblemQueens Problem

• Encoding with Q1, …, Q4 denoting a queen per column

– cannot put two queens in same row (instead of same column)

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

38Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

44--Queens ProblemQueens Problem

• Forward checking reduced the domains of all variables that are
involved in a constraint with one uninstantiated variable:

– Here all of Q2, Q3, Q4

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

39Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

40Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

DWO

41Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

42Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

43Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

44Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

DWO

45Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

44--Queens ProblemQueens Problem

• Exhausted the subtree with Q1=1; try now Q1=2

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

46Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

47Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

48Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

49Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

50Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

44--Queens ProblemQueens Problem

• We have now find a solution: an assignment of all variables to
values of their domain so that all constraints are satisfied

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

51Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

• After we backtrack from the current
assignment (in the for loop) we must restore
the values that were pruned as a result of that
assignment.

• Some bookkeeping needs to be done, as we
must remember which values were pruned by
which assignment (FCCheck is called at every
recursive invocation of FC).

FC: Restoring Values

52Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

• FC also gives us for free a very powerful
heuristic to guide us which variables to try next:

– Always branch on a variable with the smallest
remaining values (smallest CurDom).

– If a variable has only one value left, that value is
forced, so we should propagate its consequences
immediately.

– This heuristic tends to produce skinny trees at the
top. This means that more variables can be
instantiated with fewer nodes searched, and thus
more constraint propagation/DWO failures occur
with less work.

– We can find a inconsistency such as in the Sudoku
example much faster.

FC: Minimum Remaining Values Heuristics (MRV)

53Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

MRV Heuristic: Human Analogy

• What variables would you try first?

(1, 5): impossible values:
Row: {1, 4, 5, 6, 8}
Column: {1, 3, 4, 5, 7, 9}
Subsquare: {5, 7, 9}
� Domain = {2}

Domain of each variable:
{1, …, 9}

(9, 5): impossible values:
Row: {1, 5, 7, 8, 9}
Column: {1, 3, 4, 5, 7, 9}
Subsquare: {1, 5, 7, 9}
�Domain = {2, 6}

After assigning value 2 to
cell (1,5): Domain = {6}Most restricted variables! = MRV

54Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example – Map Colouring

• Color the following map using red, green, and
blue such that adjacent regions have different
colors.

55Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

•Modeling

– Variables: WA, NT, Q, NSW, V, SA, T

– Domains: Di={red, green, blue}

– Constraints: adjacent regions must have
different colors.

•E.g. WA ≠ NT

Example – Map Colouring

56Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example – Map Colouring

• Forward checking idea: keep track of remaining legal
values for unassigned variables.

• Terminate search when any variable has no legal
values.

57Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example – Map Colouring

• Assign {WA=red}

• Effects on other variables connected by constraints to
WA

– NT can no longer be red

– SA can no longer be red

58Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example – Map Colouring

• Assign {Q=green}

• Effects on other variables connected by constraints with Q

– NT can no longer be green

– NSW can no longer be green

– SA can no longer be green

• MRV heuristic would automatically select NT or SA next

59Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example – Map Colouring

• Assign {V=blue}

• Effects on other variables connected by constraints with V

– NSW can no longer be blue

– SA is empty

• FC has detected that partial assignment is inconsistent with the
constraints and backtracking can occur.

60Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

• FC often is about 100 times faster than BT

• FC with MRV (minimal remaining values) often
10000 times faster.

• But on some problems the speed up can be
much greater

– Converts problems that are not solvable to problems
that are solvable.

• Other more powerful forms of consistency are
commonly used in practice.

Empirically

61Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

•Another form of propagation:
make each arc consistent

–C(X,Y) is consistent iff for every value of X there
is some value of Y that satisfies C.

– Idea: ensure that every binary constraint is

satisfiable (2-consistency)

•Binary constraints = arcs in the constraint graph

•Remember: All higher-order constraints can be
expressed as a set of binary constraints

Constraint Propagation: Arc Consistency

62Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

•Can remove values from the domain of variables:
– e.g. C(X,Y): X>Y Dom(X)={1,5,11} Dom(Y)={3,8,15}

• For X=1 there is no value of Y s.t. 1>Y => remove 1 from domain X

• For Y=15 there is no value of X s.t. X>15, so remove 15 from domain Y

• We obtain more restricted domains Dom(X)={5,11} and Dom(Y)={3,8}

– Have to try much fewer values in the search tree.

•Removing a value from a domain may trigger further
inconsistency, so we have to repeat the procedure until
everything is consistent.
– For efficient implementation, we keep track of inconsistent arcs by
putting them in a Queue (See AC3 algorithm in the book).

•This is stronger than forward checking. why?

Constraint Propagation: Arc Consistency

63Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Arc Consistency – Map Colouring Example

• Since NSW loses a value, we need to recheck all
constraints involving NSW: other neighbours are Q, V

64Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Arc Consistency – Map Colouring Example

• Since V loses a value, we need to recheck all
constraints involving V: other neighbours are SA
•Recheck all constraints involving SA

ok

66Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Arc Consistency – Map Colouring Example

• (SA, NT) is not satisfiable any longer – we

detected an unavoidable failure in the assignment
{WA=red, Q=green}
– Forward checking would have detected it as well. Why?

ok

67Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Arc-Consistency – Example

• CSP with 3 variables X, Y, Z

– Domains:

•Dom(X) = {1, · · · , 10}

•Dom(Y) = {5, · · · , 15}

•Dom(Z) = {5, · · · , 20}

– Constraints:

•C(X,Y): X > Y

•C(Y,Z): Y + Z = 12

•C(X,Z): X + Z = 16

68Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Arc Consistency – Example

• Draw the constraint graph.

• Are the constraints arc consistent?

X Y

Z

C(X,Y) is consistent iff for every value of X
there is some value of Y that satisfies C.

Dom(X) = {1, · · · , 10}

Dom(Y) = {5, · · · , 15}

Dom(Z) = {5, · · · , 20}

C(X,Y): X > Y

C(Y,Z): Y + Z = 12

C(X,Z): X + Z = 16

69Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Dom(X) = {1, · · · , 10}
Dom(Y) = {5, · · · , 15}
Dom(Z) = {5, · · · , 20}

C(X,Y): X > Y
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

• Apply arc consistency method repeatedly
so they become arc consistent.
– For X=1,2,3,4,5 there is no value of Y s.t. X>Y
=> remove 1,2,3,4,5 from domain X

– For Y>7 there is no value of Z s.t. Y+Z=12
=> remove 8,…,15 from domain Y

– For Z>7 there is no value of Y s.t. Y+Z=12
=> remove 8,…,20 from domain Z

– For X=6,7,8 there is no value of Z s.t.

X+Z=16 => remove 6,7,8 from domain X

– For Z=5 there is no value of X s.t.

X+Z=16 => remove 5 from domain Z

– For Y=7 there is no value of Z s.t.

Y+Z=12 => remove 7 from domain Y

Dom(X) = {6, · · · , 10}
Dom(Y) = {5, · · · , 15}
Dom(Z) = {5, · · · , 20}

C(X,Y): X > Y
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

Dom(X) = {6, · · · , 10}
Dom(Y) = {5, 6, 7}
Dom(Z) = {5, 6, 7}

C(X,Y): X > Y
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

Dom(X) = {9 , 10}
Dom(Y) = {5, 6, 7}
Dom(Z) = {6 , 7}

C(X,Y): X > Y
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

Dom(X) = {9 , 10}
Dom(Y) = {5, 6}
Dom(Z) = {6 , 7}

C(X,Y): X > Y
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

Arc Consistency – Example

Dom(X) = {9 , 10}
Dom(Y) = {5, 6, 7}
Dom(Z) = {6 , 7}

C(X,Y): X > Y
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

Dom(X) = {9 , 10}
Dom(Y) = {5, 6, 7}
Dom(Z) = {6 , 7}

C(X,Y): X > Y
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

Dom(X) = {9 , 10}
Dom(Y) = {5, 6}
Dom(Z) = {6 , 7}

C(X,Y): X > Y
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

70Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Other forms of Consistency

• Generalized arc consistency: for an n-ary constraint, for
each value of the domain of a variable, there exists a tuple
of values for the remaining n-1 variables that satisfy the
constraint

• Path consistency: a pair (V1, V2) is path-consistent with
respect to a third variable V3 if for every assignment
{V1=a, V2=b} consistent with all binary constraints of
{V1, V2}, there is an assignment to V3 that satisfies all
binary constraints on {V1, V3} and {V2, V3}.
– Think of V3 being on a path of length 2 from V1 to V2

• Strong k-consistency
– k-consistent, (k-1)-consistent, etc.

– Very expensive: any algorithm establishing k-consistency requires
exponential time and space in k

– In practical solvers: 2-consistency, sometimes 3-consistency

71Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Many real-world applications of CSP

• Assignment problems

– who teaches what class

• Timetabling problems

– exam schedule

• Transportation scheduling

• Floor planning

• Factory scheduling

• Hardware configuration

– a set of compatible components

72Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

CSP Solvers

• Much work on various heuristics for variable and value selection

• Fourth CSP Solver Competition Results 2009,

Category: Only binary constraints

73Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

CSP Solvers

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250 300 350

C
P

U
 t

im
e

 (
s
)

number of solved instances

Time to solve an instance
(SAT answers, category 2-ARY-EXT)

Abscon 112v4 AC
Abscon 112v4 ESAC

bpsolver 09
Choco2.1.1 2009-06-10

Choco2.1.1b 2009-07-16
Concrete 2009-07-14

Concrete DC 2009-07-14

Conquer 2009-07-10
Mistral 1.545

pcs 0.3.2
pcs-restart 0.3.2

SAT4J CSP 2.1.1
Sugar v1.14.6+minisat
Sugar v1.14.6+picosat

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 50 100 150 200 250

C
P

U
 t

im
e

 (
s
)

number of solved instances

Time to solve an instance
(UNSAT answers, category 2-ARY-EXT)

Abscon 112v4 AC
Abscon 112v4 ESAC

bpsolver 09
Choco2.1.1 2009-06-10

Choco2.1.1b 2009-07-16
Concrete 2009-07-14

Concrete DC 2009-07-14

Conquer 2009-07-10
Mistral 1.545

pcs 0.3.2
pcs-restart 0.3.2

SAT4J CSP 2.1.1
Sugar v1.14.6+minisat
Sugar v1.14.6+picosat

