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CSC384: Introduction to Artificial Intelligence

Constraint Satisfaction Problems 
(Backtracking Search)

• Chapter 6

– 6.1: Formalism

– 6.2: Constraint Propagation

– 6.3: Backtracking Search for CSP

– 6.4 is about local search which is a very 
useful idea but we won’t cover it in class.
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Constraint Satisfaction Problems (CSP)

•The search algorithms we discussed so far had no 
knowledge of the states representation (black box). 

– For each problem we had to design a new state 
representation (and embed in it the sub-routines we pass 
to the search algorithms). 

• Instead we can have a general state representation
that works well for many different problems. 

•We can then build specialized search algorithms that 
operate efficiently on this general state representation. 

•We call the class of problems that can be represented 
with this specialized representation:
CSPs – Constraint Satisfaction Problems. 
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•The idea: represent states as a vector of feature 
values.

– k-features (or variables)

– Each feature takes a value. Each variable has a 
domain of possible values:

• height = {short, average, tall}, 

• weight = {light, average, heavy}

•In CSPs, the problem is to search for a set of values 
for the features (variables) so that the values satisfy 
some conditions (constraints).

– i.e., a goal state specified as conditions on the 
vector of feature values.

Constraint Satisfaction Problems (CSP)
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Example: Sudoku
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•81 variables, each representing the value of a cell.

•Values: a fixed value for those cells that are 
already filled in, the values {1-9} for those cells that 
are empty.

•Solution: a value for each cell satisfying the 
constraints:

– No cell in the same column can have the same value.

– No cell in the same row can have the same value.

– No cell in the same sub-square can have the same value.

Example: Sudoku



7Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

•More formally, a CSP consists of

– A set of variables V1, …, Vn
– For each variable a domain of possible values 
Dom[Vi].

– A set of constraints C1,…, Cm.

– A solution to a CSP is an assignment of a value 
to all of the variables such that every constraint 
is satisfied.

– A CSP is not satisfiable, if no solution exists.

Formalization of a CSP
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• Each variable can be assigned any value from its 
domain. 

• Vi = d where d ∈ Dom[Vi]

• Each constraint C 
– Has a set of variables it is over, called its scope;

• e.g., C(V1,V2,V4) ranges over V1, V2, V4

– Has a restriction on the values of the variables in the scope;

• e.g. C(V1,V2,V3) = ‹(V1,V2,V3), V1≠ V2 ^ V1 ≠V4 ^ V2 ≠ V4 ›
or (shorter) C(V1,V2,V3): V1≠ V2, V1 ≠V4, V2 ≠ V4

– Is a Boolean function that maps assignments to the variables in 
its scope to true/false.

• e.g. C(V1=a,V2=b,V4=c) = True

– this set of assignments satisfies the constraint.

• e.g. C(V1=b,V2=c,V4=c) = False

– this set of assignments falsifies the constraint.

Formalization of a CSP
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• Unary Constraints (over one variable)

– e.g. C(X):X=2;  C(Y): Y>5

• Binary Constraints (over two variables)

– e.g. C(X,Y): X+Y<6

– Can be represented by Constraint Graph

• Nodes are variables, arcs show constraints. 

• e.g. 4-Queens:

• Higher-order constraints: over 3 or more variables

– We can convert any constraint into a set of binary 
constraints (may need some auxiliary variables). 

• Look at the exercise in the book.

Formalization of a CSP



10Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

• Variables: V11, V12, …, V21, V22, …, V91, …, V99

• Domains:
– Dom[Vij] = {1-9} for empty cells
– Dom[Vij] = {k} a fixed value k for filled cells.

•Constraints:
– Row constraints:

• CR1(V11, V12, V13, …, V19)
• CR2(V21, V22, V23, …, V29)
• ...., CR9(V91, V92, …, V99)

– Column Constraints:
• CC1(V11, V21, V31, …, V91)
• CC2(V21, V22, V13, …, V92)
• ...., CC9(V19, V29, …, V99)

– Sub-Square Constraints:
• CSS1(V11, V12, V13, V21, V22, V23, V31, V32, V33)
• CSS1(V14, V15, V16,…, V34, V35, V36)

Example: Sudoku



11Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

•Each of these constraints is over 9 variables, and they 
are all the same constraint:

– Any assignment to these 9 variables such that each variable 
has a unique value satisfies the constraint.

– Any assignment where two or more variables have the same 
value falsifies the constraint.

•Special kind of constraints called ALL-DIFF constraints.

– An ALL-DIFF constraint over k variables can be equivalently 
represented by (k choose 2) “not-equal constraints” (NEQ) 
over each pair of these variables.

– e.g. CSS1(V11, V12, V13, V21, V22, V23, V31, V32, V33) = NEQ(V11,V12), 
NEQ(V11,V13), NEQ(V11,V21) …, NEQ(V32,V33) 

– Remember: all higher-order constraints can be converted into 
a set of binary constraints

Example: Sudoku
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•Thus Sudoku has 3x9 ALL-DIFF constraints, one 
over each set of variables in the same row, one 
over each set of variables in the same column, 
and one over each set of variables in the same 
sub-square.

Example: Sudoku
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• CSPs can be solved by a specialized 
version of depth-first search. 
– Actually depth-limited search. Why?

• Key intuitions:
– We can build up to a solution by searching through the 
space of partial assignments. 

– Order in which we assign the variables does not matter –
eventually they all have to be assigned. We can decide 
on a suitable value for one variable at a time!

� This is the key idea of backtracking search.
– If during the process of building up a solution we falsify a 
constraint, we can immediately reject all possible ways of 
extending the current partial assignment.

Solving CSPs
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CSP as a Search Problem

• Initial state: empty assignment

• Successor function: a value is assigned to 
any unassigned variable, which does not 

conflict with the currently assigned variables

• Goal test: the assignment is complete

• Path cost: irrelevant
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Solving CSPs – Backtracking Search

• Bad news: 3SAT is a finite CSP and known to be 
NP-complete, so we cannot expect to do better in 
the worst case

• Backtracking Search: DFS with single-variable 
assignments for a CSP
– Basic uninformed search for solving CSPs
– Gets rid of unnecessary permutations in search tree and 

significantly reduces search space:
• Time complexity: reduction from O(dn!) to O(dn)

d … max. number of values of some variable (braching factor)
n … number of variables (depth)

• Sudoku example: order of filling a square does not matter
– […, (2,3)=7, (3,3)=8, …] = […, (3,3)=8, (2,3)=7, …]

– 981 states instead of 981! states
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•These ideas lead to the backtracking search algorithm

BT(Level)

If all variables assigned

PRINT Value of each Variable

RETURN or EXIT (RETURN for more solutions) 

(EXIT for only one solution)

V := PickUnassignedVariable()

Variable[Level] := V

Assigned[V] := TRUE

for d := each member of Domain(V) (the domain values of V)

Value[V] := d

for each constraint C such that V is a variable of C

and all other variables of C are assigned: 

IF C is not satisfied by the set of current 

assignments: BREAK; 

ELSE BT(Level+1)

return

Backtracking Search: The Algorithm BT
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•The algorithm searches a tree of partial assignments.

Root {}

Vi=a Vi=b Vi=c

Vj=1 Vj=2

The root has the empty 
set of assignments

Children of a node are 
all possible values of 

some (any) unassigned 
variable

Subtree

Search stops 
descending if the 
assignments on 
path to the node 

violate a constraint 

Backtracking Search
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•Heuristics are used to determine 
– the order in which variables are assigned: 
PickUnassignedVariable()

– the order of values tried for each variable.

•The choice of the next variable can vary from 
branch to branch, e.g.,
– under the assignment V1=a we might choose to 
assign V4 next, while under V1=b we might choose 
to assign V5 next.

•This “dynamically” chosen variable ordering has 
a tremendous impact on performance.

Backtracking Search
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Example: N-Queens

• Place N Queens on an N X N chess board so that no 
Queen can attack any other Queen.
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Example: N-Queens

• Problem formulation:

– N variables (N queens)

– N2 values for each variable representing the 
positions on the chessboard 
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Example: N-Queens

• Q1 = 1, Q2 = 15, Q3 = 21, Q4 = 32, 
Q5 = 34, Q6 = 44, Q7 = 54, Q8 = 59
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Example: N-Queens

• This representation has (N²)N states 
(different possible assignments in the 
search space)
– For 8-Queens: 648 = 281,474,976,710,656

• Is  there a better way to represent the N-
queens problem?
– We know we cannot place two queens in a 
single row � we can exploit this fact in the 
choice of the CSP representation already
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Example: N-Queens

• Better Modeling:

– N variables Qi, one per row.

– Value of Qi is the column the Queen in row i 
is placed; possible values {1, …, N}.

• This representation has NN states:

– For 8-Queens: 88 = 16,777,216 

• The choice of a representation can decided 
whether or not we can solve a problem!
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Example: N-Queens

• Q1 = 1, Q2 = 7, Q3 = 5, Q4 = 8, 
Q5 = 2, Q6 = 4, Q7 = 6, Q8 = 3
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Example: N-Queens

• Constraints:

– Can’t put two Queens in same column

Qi ≠ Qj for all i ≠ j 

– Diagonal constraints

|Qi-Qj| ≠ i-j

•i.e., the difference in the values assigned 
to Qi and Qj can’t be equal to the 
difference between i and j.
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Example: N-Queens
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Example: N-Queens
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Example: N-Queens
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Solution!

Example: N-Queens



30Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Problems with Plain Backtracking

Sudoku: The 3,3 cell has no possible value.
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• In the backtracking search we won’t detect that the 
(3,3) cell has no possible value until all variables of the 
row/column (involving row or column 3) or the sub-
square constraint (first sub-square) are assigned. 
So we have the following situation:

• Leads to the idea of constraint propagation

Variable has no possible 
value, but we don’t 
detect this. Until we try 
to assign it a value

Problems with Plain Backtracking
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• Constraint propagation refers to the technique 
of “looking ahead” at the yet unassigned 
variables in the search .

• Try to detect obvious failures: “Obvious” means 
things we can test/detect efficiently.

• Even if we don’t detect an obvious failure we 
might be able to eliminate some possible part 
of the future search.

Constraint Propagation
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• Propagation has to be applied during the 
search; potentially at every node of the search 
tree.

• Propagation itself is an inference step which 
needs some resources (in particular time)
– If propagation is slow, this can slow the search down 
to the point where using propagation actually slows 
search down!

– There is always a tradeoff between searching fewer 
nodes in the search, and having a higher 
nodes/second processing rate.

• We will look at two main types of propagation.

Constraint Propagation
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• Forward checking is an extension of 
backtracking search that employs a “modest”
amount of propagation (look ahead).

• When a variable is instantiated we check all 
constraints that have only one uninstantiated
variable remaining.

• For that uninstantiated variable, we check all 
of its values, pruning those values that violate 
the constraint.

Constraint Propagation: Forward Checking
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FCCheck(C,x) 

// C is a constraint with all its variables already

// assigned, except for variable x.

for d := each member of CurDom[x]

IF making x = d together with previous assignments 

to variables in scope C falsifies C

THEN remove d from CurDom[V]   

IF CurDom[V] = {} then return DWO (Domain Wipe Out)

return ok

Forward Checking Algorithm

•For a single constraint C:
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FC(Level) /*Forward Checking Algorithm */

If all variables are assigned
PRINT Value of each Variable
RETURN or EXIT (RETURN for more solutions) (EXIT for only one solution)

V := PickAnUnassignedVariable()
Variable[Level] := V
Assigned[V] := TRUE
for d := each member of CurDom(V)

Value[V] := d

DWOoccured:= False

for each constraint C over V that has one unassigned variable

in its scope (say X).
if(FCCheck(C,X) == DWO) /* X domain becomes empty*/

DWOoccurred:= True  /* no point to continue*/

break

if(not DWOoccured) /*all constraints were ok*/

FC(Level+1)
RestoreAllValuesPrunedByFCCheck()

return; 

Forward Checking Algorithm
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44--Queens ProblemQueens Problem

• Encoding with Q1, …, Q4 denoting a queen per column

– cannot put two queens in same row (instead of same column)

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}
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44--Queens ProblemQueens Problem

• Forward checking reduced the domains of all variables that are 
involved in a constraint with one uninstantiated variable:

– Here all of Q2, Q3, Q4

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

DWO
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}

DWO
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44--Queens ProblemQueens Problem

• Exhausted the subtree with Q1=1; try now Q1=2

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}
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44--Queens ProblemQueens Problem
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44--Queens ProblemQueens Problem
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32 41
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44--Queens ProblemQueens Problem
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32 41
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44--Queens ProblemQueens Problem

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}
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{1,2,3,4}
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44--Queens ProblemQueens Problem

• We have now find a solution: an assignment of all variables to 
values of their domain so that all constraints are satisfied

1

3

2

4

32 41

Q1

{1,2,3,4}

Q3

{1,2,3,4}

Q4

{1,2,3,4}

Q2

{1,2,3,4}
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• After we backtrack from the current 
assignment (in the for loop) we must restore 
the values that were pruned as a result of that 
assignment.

• Some bookkeeping needs to be done, as we 
must remember which values were pruned by 
which assignment (FCCheck is called at every 
recursive invocation of FC).

FC: Restoring Values
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• FC also gives us for free a very powerful 
heuristic to guide us which variables to try next:

– Always branch on a variable with the smallest 
remaining values (smallest CurDom).

– If a variable has only one value left, that value is 
forced, so we should propagate its consequences 
immediately. 

– This heuristic tends to produce skinny trees at the 
top. This means that more variables can be 
instantiated with fewer nodes searched, and thus 
more constraint propagation/DWO failures occur 
with less work. 

– We can find a inconsistency such as in the Sudoku 
example much faster.

FC: Minimum Remaining Values Heuristics (MRV)
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MRV Heuristic: Human Analogy

• What variables would you try first?

(1, 5): impossible values:
Row: {1, 4, 5, 6, 8}
Column: {1, 3, 4, 5, 7, 9}
Subsquare: {5, 7, 9}
� Domain = {2}

Domain of each variable:
{1, …, 9}

(9, 5): impossible values:
Row: {1, 5, 7, 8, 9}
Column: {1, 3, 4, 5, 7, 9}
Subsquare: {1, 5, 7, 9}
�Domain = {2, 6}

After assigning value 2 to
cell (1,5):  Domain = {6}Most restricted variables! = MRV
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Example – Map Colouring

• Color the following map using red, green, and 
blue such that adjacent regions have different 
colors.
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•Modeling

– Variables: WA, NT, Q, NSW, V, SA, T

– Domains: Di={red, green, blue}

– Constraints: adjacent regions must have 
different colors.

•E.g. WA ≠ NT

Example – Map Colouring
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Example – Map Colouring

• Forward checking idea: keep track of remaining legal 
values for unassigned variables.

• Terminate search when any variable has no legal 
values.
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Example – Map Colouring

• Assign {WA=red}

• Effects on other variables connected by constraints to 
WA

– NT can no longer be red

– SA can no longer be red



58Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Example – Map Colouring

• Assign {Q=green}

• Effects on other variables connected by constraints with Q

– NT can no longer be green

– NSW can no longer be green

– SA can no longer be green

• MRV heuristic would automatically select NT or SA next
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Example – Map Colouring

• Assign {V=blue}

• Effects on other variables connected by constraints with V

– NSW can no longer be blue

– SA is empty

• FC has detected that partial assignment is inconsistent with the 
constraints and backtracking can occur.
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• FC often is about 100 times faster than BT

• FC with MRV (minimal remaining values) often 
10000 times faster.

• But on some problems the speed up can be 
much greater 

– Converts problems that are not solvable to problems 
that are solvable.

• Other more powerful forms of consistency are 
commonly used in practice.

Empirically



61Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

•Another form of propagation: 
make each arc consistent

–C(X,Y) is consistent iff for every value of X there 
is some value of Y that satisfies C.

– Idea: ensure that every binary constraint is 

satisfiable (2-consistency)

•Binary constraints = arcs in the constraint graph

•Remember: All higher-order constraints can be 
expressed as a set of binary constraints

Constraint Propagation: Arc Consistency
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•Can remove values from the domain of variables:
– e.g. C(X,Y): X>Y Dom(X)={1,5,11} Dom(Y)={3,8,15}

• For X=1 there is no value of Y s.t. 1>Y => remove 1 from domain X

• For Y=15 there is no value of X s.t. X>15, so remove 15 from domain Y

• We obtain more restricted domains Dom(X)={5,11} and Dom(Y)={3,8}

– Have to try much fewer values in the search tree.

•Removing a value from a domain may trigger further 
inconsistency, so we have to repeat the procedure until 
everything is consistent.
– For efficient implementation, we keep track of inconsistent arcs by 
putting them in a Queue (See AC3 algorithm in the book).

•This is stronger than forward checking. why?

Constraint Propagation: Arc Consistency
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Arc Consistency – Map Colouring Example

• Since NSW loses a value, we need to recheck all
constraints involving NSW: other neighbours are Q, V
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Arc Consistency – Map Colouring Example

• Since V loses a value, we need to recheck all
constraints involving V: other neighbours are SA
•Recheck all constraints involving SA

ok
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Arc Consistency – Map Colouring Example

• (SA, NT) is not satisfiable any longer – we 

detected an unavoidable failure in the assignment 
{WA=red, Q=green}
– Forward checking would have detected it as well. Why?

ok
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Arc-Consistency – Example

• CSP with 3 variables X, Y, Z

– Domains:

•Dom(X) = {1, · · · , 10} 

•Dom(Y) = {5, · · · , 15}

•Dom(Z) = {5, · · · , 20}

– Constraints:

•C(X,Y): X > Y  

•C(Y,Z): Y + Z = 12

•C(X,Z): X + Z = 16
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Arc Consistency – Example

• Draw the constraint graph.

• Are the constraints arc consistent? 

X Y

Z

C(X,Y) is consistent iff for every value of X 
there is some value of Y that satisfies C. 

Dom(X) = {1, · · · , 10} 

Dom(Y) = {5, · · · , 15}

Dom(Z) = {5, · · · , 20}

C(X,Y): X > Y  

C(Y,Z): Y + Z = 12

C(X,Z): X + Z = 16
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Dom(X) = {1, · · · , 10} 
Dom(Y) = {5, · · · , 15}
Dom(Z) = {5, · · · , 20}

C(X,Y): X > Y
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

• Apply arc consistency method repeatedly 
so they become arc consistent.
– For X=1,2,3,4,5 there is no value of Y s.t. X>Y 
=> remove 1,2,3,4,5 from domain X

– For Y>7 there is no value of Z s.t. Y+Z=12 
=> remove 8,…,15 from domain Y

– For Z>7 there is no value of Y s.t. Y+Z=12 
=> remove 8,…,20 from domain Z

– For X=6,7,8 there is no value of Z s.t. 

X+Z=16 => remove 6,7,8 from domain X

– For Z=5 there is no value of X s.t. 

X+Z=16 => remove 5 from domain Z

– For Y=7 there is no value of Z s.t. 

Y+Z=12 => remove 7 from domain Y

Dom(X) = {6, · · · , 10}
Dom(Y) = {5, · · · , 15}
Dom(Z) = {5, · · · , 20}

C(X,Y): X > Y  
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

Dom(X) = {6, · · · , 10} 
Dom(Y) = {5, 6, 7}
Dom(Z) = {5, 6, 7}

C(X,Y): X > Y  
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

Dom(X) = {9 , 10}
Dom(Y) = {5, 6, 7}
Dom(Z) = {6 , 7}

C(X,Y): X > Y  
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

Dom(X) = {9 , 10} 
Dom(Y) = {5, 6}
Dom(Z) = {6 , 7}

C(X,Y): X > Y  
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

Arc Consistency – Example

Dom(X) = {9 , 10} 
Dom(Y) = {5, 6, 7}
Dom(Z) = {6 , 7}

C(X,Y): X > Y
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

Dom(X) = {9 , 10} 
Dom(Y) = {5, 6, 7}
Dom(Z) = {6 , 7}

C(X,Y): X > Y  
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16

Dom(X) = {9 , 10} 
Dom(Y) = {5, 6}
Dom(Z) = {6 , 7}

C(X,Y): X > Y  
C(Y,Z): Y + Z = 12
C(X,Z): X + Z = 16



70Torsten Hahmann, CSC384 Introduction to Artificial Intelligence, University of Toronto, Fall 2011

Other forms of Consistency

• Generalized arc consistency: for an n-ary constraint, for 
each value of the domain of a variable, there exists a tuple
of values for the remaining n-1 variables that satisfy the 
constraint

• Path consistency: a pair (V1, V2) is path-consistent with 
respect to a third variable V3 if for every assignment 
{V1=a, V2=b} consistent with all binary constraints of 
{V1, V2}, there is an assignment to V3 that satisfies all 
binary constraints on {V1, V3} and {V2, V3}.
– Think of V3 being on a path of length 2 from V1 to V2

• Strong k-consistency
– k-consistent, (k-1)-consistent, etc.

– Very expensive: any algorithm establishing k-consistency requires 
exponential time and space   in k

– In practical solvers: 2-consistency, sometimes 3-consistency
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Many real-world applications of CSP

• Assignment problems 

– who teaches what class

• Timetabling problems

– exam schedule

• Transportation scheduling

• Floor planning

• Factory scheduling

• Hardware configuration

– a set of compatible components 
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CSP Solvers

• Much work on various heuristics for variable and value selection

• Fourth CSP Solver Competition Results 2009, 

Category: Only binary constraints
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CSP Solvers
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