
Poly-logarithmic Frege depth lower bounds

via an expander switching lemma

Toniann Pitassi∗

University of Toronto
toni@cs.toronto.edu

Benjamin Rossman†

National Institute of Informatics
rossman@nii.ac.jp

Rocco A. Servedio‡

Columbia University
rocco@cs.columbia.edu

Li-Yang Tan§

Toyota Technological Institute
liyang@cs.columbia.edu

April 28, 2016

Abstract

We show that any polynomial-size Frege refutation of a certain linear-size unsatisfiable 3-
CNF formula over n variables must have depth Ω(

√
log n). This is an exponential improvement

over the previous best results [PBI93, KPW95, BS02] which give Ω(log log n) lower bounds.
The 3-CNF formulas which we use to establish this result are Tseitin contradictions on

3-regular expander graphs. In more detail, our main result is a proof that for every d, any
depth-d Frege refutation of the Tseitin contradiction over these n-node graphs must have size
nΩ((log n)/d2). A key ingredient of our approach is a new switching lemma for a carefully designed
random restriction process over these expanders. These random restrictions reduce a Tseitin
instance on a 3-regular n-node expander to a Tseitin instance on a random subgraph which is a
topological embedding of a 3-regular n′-node expander, for some n′ which is not too much less
than n. Our result involves Ω(

√
log n) iterative applications of this type of random restriction.

∗Supported by NSERC. Part of this research was done while visiting the Simons Institute.
†Supported by JST-ERATO Kawarabayashi Large Graph Project. This research was carried out at the Simons

Institute and during a visit to the University of Toronto.
‡Supported by NSF grants CCF-1319788 and CCF-1420349. Part of this research was done while visiting the

Simons Institute.
§Part of this research was done while at the Simons Institute and during a visit to Columbia University.

Contents

1 Introduction 1

2 Definitions 5
2.1 Frege Systems . 5
2.2 Restrictions and Decision Trees . 6
2.3 DNFs and Formulas . 7
2.4 Tseitin contradictions . 7
2.5 Expanders and some of their useful properties . 8
2.6 Topological embeddings . 9

3 Our Tseitin instances and the Kleinberg–Rubinfeld random restrictions 9
3.1 Our Tseitin instances . 9
3.2 The “atomic” Kleinberg–Rubinfeld random restrictions 10

4 Composing the Kleinberg–Rubinfeld random restrictions 12
4.1 The inductive definition of A(i) . 13

5 Independent sets, closures, and pruning 14
5.1 Independent sets . 15
5.2 “Pushing the contradiction” and closure of restrictions 15
5.3 Pruning . 17

6 k-Evaluations 21

7 Proof of Theorem 1: Obtaining a k-evaluation from the switching lemma 24
7.1 Proof of Lemma 7.1 assuming Theorem 2 . 24
7.2 Proof of Lemma 7.2 . 27

8 The “atomic” Tseitin Switching Lemma 29
8.1 A simple switching lemma for r-clipped decision trees 30
8.2 A quantity rHn′′,n′ (m, s) that we need to bound . 33
8.3 The Tseitin switching lemma . 38
8.4 Auxiliary lemma for the proof of Lemma 8.17 . 40
8.5 Proof of Lemma 8.17 . 42

9 Safe trees become total under KR random restrictions 45

10 Final Tseitin switching lemma 47
10.1 Useful tools for Theorem 7 . 48
10.2 Proof of Theorem 7 . 49

A Proof of Lemma 2.7 52

1 Introduction

Background. One of the main motivations for the field of propositional proof complexity is the
following observation of Cook and Reckhow [CR79]: If there is a propositional proof system in
which any unsatisfiable formula F has a short proof of unsatisfiability (of size polynomial in the
size of F), then NP = coNP. Despite great progress over the last 25 years, our understanding of
the complexity of propositional proof systems is still very limited. In particular, lower bounds for
propositional proof systems lag significantly behind lower bounds for the analogous circuit classes.

For some very simple proof systems, exponential lower bounds have long been known. In par-
ticular, the complexity of Resolution (where lines in a proof are depth-1 circuits) is now very well
understood. An early groundbreaking paper by Tseitin [Tse68] introduced the Tseitin formulas
and proved that any regular Resolution proof of the Tseitin formulas requires exponential size.
Almost 20 years later, Haken [Hak85] proved that any (unrestricted) Resolution proof of the pi-
geonhole principle (PHP) requires exponential size. This led to a flurry of results in the late 80’s
and early 90’s, establishing similar exponential size lower bounds for other families of tautologies
[Urq87, CS88], a simpler proof of Haken’s result [BKPS98], and finally Ben-Sasson and Wigderson’s
[BSW99] celebrated work on Resolution width, establishing that clause width is the fundamental
parameter characterizing Resolution proof complexity.

A natural next class of proof systems to contend with is constant-depth Frege systems. These are
“textbook-style” proof systems, where the lines in the proof are restricted to formulas computable
in AC0. A major breakthrough was made by Ajtai in 1994 [Ajt94], who used an ingenious blend
of nonstandard model theory and combinatorics to prove that any constant-depth Frege proof of
PHP must have super-polynomial size. While Ajtai did not work out the exact parameters in his
lower bound, [BPU92] gave a purely combinatorial reformulation of his result, and showed that his
proof implies that any polynomial-size Frege proof of PHP must have depth Ω(log∗ n).

Subsequently, [PBI93, KPW95] significantly strengthened Ajtai’s bound, showing that any
polynomial-size Frege proof of PHP must have depth Ω(log log n). Urquhart and Fu [UF96] sim-
plified and adapted the previous proofs in order to prove similar lower bounds for Tseitin formulas
over the complete graph, and Ben-Sasson [BS02], via a very clever reduction, proved exponential
lower bounds for the Tseitin formulas over constant-degree expander graphs. Unfortunately, all of
these lower bounds become trivial once the depth of formulas in the proof are allowed to exceed
log logn. On the other hand, Buss [Bus87] proved that PHP has polynomial-size, O(log n)-depth
Frege proofs, and similar upper bounds are known for the Tseitin formulas over any graph. Because
of this exponential gap between log log n and log n, it has been a fairly longstanding open problem
to break the “log log n depth barrier” for Frege proofs; see e.g. the first open problem in [Raz02].

Challenges in proving lower bounds for larger depth Frege. The combinatorics underlying
small-depth Frege lower bounds is similar to the methodology that has been used to prove the
celebrated 2Ω(n1/d) lower bounds for depth-d circuits computing the Parity function [H̊as86]. Those
arguments apply a restriction (obtained by a switching lemma and a union bound) in order to
shrink the depth of the circuit by one; performing this iteratively d times shrinks the circuit to an
r-DNF formula for Parity over more than r variables, giving a direct contradiction. If each variable
is independently set to 0 or 1 each with probability (1 − p)/2, and is left unset with probability
p, then H̊astad’s switching lemma [H̊as86] shows that an r-DNF fails to convert to an s-CNF
under such a restriction with probability at most O(pr)s. Thus, by setting r = s = O(log n) and
p = Θ(1/ log n), by a union bound there is a restriction which, applied to a polynomial-size depth-d

1

circuit, shrinks it to a polynomial-size depth-(d−1) circuit, still computing Parity on the remaining
Ω(n/ log n) unset variables. With this choice of p, we can apply such a restriction Θ(log n/ log log n)
times, to obtain an Ω(log n/ log logn) depth lower bound for polynomial-size circuits that compute
the n-variable Parity function.

However, proving lower bounds against small-depth Frege proofs is considerably more difficult,
for two reasons. First, the proof complexity arguments that are required are very subtle — unlike
in the case of the Parity lower bound, in the proof complexity context when we shrink the depth of
formulas in the proof, we can no longer preserve equivalence in the usual sense. Instead, equivalence
is preserved only in a “local” sense. Second, the random restrictions used in switching lemmas in
the proof complexity context must “preserve the structure” of the statement being proved, which
makes the switching lemmas more involved. For example, the pigeonhole principle from n + 1
pigeons to n holes has variables pi,j , and expresses the (unsatisfiable) fact that there is a one-to-
one mapping from n + 1 pigeons to n holes. In the case of the Parity lower bound, the random
restrictions are unbiased and coordinate-wise independent, hence very simple. However in the case
of the pigeonhole principle, we must be very careful to set the variables so as to not obviously falsify
the pigeonhole principle: for example, we must never choose a restriction that maps two pigeons to
the same hole (since the pigeonhole principle, under the restriction, should still be an instance of
the pigeonhole principle, or at least an instance of something that is nontrivial to prove!). Thus we
are forced to use restrictions where there are significant correlations between the variables: setting
pi,j to 1 means that we must set pi′,j to 0 for all other pigeons i′ 6= i. This issue is not unique
to the pigeonhole principle; regardless of what unsatisfiable CNF propositional formula we start
with, we are constrained to choose restrictions that do not obviously falsify any of the clauses of
the formula, for the same reason sketched above.

These constraints makes it quite difficult to prove a switching lemma with strong parameters.
Prior to the current work, every switching lemma that has been proved for small-depth Frege is for
a distribution over random restrictions in which p (the probability that a given variable is unset)
is O(n−ε) for some constant ε > 0; having such a small p leads to lower bounds that are super-
polynomial only up to depth O(log log n). (To see this, note for example that if ε = 1/2, then after

d rounds we are left with only n1/2d unset variables, and thus we cannot take d > log log n.)

Our contributions. In this paper, we prove the first super-polynomial lower bounds for Frege
proofs of depth up to Θ(

√
log n), for Tseitin formulas over 3-regular expander graphs. Our main

result is the following:

Theorem 1. There is a linear-size 3-CNF contradiction Tseitin(Gn[α]) (an instance of Tseitin on
a 3-regular n-node expander graph, to be defined formally later) with the following property: for
every d, any depth-d Frege refutation of Tseitin(Gn[α]) must have size nΩ((logn)/d2). Consequently,
any polynomial-size Frege refutation of Tseitin(Gn[α]) must have depth d = Ω(

√
log n).

The main novelty in our approach is in developing a way to start with a sparse graph Gn
over O(n) variables/edges (a 3-regular n-node expander with 3n/2 variables/edges), and apply a
restriction that both

• leaves a large fraction (roughly an n−1/(2d) fraction) of the variables unset, yet still

• maintains that the Tseitin contraints, under the restriction, are “just as hard” as the original
Tseitin constraints (though now with respect to a smaller universe).

2

Roughly speaking, the chief difficulty in executing this approach is in designing a distribution
over random restrictions that are “highly structured” (so that the reduced formula is still very
difficult to refute), yet at the same time “have enough randomness” so that we can prove a switching
lemma with good parameters.

An expander switching lemma. An important enabling ingredient in designing a distribu-
tion as described above is a beautiful structural result about expander graphs due to Kleinberg
and Rubinfeld [KR96]. This result states that any graph G′ with n/polylog(n) nodes and edges
can be embedded in a bounded-degree n-node expander; in other words, such an expander con-
tains G′ contains as a minor. This easily implies that an n-node 3-regular expander contains any
(n/polylog(n))-node 3-regular expander as a topological minor. Inspired by and building on this
structural result, at a high level, we start with the Tseitin principle over an n-node 3-regular ex-
pander graph Gn. Applying a carefully designed random restriction (which corresponds closely to
the randomized algorithm given in [KR96] to establish that the embedding exists), the 3-regular
n-node expander Gn “collapses” to a random subgraph H that is a topological embedding of Gn′ ,
a 3-regular n′-node expander, in Gn, where n′ = n1−1/(2d). Note that the corresponding reduced
Tseitin formula under the restriction is not quite as clean as the Tseitin formula over a smaller
3-regular expander Gn′ ; instead it consists of the Tseitin constraints over the graph H which may
be viewed as Gn′ with each of its edges sub-divided into a path. However, intuitively, the reduced
Tseitin formula is just as hard as the original one, since it is over a graph that contains a 3-regular
expander as a topological minor. Since n′ = n1−1/(2d), we can repeat this d times and still have
n1/2 variables survive all d repetitions. The parameters of our switching lemma are such that we
can take d to be as large as Θ(

√
log n), and hence we get a depth lower bound of Ω(

√
log n).

As alluded to above, our random restrictions are over variables that correspond to edges of a 3-
regular expander, and the switching lemma that we prove for them may be viewed as a “projection
switching lemma over expander graphs”. The term “projection” here is in the sense of [RST15],
and alludes to the aforementioned issue that H is not a 3-regular expander but contains a 3-regular
expander Gn′ as a topological minor — more precisely, H is obtained from Gn′ by sub-dividing each
of its edges into a path (so all the resulting paths are node-disjoint except at their endpoints). The
“projection” essentially amounts to viewing each such path, joining two degree-3 nodes in H, as a
“super-edge” corresponding to a single new variable.

As suggested by the above discussion, the random restrictions that our switching lemma deals
with are quite complex (see Sections 3 and 4 where these restrictions are formally defined). To
handle this complexity the proof of our switching lemma follows a different line of argument than
we are aware of in previous switching lemma proofs. Section 8.1 gives an overview of these new
ideas in a significantly simplified setting (and also lays essential groundwork for our real switching
lemma proof).

Overview of the proof complexity arguments. Above we have sketched some aspects of our
switching lemma; here we provide some intuition for the proof complexity arguments that use this
switching lemma. Assume that for n sufficiently large, we have a small AC0-Frege refutation P of

Tseitin(Gn[α]), the Tseitin contradiction over n-node expander Gn (where α ∈ ZV (Gn)
2 is an “odd

charge” assignment to the vertices V (Gn) of Gn). We apply a random restriction ρ (ρ is essentially
the concatenation of d “atomic” random restrictions, each of which is used to reduce depth by one
via our switching lemma) to all of the sub-formulas occurring in P . The restriction ρ leaves us with
an instance Tseitin(H[α � ρ]) where H is a randomly generated topological embedding of Gnfinal

in
Gn, where nfinal = n/(n1/(2d))d =

√
n and α � ρ is an odd charge over V (H) induced by ρ.

3

We apply the random restriction ρ to each formula in the Frege proof P to obtain a new proof
P � ρ. (The restriction ρ applied to P simply substitutes in every formula of P the constants 0
or 1 for the variables that have been fixed by ρ.) Next, we argue that there is an outcome ρ of ρ
such that P ′ := P � ρ has a “k-evaluation” for k � nfinal. For every sub-formula A that occurs
in P ′, the k-evaluation assigns to A an associated decision tree of height at most k. These trees
are constructed via an iterative process that involves d rounds, where each round both applies
a random restriction and performs a simplification. (The analysis establishing the existence of a
k-evaluation uses our switching lemma along with a union bound over the size of P to argue that all
the formulas do indeed simplify.) These trees have some important properties. First, every clause
of Tseitin(H[α � ρ]) will be associated with a 1-tree (a decision tree with all leaves labelled by 1).
Second, the final formula “0” (which is in P ′ since it is the final formula in P) will be associated
with a 0-tree (all leaves labelled by 0). Finally, the trees associated with all formulas and their
sub-formulas satisfy a certain type of “local consistency.” The existence of a k-evaluation for all
sub-formulas in P ′ leads to a contradiction since it implies on the one hand that all formulas in P ′

are associated with 1-trees, but on the other hand, that the final “0” formula in P ′ is associated
with a 0-tree.

Related Results and Discussion. As mentioned above, Ajtai [Ajt94] proved the first super-
polynomial lower bound for bounded-depth Frege systems, establishing that depth O(log∗ n) Frege
proofs of PHP require super-polynomial size. This was improved by [PBI93, KPW95] who proved

exp(Ω(n5−d)) size lower bounds against depth-d Frege, thus establishing super-polynomial lower
bounds up to depth Θ(log log n). Ben-Sasson [BS02] proved comparable lower bounds for certain
Tseitin contradictions with 3-CNF encodings. All of these prior super-polynomial lower bounds
hold for depths up to Θ(log log n), and thus our lower bound gives an exponential improvement
in terms of depth. However, for constant-depth Frege the previous results give exponential size
bounds, whereas our proof only gives quasi-polynomial size bounds. Thus in terms of size, previous
results are better than ours for depths at most Θ(log log n). We conjecture that the optimal size
lower bound for depth-d Frege is exp(Ω(n1/d)) (which would match the state-of-the-art in Boolean
circuit lower bounds [H̊as86]) and we conjecture that this may be achievable by improving the
analysis of our switching lemma (for the same random restrictions).

We view our result as a significant step towards establishing small-depth Frege lower bounds
for randomly generated CNF formulas. Random CNF formulas are one of the most well-studied
families of SAT formulas, both because of their strong connection to threshold phenomena in
statistical physics, and because they are a canonical family of hard examples for SAT solvers.
Proof complexity lower bounds for random 3-CNF formulas are important, as they demonstrate
the limitations of the proof system (and corresponding limitations on SAT algorithms based on
the proof system) for a large family of formulas, and not just for specially tailored hard instances.
Super-polynomial lower bounds for random CNF formulas have been known for over ten years
for Resolution [CS88] and Polynomial Calculus [BI99]. However, for small-depth Frege systems,
progress has been quite slow. The best results to date are super-polynomial lower bounds for
random CNFs in Res(q), a weak generalization of Resolution where proof lines are disjunctions of
terms of width q ≤

√
log n/ log log n [SBI04, Ale11]. Thus it is even open to prove lower bounds

for random CNFs for depth-2 Frege. To see the connection with Tseitin formulas, we first observe
that Tseitin formulas over random graphs are a variant of random k-XOR formulas (subject to the
additional constraint that each variable occurs in exactly two equations), and second, that Frege
lower bounds for random k-XOR formulas imply Frege lower bounds for random k-CNF formulas

4

[BI99]. We are optimistic that our techniques can be extended to the case of random k-XOR and
thus to random k-CNF.

Organization. Section 2 defines Frege proof systems, Tseitin formulas, restrictions, expanders,
and other basic notions. In Section 3 we define our “atomic” random restrictions, and in Section
4 we explain how these atomic random restrictions are composed to obtain the actual random
restrictions that we use. Section 5 establishes notions of independence (of sets of edges), closure (of
restrictions), and pruning (of decision trees) which play an important role in our technical results.
Section 6 introduces the key notion of a “k-evaluation” from proof complexity, and Section 7 uses
this notion to prove our main theorem assuming our Tseitin Switching Lemma. Finally, Sections 8
through 10 contains the proof of our switching lemma.

2 Definitions

2.1 Frege Systems

The underlying Frege system that we will use here is Shoenfield’s system, as presented in [UF96].
Because any two bounded-depth Frege systems over ∧, ∨ and ¬ can polynomially simulate one
another [CR79], our results hold more generally for any bounded-depth Frege system over this
basis.

Our proof system uses binary disjunction ∨ and ¬; a conjunction A ∧ B is treated as an
abbreviation for the formula ¬(¬A ∨ ¬B). In addition, we include the propositional constants 0
and 1, representing “false” and “true” respectively. If A,B1, . . . , Bm are formulas over a sequence
of variables p1, . . . , pm, then A[B1/p1, . . . , Bm/pm] is the formula resulting from A by substituting
B1, . . . , Bm for p1, . . . , pm.

A rule is defined to be a sequence of formulas, written A1, . . . , Ak → A0. In the case where
A1, . . . , Ak is empty, the rule is referred to as an axiom scheme. The rule is sound if every truth
assignment satisfying all of A1, . . . , Ak also satisfies A0. If A1, . . . , Ak → A0 is a Frege rule, then C0

is inferred from C1, . . . , Ck by this rule if there is a sequence of formulas B1, . . . , Bm and variables
p1, . . . , pm so that for all i, 0 ≤ i ≤ k, Ci = Ai[B1/p1, . . . , Bm/pm]. (In other words C1, . . . , Ck → C0

is a substitution instance of A1, . . . , Ak → A0.)
Shoenfield’s system F consists of the following rules:

• (Excluded Middle): (p ∨ ¬p);

• (Expansion rule): p→ q ∨ p;

• (Contraction rule): p ∨ p→ p;

• (Associative rule): p ∨ (q ∨ r)→ (p ∨ q) ∨ r;

• (Cut rule): p ∨ q,¬p ∨ r → q ∨ r.

Let A = C1 ∧ . . . ∧ Cm be an unsatisfiable CNF formula. A refutation of A in F is a finite
sequence of formulas such that every formula in the sequence is one of C1, . . . , Cm or inferred from
earlier formulas in the sequence by a rule in F , and the last formula is 0. F is a sound and complete
proof system: all of the rules are sound and thus if A has a refutation then A is unsatisfiable, and
furthermore F is complete since every unsatisfiable CNF formula has a refutation in F .

5

We will be working with the above proof system which operates with binary connectives; however
we want to measure formula depth using unboundeded fan-in connectives. To do this, we will
measure the depth of a formula by the number of alternations of ∨ and ¬. More precisely, we
can represent a formula by a tree in which each leaf is labeled with a propositional variable or a
constant, and each interior node is labeled with ∨ if it is the parent of two nodes or ¬ if it is the
parent of only one. A branch in the tree, when traversed from the root to the leaf, is labeled with
a block of operators of one kind (say ¬) followed by a block of the other kind (say ∨), and so on,
ending with a variable or constant. The logical depth of a branch is defined to be the number of
blocks of operators labelling the branch. The depth of a formula is the maximum logical depth of the
branches in its formation tree. This notion of depth is the same as the depth of the corresponding
unbounded fan-in ∧,∨,¬ formula, up to small constant factors. A refutation in F has depth d if
the maximum depth of any formula in the proof is at most d. The size of a formula is the number
of (binary) connectives in the formula. The size of a refutation Γ, denoted |Γ|, is the sum of the
sizes of all formulas in the refutation.

2.2 Restrictions and Decision Trees

Given a set of variables E, a restriction β is an element of (Z2∪{∗})E . We may equivalently view β
as an element of ZS2 for some S ⊆ E, and we say that S is the support of β, denoted supp(β). Given
restrictions β, β′ ∈ (Z2 ∪ {∗})E we say that β′ is a sub-restriction of β if supp(β′) ⊆ supp(β) and
β(e) = b ∈ Z2 whenever β′(e) = b ∈ Z2. We say that β is an extension of β′ if β′ is a sub-restriction
of β. We say that a set of restrictions {β1, . . . , βt} is mutually compatible if for every i, j ∈ [t] we
have that βi(e) = βj(e) whenever e ∈ supp(βi) ∩ supp(βj).

A decision tree is said to be proper if no variable is queried two or more times on any branch.
Throughout the entire paper all decision trees are assumed to be proper unless explicitly stated
otherwise.

Let T be a decision tree over a space of variables E and let β be a restriction. We write “T � β”
to denote the decision tree obtained by simplifying T according to β “in the obvious way.” More
precisely, if T = (e;T0, T1), meaning that T is the decision tree with variable e at the root and left
(respectively, right) child T0 (respectively, T1), then we have the following:

• If β(e) = ∗ then T � β = (e;T0 � β;T1 � β);

• If β(e) = 0 then T � β = T0 � β;

• If β(e) = 1 then T � β = T1 � β.

For b ∈ Z2, we write “T � β = b” to indicate that T � β is the 1-node tree consisting only of a
leaf b.

A branch of a decision tree T over variable set E is a root-to-leaf path (which, more formally, is
a sequence π = π1 ◦ · · · ◦ πk where each πi is an element of E × Z2 and no element occurs twice in
π). Clearly every branch in a decision tree T corresponds to a unique restriction and we will often
take this perspective of viewing branches as restrictions.

Unless specified otherwise a decision tree is assumed to have every leaf labeled with an element
of Z2; we sometimes refer to such trees as total to emphasize that every leaf is labeled with an
element of Z2. A partial decision tree is a decision tree in which each leaf is labeled with some
element of Z2∪{⊥}. A partial decision tree is said to be m-safe if all leaves labeled ⊥ are at depth

6

≥ m. Given a total decision tree T , we write T c to denote the tree obtained from T by replacing
each leaf bit with its complement.

For b ∈ (Z2∪{⊥}) and a decision tree T let Branchesb(T) denote the set of branches of T whose
leaf is labeled b. Let Branches(T) = Branches0(T) ∪Branches1(T), which is the set of all branches
of T if T is total. Note that if T � β = b for some b ∈ Z2 (i.e. T � β is the constant-b tree of depth
0), then there exists a path π ∈ Branchesb(T) such that β extends π.

A 1-tree is a decision tree in which every leaf is labeled by 1, and likewise 0-tree.
We close this subsection with a notational convention: many of our definitions, lemmas, etc.

will involve restrictions. As a helpful notational convention, in such definitions, lemmas, etc. we
use ρ, ρ′, ρ̃, etc. to denote restrictions which should be thought of as “coming from” a random
restriction process, and we use π, π′, π̃, etc. to denote restrictions which should be thought of as
“coming from” a branch in some decision tree. If the definition/lemma/etc. may arise in either
context we use β, β′, β̃, etc.

2.3 DNFs and Formulas

Observe that any element of Branches1(T), for any decision tree T , corresponds to a conjunction
in an obvious way, so we may view Branches1(T) as a collection of conjunctions (i.e. of terms).
Given a decision tree T we write “Disj(T)” to denote the DNF whose terms correspond precisely to
the 1-branches of T . Observe that if T1, . . . are decision trees then “∨jDisj(Tj)” is a DNF (whose
terms are precisely the terms that occur in some Disj(Tj)).

For a term t, and a restriction β, t � β is 0 if any literal in t is set to 0 by β, otherwise, t � β
is the conjunction of literals that are unset by β. (By definition, a term of size zero is equal to 1.)
For an DNF formula F = t1 ∨ . . . ∨ tm, F � β is the DNF formula obtained as follows: If any term
is set to 1 by β, then F � β = 1, and otherwise Fβ = ∨i(ti � β). (In particular, F � β = 0 means
that every term in F is set to 0 by β.)

For a Boolean formula A and a restriction β, A � β denotes the formula obtained by performing
simple variable substitution as dictated by β. If Γ is a collection of formulas Γ = {Ai} then Γ � β
denotes {Ai � β}.

2.4 Tseitin contradictions

Given a labeling α ∈ ZV2 of the vertices of a graph G = (V,E), we define a Boolean formula
associated with (G,α). We view each element of E as a formal Boolean variable. The Tseitin
formula Tseitin(G[α]) over the formal variables in E is defined to be

Tseitin(G[α]) :=
∧
v∈V

(∑
e∼v

e = α(v)
)

︸ ︷︷ ︸
constraint(v,α)

,

where “e ∼ v” indicates that edge e has vertex v as an endpoint. Note that if G has maximum
degree 3, then for every v ∈ V , constraint(v, α) can be expressed as a 3-CNF with 23−1 = 4 clauses.
Therefore for such an n-node graph, the formula Tseitin(G[α]) is a 3-CNF with 4n clauses.

We sometimes refer to α as the “charge” of G, and to the value α(v) as being “odd” or “even.”
The following fact is well known (see e.g. Lemma 18.16 of [Juk12]):

Fact 2.1. If G is connected, then Tseitin(G[α]) is satisfiable iff
∑

v∈V α(v) = 0.

7

For G a graph and α a charge we say that α is an odd charge if
∑

v∈V α(v) = 1 and that it is
an even charge otherwise. By Fact 2.1, if α ∈ ZV2 is any odd charge then the associated 3-CNF is
unsatisfiable. We sometimes also consider charges α ∈ ZV ′2 for some V ′ ⊆ V , as in the following
definition and facts. (Here and throughout the paper, for a graph G = (V,E) and S ⊆ E, we write
G− S to denote the graph (V,E \ S).)

Definition 2.2 (α-consistency). Let G = (V,E) be a graph and α ∈ ZV ′2 where V ′ ⊆ V . Let S ⊆ E
be a subset of the edges and ρ ∈ ZS2 . We say that ρ is α-consistent if∑

e∼v
ρ(e) = α(v) for all v ∈ V ′ that are isolated in G− S.

The following fact is an easy consequence of Fact 2.1:

Fact 2.3. Let G = (V,E) be a connected graph and α ∈ ZV ′2 where V ′ (V . Then there is an

α-consistent assignment ρ ∈ ZE(G)
2 .

Fact 2.4. Let G = (V,E) be a connected graph and α ∈ ZV ′2 where V ′ (V . Then the set of all

α-consistent assignments ρ ∈ ZE(G)
2 forms an affine subspace of Z

E(G)
2 .

Proof. The set of α-consistent assignments is easily seen to be the set of solutions to a system of
linear equations; this system is satisfiable (by Fact 2.3), and therefore the set of solutions forms an
affine subspace.

The following notion of restricting (“toggling”) a charge by a partial assignment to the edges
will be useful for us:

Definition 2.5 (Restricting a charge). Let G = (V,E) be a graph and α ∈ ZV2 . Let S ⊆ E be a
subset of the edges and ρ ∈ ZS2 . We define (α � ρ) ∈ ZV2 by

(α � ρ)(v) = α(v)−
∑
e∼v

1[e ∈ S & ρ(e) = 1] for all vertices v ∈ V .

We say that a connected component C = (V (C), E(C)) of an n-node graph is giant if V (C) >
n/2. Note that there can only be one giant component in any given graph. For α ∈ ZV2 a charge
of G and C = (V (C), E(C)) a connected component of G, we say the α-charge of C is

∑
v∈C α(v).

We mention that sometimes we will write things like H[α] when α ∈ ZV (G)
2 and H is a subgraph

of G where V (H) is a proper subset of V (G); in such a usage “α” should be interpreted as α
restricted to V (H).

2.5 Expanders and some of their useful properties

Definition 2.6 (Expansion). Fix γ > 0. A simple undirected graph G = (V,E) is said to be a
γ-expander if for every set X ⊂ V of at most half the vertices, we have |δ(X)| ≥ γ · |X|, where
δ(X) denotes the set of edges that have one end in X and the other end in V \X.

It is well known that there exists an infinite family of graphs {Gn = (V (Gn), E(Gn))}even n≥N0

such that each Gn is a 3-regular γ-expander for some absolute constant γ > 0. We fix such a family;
these are the graphs we shall work with for the remainder of the paper.

8

Let S ⊂ E(Gn) be a subset of the edges of Gn. As will be clear in Section 5.2, we require the
fact that if S is not too large, then Gn − S does not contain too many bridges – in particular, the
number of bridges should not be too much more than |S|. While it should be possible to show that
Gn−S has at most O(|S|) bridges, a weaker bound suffices for our purposes. The following lemma,
based on natural intuitions about expander graphs, is proved in Appendix A.

Lemma 2.7. For every S ⊆ E(Gn), the graph Gn − S contains at most C1 · |S| · log2 n bridges,
where C1 is a constant depending only on the expansion parameter γ.

An easy corollary is the following:

Corollary 2.8. Fix S ⊆ E(Gn) and let B denote the set of all bridges in Gn−S. Then Gn− (B∪S)
has a connected component of size at least n− λ|S| where λ = O(log2 n).

Proof. By Lemma 2.7 we have |B∪S| ≤ (1 +C1 log2 n)|S|. The corollary now follows from the well
known fact that removing t edges from an n-node γ-expander results in a graph with a connected
component of size at least n− Cγt where Cγ is a constant depending only on γ (see e.g. Exercise
12 of [Tao11] or Lemma 1.2 of [Tre11]).

2.6 Topological embeddings

An important notion for our approach is that of the topological embedding of one graph in another.
We briefly recall the definition of topological embedding:

Definition 2.9 (Topological embedding). Let G = (V (G), E(G)), G′ = (V (G′), E(G′)) and H =
(V (H), E(H)) be three graphs. We say that H is a topological embedding of G′ in G if H is a
subgraph of G and

1. There is a one-to-one map φ : V (G′)→ V (H),

2. There is a one-to-one map ϕ : E(G′)→ { simple paths in H } such that for all (u, v) ∈ E(G′),
ϕ((u, v)) is a simple path from φ(u) to φ(v) in H and no two paths ϕ(e1) and ϕ(e2) share
any non-endpoint vertices,

3. Every e ∈ E(H) is contained in ϕ(e′) for a unique e′ ∈ E(G′).

We refer to φ(V (G′)) ⊆ V (H) as the real vertices of H, and the remaining vertices V (H) \
φ(V (G′)) as the path vertices. For every e ∈ E(H), we write superH(e) to denote the unique path
ϕ(e′) containing e, and refer to it as the super-edge of H containing e.

A useful intuitive view of (1)–(3) above is that by subdividing edges of G′ it is possible to obtain
an isomorphic copy of H.

3 Our Tseitin instances and the Kleinberg–Rubinfeld random re-
strictions

3.1 Our Tseitin instances

Fix Gn = {(V (Gn), E(Gn))}even n≥N0 to be any particular fixed 3-regular γ-expander family. For
each even n we view the vertex set V (Gn) of Gn as [n] = {1, . . . , n}; since Gn is 3-regular we have
that |E(Gn)| = 3n/2.

9

Throughout this paper, we reserve α ∈ ZV (Gn)
2 to denote an odd charge over V (Gn). Our hard

instances will be Tseitin(Gn[α]).
Notational convention. We reserve d? to denote the value c

√
log n, the largest depth bound

for which we will establish a result (here c is a small absolute constant). Let τ(·, ·) denote the
function τ(i, n) = n1−i/(2d?). For brevity we will sometimes write n′ where the intended meaning
is τ(i, n) for some i ∈ [0, d? − 1], and we will sometimes write n′′ where the intended meaning is
τ(i+ 1, n). Note that we always have n1/2 ≤ n′′ < n′ ≤ n throughout the paper.

3.2 The “atomic” Kleinberg–Rubinfeld random restrictions

Let α′ ∈ ZV (Gn′)
2 be an odd charge. In this section we define a distribution Fn′′,n′ over pairs (ρ,H)

where ρ ∈ (Z2 ∪ {∗})E(Gn′) and H = (V (H), E(H)) where H is a topological embedding of Gn′′ in
Gn′ . Furthermore E(H) = ρ−1(∗) and ρ is α′-consistent.

The definition of Fn′′,n′ is as follows. A draw from Fn′′,n′ is obtained in two stages:

1. First draw H ∼ Hn′′,n′ . Here Hn′′,n′ is a distribution over subgraphs of Gn′ that have Gn′′ as
a topological minor. We describe this distribution Hn′′,n′ in detail in Section 3.2.1 below.

2. Then draw an assignment ρ ∈ (Z2 ∪ {∗})E(Gn′) as follows:

• ρ(e) = ∗ for all e ∈ E(H), and ρ(e′) ∈ Z2 for all e′ ∈ E(Gn′) \ E(H).

• Viewing supp(ρ) as an element of Z
E(Gn′)\E(H)
2 , ρ is drawn by selecting a uniform random

element of the set of all α′-consistent assignments in Z
E(Gn′)\E(H)
2 .

The output of the draw is (ρ,H). Observe that H is connected and ρ is α′-consistent, hence
the (α′ � ρ)-charge of H is odd and Tseitin(H[α′ � ρ]) is unsatisfiable (just like Tseitin(Gn′ [α

′])).

3.2.1 The distribution Hn′′,n′ over random topological embeddings

Let n′′, n′ ≤ n be as described at the end of Section 3.1 and let α′ ∈ ZV (Gn′)
2 be an odd charge.

We define a distribution H′n′′,n′ over connected subgraphs of Gn′ . We remark that the distribution
H′n′′,n′ given below is closely derived from a probabilistic argument (given in [KR96]; see also
[BFU94]) establishing the existence of a Gn′′-minor in the n′-node expander Gn′ . (Looking ahead,
as we discuss in detail below H′n′′,n′ should be viewed as an auxiliary distribution for our ultimate
purposes; given a draw of H′ from H′n′′,n′ , some additional massaging will yield a subgraph H ⊂ H′

which has Gn′′ as a topological minor. Later our description of the distribution Hn′′,n′ from which
H is drawn will build on H′n′′,n′ .) A draw of H′ ∼ H′n′′,n′ is obtained as follows:

1. (Choose “special” vertices.) For i = 1, . . . , n′′ do the following:

• Pick a uniform random vertex vi ∈ [n′] conditioned on vi having distance at least
3κ1 ln lnn′ in Gn′ from all of v1, . . . ,vi−1. (Here κ1 should be viewed as a large constant.)

We say that the elements of the set {v1, . . . ,vn′′} are the special vertices of H′ (H′ also
contains other vertices, described below).

10

2. (Choose “bundles” linking up special vertices.) Independently for each edge {ai,1, ai,2} ∈
E(Gn′′) ⊂

(
[n′′]

2

)
, i = 1, . . . , 3n′′/2, construct a bundle B(i) of r = (lnn′)2 paths Pi,1, . . . ,Pi,r

connecting vai,1 and vai,2 as follows. The j-th path Pi,j in the bundle is constructed as follows
(independently for all j):

(a) Let τ = κ2 lnn′.

(b) Choose a midpoint xi,j ∈ [n′] uniformly at random (note that the uniform distribution
over [n′] is the stationary distribution over V (Gn′) since Gn′ is 3-regular). Choose a
random walk W′

i,j from all length-τ walks that start at vai,1 and end at xi,j . And
choose a random walk W′′

i,j from all length-τ walks that start at vai,2 and end at xi,j .
We define the walk Wi,j to be the concatenation of W′

i,j and the reversal of W′′
i,j , and

we define the path Pi,j to be Wi,j with any cycles removed.

Note that each path in each bundle both starts and ends at a special vertex. The vertex
set V (H′) is the set of all vertices that occur anywhere on any path in any bundle (hence it
includes all the special vertices). The edge set E(H′) is the union of all the edges in all the
paths in all the bundles.

Actually, it will be convenient for us to view a draw of H′ ∼ H′n′′,n′ as being not just the graph
described above, but as the entire transcript of the random draw described above (so a draw of H′

includes the structure of the bundles, walks and paths; we will use this structure below).
As stated earlier, the distribution H′n′′,n′ defined above is an auxiliary distribution; we are

really interested in a different distribution Hn′′,n′ over connected subgraphs H of Gn′ which we
now describe. Informally, every draw of H ∼ Hn′′,n′ is a graph with n′′ distinguished nodes (we
call them real nodes) that have degree three; all other nodes in H have degree two and lie on
vertex-disjoint paths between the real nodes (we call these degree-2 nodes path nodes). The edges
of H are the edges constituting these paths. If each path is contracted to a single edge joining the
two real nodes at its endpoints, we obtain a graph isomorphic to Gn′′ . In other words, for every H
in the support of Hn′′,n′ , the graph Gn′′ is a topological minor of H.

A draw of H ∼ Hn′′,n′ is obtained as follows:

1′. Draw H′ ∼ H′n′′,n′ . This defines special vertices and bundles, walks and paths joining special
vertices as described above.

2′. As described in [KR96], a sequence of steps “pruning” each bundle down to a single path
results in a graph H̃ (a subgraph of H′ and hence of Gn′) with the following property: for
each {ai,1, ai,2} ∈ E(Gn′′), i ∈ [3n′′/2], H̃ contains a simple path which we denote Zai,1,ai,2
joining vai,1 and vai,2 , and every edge in H̃ belongs to some such path (possibly to more than
one path). Moreover, this collection of paths has the following property: If two of these paths
intersect at any node then (i) they must share an endpoint, and (ii) they can only intersect
within their first κ1 ln lnn steps from the common endpoint.

(We omit the details of this pruning process, as they are involved and are not important to
us. We only mention that it is a deterministic process that discards paths from bundles but
does not alter paths; each path Zai,1,ai,2 is some path Pi,j in the bundle B(i) in H ′, and no

bundle contributes more than one such path to H̃. There is an o(1) failure probability for
the process (over the draw of H′ ∼ H′n′′,n′ in step 1 above). If this failure event occurs we go
back and repeat step 1 until this step does not fail.)

11

3′. Given that the failure event does not occur, the analysis of [KR96] establishes that there is
an embedding of Gn′′ in H̃ in which the i-th vertex of Gn′′ corresponds to the union Zinit

i,j1
∪

Zinit
i,j2
∪Zinit

i,j3
, where Zinit

i,j is the set of the first κ1 ln lnn edges of the path Zi,j starting from vi,
and {i, j1}, {i, j2}, {i, j3} are the three edges incident to node i in Gn′′ (and the {i, j} edge in
Gn′′ corresponds to the sub-path Zi,j \(Zinit

i,j ∪Zinit
j,i); the analysis of [KR96] establishes that all

these 3n′′/2 sub-paths are pairwise vertex disjoint.) Hence Gn′′ is a minor of H̃; now, since Gn′′
is 3-regular and is a minor of H̃, it must in fact be a topological minor of H̃ (this is a standard
fact, see e.g. Proposition 1.7.4(ii) of [Die10]). This implies that there is a subgraph H of H̃ as
described earlier. More precisely H has n′′ “real” nodes u1, . . . ,un′′ of degree 3 (where each

ui is at distance at most κ1 ln lnn from vi), and for each edge {ai,1, ai,2} ∈ E(Gn′′) ⊂
(

[n′′]
2

)
,

i = 1, . . . , 3n′′/2, H has a simple path connecting vai,1 and vai,2 ; all these paths are node-
disjoint except at the endpoints and hence any non-endpoint node occuring on any such path
has degree 2 in H. Such vertices of degree 2 are called “path” nodes.

This completes our description of the draw of H ∼ Hn′′,n′ . We sometimes write “(H,H′) ∼
Hn′′,n′” where H′ is the draw from H′n′′,n′ obtained in Step 1′ that is subsequently massaged
to yield H.

Some terminology will be useful going forward: for a given edge {ai,1, ai,2} ∈ E(Gn′′) ⊂
(

[n′′]
2

)
,

i ∈ [3n′′/2] and an H ∈ supp(Hn′′,n′), we refer to the set of edges comprising the simple path in H
connecting vai,1 and vai,2 as the {ai,1, ai,2}-super-edge of H.

4 Composing the Kleinberg–Rubinfeld random restrictions

In this section we use the “atomic” Kleinberg–Rubinfeld random restrictions (described in Sec-
tion 3.2) to define a sequence of distributions A(0),A(1), . . . ,A(d) (for any d ≤ d?) of random
restrictions over the variable set E(Gn), the (i + 1)-st of which may be viewed as an extension of
the i-th. As sketched in the Introduction, our first random restriction applies the atomic Kleinberg–
Rubinfeld random restriction to “collapse” the n-node expander Gn to a random subgraph H(1)

that is a topological embedding of Gn′ in Gn where n′ = n1−1/(2d): this graph H(1) has n′ many
degree-3 nodes (each of which corresponds to a vertex in Gn′) that are joined by simple paths (each
of which corresponds to an edge in Gn′). Conceptually, our second random restriction “contracts”
these paths in H(1) to convert it into Gn′ , and applies another atomic Kleinberg–Rubinfeld random
restriction to Gn′ to obtain a random subgraph H(2) of H(1), a topological embedding of Gn′′ in
H(1) (and hence also in our original expander Gn) where n′′ = n′/n1/(2d) = n1−2/(2d). Our successive
random restrictions continue in this fashion.

The i-th distribution of random restrictions over E(Gn) that we consider is denoted A(i). (We
emphasize that these restrictions are always applied over edge set E(Gn) and not over E(Gn′) for
smaller values n′ < n.) A draw from A(i) yields a pair (ρ(i),H(i)) with the following properties:

A. ρ(i) ∈ (Z2 ∪ {∗})E(Gn) is α-consistent,

B. H(i) = (V (H(i)), E(H(i))) is a random subgraph of Gn which is a topological embedding of
Gτ(i,n) in Gn (recall the τ(·, ·) function defined in Section 3.1);

C. The edge set E(H(i)) is precisely (ρ(i))−1(∗).

12

Observe that since H(i) is connected and ρ(i) is α-consistent, we have that the induced (α � ρ(i))-
charge of H(i) is odd and hence Tseitin(H(i)[α � ρ(i)]) is unsatisfiable (just like Tseitin(Gn[α])).
Notationally we write (ρ(i), H(i)) (without boldface) to denote an element of supp(A(i)).

4.1 The inductive definition of A(i)

We now give a precise definition of our sequence {A(i)}i∈{0,...,d} of random restrictions, from which

it will be clear it has the properties (A)–(C) above. A(0)
n is supported on the single element

(ρ(0) = {∗}E(Gn), H(0) = Gn). Given A(i) we define A(i+1) in a sequence of steps as follows. Let
n′ = τ(i, n) and n′′ = τ(i+ 1, n) (recall the definition of τ(·, ·) in Section 3.1).

Fix an element (ρ(i), H(i)) ∈ supp(A(i)).We first define an auxiliary distributionA(i+1)(ρ(i), H(i)),
where a draw (ρ(i+1),H(i+1)) ∼ A(i+1)(ρ(i), H(i)) will be such that ρ(i+1) extends ρ(i), and H(i+1)

is a topological embedding of Gn′′ in H(i) (and hence in Gn). Recall that Tseitin(H(i)[α � ρ(i)])
is unsatisfiable. Roughly speaking, we first “contract” Tseitin(H(i)[α � ρ(i)]) into a corresponding

Tseitin instance Tseitin(Gn′ [α
′]). This charge α′ ∈ ZV (Gn′)

2 induced by (ρ(i), H(i)) will have the

following crucial property: since the initial charge α ∈ ZV (Gn)
2 is odd and ρ(i) is α-consistent, α′

will also be odd (and hence Tseitin(Gn′ [α
′]) is unsatisfiable). We will then use a draw (ρ,H) ∼

Fn′′,n′ — an “atomic” Kleinberg–Rubinfeld random restriction that “collapses” Tseitin(Gn′ [α
′]) into

Tseitin(H[α′ � ρ]) — to define our next random restriction (ρ(i+1),H(i+1)) ∼ A(i+1)(ρ(i), H(i)) that
“collapses” Tseitin(H(i)[α � ρ(i)]) into Tseitin(H(i+1)[α � ρ(i+1)]).

Recall that H(i) is a topological embedding of Gn′ in Gn, and hence there are maps φ : V (Gn′)→
V (H(i)) and ϕ : E(Gn′) → {simple paths in H(i)} satisfying properties (1)–(3) of Definition 2.9.
For each super-edge ϕ(e) in H(i), we fix a canonical edge e∗ ∈ ϕ(e), i.e. superH(i)(e∗) = ϕ(e) (any
choice is fine).

Definition of α′ ∈ ZV (Gn′)
2 . Fix v ∈ V (Gn′), and suppose v is incident to edges ev,1, ev,2, ev,3 ∈

E(Gn′). For each j ∈ [3],

• Let eφ(v),j denote the canonical edge of the super-edge ϕ(ev,j). That is, {eφ(v),j}j=1,2,3 are
the three canonical edges of the three super-edges {ϕ(ev,j)}j=1,2,3 that are incident to φ(v)
in H(i).

• Let e′φ(v),j denote the edge in ϕ(ev,j) that is incident to φ(v). Note that eφ(v),j and e′φ(v),j lie

on the same super-edge ϕ(ev,j) (they may even be the same edge).

• For each assignment b(eφ(v),j) ∈ Z2 to eφ(v),j , there is a unique extension Z
ϕ(ev,j)
2 that satisfies

all (α � ρ(i))-constraints of path vertices in ϕ(ev,j). Let b(e′φ(v),j) ∈ Z2 denote the assignment

to e′φ(v),j under this unique extension.

There is a unique “offset bit” ωv ∈ Z2 such that for every assignment (b(eφ(v),j))j=1,2,3 ∈ Z3
2, we

have

ωv =
3∑
j=1

(b(eφ(v),j) + b(e′φ(v),j)).

We define α′(v) := α(φ(v)) + ωv. We have the following key property of α′ ∈ ZV (Gn′)
2 : for every

assignment (b(ev,j))j=1,2,3 ∈ Z3
2, if {eφ(v),j}j=1,2,3 are set the same way (i.e. b(eφ(v),j) = b(ev,j)),

13

then the induced assignment (b(e′v,j))j=1,2,3 ∈ Z3
2 satisfies the following:

b(ev,1) + b(ev,2) + b(ev,3) = α(v) ⇐⇒ b(e′φ(v),1) + b(e′φ(v),2) + b(e′φ(v),3) = α′(φ(v)).

This concludes our description of the charge α′ ∈ ZV (Gn′)
2 .

As above we continue to consider a fixed element (ρ(i), H(i)) ∈ supp(A(i)). We are now ready
to define the auxiliary distribution A(i+1)(ρ(i), H(i)):

Definition 4.1. Fix (ρ(i), H(i)) ∈ supp(A(i)). We define the distribution over random restrictions
A(i+1)(ρ(i), H(i)) as follows. A draw (ρ(i+1),H(i+1)) ∼ A(i+1)(ρ(i), H(i)) is obtained by

• Draw (ρ,H) from Fn′′,n′ where the underlying charge on V (Gn′) is the just-described α′. Recall
that ρ ∈ (Z2 ∪ {∗})E(Gn′) and that H is a topological embedding of Gn′′ in Gn′ .

• For every e ∈ E(Gn), if ρ(i)(e) ∈ Z2 then ρ(i+1)(e) = ρ(i)(e) (so ρ(i+1) extends ρ(i)).

• Now consider an edge e ∈ ρ−1(Z2) ⊆ E(Gn′) and its super-edge ϕ(e) in H(i). Let e∗ be the
canonical edge in ϕ(e). Set ρ(i+1)(e∗) = ρ(e), and extend ρ(i+1) to fix all edges in ϕ(e) in
the unique way that satisfies all (α � ρ(i))-constraints of path vertices in ϕ(e). We do this for
every e ∈ ρ−1(Z2).

• Let H(i+1) = (ρ(i+1))−1(∗). Note that H(i+1) is indeed a topological embedding of H in H(i)

(and hence H(i+1) is a topological embedding of Gn′′ in Gn).

Given Definition 4.1, at last we can define A(i+1) quite simply. A draw from A(i+1) is obtained
as follows: Draw (ρ(i),H(i)) ∼ A(i), and output a draw from A(i+1)(ρ(i),H(i)). It is clear from the
preceding discussion that indeed Properties (A)–(C) from above are indeed satisfied.

5 Independent sets, closures, and pruning

For technical reasons, we will be especially interested in graphs G and charges α ∈ ZV (G)
2 that

satisfy the following:

Definition 5.1 (Nice graphs and charges). Let G be a graph and α ∈ ZV (G)
2 be an odd charge. We

say that the pair (G,α) is nice if

1. G has a giant component, and

2. The α-charge of a component C of G is odd iff C is giant.

Note that the pair (Gn, α) from Tseitin(Gn[α]) is (trivially) nice since Gn is connected and α is
odd. Intuitively, if (G,α) is nice then “the contradiction of Tseitin(G[α]) is trapped in the giant

component of G” in the following sense: any assignment x ∈ ZE(G)
2 has to violate an α-charge

constraint somewhere in the giant component of G.
In the following subsections, we introduce notions of “G-independence” and “G-closure”. For

readers who are well-versed in matroid theory, we note that these are the standard notions of closure
and independence in what is commonly known as the bond matroid (or co-graphic bond matroid)
of the graph G.

14

5.1 Independent sets

We will work extensively with special kinds of sets of edges that we refer to as independent. Very
roughly and intuitively, an independent set of edges (i.e. variables) is one in which no variable’s
assignment is “forced” given an assignment to the other variables in the set (we will make this
much more precise later).

Definition 5.2 (Independent sets and decision trees). Let G = (V,E) be a connected graph. A set
I ⊆ E is G-independent if G− I is connected. A G-independent decision tree T is a decision tree
querying edges in E such that every branch of T queries a G-independent set.

IfG is connected and α ∈ ZV (G)
2 is odd (hence (G,α) is nice), it is easy to see that an independent

set I ⊆ E is one for which for any restriction ρ ∈ ZI2, the pair (G− I, α � ρ) is nice.
At various points in the argument it will be important for the decision trees we work with to

be of bounded depth, hence the following definition:

Definition 5.3 (Good trees). Let G = (V,E) be a connected graph and T be a decision tree over
E. We say that T is (k,G)-good if T is total, has depth < k, and is G-independent.

To motivate the following definition, we may think of the assignment to a bridge variable in
G− S as being “forced” by an assignment to the variables in S (this too will be made much more
precise later):

Definition 5.4 (Closure of set). Fix a graph G = (V,E) and a subset S ⊆ E. The G-closure of S,
denoted closureG(S), is the set S ∪B where B is the set of all bridges in G− S. We say that S is
G-closed if S = closureG(S) (i.e. G− S is bridgeless).

With this terminology in place we may restate Lemma 2.7 and Corollary 2.8, about our 3-regular
expanders Gn, as follows, recalling that λ = O(log2 n). (These will be used to satisfy the conditions
of Proposition 5.12 below.)

Fact 5.5. For every S ⊆ E(Gn) we have closureGn(S) ≤ λ|S|.

Fact 5.6. For every S ⊆ E(Gn), the number of vertices disconnected from the largest component
in Gn − closureGn(S) is at most λ|S|.

Define λ′ to be (3κ2 log n)d
?+1 for the constant κ2 from Step 2(a) of Section 3.2.1 (the definition

of the distribution Hn′′,n′ , so every super-edge in any H(i) graph is always a path in Gn of length
at most λ′). Let λ? = 3λ′/2. The following analogue of Fact 5.6 holds for H(i) graphs and is an
immediate consequence of Fact 5.6:

Fact 5.7. For any 0 ≤ i ≤ d? and any H(i) such that (ρ(i), H(i)) ∈ supp(A(i)) for some ρ(i), and
any S ⊆ E(H(i)), the number of vertices of H(i) that are disconnected from the largest component
in H(i) − closureH(i)(S) is at most λ?|S|.

5.2 “Pushing the contradiction” and closure of restrictions

Recall that a connected component C in an n-node graph G is said to be giant if |V (C)| > n/2.
Given a nice pair (G,α), we will be interested in restrictions π such that (G − supp(π), α � π)

is nice:

15

Definition 5.8 (Push the contradiction). Let (G,α) be nice. We say that a restriction π ∈ (Z2 ∪
{∗})E(G) pushes the contradiction of α into the giant component of G−supp(π) if (G−supp(π), α �
π) is nice.

Note that any π which pushes the contradiction of α into the giant component of G− supp(π)
must be α-consistent, because every isolated vertex in G− supp(π) is a non-giant component. As
remarked after the definition of independent sets, if G is connected and α is odd (hence (G,α)
is nice), then every restriction π to an independent set I ⊆ E pushes the contradiction of α into
the giant component of G− supp(π). (By the two preceding observations, any restriction π to an
independent set is α-consistent.) We will use the following fact extensively:

Fact 5.9. Let (G,α) be nice.

• If π is a restriction that pushes the contradiction of α into the giant component of G−supp(α),
then for all sub-restrictions π′ of π, we have that π′ pushes the contradiction of α into the
giant component of G− supp(π′).

• If π is a restriction that does not push the contradiction of α into the giant component of
G− supp(α), then for all extensions π′′ of π, we have that π′′ does not push the contradiction
of α into the giant component of G− supp(π′′).

Let (G,α) be nice. If e is not a bridge in G, it is straightforward to see that (G−{e}, α � e→ b)
is nice for both values b ∈ Z2. If e is a bridge and G − {e} has a giant component, then the next
fact implies that there is a unique assignment b ∈ Z2 such that (G − {e}, α � e → b) is nice. (If
G − {e} does not have a giant component then clearly (G − {e}, α � e → b) is not nice for either
b ∈ Z2.)

Fact 5.10 (Bridges are forced). Let G = (V,E) be a graph, α ∈ ZV2 , and e ∈ E be a bridge in G.
Let C be the component in G that contains e, and C1 and C2 be the two connected components of
C − {e}. Then for every b′ ∈ Z2 there exist a unique b ∈ Z2 such that∑

v∈V (C1)

(α � (e→ b)) = b′.

In particular, if the α-charge of C is odd then there is a unique assignment b to e so that the
(α � e → b)-charge (the “induced charge”) of C1 is odd (and hence the induced charge of C2 is
even). Likewise, if the α-charge of C is even then there is a unique assignment b to e so that the
induced charges of both C1 and C2 are even.

The following notion is crucial for us:

Definition 5.11 (Closure of restriction). Let G = (V,E) and α ∈ ZV2 be an odd charge. Let
π ∈ (Z2 ∪ {∗})E be a restriction such that G − closureG(supp(π)) has a giant component. A

(G,α)-closure of π, denoted closureG,α(π) ∈ ZclosureG(supp(π))
2 , is the unique extension of π with

the following properties: Fix any e ∈ closureG(supp(π)) \ supp(π), and recall that e is a bridge in
G− supp(π). Let C be the component of G− supp(π) that contains e, and let C1 and C2 be the two
disjoint components of C − {e} where |V (C1)| ≥ |V (C2)|. (In the following, recall from Fact 5.10
that there is indeed a unique assignment as claimed in (1) and (2) below.)

16

• If the (α � π)-charge of C is even, then (closureG,α(π))(e) = b where b ∈ Z2 is the unique
assignment such that the ((α � π) � (e→ b))-charges of both C1 and C2 are even.

• If the (α � π)-charges of C is odd, then (closureG,α(π))(e) = b where b ∈ Z2 is the unique
assignment such that the ((α � π) � (e→ b))-charge in C1 is odd and C2 is even.

It is easy to see from the above definition that for any G = (V,E), any charge α ∈ ZV2 , and
any restriction π ∈ (Z2 ∪ {∗})E , there exists a unique (G,α)-closure of π. We have the following
crucially useful property of closure:

Proposition 5.12 (Key property of closure). Let (G,α) be nice. Let π ∈ (Z2 ∪ {∗})E(G) be
a restriction that pushes the contradiction of α into the giant component of G − supp(π), and

suppose G − closureG,α(π) has a giant component. Then closureG,α(π) ∈ ZclosureG(supp(π))
2 pushes

the contradiction of α into the giant component of G− closureG(supp(π)).

Proof. The proof is by considering a forest T whose vertices are the connected components of
G − closureG(supp(π)) and whose edges are the elements of closureG(supp(π)) \ supp(π) (i.e. the
bridges in G − supp(π)). We view the tree with the giant component as rooted at the giant
component (other trees may be rooted at an arbitrary vertex). The definition of closureG,α(π),
applied repeatedly to all leaf edges, gives that each leaf vertex (which is a non-giant component)
has even charge under α � π. Repeatedly applying the definition of closureG,α(π) to tree edges
“working up from the leaves,” we infer that each non-giant component has even charge under
α � π. Finally, since each component other than the giant component has even charge and the
total charge is odd, the charge of the giant component under α � π is odd, and we have satisfied

the definition of “closureG,α(π) ∈ ZclosureG(supp(π))
2 pushes the contradiction of α into the giant

component of G− closureG(supp(π)).”

5.3 Pruning

Recall that a decision tree is good if it is total, has height at most k, and is independent. In
the previous section, we have argued that if a tree is good, then for any branch π in the tree the
closure of π pushes the contradiction into the giant component (and thus leaves us with an induced
instance of Tseitin that is still hard).

Given a graph G̃, let us consider what happens to a good tree T̃ over E(G̃) when we apply

a restriction ρ ∈ (Z2 ∪ {∗})E(G̃) to it. After applying the restriction ρ, the relevant graph is now
G := G̃ − supp(ρ); for this intuitive explanation, one should think of G as connected, as indeed
will be the case in our setting. First, note that there may be branches π in T := T̃ � ρ that are
not G-independent; to obtain a tree that is G-independent, these branches need to be “pruned”.
Additionally, there may be branches π′ in T that do not push the contradiction of α � ρ into the
giant component of G− supp(π′); these branches need to be “marked as invalid”. With the above
as motivation, below we describe our deterministic pruning process for decision trees.

5.3.1 Definition of the pruning process

The input to our process is a total decision tree T over the edge set E(G) of an n-node graph

G = (V (G), E(G)), where T is not necessarily G-independent. Let α be an odd charge α ∈ ZV (G)
2 .

The pruned variant of T is the decision tree PruneG,α(T) defined as follows.

17

PruneG,α(T) :

1. If T = b for some b ∈ Z2 then output b if G has a giant component and ⊥ otherwise.

2. If T = (e;T0, T1), then

• If e is not a bridge in G, output the tree (e; PruneG−{e},α�(e→0)(T0),
PruneG−{e},α�(e→1)(T1)).

• If e is a bridge of G, let C be the connected component in G that e belongs to, and
C1 and C2 be the two disjoint components of C − {e} where |V (C1)| ≥ |V (C2)|.
(In the following, recall from Fact 5.10 that there is indeed a unique assignment as
claimed in (1) and (2) below.)

(a) If the α-charge of C is even, then shortcut e according to the unique assignment
b to e such that the (α � (e→ b))-charge of both C1 and C2 are even, i.e. output
PruneG−{e},α�(e→b)(Tb).

(b) If the α-charge of C is odd and C1 is the giant component of G − {e}, then
shortcut e according to the unique assignment b to e such that the (α � (e→ b))-
charge of C1 is odd, i.e. output PruneG−{e},α�(e→b)(Tb).

(c) If the α-charge of C is odd and C1 is not a giant component of G−{e} (so both
C1 and C2 are non-giant components), output ⊥.

The following facts are self-evident:

Fact 5.13. For every connected graph G and any T we have that PruneG,α(T) is G-independent.
Moreover, if T is G-independent then PruneG,α(T) = T .

Fact 5.14. Let (G,α) be nice and T be a tree over E(G). Then for all b ∈ Z2 and π ∈
Branchesb(PruneG,α(T)), the graph G − supp(π) has a giant component, and moreover, π pushes
the contradiction of α into the giant component of G− supp(π).

Fact 5.15. Let (G,α) be nice. Let T be a decision tree over E(G), and suppose both T and
PruneG,α(T) are total. Then for all restrictions β ∈ (Z2 ∪ {∗})E(G) and b ∈ Z2, if T � β = b then
additionally PruneG,α(T) � β = b.

The next two lemmas show that our pruning process and definition of the closure of a restriction
(Definition 5.11) “sync up”:

Lemma 5.16. Let (G,α) be nice. Let T be a decision tree over E(G) and π ∈ Branches⊥(PruneG,α(T)).
Then G− closureG(supp(π)) does not have a giant component.

Proof. We proceed by induction on the depth of T . The base case is that T has depth 0, i.e. T is
a leaf bit. Since α is odd G must have a giant component, hence Branches⊥(PruneG,α(T)) is the
empty set and the base case holds.

For the inductive step, we write T as T = (e;T0, T1). We consider two mutually exhaustive
cases. The first case is that e is not a bridge in G. In this case we have

PruneG,α(T) = (e; PruneG−{e},α�e→0(T0); PruneG−{e},α�e→1(T1).

18

Therefore e ∈ supp(π), and we write π = (e, b)◦π̃ for some b ∈ Z2 and π̃ ∈ Branches⊥(PruneG−{e},α�e→b(Tb)).
We observe that

closureG(supp(π)) = {e} ∪ closureG−{e}(supp(π̃)).

By the inductive hypothesis, G−{e}− closureG−{e}(supp(π̃)) does not have a giant component, so
the above equality gives that G− closureG(supp(π)) does not have a giant component, and we are
done in this case.

It remains to consider the case when e is a bridge in G. In this case PruneG,α(T) shortcuts it
according to some b ∈ Z2, i.e.

PruneG,α(T) = PruneG−{e},α�e→b(Tb),

and so e /∈ supp(π) and π ∈ Branches⊥(PruneG−{e},α�e→b(Tb)). Since e is a bridge in G, it is
certainly a bridge in G− supp(π), i.e e ∈ closureG(π). Note that we again have that

closureG(supp(π)) = {e} ∪ closureG−{e}(supp(π)),

because removing a bridge cannot create new bridges or cause edges that were previously bridges to
become non-bridges. By the inductive hypothesis, G− {e} − closureG−{e}(supp(π)) does not have
a giant component, but note that this is exactly G− closureG(supp(π), so again we are done.

Lemma 5.17. Let (G,α) be nice and T be a decision tree over E(G). Suppose π is a restric-
tion such that PruneG,α(T) � π = b for some b ∈ Z2, π pushes the contradiction of α into
the giant component of G − supp(π), and G − closureG(supp(π)) has a giant component. Then
T � closureG,α(π) = b. Moreover, closureG,α(π) pushes the contradiction of α into the giant com-
ponent of G− closureG(supp(π)).

Proof. The last sentence of the lemma statement follows from the preceding portion of the lemma
by Proposition 5.12. For the preceding portion, we proceed by induction on the depth of T , noting
that the base case when T has depth 0 is trivial. For the inductive step, let T = (e;T0, T1). We
consider two cases, depending on whether or not e is a bridge in G.

Case 1: e is not a bridge in G. Then

PruneG,α(T) = (e; PruneG−{e},α�(e→0)(T0),PruneG−{e},α�(e→1)(T1)).

Therefore e ∈ supp(π), and we write π = (e, b′) ◦ π̃ for some b′ ∈ Z2 and restriction π̃ such that
PruneG−{e},α�e→b′(Tb′) � π̃ = b. We claim that

closureG,α(π) = (e, b′) ◦ closureG−{e},α�e→b′(π̃), (1)

noting first that the two restrictions have the same support. Clearly the edges in supp(π) = {e} ∪
supp(π̃) are fixed the same way by the two restrictions; as for the edges in closureG,α(π)− supp(π),
the fact that they are fixed the same way follows from the from the fact that

G− supp(π) = G− {e} − supp(π̃)

α � π = (α � e→ b′) � π̃.

19

Given (1), we have that

T � closureG,α(π) = T � (e, b′) ◦ closureG−{e},α�e→b′(π̃)

= Tb′ � closureG−{e},α�e→b′(π̃)

and the inductive step then follows by the induction hypothesis applied to G−{e}, α � e→ b′, Tb′ ,
and π̃.

Case 2: e is a bridge in G. In this case PruneG,α(T) shortcuts it according to some b′ ∈ Z2, i.e.

PruneG,α(T) = PruneG−{e},α�e→b′(Tb′).

We consider two cases, depending on whether e is in supp(π). If e ∈ supp(π) we first note that
π(e) = b′ (i.e. π fixes e the same way it is shortcut in PruneG,α(T)), since otherwise by Fact 5.9 it
cannot be the case that π pushes the contradiction of α into the giant component of G−supp(π). We
may therefore write π = (e, b′) ◦ π̃ where π̃ is a restriction such that PruneG−{e},α�e→b′(Tb′) � π̃ = b,
and the remainder of the argument proceeds exactly as in Case 1 above.

If e /∈ supp(π), we claim that

closureG,α(π) = (e, b′) ◦ closureG−{e},α�e→b′(π), (2)

To establish (2), we note first that the two restrictions have the same support (since removing
a bridge cannot create new bridges or cause edges that were previously bridges to become non-
bridges). Next, by our assumptions that π pushes the contradiction of α into the giant component
of G− supp(π) and that G− closureG,α(π) has a giant component, we may apply Proposition 5.12
to get that:

(†) closureG,α(π) pushes the contradiction of α into the giant component ofG−supp(closureG(π)).

Clearly the edges in supp(π) are fixed the same way by both restrictions in (2). As for the
edges in closureG,α(π) \ supp(π), we first consider e. Note that (closureG,α(π))(e) = b′ (i.e. that
closureG,α(π) sets e the same way it is shortcut in PruneG,α(T)), since otherwise (†) cannot hold.
It remains to consider the edges in closureG,α(π)− (supp(π)∪{e}). Fix any such edge e′. We claim
that

(closureG,α(π))(e′) = (closureG−{e},α�e→b′(π))(e′). (3)

By (†) along with the fact that (e, b′) ◦ π is a subrestriction of closureG,α(π), we have that π
pushes the contradiction of α � e→ b′ into the giant component of (G− {e})− supp(π). Applying
Proposition 5.12, it then follows that:

(††) closureG−{e},α�e→b′(π) pushes the contradiction of α � e → b′ into the giant component of
G− ({e} ∪ closureG−{e}(π)).

Again we let C be the component in G − supp(π) that contains e′, and let C1 and C2 be the
two components of C − {e′} where |V (C1)| ≥ |V (C2)|.

• If the (α � π)-charge of C is even, then C is non-giant (and so are C1 and C2) and (closureG,α(π))(e′)
= b∗ ∈ Z2 where b∗ is the unique assignment to e such that the induced charges in C1

and C2 are both even. If closureG−{e},α�e→b′(π) sets e′ to b̄∗, the induced (α � π ◦ (e →
b′) ◦ (e′ → b̄∗))-charges of both C1 and C2 would be odd and this contradicts (††), the fact
that closureG−{e},α�e→b′(π) pushes the contradiction of α � e → b′ into the giant component
of G− ({e} ∪ closureG−{e}(π)).

20

• If the (α � π)-charge of C is odd, then C is giant and |V (C1)| > n/2 sinceG−closureG(supp(π))
has a giant component. By the same argument as above, we have that (3) holds.

Thus we have established (2). Having established (2), we conclude that

T � closureG,α(π) = T � (e, b′) ◦ closureG−{e},α�e→b′(π)

= Tb′ � closureG−{e},α�e→b′(π),

and the inductive step follows by the induction hypothesis applied to G− {e}, α � e→ b′, Tb′ , and
π (note that PruneG−{e},α�e→b′(Tb′) � π = b).

6 k-Evaluations

In the previous section, we defined good decision trees, which are tailored to the Tseitin formulas.
The variables that are queried and set along any path are required to be independent, but we view
the associated restriction as not just the assignment to these variables, but the unique assignment
for the closure. Moreover, we defined a pruning procedure where we truncate any path that could
quickly lead to a contradiction. Specifically, if a path (and its associated restriction) leaves us with
a graph containing a small component of odd charge, then this path will be truncated since the
Tseitin contradiction under this partial assignment has become “too easy.”

In this section we define what it means for a good decision tree to represent a formula. We
stress that a decision tree representing a formula is in no way truth functionally equivalent to the
formula. In fact, the original Tseitin formula (which is unsatisfiable) will be represented by a 1-tree
— a shallow tree where all leaves are labelled by 1 — and indeed this is essential to the proof
complexity argument.

The sense in which a decision tree represents a formula is purely local: if a verifier checks the
soundness of any given step in the proof (using the locally consistent decision trees in place of the
active subformulas for that inference step), no inconsistency will be detected. This means that if
we follow a branch π down the tree T (A) (this is the good tree that will be associated with the
formula A) and it leads to a leaf labeled 1, then any branch in the tree T (¬A) that is consistent
with π will lead to a leaf labeled 0. Similarly, if we follow a branch down the tree T (A ∨ B) for
a formula A ∨ B and the branch reaches a 1-leaf, then there is either a consistent branch in T (A)
leading to a 1-leaf or there is a consistent branch in T (B) leading to a 1-leaf.

The following definition makes this precise.

Definition 6.1 ((H(i), α′)-represents.). Fix 0 ≤ i ≤ d < d?, (ρ(i), H(i)) ∈ supp(A(i)), and an odd

charge α ∈ ZV (Gn)
2 , and let α′ = α � ρ(i). Let T1, . . . , Tm be H(i)-independent decision trees over

variable set E(H(i)). A (τ(i, n)/(3λ?), H(i))-good 1 decision tree T is said to (H(i), α′)-represent
∨mj=1Tj if for all b ∈ Z2,

π ∈ Branchesb(T) =⇒ (∨j Disj(Tj)) � closureH(i),α′(π) = b.

We want to show that (after applying a suitable restriction) we can associate a good decision
tree with each subformula in the (restricted) proof. Such a collection of trees, called a k-evaluation,

1This depth bound on T implies that using Fact 5.7, closureH(i),α′(π) will be well defined for any branch π in T .

21

must satisfy some important properties. Namely, the initial Tseitin clauses are mapped to 1-trees,
the final (identically 0) formula in the proof is mapped to a 0-tree, and all subformulas in the
proof map to good decision trees satisfying the local consistency property mentioned above. The
remainder of this section gives the formal definition of a k-evaluation, and shows that if we can
construct a k-evaluation for an alleged Frege proof of the Tseitin formula, then it implies our lower
bound.

Definition 6.2 (k-evaluation). As in Definition 6.1, fix 0 ≤ i ≤ d < d?, (ρ(i), H(i)) ∈ supp(A(i)),

and an odd charge α ∈ ZV (Gn)
2 , and let α′ = α � ρ(i).

Let Γ be a sequence of formulas over the variable set E(H(i)) such that (i) Γ is closed under
sub-formulas, and (ii) Γ includes all the clauses of Tseitin(H(i)[α′]). Let k < τ(i, n)/(3λ?).

A k-evaluation for Γ is a mapping T (·) which assigns to each formula A ∈ Γ a total, (k,H(i))-
good decision tree T (A) satisfying the following properties:

1. T (b) = b for b ∈ Z2;

2. T (¬A) = T (A)c;

3. If A = ∨jAj then T (A) (H(i), α′)-represents ∨jT (Aj);

4. If A is a clause of Tseitin(H(i)[α′]) then T (A) is a 1-tree;

5. For every tree T0 = T (A0), every collection of at most 6 other trees Ti = T (Ai), i = {1, . . . , 6}
where A0, . . . , A6 ∈ Γ, and every branch π0 in Branches(T0), there exists a restriction π?,
extending π0, such that closureH(i),α′(π

?) = π? and π? pushes the contradiction of α′ into the

giant component of H(i) − supp(π?). Furthermore for each i ∈ {0, 1, . . . , 6}, Ti � π? = bi for
some bi ∈ Z2.

The high level context of how the next lemma will eventually be applied (in Section 7) is as
follows. Starting with a small refutation of Tseitin(Gn[α]) (i.e. a sequence of formulas P), let
P � ρ(d) denote the sequence of formulas obtained by applying a restriction ρ(d) to every formula
in the proof, where (ρ(d), H(d)) is in the support of our final A(d) distribution. The ‘P ’ of Lemma
6.3 will be such a P � ρ(d). Since proofs are closed under restrictions, P � ρ(d) will be a small
refutation of Tseitin(H(d)[α(d)]), where α(d) is α � ρ(d) restricted to V (H(d)). (Recall from Section
2.3 that by “a restriction to the proof,” what we mean is just a substitution of variables by their
assigned values, without any further simplification.) The P ∗ of Lemma 6.3 will be the set of all
subformulas of P � ρ.

Lemma 6.3. Fix (ρ(d), H(d)) ∈ supp(A(d)) where d ≤ d? and an odd charge α ∈ ZV (Gn)
2 , and let

α(d) = α � ρ(d). Let P be a sequence of formulas over variable set E(H(d)) containing the clauses of
Tseitin(H(d)[α(d)]), and let P ∗ be the set of all sub-formulas of P . If P ∗ has a k-evaluation where
k < τ(d, n)/(3λ?), then P cannot be a Frege refutation of Tseitin(Gn[α]).

Proof. We will show that P cannot be a Frege refutation of Tseitin(Gn[α]) by proving that for every
formula A in P , T (A) must be a 1-tree (recall that this means that all of the leaves of T (A) are
labelled by 1). This will yield a contradiction since the final formula in the derivation is 0, and by
property (1) of Definition 6.2, T (0) is a 0-tree.

22

The proof is by induction on the number of inference steps used to derive A. For the base
case, there are no inference steps and thus A must be an initial clause of Tseitin(H(d)[α(d)]). (If
A is an instance of the axiom scheme, then A is derived by one inference step; such formulas will
be handled in the inductive step.) When A is an initial clause, property (4) of Definition 6.2
immediately implies that T (A) is a 1-tree.

For the inductive step, assume that T (F) is a 1-tree for each formula F in P that was derived by
at most i inference steps. Now consider a formula A that is derived in at most i+ 1 inference steps.
Such an A is derived from zero, one or two previously derived formulas, which were themselves each
derived in at most i inference steps, using some rule from Section 2.1. There are different cases
depending on which inference rule was used to derive A, but the proof will be essentially the same
in all these cases.

Suppose that the rule used to derive A derives C0 from C1 and C2. That is, consider an instance
of a rule:

A1[B1/p1, . . . , Bm/pm], A2[B1/p1, . . . , Bm/pm]→ A0[B1/p1, . . . , Bm/pm].

Let Γ = {C0, C1, , . . . , Cj} be the set of all formulas D[B1/p1, . . . , Bm/pm], where D[p1, . . . , pm] is a
sub-formula of some Ai; note that Γ only includes the sub-formulas in which each Bi is substituted
for pi and does not include “lower-level sub-formulas”. (These are called the active subformulas of
the inference.) For our proof system F we have that |Γ| is always at most 7, since the associative
rule and the cut rule both have 7 active sub-formulas and the other rules have fewer.

We will use the following running example to demonstrate the idea for the associative rule
(similar reasoning goes through for any of the other rules in F). Suppose that the formula C0 =
(F ∨G)∨H is derived from C1 = F ∨ (G∨H) by the associative rule: p1∨ (p2∨p3)→ (p1∨p2)∨p3.
Thus in the above notation we have that B1 = F , B2 = G and B3 = H, and the set of active
subformulas is Γ = {C0 = (F ∨ G) ∨ H, C1 = F ∨ (G ∨ H), C2 = F, C3 = G, C4 = H, C5 =
F ∨G, C6 = G∨H}. The subformulas in Γ are the only active ones because while there are other
subformulas (for example F , G, and H may have proper subformulas), the soundness of the rule
does not depend on these subformulas.

Assume for sake of contradiction that T (C0) is not a 1-tree, and therefore, there exists a path π0

in this tree such that T (C0) � π0 = 0. By Property (5) of Definition 6.2 there exists a restriction π?

extending π0 such that closureH(i),α′(π
?) = π? and π? pushes the contradiction of α′ into the giant

component of H(i) − supp(π?). Furthermore, for each i ∈ {0, 1, . . . , 6}, T (Ci) � π? = bi for some
bi ∈ Z2. By the definition of a k-evalution, the restriction π? must satisfy the following properties:

• If ¬A ∈ Γ, then T (¬A)) � π? = 1 implies that T (A) � π? = 0. This is by property (2) of the
definition of a k-evaluation.

• If (A∨B) ∈ Γ, then by property (3) in the definition of a k-evaluation (recalling closureH(i),α′(π
?)

= π?), if T (A ∨ B) � π? = 1 then T (A) � π? = 1 or T (B) � π? = 1. Otherwise, if
T (A ∨ B) � π? = 0 then T (A) � π? = 0 or is a 0-tree, and likewise T (B) � π?; recalling
property (5) in the definition of a k-evaluation, they are in fact both 0.

By induction we know that each of T (C1), . . . , T (C6) are 1-trees. Note that by property (5) of
Definition 6.2 we have that T (C0) � π? is either 0 or 1; we now show that T (C0) � π? cannot be
0. Since C0 = C5 ∨ C4, by the second bullet above, T (C0) � π? = 0 implies that T (C5) � π? = 0,
and the same for T (C4), but this contradicts the earlier assertion that each of T (C1), . . . , T (C6)

23

are 1-trees. Thus T (C0) � π? = 1, contradicting the assumption that T (C0) � π0 = 0 (recall that
π? extends π0).

We can apply similar reasoning for other rules; for example, consider an application of a rule
“C1, C2 implies C0.” By induction, we know that both T (C1) and T (C2) are 1-trees. By the above
properties, the truth value assignments for {T (Ci) � π?}i=0,...,6 respect the usual rules of logic, and
thus because the rule is sound and only involves these sub-formulas, it follows that T (C0) � π? must
also be 1. But this contradicts our assumption that T (C0) � π? = 0.

7 Proof of Theorem 1: Obtaining a k-evaluation from the switch-
ing lemma

Let P be a depth-d refutation of Tseitin(Gn[α]) where d ≤ d? = c
√

log n, and let P∗ be the set
of all subformulas of P (note that |P∗| is polynomially related to |P|). The main result of this
section (Lemma 7.1) uses our final switching lemma (Theorem 2, stated below) to prove that if P∗
is “small”, then there exists a pair (ρ(d), H(d)) ∈ supp(A(d)) such that P∗ � ρ(d) has a k-evaluation
where k = (log n)/200d. Recall that P � ρ(d) is a depth-d refutation of Tseitin(H(d)[α(d)]) where
α(d) = α � ρ(d), and observe that P∗ � ρ(d) is the set of all subformulas of P � ρ(d). Applying
Lemma 6.3 (with its P being P � ρ(d) and its P ∗ being P∗ � ρ(d)), it follows that P � ρ(d) cannot
be a refutation of Tseitin(H(d)[α(d)]). This contradiction implies that P∗ cannot be “small”, and
hence neither can P.

Lemma 7.1. Let Γ be a set of depth-d formulas over E(Gn), closed under subformulas, where d ≤
d?. For some absolute constant c1 > 0, if |Γ| < nc1(logn)/d2

, then there exists a pair (ρ(d), H(d)) ∈
supp(A(d)) such that Γ � ρ(d) has a k-evaluation where k = (log n)/200d.

As discussed above, Theorem 1 follows directly from Lemmas 6.3 and Lemma 7.1, observing
that (log n)/200d� τ(d, n)/(3λ?).

We now state our final switching lemma. The rest of this paper after Section 7 is devoted to
proving Theorem 2. (In Theorem 2, ε > 0 is a small absolute constant).

Theorem 2 (Final switching lemma). Let 0 ≤ i ≤ d < d?. Fix (ρ(i), H(i)) ∈ supp(A(i)). Let
T1, . . . , TM be (k,H(i))-good decision trees over E(H(i)) where k = (log n)/200d and let α′ = α �
ρ(i). Then except with failure probability at most n−ε(logn)/d2

over a draw of (ρ(i+1),H(i+1)) ∼
A(i+1)(ρ(i), H(i)), there is a (k,H(i+1))-good decision tree over E(H(i+1)) that (H(i+1), α′ � ρ(i+1))-
represents ∨jPruneH(i+1),α′�ρ(i+1)(Tj � ρ(i+1)).

7.1 Proof of Lemma 7.1 assuming Theorem 2

Given i ∈ {0, . . . , d}, let Γi ⊆ Γ denote the set of all formulas in Γ of depth at most i. We will first
prove, by induction on i, that there exists a pair (ρ(i), H(i)) ∈ supp(A(i)) such that the following
holds: there is a mapping T (i)(·) which assigns to each formula A ∈ Γi � ρ(i) (note that these
are formulas over the variable set E(H(i))) a (k := (log n)/200d,H(i))-good decision tree satisfying
properties (1)–(3) of the definition of a k-evaluation (Definition 6.2).

For our base case when i = 0, recall that A(0) only contains the trivial pair ({∗}E(Gn),Gn).
The only formulas we need to consider are constants and literals of form e or ¬ e. For b ∈ Z2, we

24

define T (0)(b) = b (the one-node tree comprising a single leaf b). Next suppose that e ∈ E(Gn)
is a bridge in Gn connecting components C1 and C2 where |V (C1)| ≥ |V (C2)|. (In fact, C1 is a
giant component since removing a single edge from Gn leaves a giant component; see the proof
of Corollary 2.8.) In this case T (0)(e) = 1 if the induced (α � e → 1)-charge of C1 is odd, and
T (0)(e) = 0 otherwise. Finally, suppose e is not a bridge in Gn. In this case T (0)(e) = (e; 0, 1), and
T (0)(¬ e) = (e; 1, 0) = T (0)(e)c. It is easy to check that these trees are (trivially) (k,Gn)-good and
properties (1)–(3) hold (property (3) is vacuous in this case).

Now assume by the inductive hypothesis that there exists a pair (ρ(i), H(i)) ∈ supp(H(i)) and a
mapping T (i) as described above. Note that Γi+1 is the disjoint union of Γi, Υi+1, and Ξi+1, where
Υi+1 are the formulas in Γi+1 of depth exactly i + 1 of the form ∨jAj , and Ξi+1 are the formulas
in Γi+1 of depth exactly i+ 1 of the form ¬A.

(a) First consider a formula A ∈ Υi+1 of the form A = ∨jAj . By the induction hypothesis, for
all j the tree T (i)(Aj � ρ(i)) is a (k,H(i))-good decision tree satisfying properties (1)–(3) of

Definition 6.2. Applying Theorem 2 and a union bound over |Υi+1| < nc1(logn)/d2
many A’s

in Υi+1 (with a suitable choice of c1 relative to ε), we get there exists some (ρ(i+1), H(i+1)) ∈
supp(A(i+1)(ρ(i), H(i))) satisfying the following: for all A ∈ Υi+1, there is a (k,H(i+1))-
good decision tree that (H(i+1), α′)-represents ∨jPruneH(i+1),α′(T (i)(Aj � ρ(i)) � ρ(i+1)), where

α′ ∈ ZV (H(i+1))
2 denotes α � ρ(i+1) restricted to the vertices in V (H(i+1)). We define T (i+1)(A �

ρ(i+1)) to be this tree (and observe that it is (k,H(i+1))-good as desired).

(b) Next, consider a formula ¬A ∈ Ξi+1. For the extension ρ(i+1) of ρ(i) whose existence is
asserted in the bullet above, we define

T (i+1)(¬A � ρ(i+1)) = PruneH(i+1),α′(T
(i)(A � ρ(i)) � ρ(i+1))c,

which is (k,H(i+1))-good (since PruneH(i+1),α′(·) yields an H(i+1)-independent tree, and by

our induction hypothesis T (i)(A � ρ(i)) has depth at most k).

(c) Finally, consider a formula A ∈ Γi. In this case we define

T (i+1)(A � ρ(i+1)) = PruneH(i+1),α′(T
(i)(A � ρ(i)) � ρ(i+1)),

where again ρ(i+1) is the extension of ρ(i) whose existence is asserted in the first bullet above.
By the same reasons as above, this tree is (k,H(i+1))-good.

It remains to argue that this map T (i+1)(·) as defined above satisfies properties (1)–(3) of
Definition 6.2. Property (1) is immediate. For property (2), we would like to show that T (i+1)(¬A �
ρ(i+1)) = T (i+1)(A � ρ(i+1))c for all ¬A ∈ Γi+1. If ¬A ∈ Γi+1 we have:

T (i+1)(¬A � ρ(i+1)) = PruneH(i+1),α′(T
(i)(¬A � ρ(i)) � ρ(i+1))

= PruneH(i+1),α′(T
(i)(A � ρ(i))c � ρ(i+1))

= PruneH(i+1),α′(T
(i)((A � ρ(i)) � ρ(i+1))c)

= PruneH(i+1),α′(T
(i)(A � ρ(i)) � ρ(i+1))c

= T (i+1)(A � ρ(i+1))c,

25

where the first equality is by the definition of T (i+1) (specifically, (b) if ¬A ∈ Ξi+1, and (c) if
¬A ∈ Γi); the second equality holds because property (2) holds for T (i) by the induction hypothesis;
the third equality holds because applying a restriction and toggling the leaf bits are commutative;
the fourth equality holds because pruning and toggling the leaf bits are commutative; and the last
equality holds by the definition of T (i+1).

We will now verify property (3). If A ∈ Υi+1, it follows from (a) and (c). Next we consider

A ∈ Γi. Let A = ∨jAj , and α′′ ∈ ZV (H(i))
2 denote α � ρ(i) restricted to V (H(i)). By the induction

hypothesis, we have that T (i)(A � ρ(i)) (H(i), α′′)-represents ∨jT (i)(Aj � ρ(i)). By two applications
of (c), it suffices to prove that

PruneH(i+1),α′(T
(i)(A � ρ(i)) � ρ(i+1)) (H(i+1), α′)-represents ∨jPruneH(i+1),α′(T

(i)(Aj � ρ
(i)) � ρ(i+1)),

which follows from the following lemma (recall that α′ = α′′ � ρ(i+1) restricted to V (H(i+1))):

Lemma 7.2. Let k = (log n)/200d and T1, . . . , T` be (k,H(i))-good decision trees over E(H(i)), and
let T be a (k,H(i))-good decision tree that (H(i), α′′)-represents ∨jTj. Then PruneH(i+1),α′′�ρ(i+1)(T �

ρ(i+1)) (H(i+1), α′′ � ρ(i+1))-represents ∨jPruneH(i+1),α′′�ρ(i+1)(Tj � ρ(i+1)).

Given Lemma 7.2 (the proof of which we defer to the next subsection), we have shown that
properties (1)–(3) hold for all i ∈ {0, 1, . . . , d}.

Properties (4) and (5). It remains to argue that for each formula A ∈ Γd � ρ(d), the tree
T (d)(A) satisfies properties (4) and (5) of Definition 6.2.

For property (4), consider a clause A of Tseitin(H(d)[α � ρ(d)]). Such a clause is one of the four
length-3 clauses whose AND gives a constraint from some vertex v ∈ V (Gn); let this vertex be v
and let the clause A be e1 ∨ e2 ∨ e3, and let the charge at v be α(v) = 1. (Other possibilities can be
handled similarly.) From the base case we have that for each j ∈ [3], T (0)(ej � ρ(0)) is the depth-1
tree (ej ; 0, 1), and from the i = 0 case of (a) we have that T (1)(A � ρ(1)) is a (k,H(1))-good decision
tree that (H(1), α � ρ(1))-represents ∨3

j=1PruneH(1),α�ρ(1)((ej ; 0, 1) � ρ(1)). We will claim that already

T (1)(A � ρ(1)) is a 1-tree, from which property (4) follows. Seeking a contradiction, suppose there
exists π ∈ Branches0(T (1)(A � ρ(1))). By Definition 6.1, for all three values j ∈ [3] we have that

PruneH(1),α�ρ(1)((ej ; 0, 1) � ρ(1)) � closureH(1),α�ρ(1)(π) = 0 for j = 1, 2, 3. (4)

Since T (1)(A � ρ(1)) is (k,H(1))-good, we have that closureH(1),α�ρ(1)(π) pushes the contradiction

of α � ρ(1) into the giant component of H − closureH(1)(π) (Fact 5.14 and Proposition 5.12); this
implies that ρ ◦ closureH(1),α�ρ(1)(π) is α-consistent. However, by Lemma 5.17 applied to Equation
(4) (noting that the closure of a closed set is itself) we have that

((ej ; 0, 1) � ρ(1)) � closureH(1),α�ρ(1)(π) = 0 for j = 1, 2, 3.

This implies that (ρ(1) ◦ closureH(1),α�ρ(1)(π))(ej) = 0 for j = 1, 2, 3, which contradicts the fact that

ρ(1) ◦ closureH(1),α�ρ(1)(π) is α-consistent (since α(v) = 1).
It remains to prove property (5) which follows from the following proposition:

Proposition 7.3. Fix (ρ(i), H
(i)
n) ∈ supp(A(i)

n) and let α′ = α � ρ(i). Let T0, T1, . . . , T6 be (k,H
(i)
n)-

good decision trees where k = (log n)/200d. Then for every π0 ∈ Branches(T0), there exist πi ∈
Branches(Ti) for i ∈ [6] such that

26

1. {π0, . . . , π6} is mutually compatible.

2. π∗ := closureH(i),α′(π0 ◦ · · · ◦ π6) pushes the contradiction of α′ into the giant component of
H − supp(π∗).

Proof. Since π0 is H(i)-independent, we have that π0 pushes the contradiction of α′ into the giant
component of H(i)−supp(π). Equivalently, the (α′ � π0)-charge of a component C of H(i)−supp(π0)
is odd iff C is giant (note that H(i) − supp(π0) is connected).

Consider T1 � π0, a decision tree over E(H(i) − supp(π0)). Observe that

Branches⊥(PruneH(i)−supp(π0),α′�π0
(T1 � π0)) = ∅

by Lemma 5.16 since (H(i)−supp(π0))−closureH(i)−supp(π0)(π̃1) has a giant component (by Fact 5.7

using |H(i)| ≥
√
n and k = (log n)/200d). Therefore, we may fix

π̃ ∈ Branchesb(PruneH(i)−supp(π0),α′�π0
(T1 � π0))

for some b ∈ Z2, and by Fact 5.14, we have that π̃1 pushes the contradiction of α′ � π0 into the giant
component of (H(i)−supp(π0))−supp(π̃1). By Proposition 5.12, we have that closureH(i)−supp(π0),α′�π0

(π̃1)

pushes the contradiction of α′ � π0 into the giant component of (H(i)−supp(π0))−closureH(i)−supp(π0)(π̃1).
Equivalently,

(†) π0 ◦ closureH(i)−supp(π0),α′�π0
(π̃1) pushes the contradiction of α′ into the giant component of

H(i) − supp(π0)− closureH(i)−supp(π0)(π̃1).

Recall that π̃1 ∈ Branchesb(PruneH(i)−supp(π0),α′�π0
(T1 � π0)). By Lemma 5.17, we have that

(T1 � π0) � closureH(i)−supp(π0),α′�π0
(π̃1) = b.

This implies the existence of a path π1 ∈ Branchesb(T1) such that π1 is a subrestriction of π0 ◦
closureH(i)−supp(π0),α′�π0

(π̃1). Note that π1 is consistent with π0, and since π0 ◦π1 is a subrestriction
of π0 ◦ closureH(i)−supp(π0),α′�π0

(π̃1) it follows from (†) that π0 ◦ π1 pushes the contradiction of α′

into the giant component of H(i) − supp(π0 ◦ π1).
The existence of π2, . . . , π6 with the claimed properties follows by repeating the above argument,

where to get the argument started we observe that (as we have just shown) π0 ◦ π1 pushes the
contradiction of α′ into the giant component of H(i) − supp(π0 ◦ π1). Since |π0 ∪ · · · ∪ π6| ≤ 7k =
7(log n)/200d, we apply Fact 5.7 and Proposition 5.12 to conclude that π? := closureH(i),α′(π0 ◦
· · · ◦ π6) pushes the contradiction of α′ into the giant component of H(i) − supp(π?).

This concludes the proof of Lemma 7.1, modulo the proof of Lemma 7.2.

7.2 Proof of Lemma 7.2

We will need the following lemma:

Lemma 7.4. Fix (ρ(i), H(i)) ∈ supp(A(i)) and (ρ(i+1), H(i+1)) ∈ supp(A(i+1)(ρ(i), H(i))), and let
α′′ = α � ρ(i). Let π be a restriction to the edges in E(H(i+1)) such that supp(π) is an H(i+1)-
independent set of size at most τ(i+ 1, n)/3λ?, where λ? is the λ? from from Fact 5.7. Let β be
a sub-restriction of ρ ◦ closureH(i+1),α′′�ρ(i+1)(π) where supp(β) is a H(i)-independent set of size at
most τ(i+ 1, n)/3λ?. Then ρ ◦ closureH(i+1),α′′�ρ(i+1)(π) extends closureH(i),α′′(β).

27

Proof. For notational clarity we prove the i = 0 case, noting that the proof of the general case
proceeds along essentially identical lines. In this case ρ(0) = {∗}E(Gn), H(0) = Gn, and α′′ = α. We
write n′ for τ(1, n), the number of real vertices of H(1).

Note that ρ(1) ◦ closureH(1),α�ρ(1)(π) extends β, and so the lemma statement is equivalent to the
claim that every edge e ∈ (closureGn(supp(β)) \ supp(β)) is fixed to the same constant b ∈ Z2 by
closureGn,α(β) and by ρ(1) ◦closureH(1),α�ρ(1)(π). Fix any such edge e, and recall that e is a bridge in

Gn−supp(β). Since Gn−supp(ρ(1)◦closureH(1),α�ρ(1)(π)) = H(1)−closureH(1)(supp(π)) is bridgeless

and ρ(1) ◦ closureH(1),α�ρ(1)(π) extends β, it follows that e is also fixed by ρ(1) ◦ closureH(1),α�ρ(1)(π);

it remains to argue that closureGn,α(β) and ρ(1) ◦ closureH(1)/α�ρ(1)(π) fix e to the same constant.

Since |supp(π)| ≤ n′/3λ?, it follows from Fact 5.7 that H(1) − closureH(1)(supp(π)) has a giant
component. We may then apply Proposition 5.12 (recall that supp(π) is H(1)-independent) to get
that

(†) closureH(1),α�ρ(1)(π) pushes the contradiction of α � ρ(1) into the giant component of H(1) −
closureH(1)(supp(π)) (of size > |V (H(1))|/2).

Since supp(β) is Gn-independent, we have that Gn − supp(β) is connected and has e as bridge.
Let C1 and C2 be the two components of Gn − (supp(β) ∪ {e}) where |V (C1)| ≥ |V (C2)| and
|V (C1)|+ |V (C2)| = |V (Gn)| = n. Since |supp(β)| ≤ n′/3λ?, it follows from Fact 5.7 that |V (C2)| ≤
n′/3 < |V (H(1))|/3 and |V (C1)| ≥ n− n′/3 > n/2. Recall that the (α � β)-charge of Gn − supp(β)
is odd since supp(β) is Gn-independent. Therefore closureG,α(β) fixes e according to the unique
assignment b ∈ Z2 so that the induced (α � β ◦ e→ b)-charge of C1 is odd and that of C2 is even.
We claim that ρ(1) ◦closureH(1),α�ρ(1)(π) fixes e to the same value b. If not, ρ(1) ◦closureH(1),α�ρ(1)(π)

extends (β ◦e→ b̄) where (β ◦e→ b̄) does not push the contradiction of α into the giant component
of Gn−(supp(β)∪{e}); by Fact 5.9 this contradicts (†).This completes the proof of Lemma 7.4.

We are now ready to prove Lemma 7.2:

Proof of Lemma 7.2. Let T ∗ := PruneH(i+1),α′′�ρ(i+1)(T � ρ(i+1)). We first recall that “T ∗(H(i+1), α′′ �

ρ(i+1))-represents ∨jPruneH(i+1),α′′�ρ(i+1)(Tj � ρ(i+1))” means:

π ∈ Branchesb(T
∗) =⇒ (∨j Disj(PruneH(i+1),α′′�ρ(i+1)(Tj � ρ

(i+1)))) � closureH(i+1),α′′�ρ(i+1)(π) = b.

We consider two cases depending on whether b = 1 or 0. If b = 1, it suffices to argue that

π ∈ Branches1(T ∗) =⇒ ∃ j : PruneH(i+1),α′′�ρ(i+1)(Tj � ρ
(i+1)) � closureH(i+1),α′′�ρ(i+1)(π) = 1.

Fix π ∈ Branches1(T ∗). Since T ∗ has height at most k = (log n)/200d it follows from Fact 5.7 that
H(i+1) − closureH(i+1)(supp(π)) has a giant component. Hence we can apply Lemma 5.17 and get
that

(T � ρ(i+1)) � closureH(i+1),α′′�ρ(i+1)(π) = 1.

This implies that there exists π′ ∈ Branches1(T) such that π′ is a sub-restriction of ρ(i+1) ◦
closureH(i+1),α′′�ρ(i+1)(π).

Recall our assumption that T (H(i), α′′)-represents ∨jTj . This means that

π′ ∈ Branches1(T) =⇒ ∃ j : Tj � closureH(i),α′′(π
′) = 1.

28

Fix such an index j. By Lemma 7.4, we have that closureH(i),α′′(π
′) is a sub-restriction of ρ(i+1) ◦

closureH(i+1),α′′�ρ(i+1)(π), and so we have that

(Tj � ρ
(i+1)) � closureH(i+1),α′′�ρ(i+1)(π) = 1.

Observe that Tj � ρ(i+1) is total and has depth at most k. It follows from Lemma 5.16, Fact 5.6,
and inspection of the Prune procedure that PruneH(i+1),α′′�ρ(i+1)(Tj � ρ(i+1)) is total as well. Hence
we may apply Fact 5.15 to obtain that

PruneH(i+1),α′′�ρ(i+1)(Tj � ρ
(i+1)) � closureH(i+1),α′′�ρ(i+1)(π) = 1,

which completes the proof of the b = 1 case.
For the b = 0 case, fix π ∈ Branches0(T ∗). In this case it suffices to argue that for all j, either

PruneH(i+1),α′′�ρ(i+1)(Tj � ρ
(i+1)) � closureH(i+1),α′′�ρ(i+1)(π) = 0 (5)

or
PruneH(i+1),α′′�ρ(i+1)(Tj � ρ

(i+1)) � closureH(i+1),α′′�ρ(i+1)(π) is a 0-tree. (6)

Since T ∗ has height at most k = (log n)/200d it follows from Fact 5.7 thatH(i+1)−closureH(i+1)(supp(π))
has a giant component. Hence we can apply Lemma 5.17 and get that

(T � ρ(i+1)) � closureH(i+1),α′′�ρ(i+1)(π) = 0.

This implies that there exists π′ ∈ Branches0(T) such that π′ is a sub-restriction of ρ(i+1) ◦
closureH(i+1),α′′�ρ(i+1)(π).

Recall our assumption that T (H(i), α′′)-represents ∨jTj . This means that

π′ ∈ Branches0(T) =⇒ ∀ j : either Tj � closureH(i),α′′(π
′) = 0, or Tj � closureH(i),α′′(π

′) is a 0-tree.

By Lemma 7.4, we have that closureH(i),α′′(π
′) is a sub-restriction of ρ(i+1)◦closureH(i+1),α′′�ρ(i+1)(π),

and so we have that for all j, either

(Tj � ρ
(i+1)) � closureH(i+1),α′′�ρ(i+1)(π) = 0 or (Tj � ρ

(i+1)) � closureH(i+1),α′′�ρ(i+1)(π) is a 0-tree.

Again by Fact 5.15, it follows that either (5) or (6) holds, and the proof is complete.

8 The “atomic” Tseitin Switching Lemma

We begin in Section 8.1 by giving a simplified version of the switching lemma in which there is
no underlying graph and no charge – it is for the most basic setting of having n Boolean vari-
ables x1, . . . , xn with no additional structure (e.g., the setting for proving depth lower bounds for
polynomial-size circuits computing the n-variable Parity function). This simplified switching lemma
is quantitatively somewhat weaker than H̊astad’s switching lemma, yielding only an Ω(

√
log n)

depth lower bound for Parity rather than the optimal Ω(log n/ log logn) bound that follows from
H̊astad’s switching lemma. However, the advantage of the new approach is that we are able to
extend it (in Sections 8.2 through 8.5) to prove the actual Tseitin switching lemma over expander
graphs which is our ultimate goal, whereas we were unable to extend previous known switching

29

lemma arguments to this complicated context. We also feel that some of the ideas underlying our
expander switching lemma are much easier to follow in the simple setting of Section 8.1 than in
the much more complex setting of Sections 8.2 through 8.5. (Note though that Section 8.1 serves
more than just an expository role, since in it we establish some key definitions and technical results
which are used later in our main expander switching lemma.)

8.1 A simple switching lemma for r-clipped decision trees

We introduce the following natural distribution over random walks down from the root of a decision
tree T :

Definition 8.1 (DistributionW(T)). For a decision tree T , letW(T) be the probability distribution
on Branches(T) under which each π ∈ Branches(T) has mass 2−|π|, where |π| denotes the number
of edges on the branch π. This corresponds to a uniform random walk down from the root of T . (If
T has depth 0 (it is simply a constant), a draw from W(T) simply outputs the empty branch.)

The following notion of an r-clipped decision tree is a key ingredient in our proof:

Definition 8.2 (r-clipped). A decision tree T is r-clipped if every node in T has distance ≤ r
from a leaf.

The following lemma is simple but crucial for us:

Lemma 8.3 (r-DNF to r-clipped tree). Every r-DNF is equivalent to an r-clipped decision tree.

Proof. Build the decision tree term-by-term. Read the variables in the current term one-by-one,
moving on to the next term once the current term is falsified. If the current term is ever satisfied,
halt and output 1. If all terms are falsified, halt and output 1. It is clear that the resulting tree is
r-clipped since at any internal node v, the branch that satisfies the current term terminates at a
leaf at distance at most r from v.

Lemma 8.4 (Moment Bound). If T is r-clipped, then E
π∼W(T)

(
|π|
s

)
≤ (20r2r)s.

Proof. Let X ∈ {r, r + 1, . . . } be the first time that r consecutive heads come up in a sequence
C1,C2, . . . of i.i.d. unbiased coin flips. Note that X stochastically dominates |π|.

We claim that E[Xs] ≤ (7rs2r)s. Arguing by induction, assume that E[Xi] ≤ (7ri2r)i for all
i < s. We have

E[Xs] = Pr[C1 = · · · = Cr = heads]rs +

r∑
k=1

Pr[C1 = · · · = Ck−1 = heads & Ck = tails] E[(k + X)s]

=
rs

2r
+

r∑
k=1

1

2k

s∑
i=0

(
s

i

)
ki E[Xs−i]

=
rs

2r
+

(
1− 1

2r

)
E[Xs] +

s∑
i=1

(
s

i

)
E[Xs−i]

r∑
k=1

ki

2k
.

30

Therefore,

E[Xs] = rs + 2r
s∑
i=1

(
s

i

)
E[Xs−i]

r∑
k=1

ki

2k

≤ rs + 2r
s∑
i=1

(es
i

)i
(7r(s− i)2r)s−iri

≤ rs + (rs2r)s7s−1
s∑
i=1

(e
i

)i
≤ rs + (rs2r)s7s−16

≤ (7rs2r)s.

Finally, we have

E
π∼W(T)

(
|π|
s

)
≤ (e/s)s E

π∼W(T)
[|π|s] ≤ (e/s)s E[Xs] ≤ (e/s)s(7rs2r)s ≤ (20r2r)s.

We recall the standard notion of coordinate-wise independent random restrictions:

Definition 8.5 (Random restrictions Rp). For p ∈ (0, 1), let Rp be the distribution on restrictions
ρ which independently sets each variable to ∗ with probability p and to 0, 1 with probability (1−p)/2)

Now we are ready for our simple switching lemma, which states that any r-clipped decision tree
— regardless of its depth — is unlikely to have large depth after it is hit by a random restriction.

Lemma 8.6 (Switching Lemma for r-Clipped Decision Trees). Suppose T is an r-clipped decision
tree. Then

Pr
ρ∼Rp

[depth(T � ρ) ≥ s] ≤ (40pr2r)s.

Proof. For every restriction ρ, we have

depth(T � ρ) ≥ s =⇒ Pr
σ∼W(T �ρ)

[|σ| ≥ s] ≥ 2−s.

Using Markov’s inequality and Lemma 8.4, we have

Pr
ρ∼Rp

[depth(T � ρ) ≥ s] ≤ Pr
ρ∼Rp

[
Pr

σ∼W(T �ρ)
[|σ| ≥ s] ≥ 2−s

]
≤ 2s E

ρ∼Rp

[
Pr

σ∼W(T �ρ)
[|σ| ≥ s]

]
= 2s E

π∼W(T)

[
Pr

Y∼Bin(|π|,p)
[Y ≥ s]

]
≤ 2s E

π∼W(T)

[
ps
(
|π|
s

)]
≤ (40pr2r)s.

The crucial step in the above, marked by =, is justified by the following lemma:

31

Lemma 8.7. Let T be a proper decision tree (no variable occurs twice on any path). The following
two distributions are equivalent:

1. D1(T): Draw ρ ∼ Rp and consider T � ρ. Output σ ∼ W(T � ρ).

2. D2(T): Draw π = 〈π1, . . . ,πk〉 ∼ W(T). Output the sub-list of π obtained by going through
π and independently including each element πi with probability p.

Note that D1 corresponds to the LHS of the crucial =, and D2 to the RHS.

Proof. The proof is by induction on the depth of T . The base case is simple: if T has depth 0 then
both D1(T) and D2(T) output the empty list with probability 1.

For the inductive step, let T = (e;T0, T1). We first analyze the distribution D1(T). By the
definitions of T � ρ and of W, we have that for ρ ∼ Rp, the distribution of σ ∼ W(T � ρ) is:

(a) with probability 1−p
2 , σ is distributed as W(T0 � ρ); by the inductive hypothesis applied to

T0, this is the same distribution as 〈(draw from D2(T0))〉;

(b) with probability 1−p
2 , σ is distributed asW(T1 � ρ; by the inductive hypothesis applied to T1,

this is the same distribution as 〈(draw from D2(T1))〉;

(c) with probability p
2 , σ is distributed as 〈(e, 0), (draw from W(T0 � ρ))〉; by the inductive

hypothesis applied to T0, this is the same distribution as 〈(e, 0), (draw from D2(T0))〉;

(d) with probability p
2 , σ is distributed as 〈(e, 1), (draw from W(T1 � ρ))〉; by the inductive

hypothesis applied to T1, this is the same distribution as 〈(e, 1), (draw from D2(T1))〉.

Now we analyze the distribution D2(T). By inspection the distribution of a draw from D2(T)
is

(e) with probability 1−p
2 , π is distributed as 〈(draw from D2(T0))〉;

(f) with probability 1−p
2 , π is distributed as 〈(draw from D2(T1))〉;

(g) with probability p
2 , π is 〈(e, 0), (draw from D2(T0))〉;

(h) with probability p
2 , π is 〈(e, 1), (draw from D2(T1))〉;

Items (a)–(d) synch up exactly with (e)–(h) respectively, and the lemma is proved.

Using Lemma 8.3 we immediately obtain the following corollary:

Corollary 8.8 (Weak Switching Lemma for r-DNFs). If F is an r-DNF, then

Pr
ρ∼Rp

[F � ρ has decision-tree depth ≥ s] = (40pr2r)s.

With this “weak switching lemma” in hand, the standard argument that is used to get a lower
bound for PARITY from a switching lemma yields the following:

Corollary 8.9 (Parity Lower Bound). Depth-d circuits for PARITYn require size exp(Ω((log n)/d)2).
In particular, poly-size circuits for PARITYn require depth Ω(

√
log n).

Proof sketch. Apply the weak switching lemma d times, with random restrictions ρ1, . . . ,ρd ∼ Rp,
taking p = n−1/2d and r = s = (log n)/(4d), so that (40pr2r)s = exp(−Ω((log n)/d)2), and using a
union bound over the gates of a depth-d circuit computing PARITYn as in the usual argument.

32

8.2 A quantity rHn′′,n′ (m, s) that we need to bound

We define a function rHn′′,n′ : N × N → [0, 1] which will play a crucial role in the proof of our
switching lemma:

rHn′′,n′ (m, s) = max
X⊆E(Gn′):|X|≤m

PrH∼Hn′′,n′ [X intersects at least s super-edges in H]. (7)

To prove the switching lemma we require an upper bound on rHn′′,n′ (m, s). The following theorem
provides such a bound:

Theorem 3.

rHn′′,n′ (m, s) ≤
(

3n′′/2

s/29

)
·
(
C(lnn′)3

n′

)s/29

·
(
m

s

)
where C > 0 is a universal constant.

The rest of Section 8.2 is devoted to proving Theorem 3.
Recall that an outcome of (H,H ′) from Hn′′,n′ specifies a set of bundles B(i), i ∈ [3n′/2], and

that each such bundle corresponds to an edge in Gn′′ and vice versa. Let us say that a set of bundles
is a bundle matching if the corresponding set of edges in Gn′′ is a matching. Write mbun(H ′, X) to
denote the size of the largest bundle matching in H ′ each of whose constituent bundles contains at
least one edge of X, and let us define

?′Hn′′,n′ (m, s) := max
X⊆E(Gn′),|X|=m

Pr(H,H′)∼Hn′′,n′ [mbun(H′, X) ≥ s]

= max
X⊆E(Gn′),|X|=m

PrH′∼H′n′′,n′ [mbun(H′, X) ≥ s]. (8)

Now suppose that a set X ⊆ E(Gn′) intersects at least s super-edges in H. Since Gn′′ is 3-regular,
there must be a set of at least s/29 super-edges in H that X intersects, such that for any two of
these super-edges, the corresponding edges in Gn′′ all have pairwise distance at least three from
each other. (The “29” here comes from the fact that if e is an edge in a 3-regular graph, then there
are at most 29 edges (including e itself) within distance at most two from e, where we say that two
edges are at distance 0 from each other if they share a vertex.) It follows that the set of bundles
that X intersects must contain a bundle matching of size at least s/29.2 Consequently, we have
that

Claim 8.10. rHn′′,n′ (m, s) ≤ ?
′
H′
n′′,n′

(m, s/29).

So it suffices to upper bound ?′H′
n′′,n′

(m, s); we do this below. For conciseness henceforth we

simply write ?′ for ?′H′
n′′,n′

.

8.2.1 Bounding ?′(m, s)

Fix an X ⊆ E(Gn′) with |X| = m that achieves the maximum in (8). There are
(
m
s

)
ways to choose

a particular subset X ′ ⊆ X, |X ′| = s; fix one such X ′ and denote its elements e1, . . . , es. We may
upper bound ?′(m, s) by

?′(m, s) ≤
(
m

s

)
·PrH′∼H′

n′′,n′
[a bundle matching in H′ hits all of e1, . . . , es].

2Note that we could not conclude this if we only had a pairwise distance lower bound of two.

33

Order all the edges {a1,1, a1,2}, . . . , {a3n′/2,1, a3n′/2,2} of Gn′′ in some fixed canonical way. Recall

that there is a bundle in H ′ corresponding to each such edge. There are at most
(

3n′′/2
s

)
ways to

choose s edges in Gn′′ that could form a matching. Fix a subset 1 ≤ i1 < · · · < is ≤ 3n′′/2 of size
s. We may upper bound ?′(m, s) as

?′ (m, s) ≤
(
m

s

)
·
(

3n′′/2

s

)
·PrH′∼H′

n′′,n′
[bundle B(ij) hits ej for all j = 1, . . . , s]. (9)

Below we shall focus on on

PrH′∼H′
n′′,n′

[bundle B(ij) hits ej for all j = 1, . . . , s]. (10)

Remark 4. It is certainly not the case that we can treat each bundle independently of the oth-
ers. This is the case for at least two reasons: first, the bundles share endpoints and this destroys
independence. Beyond this, even the choice of the bundle endpoints is not independent because of
the conditioning in step (1) of the draw of H ∼ H, which stipulates that no two vertices vi, vj are
too close to one another. Indeed, if we were to draw n′′ vertices independently and uniformly at
random, the probability that they would satisfy all

(
n′′

2

)
of the desired pairwise distance lower bounds

would be at most (
1− (lnn′)Θ(1)

n′

)Θ(n′′2)

,

which is extremely small (recall that n′′ = n′/2(logn′)c).
Nevertheless, regarding the first reason, intuition might suggest that the fact that bundles can

share endpoints should not have a major effect; and regarding the second reason, intuitively the
conditioning based on pairwise distance between the vi’s is fairly “mild” since in a uniform draw
of the n′′ vertices most pairs would indeed satisfy the desired distance condition. Thus one might
hope to achieve a bound similar to that which would be obtained if the bundles could be handled
independently (and indeed we will rigorously establish such a bound below).

To gain intuition for what “should happen”, let us briefly digress and analyze (10) pretending
that the bundles were all mutually independent. In this case the analysis would be very simple: we
would have that (10) equals

Pr[bundle B(1) hits edge e1]s.

There are at most ` := κ2(lnn′)3 many edges in bundle B1, so this is at most∑̀
j=1

Pr[the j-th edge in bundle B(i) hits edge e1]

s

.

Each edge in Gn′ is equally likely to be the j-th edge in bundle B(i), so the above is(
2κ2(lnn′)3

3n′

)s
.

This would give an upper bound on (9) of(
m

s

)
·
(

3n′′/2

s

)
·
(

2κ2(lnn′)3

3n′

)s
. (11)

So a bound of this form is what we will shoot for (and achieve) in the actual analysis below.

34

Let us return to the actual analysis of (10). Recall that each aij ,b (where j ∈ [s] and b ∈ {1, 2})
is an element of [n′′] (an element of V (Gn′′)) and that all 2s such elements are distinct (since we
have a matching). We rewrite the quantity we want to bound,

(10) = PrH′∼H′
n′′,n′

[bundle B(ij) hits ej for all j = 1, . . . , s],

as
∏s
j=1 pj , where

pj = PrH′∼H′
n′′,n′

[bundle B(ij) hits edge ej | bundle B(ij′) hits edge ej′ for j′ = 1, . . . , j−1]. (12)

We take an alternate view of the draw of H′ ∼ H′n′′,n′ as follows:

1′. For j = ai1,1, ai1,2, ai2,1, ai2,2, . . . , ais,1, ais,2 (in that specific order) do the following:

• Pick a uniform random vertex vj ∈ [n′] conditioned on vj having distance at least
3κ1 ln lnn′ in Gn′ from all of the vi’s that have already been picked. (This vertex vj
corresponds to vertex j of Gn′′ .)

• For each pair {vi,vj} such that {i, j} is an edge in E(Gn′′) and vi has already been
picked, construct the bundle of paths between vi and vj as described earlier. Denote
this bundle of paths by B(i, j).

2′. Finish the draw for the remaining possibilities of j ∈ [n′′] (in an arbitrary order). I.e. for the
remaining j ∈ [n′′], in an arbitrary order,

• Pick a uniform random vertex vj ∈ [n′] conditioned on vj having distance at least
3κ1 ln lnn′ in Gn′ from all of the vi’s that have already been picked. (This vertex vj
corresponds to vertex j of Gn′′ .)

• For each pair {vi,vj} such that {i, j} is an edge in E(Gn′′) and vi has already been
picked, construct the bundle of paths between vi and vj as described earlier. Denote
this bundle of paths by B(i, j).

Remark 5. The difference between this description of a draw of H′ ∼ H′n′′,n′ and our original one
is that in the original description the draw of H′ is generated by first selecting all the locations of
the vertices (going in the ordering 1, . . . , n′′), and only then selecting all the bundles. In the new
description, we go through the vertices {1, . . . , n′′} selecting their locations in a different ordering
(prioritizing the vertices that are pertinent for (10)), and when we select a vertex we immediately
select all the bundles joining that vertex to previously-selected vertices.

Fix any ` ∈ [s]; our goal is to bound p`. We do this by analyzing the conditional probability
that bundle B(ai`,1, ai`,2) hits edge e` where we condition on a more restrictive event than the one
specified in (12). Let S denote the set {ai1,1, ai1,2, . . . , ai`−1,1, ai`−1,2} (note that this is a subset of
[n′′]). Fix any distinct elements (rt)t∈S in [n′] and let Φ((rt)t∈S) denote the event “(vt = rt)t∈S ,
and bundle B(aij′ ,1, aij′ ,2) hits edge ej′ for j′ = 1, . . . , ` − 1.” Our goal is to give a uniform upper
bound on the probability

q`((rt)t∈S) := PrH′∼H′
n′′,n′

[bundle B(ai`,1, ai`,2) hits edge e` | Φ((rt)t∈S)] (13)

35

that holds for all possible (rt)t∈S . Since the event conditioned on in (12), “bundle B(ij′) hits edge
ej′ for j′ = 1, . . . , j − 1,” can be partitioned into disjoint events Φ((rt)t∈S) across all possibilities
for (rt)t∈S , such an upper bound implies the same upper bound on p`.

Recall that we are working with a matching, so all 2s elements aij ,b (j ∈ [s], b ∈ {1, 2}) are
distinct. Moreover, for any k < `, given the endpoints vaik,1 and vaik,2 , the actual draw of the
bundle B(aik,1, aik,2) is independent from everything else that happens in the draw of H′ ∼ H′n′′,n′ .
This implies that conditioning on Φ′((rt)t∈S) is equivalent to conditioning on Φ((rt)t∈S) for the
purpose of analyzing q`((rt)t∈S), where Φ′((rt)t∈S) is the event “(vt = rt)t∈S .” So we have that
q′`((rt)t∈S) = q`((rt)t∈S), where

q′`((rt)t∈S) := PrH′∼H′
n′′,n′

[bundle B(ai`,1, ai`,2) hits edge e` | Φ′((rt)t∈S)].

(Intuitively, in passing from q`((rt)t∈S) to q′`((rt)t∈S), we are only discarding the conditioning on
whether bundles joining up some of the earlier vertices hit the ej edges, but we are keeping the
conditioning on where the endpoints of those earlier bundles were located. This endpoint location
information is the only relevant information for the `-th stage, because the location of the endpoints
of the earlier bundles is the only thing affecting the distribution of the location of the endpoints of
the `-th stage bundles, and the distribution of the paths comprising the `-th stage bundles depends
only on the location of their endpoints.)

We have reduced the problem to that of bounding q′`((rt)t∈S). We first observe that

q′`((rt)t∈S) ≤ (lnn′)2 ·Pr[the first path P in bundle B(ai`,1, ai`,2) hits edge e` | Φ′((rt)t∈S)]

≤ (lnn′)2 ·Pr[the walk W (recall Step 2(b)) corresponding to the first path P

in bundle B(ai`,1, ai`,2) hits edge e` | Φ′((rt)t∈S)]

≤ (lnn′)2 ·
∑

u∈[2κ2 lnn′]

Pr[the uth edge in the first walk W in bundle B(ai`,1, ai`,2)

hits edge e` | Φ′((rt)t∈S)] (14)

Now fix any u ∈ [κ2 lnn′]. (It suffices to deal only with the first half of the walk W because we
can deal with the second half, starting from the other endpoint, symmetrically.) We would like to
upper bound the quantity

Pr[the uth edge in the first walk W in bundle B(ai`,1, ai`,2) hits edge e` | Φ′((rt)t∈S)]. (15)

Observe that the randomness here is over

• the draw of ai`,1 and ai`,2 given Φ′((rt)t∈S);

• the (uniform over [n′]) draw of the “midpoint” x of the walk W (recall Step 2(b) of the
description of how H′ is drawn from H′n′′,n′); and

• the draw of the first half-walk (call it W′) of W in bundle B(ai`,1, ai`,2).

Similar to the proof of Lemma 2.7, we note that given the outcome of ai`,1, the combined draw
of x and of the half-walk W′ ending at x does not result in W′ being perfectly distributed as a
uniform (κ2 lnn′)-step random walk starting from ai`,1, because W′ is constrained to end at the
uniform random vertex x and the distribution of the endpoint of a (κ2 lnn′)-step random walk

36

starting from ai`,1 will not be perfectly uniform random. However, as in that earlier argument, the
variation distance between the distribution of W′ and the distribution of a truly random walk is
extremely small — at most (n′)−100 for a suitable choice of the constant κ2, because the variation
distance between a truly uniform random x ∈ [n′] and the endpoint of a (κ2 lnn′)-length random
walk is at most (n′)−100. So in what follows, we shall analyze (15) under the assumption that
W′ is a truly uniform random (κ2 lnn′)-step random walk starting from ai`,1 (we refer to the
corresponding probability as (15′)); adding (n′)−100 to the resulting upper bound obtained under
this assumption, we get a legitimate upper bound on the actual value of (15).

We can upper bound (15′) by upper bounding the probability that the (u−1)-th vertex reached
(after the (u − 1)-th step of the random walk) is one of the two endpoints of e`. For u = 1, we
observe that the conditioning Φ′((rt)t∈S) has the effect of ruling out at most (2s− 2) · 33κ1 ln lnn′ =
s ·polylog(n′) many possibilities for ai`,1 and ai`,2 out of the n′ possibilities, so there are still at least
0.99n′ many possibilities for ai`,1. Hence for u = 1 we have that αu := Pr[the (u − 1)-th vertex
reached after the (u−1)-th step of the random walk is one of the two endpoints of e`] ≤ 2/(0.99n′).
In fact, we claim that for every u ∈ {0, 1, . . . , κ2 lnn′], the value αu is at most 2/(0.99n′). This
follow from the following elementary lemma:

Lemma 8.11. Let G be a regular graph and let S ⊂ V (G). Let pS,k(v) denote the probability that
a random walk that starts at a uniform random vertex of S reaches vertex v at the k-th step. Then
pS,k(v) ≤ 1/|S| for all v ∈ V.

Proof. We will prove this by induction on k. The base case k = 0 is clearly true. For the induction,
we will use the following self-evident fact (note that regularity is essential for this fact to be true):

Fact 8.12. Consider a random walk on a d-regular graph with any distribution on initial vertices.
For any v ∈ V (G), let pk(v) denote the probability that the walk reaches vertex v at the k-th step.
Then

pk(v) =
1

d

∑
u∼v

pk−1(u) ≤ max
u∼v
{pk−1(u)}.

By induction, the max on the RHS of Fact 8.12 is always 1/|S|, and so pS,k(v) ≤ 1/|S| as
desired.

All that remains is to retrace our steps and combine the various bounds. We have established
that (15′) is at most 2/(0.99n′), so as discussed above (15) ≤ 2/(0.99n′) + (n′)−100 < 4/n′. Hence
for (14) we get that

q′`((rt)t∈S) ≤ 8κ2(lnn′)3/n′

for all possible outcomes of ((rt)t∈S); as discussed earlier this gives

p` ≤ 8κ2(lnn′)3/n′.

Recalling (9), (10) and that (10) =
∏s
j=1 pj , we get that ?′(m, s) is at most

?′(m, s) ≤
(
m

s

)
·
(

3n′′/2

s

)
·
(

8κ2(lnn′)3

n′

)s
(note that this is essentially as good as the idealized bound (11) from Remark 4). Putting the final
piece in place by recalling Claim 8.10, we have established Theorem 3.

37

8.3 The Tseitin switching lemma

Having proved Theorem 3 upper bounding rHn′′,n′ , we are almost at the statement of 8.15. We
need the following notion of how setting a single edge on an H-super-edge “forces” an assignment
to the entire super-edge. (Existence is immediate in the following definition, and uniqueness follows
easily from the fact that an H-super-edge is simply a path of degree-2 vertices.)

Definition 8.13 (Super-edge inference). Fix (ρ,H) ∈ supp(Fn′′,n′) and let α′ ∈ ZV (Gn′)
2 be an odd

charge. For e ∈ E(H) and b ∈ Z2 we write ΨH(α′ � ρ, e → b) ∈ ZsuperH(e)
2 to denote the unique

assignment to superH(e) extending (e→ b) so that α′ � (ρ ◦ΨH(α′ � ρ, e→ b)) is α′-consistent.

Next we introduce a notion of “super-edge pruning” which is crucial for our switching lemma.
Super-edge pruning can be viewed as a relaxed form of the pruning that was defined in Section 5.3.
Roughly speaking, an internal node e of a tree T is shortcut in “regular” pruning if it lies in the
closure of its ancestors. In contrast, an internal node e of T is shortcut in super-edge pruning if
and only one of its ancestors e′ is contained in the same super-edge as e (note that in this event
certainly e is in the closure of its ancestors). The idea is that any assignment to e′ “forces” a unique
assignment along the entire super-edge containing e′ so as not to have a contradiction at any path
node in that super-edge.

Definition 8.14 (H-super-edge pruning). Fix (ρ,H) ∈ supp(Fn′′,n′) and let α′ ∈ ZV (Gn′)
2 be an

odd charge. Let T be a decision tree over E(H). The H-super-edge pruning of T under α′ � ρ,
denoted SuperEdgePruneH,α′�ρ(T), is the decision tree obtained from T by shortcutting internal
nodes e such that superH(e) = superH(e′) for some e′ ∈ E(H) which is an ancestor of e in T . The
shortcutting of e is done according to ΨH(α′ � ρ, e′ → b)(e) ∈ Z2 where b ∈ Z2 denotes the subtree
of e′ in T that e belongs to.

Lemma 8.15 (Switching lemma). Let α′ ∈ ZV (Gn′)
2 be an odd charge and T be an r-clipped Gn′-

independent decision tree over E(Gn′). Then for all s,

Pr
(ρ,H)

[
depth(SuperEdgePruneH,α′�ρ(T � ρ)) ≥ s

]
≤
(

3n′′/2

s/29

)
·
(

8κ2(lnn′)3

n′

)s/29

· (20r2r)s,

where (ρ,H) ∼ Fn′′,n′.

38

Proof. We have

Pr
(ρ,H)

[
depth(SuperEdgePruneH,α′�ρ(T � ρ) ≥ s

]
≤ Pr

(ρ,H)

[
Pr

σ∼W(SuperEdgePruneH,α′�ρ)
[|σ| ≥ s] ≥ 2−s

]
(Definition of W(·))

≤ 2s E
(ρ,H)

[
Pr

σ∼W(SuperEdgePruneH,α′�ρ)
[|σ| ≥ s]

]
(Markov’s inequality)

= 2s E
H

[
Pr

π∼W(T)
[π intersects at least s super-edges in H]

]
(key equivalence lemma)

= 2s E
π∼W(T)

[
Pr
H

[π intersects at least s super-edges in H]
]

(trivial)

≤ 2s E
π∼W(T)

rHn′′,n′ (|π|, s) (Definition of r(·, ·))

≤
(

3n′′/2

s/29

)
·
(

8κ2(lnn′)3

n′

)s/29

· E
π∼W(T)

(
|π|
s

)
(Theorem 3)

≤
(

3n′′/2

s/29

)
·
(

8κ2(lnn′)3

n′

)s/29

· (20r2r)s. (Lemma 8.4)

It remains to state and prove the key equivalence lemma (this is analogous to Lemma 8.7,
but much more involved) underlying the first equality step above. Note that this equivalence is a
“pointwise” one which does not involve an expectation over the choice of H — it holds for every
possible outcome of H.

Definition 8.16. Fix H ∈ supp(Hn′′,n′) and let π = 〈π1, . . . , πk〉 ∈ (E(H) × Z2)k. We define
SuperEdgePruneH(π) to be the sublist of π obtained by greedily removing all πj = (e, b) such that
πi = (e′, b′) for some i < j and superH(e) = superH(e′).

Here is the key equivalence lemma:

Lemma 8.17 (Key equivalence lemma). Let T be a Gn′-independent decision tree over E(Gn′) and

α′ ∈ ZVn′
2 be an odd charge. Fix H ∈ supp(Hn′′,n′). The following two distributions D1 and D2 are

equivalent:

1. D1(T): Let (ρ,H) be distributed as a draw from Fn′′,n′ conditioned on H = H. Output
σ ∼ W(SuperEdgePruneH,α′�ρ(T � ρ)).

2. D2(T): Draw π = 〈π1, . . . ,πk〉 ∼ W(T). Let π̃ be the sublist of π where we discard all
πi = (e, b) where e ∈ E(Gn′)− E(H). Output SuperEdgePruneH(π̃).

It is clear that Lemma 8.17 gives the equality that is labeled by “key equivalence lemma” above;
that equality simply randomizes over H. Thus, to complete the proof of the Switching Lemma it
remains only to prove the “key equivalence lemma”; the rest of Section 8 is devoted to its proof.

39

8.4 Auxiliary lemma for the proof of Lemma 8.17

Below is the main auxiliary lemma we will need for Lemma 8.17. Intuitively, when we apply this
lemma we are at some internal labeled by variable e of a Gn′-independent tree T . In both cases
in Lemma 8.18 below, J corresponds to the set of “pioneering” E(H)-ancestors of e in T , where
a “pioneering” ancestor is one which, when it was queried, was the first edge in its super-edge to
be queried along that branch. In Part 1, I corresponds to e along with the set of all ancestors of
its in T that are in E(Gn′)− E(H) (i.e. I is fixed by ρ). In Part 2, I corresponds to the set of all
ancestors of e in T (but now not including e) that are in E(Gn′)−E(H), and the set L corresponds
to e along with its all its ancestors that belong to the same super-edge but are not pioneering.

(Note that Part (3) of Lemma 8.18 is not required for the proof of Lemma 8.17; however, we
will use it in Section 9 later.)

Lemma 8.18. Let α′ ∈ ZV (Gn′)
2 be an odd charge and fix H ∈ supp(Hn′′,n′). Let ρ be distributed as

(ρ,H) ∼ Fn′′,n′ conditioned on H = H. Fix I ⊆ E(Gn′)− E(H), and J ⊆ E(H) where J contains
at most one edge from each super-edge of H. Suppose I ∪ J is Gn′-independent.

1. For all y ∈ ZI2,
Pr[ρ(I) = y] = 2−|I|.

2. Let e′ ∈ J and L be an ordered list of distinct elements of superH(e′) \ {e′}, where I ∪ J ∪ L
is Gn′-independent. Then for all y ∈ ZI2, z ∈ ZJ2 , and u ∈ ZL2 , we have that

Pr[ρ(I) = y and (ΨH(α′ � ρ, e′ → z(e′)))(L) = u] = 2−(|I|+|L|).

3. For each e′ ∈ J let Le′ be an ordered list of distinct elements of superH(e′) \ {e′}, where

I ∪ J ∪
⋃
e′∈J Le′ is Gn′-independent. Then for all y ∈ ZI2, z ∈ ZJ2 , and (ue′ ∈ Z

Le′
2)e′∈J , we

have that

Pr[ρ(I) = y and (ΨH(α′ � ρ, e′ → z(e′)))((Le′)e′∈J) = (ue′ ∈ Z
Le′
2)e′∈J] = 2−|I| ·

∏
e′∈J

2−|Le′ |.

Remark 6. Note that (1) and (2) above correspond to two kinds of shortcutting that go on in
SuperEdgePruneH,α′�ρ(T � ρ). The first corresponds to the straightforward shortcutting that occurs
when a tree T is hit by a restriction ρ to yield T � ρ, and the second corresponds to the shortcutting
that happens in SuperEdgePruneH,α′�ρ(·).

We give some setup for the proof of Lemma 8.18. Recall that ρ is draw uniformly at random
among all α′-consistent assignments to E(Gn′)−E(H). Let C1, . . . , C` be the connected components
of the graph Gn′ \H := (V (Gn′) \V (H), E(Gn′) \E(H)). Let Gn′,i be the connected subgraph of Gn′
obtained by taking all edges incident to V (Ci) (and the vertices on both endpoints of these edges

of course). For each i ∈ [`] let α′i ∈ Z
V (Ci)
2 be α′ restricted to the vertices in V (Ci). Note that:

• V (Ci) (V (Gn′,i), and so Gn′,i and α′i satisfy the conditions of Fact 2.4: the set of all α′i-
consistent assignments to E(Gn′,i) form an affine subspace. Moreover, every vertex v ∈
V (Gn′,i) \ V (Ci) lies in V (H) and has degree 2 in H (i.e. v is a non-real-vertex of H).

• E(Gn′) is the disjoint union of E(Gn′,1), . . . , E(Gn′,`) and E(H).

40

• Furthermore, for every i 6= j we have that V (Gn′,i) and V (Gn′,j) are disjoint (this is a conse-
quence of Gn′ having degree 3). So V (Gn′) is the disjoint union of V (Gn′,1), . . . , V (Gn′,`) and
the “real vertices” of V (H), and Gn′,1, . . . ,Gn′,` are the connected components of Gn′ −E(H).

By the third bullet above, we get the following:

Fact 8.19. A uniform random α′-consistent assignment ρ ∈ ZE(Gn′)−E(H)
2 can be generated by

independently generating ρi ∈ Z
E(Gn′,i)

2 , a uniformly random α′i-consistent assignment to E(Gn′,i),
for each i ∈ [`].

We recall the following elementary linear-algebraic fact concerning affine subspaces:

Fact 8.20. Let S ⊆ Zn2 be an affine subspace. Fix T ⊆ [n], and suppose that for every y ∈ ZT2
there exists z ∈ S such that yi = zi for all i ∈ T . Then in fact for all y ∈ ZT2 we have that:

Pr
x∈S

[xi = yi for all i ∈ T] = 2−|T |.

Proof of Lemma 8.18. We begin with Part 1 of the claim. For each i ∈ [`] let Ii = I ∩E(Gn′,i) and
note that I is the disjoint union of I1, . . . , I`. By Fact 8.19, we have that for all y ∈ ZI2,

Pr
[
ρ(I) = y

]
=
∏̀
i=1

Pr
[
ρi(Ii) = yIi

]
.

By Facts 2.4 (the set of all α′i-consistent assignments to E(Gn′,i) form an affine subspace) and

Fact 8.20 it then suffices to show that for every w ∈ ZI12 there exists an extension w̃ ∈ ZE(Gn′,1)

2 of w
that is α′1-consistent, and likewise for w′ ∈ ZI22 , w

′′ ∈ ZI32 and so on. Equivalently, for every w ∈ ZI12

there is an (α′1 � w)-consistent assignment to E(Gn′,1) \ I1. We consider two cases depending on
whether or not Gn′,1 − I1 is connected:

• If Gn′,1 − I1 is connected, then by Fact 2.3 there is an (α′1 � w)-consistent assignment to

E(Gn′,1) \ I1 (since (α′1 � w) ∈ ZV (C1)
2 and V (C1) (V (Gn′,1 − I1) = V (Gn′,1)).

• Otherwise, if Gn′,1 − I1 is not connected we let its components be Gn′,1,1, . . . ,Gn′,1,k for some
k ≥ 2.

◦ If every such component contains a vertex in V (Gn′,1)− V (C1), then again we are done
by Fact 2.3.

◦ The remaining case is that some component (without loss of generality Gn′,1,1) has
V (Gn′,1,1) ⊆ V (C1). We have that Gn′,1,1 is a connected component of Gn′ − (E(H)∪ I1)
and that this graph contains at least one other connected component Gn′,1,2. Recalling
that C1 is incident to no edges in E(H) and that V (Gn′,1,1) ⊆ V (C1), it follows that
Gn′,1,1 is a connected component in Gn′ − I1. But this contradicts the fact that I1 is a
Gn′-independent set (since its removal disconnects Gn′,1,1 from the rest of Gn′), so this
case cannot occur.

An identical argument applies to w′ ∈ ZI22 , w
′′ ∈ ZI32 and so on. This completes the proof of

Part 1 of Lemma 8.18.

41

Next we turn to Part 2. Let H∗ be H with the non-real vertices of super(e′) and edges of
super(e′) removed. Again consider the connected components of Gn′ − H∗. Note that {e′} ∪ L
all belong to the same connected component. Define I∗ = I ∪ {e′} ∪ L, and observe that I∗ is
Gn′-independent. Recall that the statement to be proved is that:

Pr[ρ(I) = y and (ΨH(α′ � ρ, e′ → z(e′)))(L) = u] = 2−(|I|+|L|).

Let y∗ be y augmented by fixing e′ to z(e′)) and fixing L according to ΨH(α � ρ, e′ → z(e′)).
Let ρ∗ be a uniform random α′-consistent assignment to E(Gn′)− E(H∗). Note that

Pr
α′-consistent ρ

[ρ(I) = y and (ΨH(α′ � ρ, e′ → z(e′)))(L) = u] = Pr
α′-consistent ρ∗

[ρ∗(I∗) = y∗],

and so we can apply the argument from Part 1 with H∗ in place of H, I∗ in place of I, y∗ in place
of y, and ρ∗ in place of ρ to obtain the desired result.

Part 3 follows from the same argument as Part 2 with trivial modifications.

8.5 Proof of Lemma 8.17

We obtain Lemma 8.17 as a special case of a more general statement which is better suited to
an inductive proof. To make this more general statement we need an extension of the notion of
H-super-edge pruning of T under ρ.

Definition 8.21 (H-super-edge (J, z)-pruning of T under ρ.). Fix (ρ,H) ∈ supp(Fn′′,n′) and let

α′ ∈ ZV (Gn′)
2 be an odd charge. Let T be a decision tree over E(H). Let J ⊆ E(H) such that J

contains at most one edge from each super-edge of H, and J does not contain any edges queried in
T . Let z ∈ ZJ2 .

The H-super-edge (J, z)-pruning of T under ρ, denoted SuperEdgePruneH,α′�ρ(T, J → z), is
the decision tree obtained from T by shortcutting internal nodes e such that either of the following
(mutually exclusive) conditions holds:

1. e′ is an ancestor of e in T for some e′ ∈ E(H) where superH(e) = superH(e′). Or,

2. e′ ∈ J for some e′ ∈ E(H) where superH(e) = superH(e′).

In Case 1 the shortcutting of e is done according to ΨH(α′ � ρ, e′ → b)(e) ∈ Z2 where b ∈ Z2

denotes the subtree of e′ in T that e belongs to (exactly as in Definition 8.14), and in Case 2 it is
done according to ΨH(α′ � ρ, e′ → z(e′))(e).

Lemma 8.17 follows directly from the following Lemma 8.22 taking I = J = ∅.
(For intuition on the following lemma, it may be helpful to think of T as a subtree of a larger

Gn′-independent tree T ′, and I t J tK as a partition of the edges queried so far along the partial
branch leading from the root of T ′ to the root of T. All the (E(Gn′)−E(H))-nodes of T ′ encountered
on this partial branch are stored in I, and all the pioneering E(H)-nodes encountered are stored
in J ; K contains the remaining nodes (non-pioneering nodes labeled by elements of E(H)). The
settings of the I, J and K variables given by the partial branch leading from the root of T ′ to T are
captured by y, z and u respectively. The setting of I by y and J by z will affect how we simplify
T .)

42

Lemma 8.22. Let T be a Gn′-independent decision tree and α′ ∈ ZV (Gn′)
2 . Fix H ∈ supp(Hn′′,n′),

and let J ⊆ E(H) contain at most one edge from each super-edge of H. Then the following two
distributions D1 and D2 are equivalent:

• D1(T): Let I,K ⊆ (E(Gn′) \ J) be such that

– I ⊆ E(Gn′) \ E(H);

– K ⊆ E(H) and for each e ∈ K there is some e′ ∈ J such that superH(e) = superH(e′);

– For every branch B in T , I ∪ J ∪K ∪B is Gn′-independent and (I ∪ J ∪K) ∩B = ∅.

Let y ∈ ZI2, z ∈ ZJ2 and u ∈ ZK2 .
A draw from D1(T) is generated as follows: Let (ρ,H) be distributed as a draw from Fn′′,n′
conditioned on (i) H = H (ii) ρ(I) = y, and (iii) for every e′ ∈ J , it is the case that u
restricted to the coordinates e ∈ K that have superH(e) = superH(e′) agrees with ΨH(α′ �
ρ, e′ → z(e′)). Output σ ∼ W(SuperEdgePruneH,α′�ρ(T � ρ, J → z)).

• D2(T): Draw π = 〈π1, . . . ,πk〉 ∼ W(T). Let π̃ be the sublist of π where we discard all
πi = (e, b) where either (a) e ∈ E(Gn′) − E(H) or (b) e′ ∈ J for some e′ ∈ E(H) where
superH(e) = superH(e′). Output SuperEdgePruneH(π̃).

The proof is by induction on the depth of T . The base case is that T is a depth-0 tree. In this
case both D1(T) and D2(T) output the empty set of super-edges with probability 1.

For the inductive step, let T = (e;T0, T1) be a Gn′-independent decision tree, and let I, J,K, y, z, u
be as in the statement of the lemma.

We first analyze the distribution D1(T). For (ρ,H) distributed as in the statement of the
lemma, T � ρ is distributed as follows:

• If e ∈ E(Gn′) \ E(H) (and hence e is fixed by ρ), then T � ρ = T0 � ρ with probability 1/2,
and T � ρ = T1 � ρ with probability 1/2. (This uses Part 1 of Lemma 8.18 taking its “I” to
be “the current I” ∪{e}.)

• If e ∈ E(H) (hence e is left unfixed by ρ), then T � ρ is distributed as (e;T0 � ρ, T1 � ρ).

Building on this, a draw from D1(T) is distributed as follows:

1. Suppose e ∈ E(Gn′) \ E(H) (and hence e is fixed by ρ). As above, by Part 1 of Lemma
8.18, taking its “I” to be “the current I” ∪{e}, we get that for each b ∈ Z2, with proba-
bility 1/2 a draw from W(SuperEdgePruneH,α′�ρ(T � ρ, J → z)) is distributed according to
W(SuperEdgePruneH,α′�ρ′(Tb � ρ

′, J → z)) where (ρ′,H) is distributed as a draw from Fn′′,n′
conditioned on (i) H = H, (ii) ρ′(I) ◦ ρ′(e) = y ◦ b, and (iii) for every e′ ∈ J , it is the case
that u restricted to the coordinates e′′ ∈ K that have superH(e′′) = superH(e′) agrees with
ΨH(α′ � ρ′, e′ → z(e′)).

For each b ∈ Z2, we apply the inductive hypothesis to Tb, taking the “I” in the inductive
hypothesis to be “the current I” ∪{e}, taking the “J” (respectively, “K”) in the induc-
tive hypothesis to be “the current J” (respectively, “the current K”), taking the “y” in
the inductive hypothesis to be “the current y, extended by mapping e to b”, and taking

43

the “z” (respectively, u) to be “the current z” (respectively, “the current u”). By the in-
ductive hypothesis applied in this way, for each b ∈ Z2 with probability 1/2 a draw from
W(SuperEdgePruneH,α′�ρ(T � ρ, J → z)) is distributed according to D2(Tb) with its “J”
being “the current J”.

2. Suppose e ∈ E(H) has a “cohort” edge in J (i.e. superH(e) = superH(e′) for some e′ ∈ J).
Now by Part 2 of Lemma 8.18, taking its “I” to be “the current I”, its “J” to be “the current
J”, and taking its “L” to be “the current (K ∩ superH(e))∪ {e}, we get that for each b ∈ Z2

with probability 1/2 a draw from W(SuperEdgePruneH,α′�ρ(T � ρ, J → z)) is distributed
according to W(SuperEdgePruneH,α�ρ′(Tb � ρ′, J → z)) where (ρ′, H) is distributed as a
draw from Fn′′,n′ conditioned on (i) H = H, (ii) ρ′(I) = y, and (iii) for every e′ ∈ J , it is the
case that u restricted to the coordinates e′′ ∈ K that have superH(e′′) = superH(e′) agrees
with ΨH(α′ � ρ′, e′ → z(e′)) and moreover ΨH(α′ � ρ′, e′ → z(e′))(e) = b.

For each b ∈ Z2 we apply the inductive hypothesis to Tb, taking the“I” (respectively, “J”) in
the inductive hypothesis to be “the current I” (respectively, “the current J”), taking the“K”
in the inductive hypothesis to be “the current K” ∪{e}, taking the “y” (respectively, “z”) in
the inductive hypothesis to be “the current y” (respectively, “the current z”) and taking the
“u” in the inductive hypothesis to be “the current u, extended by mapping e to b”. By the
inductive hypothesis applied in this way, for each b ∈ Z2 with probability 1/2 a draw from
W(SuperEdgePruneH,α′�ρ(T � ρ, J → z)) is distributed according D2(Tb) with its “J” being
“the current J”.

3. The remaining case is that e ∈ E(H) and e does not have any cohort edges in J . (Note
that this is the only case in which an internal node survives in the simplified tree.) In this
case, simply by the unbiasedness of the random walk, for each b ∈ Z2 with probability 1/2
a draw from W(SuperEdgePruneH,α′�ρ(T � ρ, J → z)) is distributed according to (e, b) ◦
W(SuperEdgePruneH,α′�ρ′(Tb � ρ

′, J ◦ e→ z ◦ b)) where (ρ′,H) is distributed as a draw from
Fn′′,n′ conditioned on (i) H = H, (ii) ρ′(I) = y, and (iii) for every e′ ∈ J , it is the case
that u restricted to the coordinates e′′ ∈ K that have superH(e′′) = superH(e′) agrees with
ΨH(α′ � ρ′, e′ → z(e′)).

For each b ∈ Z2 we apply the inductive hypothesis to Tb, taking the“I” (respectively, “K”) in
the inductive hypothesis to be “the current I” (respectively, “the current K”), taking the“J”
in the inductive hypothesis to be “the current J” ∪{e}, taking the “y” (respectively, “u”) in
the inductive hypothesis to be “the current y” (respectively, “the current u”) and taking the
“z” in the inductive hypothesis to be “the current z ◦ b”. By the inductive hypothesis applied
in this way, for each b ∈ Z2 with probability 1/2 a draw from W(SuperEdgePruneH,α′�ρ(T �
ρ, J → z)) is distributed according to (e, b) ◦ π̂b where π̂b is drawn from D2(Tb) with its “J”
being “the current J” ∪{e}.

Now we consider D2(T). The distribution of SuperEdgePruneH(π̃) is as follows:

A. If e ∈ E(Gn′) \ E(H): since a random walk proceeds left and right with equal probability,
the distribution of SuperEdgePruneH(π̃) is that for each b ∈ Z2 with probability 1/2 it is
distributed according to D2(Tb) with its “J” being “the current J”. This matches exactly
(1.) above.

44

B. If e ∈ E(H) has a cohort edge in J : the distribution of SuperEdgePruneH(π̃) is that for each
b ∈ Z2 with probability 1/2 it is distributed according to D2(Tb) with its “J” being “the
current J”. This matches exactly (2.) above.

C. If e ∈ E(H) has no cohort edge in J : the distribution of SuperEdgePruneH(π̃) is that for
each b ∈ Z2 with probability 1/2 it is distributed according to (e, b) ◦ π̂b where π̂b is drawn
from D2(Tb) with its “J” being “the current J” ∪{e}. This matches exactly (3.) above.

This concludes the proof of Lemma 8.17.

9 Safe trees become total under KR random restrictions

We start with the following observation:

Lemma 9.1. For any tree T over E(Gn′) and any odd charge α′ ∈ ZV (Gn′)
2 , the tree PruneGn′ ,α

′(T)
is (n′/(3λ))-safe, i.e. it has no occurrences of ⊥ at any depth ≤ n′/(3λ).

Proof. Fix π ∈ Branches⊥(PruneGn′ ,α
′(T)). By Lemma 5.16, Gn′ − closureGn′

(supp(π)) does not
have a giant component, and hence |supp(π)| ≥ n′/(3λ) by Fact 5.6.

Thus the structure of a tree PruneGn′ ,α
′(T) is as follows: At depths < n′/(3λ) it may have leaves

labeled by 0 or 1 but not by ⊥, and at depths ≥ n′/(3λ) it may have leaves labeled by any element
of Z2 ∪ {⊥}. However, very deep branches (of depth ≥ n′/(3λ)) that are labeled by 0 or 1 will be
problematic for us later (intuitively, because Gn− (the closure of such branches) may not have a
giant component). To circumvent such problems we introduce the following “lopping” operator on
decision trees (which is useful later for technical reasons).

Definition 9.2. Let T be a decision tree (total or partial) and m ≥ 0. Lopm(T) is the decision
tree of depth at most m that is obtained by removing each node at depth m in T (and of course all
its children) and replacing the node by ⊥.

With this definition in hand, recall that Lemma 8.15 guarantees that if an s-clipped, Gn′-
independent decision tree T over E(Gn′) is hit with a random restriction (ρ,H) ∼ Fn′′,n′ , with high
probability we have that SuperEdgePruneH,α′�ρ(T � ρ) does not have large depth (hence likewise
SuperEdgePruneH,α′�ρ(Lopm(T) � ρ) does not have large depth). In this section we show that with
high probability additionally SuperEdgePruneH,α′�ρ(Lopm(T) � ρ) is a total decision tree — even
though all nodes at depth m were (i.e. it does not have any leaves labeled ⊥). The following lemma
(the main result of this section) gives us this:

Lemma 9.3. Let T be an s-clipped, m-safe, Gn′-independent partial decision tree over E(Gn′) where

m ≤ n′/(3λ), and let α′ ∈ ZV (Gn′)
2 be an odd charge. Then

Pr
(ρ,H)∼Fn′′,n′

[SuperEdgePruneH,α′�ρ(Lopm(T) � ρ) is not total] ≤
(

1− 1

2s+1

)m
, (16)

provided that (
C1n

′′(lnn′)3

sn′

)1/29

<
1

2s+1
,

where C1 is a universal constant.

45

We use the following technical lemma:

Lemma 9.4. If T is an s-clipped decision tree then T has at most O(2s · νm) nodes at depth m,
where ν < 2− 1/2s.

Proof. Fix s. The Fibonacci numbers of degree s are given by the sequence

F
(s)
0 = 0, F

(s)
1 = 1, F

(s)
j = 2j−2, j ∈ {2, . . . , s+ 1};

F
(s)
j = F

(s)
j−1 + F

(s)
j−2 + · · ·+ F

(r)
j−s, j ≥ s+ 2.

By Lemma 1 of [Cap90], the number of nodes at depth m in an r-clipped decision tree is at most

2F
(s)
m+1 which is known [Con] to be O(2s · νm), where ν < 2 − 1/2s is the unique positive root of

x+ x−s = 2 that is real and greater than 1.

Proof of Lemma 9.3. Fix any branch π in Branches(Lopm(T)) whose leaf node ` is at depth m and
hence is labeled by ⊥ (these are the only ⊥ leaves in Lopm(T) by Lemma 9.1). By Lemma 9.4, to
prove (16), it suffices to bound

Pr
(ρ,H)∼Fn′′,n′

[` survives in SuperEdgePruneH,α′�ρ(Lopm(T) � ρ)]. (17)

We have that

Pr
(ρ,H)∼Fn′′,n′

[` survives in SuperEdgePruneH,α′�ρ(Lopm(T) � ρ)]

=

m∑
s=0

Pr
H∼Hn′′,n′

[π intersects exactly s super-edges of H]

· Pr
(ρ,H)∼Fn′′,n′

[` survives in SuperEdgePruneH,α′�ρ(Lopm(T) � ρ) | π intersects exactly s super-edges of H].

Fix s ∈ {0, . . . ,m}. For the first probability, recall that

Pr
H∼Hn′′,n′

[π intersects exactly s super-edges of H] ≤ rHn′′,n′ (m, s).

For the second probability fix any H ∈ supp(Hn′′,n′) such that π intersects exactly s super-edges of
H. Define I to be the subset of E(Gn′) \E(H) that occur in π, and y ∈ ZI2 to be their assignments
under π. Let J ⊆ E(H) denote the set of pioneering E(H)-edges in π and z ∈ ZJ2 denote their
assignments under π. For each e′ ∈ J let Le′ denote the edges in superH(e′) that occur in π, and

let ue′ ∈ Z
Le′
2 denote the assignment of those edges under π. Observe that |I ∪ J ∪

⋃
e′∈J Le′ | = m

and |J | = s. By part (3) of Lemma 8.18, we have that

Pr
(ρ,H)∼Fn′′,n′

[` survives in SuperEdgePruneH,α′�ρ(Lopm(T) � ρ) | H = H] = 2−(m−s).

Combining the above bounds we get that

(17) ≤
m∑
s=0

r(m, s)(1/2)m−s,

46

and hence for a suitable absolute constant c1, we have

(LHS of (16)) ≤ O(2s) · (2− 1/2s)m ·
m∑
s=0

r(m, s)(1/2)m−s

= O(1) · (1− 1/2s)m ·
m∑
s=0

22sr(m, s)

≤ O(1) · (1− 1/2s)m ·
m∑
s=0

(
22s ·

(
3n′′/2

s/29

)
·
(
C(lnn′)3

n′

)s/29
)
·
(
m

s

)
(Theorem 3)

≤ (1− 1/2s)m ·
m∑
s=0

((
C1n

′′(lnn′)3

sn′

)1/29
)s
·
(
m

s

)

=

((
1− 1

2s

)
·

(
1 +

(
C1n

′′(lnn′)3

sn′

)1/29
))m

≤
(

1− 1

2s+1

)m
,

provided that (
C1n

′′(lnn′)3

sn′

)1/29

<
1

2s+1
,

where C1 is a universal constant.

10 Final Tseitin switching lemma

We are now ready to prove our final switching lemma, restated from Section 7 for the reader’s
convenience:

Theorem 2. (Final switching lemma) Let 0 ≤ i ≤ d < d?. Fix (ρ(i), H(i)) ∈ supp(A(i)). Let
T1, . . . , TM be (k,H(i))-good decision trees over E(H(i)) where k = (log n)/200d and let α′ = α �
ρ(i). Then except with failure probability at most n−ε(logn)/d2

over a draw of (ρ(i+1),H(i+1)) ∼
A(i+1)(ρ(i), H(i)), there is a (k,H(i+1))-good decision tree over E(H(i+1)) that (H(i+1), α′ � ρ(i+1))-
represents ∨jPruneH(i+1),α′�ρ(i+1)(Tj � ρ(i+1)).

We establish Theorem 2 by proving the following:

Theorem 7. Let 0 ≤ i ≤ d < d?, and define n′ = τ(i, n) and n′′ = τ(i + 1, n). Let T1, . . . , TM

be (k,Gn′)-good decision trees over E(Gn′) where k = (log n)/200d and let α′ ∈ ZV (Gn′)
2 be any odd

charge. Then except with failure probability at most n−ε(logn)/d2
over a draw of (ρ,H) from Fn′′,n′,

there is a (k,H)-good decision tree over E(H) that (H, α′ � ρ)-represents ∨jPruneH,α′�ρ(Tj � ρ).

The proof of Theorem 2 proceeds along essentially identical lines to that of Theorem 7 by the
correspondence (established in Section 4) between H(i) and Gn′ (H(i) is a topological embedding
of Gn′ in Gn where n′ = τ(i, n)) and between A(i) and Fn′′,n′ (a draw (ρ(i+1),H(i+1)) ∼ A(i+1) is
defined in terms of Fn′′,n′ where n′ = τ(i, n) and n′′ = τ(i+ 1, n)).3

3In a bit more detail, a full proof of Theorem 2 would use analogues of Lemmas 9.1 and 9.3 for graphs H(i) instead
of Gn′ = Gτ(i,n); these analogues would have λ? in place of λ since they would employ Fact 5.7 in place of Fact 5.6.

It would also have H(i)-analogues of Sections 10.1 and 10.2 below; these analogues are straightforward.

47

As stated in Theorem 7, we emphasize that throughout the rest of this section k is fixed to be
log n/(200d).

10.1 Useful tools for Theorem 7

We will use the following straightforward fact:

Fact 10.1. Let T1, . . . , TM be depth-k decision trees over E(Gn′). There is a k-clipped decision tree
T over E(Gn′) satisfying the following: for every ρ ∈ ZS2 where S ⊆ E(Gn′), b ∈ Z2, and π ∈ ZS′2

where S′ ⊆ E(Gn′)− S,

(T � ρ) � π = b =⇒ (∨j Disj(Tj � ρ)) � π = b.

Proof. Observe that ∨j Disj(Tj) is a k-DNF; T is the k-clipped decision tree obtained from this
k-DNF as in the proof of Lemma 8.3. Fix any S, S′, ρ, π as in the statement of the fact. To prove
the desired implication suppose first that b = 1, so we have (T � ρ) � π = 1, or equivalently
T � ρ ◦ π = 1. This means that there is some j ∈ [M] such that Tj � ρ ◦ π = 1, or equivalently
(Tj � ρ) � π = 1. Hence we have that (∨j Disj(Tj � ρ)) � π = 1 as desired.

Next suppose that (T � ρ) � π = 0, i.e. T � ρ ◦ π = 0. It follows that for each j ∈ [M] we have
that either Tj � ρ ◦ π = 0, or Tj � ρ ◦ π is a 0-tree. Consequently for each j ∈ [M] we have that
either (Tj � ρ) � π = 0, or (Tj � ρ) � π is a 0-tree. As a result (∨j Disj(Tj � ρ)) � π = 0, and the
proof is complete.

For the rest of this section, fix m = n1/3. The following lemma combines the main results of
Sections 8 and 9, recalling that n′ = τ(i, n) and n′′ = τ(i+ 1, n):

Lemma 10.2. Let T be any k-clipped decision tree over E(Gn′) and α′ ∈ ZV (Gn′)
2 be an odd charge.

Then we have

Pr
(ρ,H)∼Fn′′,n′

[
SuperEdgePruneH,α′�ρ(Lopm(PruneGn′ ,α

′(T)) � ρ) is total and has depth ≤ k
]

≥ 1−

(
C

(
(log n)3

k n1/(2d)

)1/29

· k2k

)k
−
(

1− 1

2k+1

)m

≥ 1− 2

(
C

(
(log n)3

k n1/(2d)

)1/29

· k2k

)k
≥ 1− n−ε(logn)/d2

for a universal constant ε > 0.

Proof. Observe that PruneGn′ ,α
′(T) is Gn′-independent, and since T is k-clipped it is easy to see

that Lopm(PruneGn′ ,α
′(T)) is also k-clipped for any m. Thus we may apply Lemma 8.15, recalling

that n′′/n′ = n−1/(2d) and that log n′ = Θ(log n) to get the first subtrahend in the first inequality.
We further have that PruneGn′ ,α

′(T) is m-safe (by Lemma 9.1, with room to spare, recalling that

n1/3 � n′/(3λ)),4 and by our choice of k = (log n)/200d we may apply Lemma 9.3 to get the second
subtrahend. The second inequality follows by observing that the second subtrahend is extremely
tiny. The third inequality holds by our choice of k.

4For the Theorem 2 analogue, observe that we also have n1/3 � n′/(3λ?).

48

A simple consequence of this lemma is the following corollary:

Corollary 10.3 (Prune ≺ SuperEdgePrune). Let T be any k-clipped decision tree over E(Gn′) and

α′ ∈ ZV (Gn′)
2 be an odd charge. Then we have

Pr
(ρ,H)∼Fn′′,n′

[PruneH,α′�ρ(Lopm(PruneGn′ ,α
′(T)) � ρ) is total and has depth ≤ k]

≥ 1− n−ε(logn)/d2

for a universal constant ε > 0.

The corollary follows from the fact that for any H ∈ supp(Hn′′,n′), any odd charge α′′, and
any tree T ′ over E(H), PruneH,α′′(T

′) is a sub-tree of SuperEdgePruneH,α′′(T
′). A formal proof

of this fact is by a straightforward induction on the depth of T ′; intuitively, SuperEdgePrune
shortcuts a subset of the tree nodes that Prune shortcuts. The key observation is that whenever
SuperEdgePrune shortcuts an internal node e in the tree T ′, it must be the case that e is a bridge
in the current graph (because of the removal of the earlier edge e′ in that same super-edge).

We are now ready to prove Theorem 7.

10.2 Proof of Theorem 7

Let T1, . . . , TM be as in the theorem statement, and consider the k-clipped decision tree T given by
Fact 10.1. Since PruneGn′ ,α

(T) remains k-clipped (as is easily verified), we may apply Corollary 10.3

to get that with probability at least 1−n−ε(logn)/d2
over (ρ,H) ∼ Fn′′,n′ , PruneH,α′�ρ(Lopm(PruneGn′ ,α

′(T)) �
ρ) is H-independent, total, and has depth at most k; in other words, it is (k,H)-good. Fix any
such outcome (ρ,H) and let

T ∗ := PruneH,α′�ρ(Lopm(PruneGn′ ,α
′(T)) � ρ);

we claim that T ∗ (H,α′ � ρ)-represents ∨jPruneH,α′�ρ(Tj � ρ). (Recall that “T ∗ (H,α′ � ρ)-
represents ∨jPruneH,α′�ρ(Tj � ρ)” means:

π ∈ Branchesb(T
∗) =⇒ (∨j Disj(PruneH,α′�ρ(Tj � ρ))) � closureH,α′�ρ(π) = b.)

Fix b ∈ Z2 and π ∈ Branchesb(T
∗). By Lemma 5.17, we have that

(Lopm(PruneGn′ ,α
(T)) � ρ) � closureH,α′�ρ(π) = b (18)

We claim that in fact
(T � ρ) � closureH,α′�ρ(π) = b (19)

Since (Lopm(PruneGn′ ,α
(T)) � ρ) � closureH,α′�ρ(π) = b, it follows that there exists

π′ ∈ Branchesb(Lopm(PruneGn′ ,α
′(T)))

such that ρ ◦ closureH,α′�ρ(π) extends π′. Furthermore, since supp(π′) is a Gn′-independent set of
size at most m (and hence Gn′ − closureGn′

(supp(π′)) has a giant component by Fact 5.6) we may
apply Lemma 5.17 (since Branchesb(Lopm(PruneGn′ ,α

′(T))) ⊆ Branchesb(PruneGn′ ,α
′(T))) to get

that
T � closureGn′ ,α

′(π′) = b. (20)

49

Next, applying the i = 0 case of Lemma 7.4 (checking that ρ,H, π and π′ satisfy its conditions),
we get that ρ ◦ closureH,α′�ρ(π) extends closureGn′ ,α

(π′) and so indeed (19) holds.
Given (19), we may apply Fact 10.1 to get that

((∨j Disj(Tj � ρ)) � closureH,α′�ρ(π) = b. (21)

We claim that this implies that

(∨j Disj(PruneH,α′�ρ(Tj � ρ))) � closureH,α′�ρ(π) = b, (22)

noting that this would complete the proof of Theorem 7. To establish (22), we consider two
cases depending on whether b = 1 or 0. If b = 1 there must exist some j such that (Tj � ρ) �
closureH,α′�ρ(π) = 1. Observe that Tj � ρ is total and has depth at most k. It follows from
Lemma 5.16, Fact 5.6, and inspection of the Prune procedure that PruneH,α′�ρ(Tj � ρ) is total as
well. Hence we may apply Fact 5.15 to obtain that PruneH,α′�ρ(Tj � ρ) � closureH,α′�ρ(π) = 1,
and hence (22) holds with b = 1. It remains to deal with the b = 0 case. In this case, for
all j we have that either (Tj � ρ) � closureH,α′�ρ(π) = 0, or (Tj � ρ) � closureH,α′�ρ(π) is a 0-
tree. Again by Fact 5.15, it follows that either PruneH,α′�ρ(Tj � ρ) � closureH,α′�ρ(π) = 0, or
PruneH,α′�ρ(Tj � ρ) � closureH,α′�ρ(π) is a 0-tree. We conclude that (22) holds with b = 0, and the
proof is complete.

Acknowledgements

We thank Noga Alon and Julia Chuzhoy for helpful discussions. We also thank Mladen Mikša for
pointing out an error in an earlier version of this paper and suggesting a fix.

References

[Ajt94] Miklós Ajtai. The complexity of the pigeonhole principle. Combinatorica, 14(4):417–433,
1994. 1, 1

[Ale11] Michael Alekhnovich. Lower Bounds for k-DNF Resolution on Random 3-CNFs. Com-
putational Complexity, 20(4):597–614, 2011. 1

[BFU94] Andrei Broder, Alan Frieze, and Eli Upfal. Existence and construction of edge-disjoint
paths on expander graphs. SIAM Journal on Computing, 23(5):976–989, 1994. 3.2.1, A

[BI99] Eli Ben-Sasson and Russell Impagliazzo. Random cnf’s are hard for the polynomial
calculus. In 40th Annual Symposium on Foundations of Computer Science, FOCS ’99,
pages 415–421, 1999. 1

[BKPS98] Paul Beame, Richard Karp, Toniann Pitassi, and Michael Saks. On the complexity of
unsatisfiability of random k-CNF formulas. In Proceedings of the 30th Annual ACM
Symposium on Theory of Computing, Dallas, TX, May 1998. 1

[BPU92] Stephen Bellantoni, Toniann Pitassi, and Alasdair Urquhart. Approximation and small
depth Frege proofs. SIAM J. on Comput., 21(6):1161–1179, 1992. 1

50

[BS02] Eli Ben-Sasson. Hard examples for bounded depth frege. In Proceedings of the 34th
Annual ACM Symposium on Theory of Computing (STOC-02), pages 563–572, New
York, May 19–21 2002. ACM Press. (document), 1, 1

[BSW99] Eli Ben-Sasson and Aavi Wigderson. Short proofs are narrow – resolution made simple.
In STOC 1999, pages 517–526, Atlanta, GA, May 1999. 1

[Bus87] Samuel Buss. Polynomial size proofs of the propositional pigeonhole principle. The
Journal of Symbolic Logic, 52(04):916–927, 1987. 1

[Cap90] Renato Capocelli. A generalization of fibonacci trees. In Applications of Fibonacci
Numbers, pages 37–56. Springer, 1990. 9

[Con] Wikipedia Contributors. Generalizations of Fibonacci numbers. Posted at
https://en.wikipedia.org/wiki/Generalizations of Fibonacci numbers , accessed Octo-
ber 27, 2015. 9

[CR79] Stephen A Cook and Robert A Reckhow. The relative efficiency of propositional proof
systems. The Journal of Symbolic Logic, 44(01):36–50, 1979. 1, 2.1

[CS88] V. Chvátal and Endre Szemerédi. Many hard examples for resolution. Journal of the
ACM, 35(4):759–768, 1988. 1, 1

[Die10] Reinhard Diestel. Graph Theory. Springer-Verlag, 2010. 3.2.1

[Hak85] A. Haken. The intractability of resolution. Theor. Comp. Sci., 39:297–305, 1985. 1

[H̊as86] Johan H̊astad. Almost optimal lower bounds for small depth circuits. In Proceedings of
the 18th Annual ACM Symposium on Theory of Computing, pages 6–20, 1986. 1, 1

[Juk12] Stasys Jukna. Boolean Function Complexity. Springer, 2012. 2.4

[KPW95] Jan Kraj́ıček, Pavel Pudlák, and Alan Woods. An exponential lower bound to the
size of bounded depth Frege proofs of the pigeonhole principle. Random Structures &
Algorithms, 7(1):15–39, 1995. (document), 1, 1

[KR96] Jon Kleinberg and Ronitt Rubinfeld. Short paths in expander graphs. In Proceedings of
the 37th Annual Symposium on Foundations of Computer Science (FOCS), pages 86–95.
IEEE, 1996. 1, 3.2.1, 3.2.1

[PBI93] Toniann Pitassi, Paul Beame, and Russell Impagliazzo. Exponential lower bounds for
the pigeonhole principle. Computational complexity, 3(2):97–140, 1993. (document), 1,
1

[Raz02] Alexander Razborov. Proof complexity of pigeonhole principles. In Werner Kuich,
Grzegorz Rozenberg, and Arto Salomaa, editors, Developments in Language Theory,
volume 2295 of Lecture Notes in Computer Science, pages 100–116. Springer Berlin
Heidelberg, 2002. 1

[RST15] Benjamin Rossman, Rocco A. Servedio, and Li-Yang Tan. An average-case depth hier-
archy theorem for boolean circuits. In Proceedings of the 56th Annual Symposium on
Foundations of Computer Science (FOCS), 2015. To appear. 1

51

[SBI04] Nathan Segerlind, Sam Buss, and Russell Impagliazzo. A switching lemma for small
restrictions and lower bounds for k-DNF resolution. SIAM Journal on Computing,
33(5):1171–1200, 2004. 1

[SJ89] Alistair Sinclair and Mark Jerrum. Approximate counting, uniform generation and
rapidly mixing markov chains. Inf. Comput., 82(1):93–133, 1989. A

[Tao11] T. Tao. 254B, Notes 1: Basic theory of expander graphs. posted
at https://terrytao.wordpress.com/2011/12/02/245b-notes-1-basic-theory-of-expander-
graphs/, 2011. 2.5

[Tre11] L. Trevisan. Lecture Notes on Expansion, Sparsest Cut, and Spectral Graph Theory.
posted at http://www.eecs.berkeley.edu/ luca/books/expanders.pdf, 2011. 2.5

[Tse68] G. S. Tseitin. On the complexity of derivation in the propositional calculus. In A. O.
Slisenko, editor, Studies in Constructive Mathematics and Mathematical Logic, Part II.
1968. 1

[UF96] Alasdair Urquhart and Xudong Fu. Simplified lower bounds for propositional proofs.
Notre Dame Journal of Formal Logic, 37(4):523–544, 1996. 1, 2.1

[Urq87] Alasdair Urquhart. Hard examples for resolution. Journal of the ACM, 34(1):209–219,
1987. 1

A Proof of Lemma 2.7

Recall the statement of Lemma ??: For every S ⊆ E(Gn), the graph Gn − S contains at most
C1 · |S| · log2 n bridges, where C1 is a constant depending only on the expansion parameter γ.

Proof. First some notation and terminology: for v ∈ V (Gn) define W(v) = (v,v1, . . . ,vM) to be
an M -step random walk on Gn starting from v, where M = K log n for a suitable large constant K
(to be specified later, but depending only on the expansion parameter γ). We say that two walks
W1 = (a0, . . .) and W2 = (b0, . . .) cross if ai = bj for some pair (i, j) 6= (0, 0) (so if two walks start
at the same vertex but do not intersect at any later step, they do not cross).

At the heart of Lemma 2.7 is the following statement, which says that random walks on an
expander are not too likely to cross.

Claim A.1. Fix any two vertices u, v ∈ V (Gn) (which may coincide). Let W1(u) = (u,u1, . . . ,uM),
W2(v) = (v,v1, . . . ,vM) be two independent random walks as described above. Then

Pr[W1(u) and W2(v) do not cross] ≥ τ

for a constant τ > 0 depending only on γ.

Proof. (The following argument is due to Noga Alon.) Since Gn is a γ-expander for some constant
γ, its girth is at least c log n. Hence for any constant C we have that with probability at least 9−C

the length-C prefixes of W1(u) and W2(v) do not cross in the first C steps and have uC ,vC at

52

least distance C apart from each other in Gn; in what follows we condition on this taking place.
Given this, we have

Pr[W1(u) and W2(v) cross] ≤
∑

i,j≤M,i+j≥C
Pr[ui = vj]

=
∑

i,j≤M,i+j≥C

∑
v∈V (Gn)

Pr[ui = vj = v]

=
∑

i,j≤M,i+j≥C

∑
v∈V (Gn)

Pr[ui = v] ·Pr[vj = v]

where the second equality is by independence of W1(u) and W2(u). By the eigenvalue characteri-
zation of expansion, though, we have that Pr[ui = v] ≤ 1

n + (1 − c′)i for a constant c′ depending
only on γ. Hence for any fixed i, j, we have that

∑
v∈V (Gn) Pr[ui = v] ·Pr[vj = v] is an inner prod-

uct of two probability vectors (non-negative vectors whose entries sum to 1) where the maximum
entry in the first vector is at most 1/n+ (1− c′)i and the maximum entry in the second is at most
1/j + (1 − c′)j ; hence

∑
v∈V (Gn) Pr[ui = v] · Pr[vj = v] is at most 1/n + (1 − c′)max{i,j}. We thus

have

Pr[W1(u) and W2(v) cross] ≤
∑

i,j≤M,i+j≥C
1/n+(1−c′)max{i,j} ≤ M2

n
+

∑
i,j≤M,i+j≥C

(1−c′)max{i,j}.

Recalling that M = O(log n), we see that choosing C to be a suitably large absolute constant
compared with 1/c′, the preceding quantity is at most (say) 1/2, and the claim is proved.

Armed with Claim A.1 we prove Lemma 2.7 as follows. Let T > 0 be an integer. Given two
distinct nodes u, v ∈ V (Gn), we consider the following random experiment, denoted EX(u, v), which
generates T pairs of random simple paths Pi(u, v),P′i(u, v) each of which joins u and v. (Note that
the following is very similar in spirit to the generation of the walks that comprise “bundles” in
Step 2(b) of the distribution Hn′′,n′ described in Section 3.2.1). The experiment is as follows: for
i = 1, . . . , T,

1. Draw a uniform vertex xi from V (Gn) and let Wi(u,xi) denote a uniform random trajectory
of length M starting at u and ending at xi (i.e. Wi(u,xi) is a draw from Wi(u) conditioned
on ending at xi). Similarly let Wi(v,xi) denote an independent such random trajectory
starting at v and ending at xi. Let Wi(u, v) be the concatenation of Wi(u,xi) and the
reversal of Wi(v,xi) and let Pi(u, v) be Wi(u, v) with any cycles removed.

2. Repeat the previous step but using a fresh independent draw of x′i in place of xi, obtaining

W′
i(u,x

′
i), W′

i(v,x
′
i),W

′
i(u, v), and P′i(u, v).

We observe that for a given i ∈ [T], if Wi(u, v) and W
′
i(u, v) are vertex-disjoint from each other

except at their endpoints, then Pi(u, v) and P′i(u, v) together give a simple cycle containing both
u and v. If

(i) Wi(u,xi) and W′
i(u,x

′
i) do not cross,

(ii) Wi(u,xi) and W′
i(v,x

′
i) do not cross,

53

(iii) Wi(v,xi) and W′
i(u,x

′
i) do not cross,

(ii) Wi(v,xi) and W′
i(v,x

′
i) do not cross,

then Wi(u, v) and W
′
i(u, v) are vertex-disjoint from each other except at their endpoints. We now

observe that for a suitable absolute constant choice of the constant K, the distribution of Wi(u,xi)
(note that this includes the uniform random choice of xi) has total variation distance at most (say)
n−100 from the distribution of Wi(u), a random walk of length M starting from u. (Here we are
using the well known fact that random walks on non-bipartite expander graphs mix rapidly; see
e.g. equation (12) of [BFU94] or [SJ89].) So up to a (negligible) O(n−100) additive factor, we have
that

Pr[Pi(u, v) and P′i(u, v) form a simple cycle containing u, v]

is at most

Pr
[
Wi(u) and W′

i(u) do not cross,Wi(u) and W′
i(v) do not cross,

Wi(v) and W′
i(u) do not cross, and,Wi(v) and W′

i(v) do not cross
]
. (23)

By independence and Claim A.1 we have that (23) is at least τ4, so Pi(u, v) and P′i(u, v) together
give a simple cycle containing both u and v with probability at least τ4/2 (accounting for the
additive n−100 factor). By independence across different choices of i ∈ [T], we have that with
probability at least 1− (1− τ4/2)T , at least one of (P1(u, v),P′1(u, v)), . . . , (PT (u, v),P′T (u, v)) is
a simple cycle containing both u and v.

Now we consider a uniform random independent draw of u,v from V (Gn) conditioned on u 6= v.
Since u and v are each uniform, it follows that for each i, each individual edge of Wi(u) is uniform
random over E(Gn), as is each individual edge of W′

i(u), and likewise for each individual edge of
Wi(v),W′

i(v). It follows from a union bound that the probability that any of these edges (across
all i ∈ T) belongs to S ⊆ E(Gn) is at most (C · T · |S| · log n)/(3n/2) for a constant C. By
a suitable choice of T = Θ(log n), we additionally get that Pr[no (Pi(u,v),P′i(u,v)) pair is a
simple cycle] ≤ (C ·T · |S| · log n)/(3n/2). Hence the probability (over the random choice of (u,v))
that u and v do not both lie on a simple cycle in Gn − S, is at most (C · T · |S| · log n)/(3n/2).
Consequently, there exists some u ∈ V (Gn) such that at most (n−1)(C ·T · |S| · log n)/(3n/2) many
vertices v 6= u, v ∈ V (Gn) do not lie on a simple cycle that (i) contains u, and (ii) moreover misses
all edges of S. Lemma 2.7 follows on observing that any bridge e in Gn−S must have such a vertex
v as one of its endpoints.

54

	Introduction
	Definitions
	Frege Systems
	Restrictions and Decision Trees
	DNFs and Formulas
	Tseitin contradictions
	Expanders and some of their useful properties
	Topological embeddings

	Our Tseitin instances and the Kleinberg–Rubinfeld random restrictions
	Our Tseitin instances
	The ``atomic'' Kleinberg–Rubinfeld random restrictions

	Composing the Kleinberg–Rubinfeld random restrictions
	The inductive definition of A(i)

	Independent sets, closures, and pruning
	Independent sets
	``Pushing the contradiction'' and closure of restrictions
	Pruning

	k-Evaluations
	Proof of Theorem 1: Obtaining a k-evaluation from the switching lemma
	Proof of Lemma 7.1 assuming Theorem 2
	Proof of Lemma 7.2

	The ``atomic'' Tseitin Switching Lemma
	A simple switching lemma for r-clipped decision trees
	A quantity rHn'',n'(m,s) that we need to bound
	The Tseitin switching lemma
	Auxiliary lemma for the proof of Lemma 8.17
	Proof of Lemma 8.17

	Safe trees become total under KR random restrictions
	Final Tseitin switching lemma
	Useful tools for Theorem 7
	Proof of Theorem 7

	Proof of Lemma 2.7

