
Inapproximability of Treewidth,

One-Shot Pebbling, and Related Layout
Problems�

Per Austrin, Toniann Pitassi, and Yu Wu

Department of Computer Science
University of Toronto

{austrin,toni,wuyu}@cs.toronto.edu

Abstract. We study the approximability of a number of graph problems:
treewidth and pathwidth of graphs, one-shot black (and black-white) peb-
bling costs of directed acyclic graphs, and a variety of different graph lay-
out problems such as minimum cut linear arrangement and interval graph
completion. We show that, assuming the recently introduced Small Set
Expansion Conjecture, all of these problems are hard to approximate within
any constant factor.

1 Introduction

One of the great accomplishments in the last twenty years in complexity theory
has been the development of ideas that has led to a deep understanding of the ap-
proximability of an astonishing number of NP-hard optimization problems. More
recently, in the last ten years, the formulation of the Unique Games Conjecture
(UGC) due to Khot [15] has inspired a remarkable body of work, clarifying
the complexity of many optimization problems, and exposing the central role of
semidefinite programming in the development of approximation algorithms.

Despite this tremendous progress, for certain expansion problems such as the
c-Balanced Separator problem, and graph layout problems such as the Minimum
Linear Arrangement (MLA) problem, their approximation status remained un-
resolved. That is, even assuming the UGC is not known to be sufficient to obtain
hardness of approximation for either of these problems. Moreover, the approx-
imability of many other graph layout problems is similarly unresolved, even
under the UGC. Intuitively this is because the hard instances for these problems
seem to require a certain global structure such as expansion. Typical reductions
for these problems are gadget reductions which preserve global properties of the
unique games instance, such as the lack of expansion. Therefore, barring rad-
ically new types of reductions that do not preserve global properties, proving
hardness for c-Balanced Separator seems to require a stronger version of UGC,
where the instance is guaranteed to have good expansion.

In [21], the Small Set Expansion (SSE) Conjecture was introduced, and it
was shown that it implies the UGC, and that the SSE Conjecture follows if

� Research supported by NSERC.

A. Gupta et al. (Eds.): APPROX/RANDOM 2012, LNCS 7408, pp. 13–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

14 P. Austrin, T. Pitassi, and Y. Wu

one assumes that the UGC is true for somewhat expanding graphs. In follow-
up work by Raghavendra et al. [22], it was shown that the SSE Conjecture is
in fact equivalent to the UGC on somewhat expanding graphs, and that the
SSE Conjecture implies hardness of approximation for c-Balanced Separator
and MLA. In this light, the Small Set Expansion conjecture serves as a natural
unified conjecture that yields all of the implications of UGC and also hardness
for expansion-like problems that appear to be beyond the reach of the UGC.

In this paper, we study the approximability of a host of such graph layout
problems, including: treewidth and pathwidth of graphs, one-shot black and
black-white pebbling, Minimum Cut Linear Arrangement (MCLA) and Interval
Graph Completion (IGC). We prove that all of these problems are SSE-hard
to approximate to within any constant factor. Our main contributions, giving
SSE-hardness of approximation for all of the graph layout problems mentioned
above, are described in the following subsections. For all of these problems, no
evidence of hardness of approximation was known prior to our results.

It should be noted that the status of the SSE Conjecture is very open at
this point. In particular, by the recent result of Arora et al. [3] (see also sub-
sequent work [5, 14]), it has algorithms running in subexponential time. Still,
despite this recent progress providing negative evidence against the SSE Con-
jecture, it remains open, and we think that investigating what open problems in
approximability we can show SSE-hardness for is a worthwhile venture.

1.1 Width Parameters of Graphs

The treewidth of a graph, introduced by Robertson and Seymour [24, 25], is a
fundamental parameter of a graph that measures how close a graph is to being
a tree. The concept is very important since problems of small treewidth can
usually be solved efficiently by dynamic programming. Indeed, a large body of
NP-hard problems (including all problems definable in monadic second-order
logic [11]) are solvable in polynomial time and often even linear time on graphs
of bounded treewidth. Examples of such optimization problems include finding
a maximum independent set or a Hamiltonian cycle in a graph. In machine
learning, tree decompositions play a key role in the development of efficient
algorithms for fundamental problems such as probabilistic inference, constraint
satisfaction and query optimization. (See the excellent survey [8] for motivation,
including theoretical as well as practical applications of treewidth.)

The complexity of approximating treewidth is a longstanding open problem.
Determining the exact treewidth of a graph and producing an associated op-
timal tree decomposition (see Definition 2.3) is known to be NP-hard [2]. A
central open problem is to determine whether or not there exists a polynomial
time constant factor approximation algorithm for treewidth (see e.g., [9, 13, 8]).
The current best polynomial time approximation algortihm for treewidth [13],
computes the treewidth tw(G) within a factor O(

√
log tw(G)). On the other

hand, the only hardness result to date for treewidth shows that it is NP-hard to
compute treewidth within an additive error of nε for some ε > 0 [9]. No hard-
ness of approximation is known and not even the possibility of a polynomial-time

Inapproximability of Treewidth 15

approximation scheme for treewidth has been ruled out. In many important spe-
cial classes of graphs, such as planar graphs [27] and H-minor-free graphs [13],
constant factor approximations are known, but the general case has remained
elusive.

On the positive side, there is a large body of literature developing fixed-
parameter algorithms for treewidth. In particular, when the runtime is allowed
to be exponential in the tw(G) there are constant factor approximations. Fur-
thermore, even exactly determining the treewidth is fixed-parameter tractable:
there is a linear time algorithm for computing the (exact) treewidth for graphs
of constant treewidth [7].

A related graph parameter is the so-called pathwidth, which can be viewed
as measuring how close G is to a path. The pathwidth pw(G) is always at least
tw(G), but can be much larger. The current state of affairs here is similar as
for treewidth; though the current best approximation algorithm only has an
approximation ratio of O(

√
log pw(G) log n) [13], the best hardness result is NP-

hardness of additive nε error approximation.
Using the recently proposed Small Set Expansion (SSE) Conjecture [21] dis-

cussed earlier, we show that both tw(G) and pw(G) are hard to approximate
within any constant factor. In fact, we show something stronger: it is hard to
distinguish graphs with small pathwidth from graphs with large treewidth.

Theorem 1.1. For every α > 1 there is a c > 0 such that given a graph G =
(V,E) it is SSE-hard to distinguish between the case when pw(G) ≤ c · |V | and
the case when tw(G) ≥ α · c · |V |. In particular, both treewidth and pathwidth are
SSE-hard to approximate within any constant factor.

This is the first result giving hardness of (relative) approximation for these prob-
lems, and gives evidence that no constant factor approximation algorithm exists
for either of them.

1.2 Pebbling Problems

Graph pebbling is a rich and relatively mature topic in theoretical computer
science. Pebbling is a game defined on a directed acyclic graph (DAG), where
the goal is to pebble the sink nodes of the DAG according to certain rules, using
the minimum number of pebbles. The rules for pebbling are as follows. A black
pebble can be placed on a node if all of the node’s immediate predecessors contain
pebbles, and can always be removed. A white pebble can always be placed on
a node, but can only be removed if all of the node’s immediate predecessors
contain pebbles. A pebbling strategy is a process of pebbling the sink nodes in a
graph according to the above rules. The pebbling cost of a pebbling strategy is
the maximum number of pebbles used in the strategy. The black-white pebbling
cost of a DAG is the minimum pebbling cost of all possible pebbling strategies.
The black pebbling cost is the minimum pebbling cost over all pebbling strategies
that only use black pebbles.

Pebbling games were originally devised for studying programming languages
and compiler construction, but have later found a broad range of applications

16 P. Austrin, T. Pitassi, and Y. Wu

in computational complexity theory. Pebbling is a tool for studying the rela-
tionship between computation time and space by means of a game played on
directed acyclic graphs. It was employed to model register allocation, and to
analyze the relative power of time and space as Turing machine resources. For
a comprehensive recent survey on graph pebbling, see [20].

Apart from the cost of a pebbling, another important measure is the pebbling
time, which is the number of steps (pebble placements/removals) performed.
In the context of measuring memory used by computations, this corresponds
to computation time, and hence keeping the pebbling time small is a natural
priority. The extreme case of this is what we refer to as one-shot pebbling, also
known as progressive pebbling (see e.g., [26, 18, 17]). In one-shot pebbling, we
have the restriction that each node can be pebbled only once. Note that this
restriction can cause a huge increase in the pebbling cost of the graph [19].

The one-shot pebbling problem is easier to analyze for the following reasons.
In the original pebbling problem, in order to achieve the minimum pebbling
number, the pebbling time might be required to be exponentially long, which
becomes impractical when n is large. On the other hand, the one-shot pebbling
problem is more amenable to complexity theoretic analysis as it minimizes the
space used in a computation subject to the execution time being minimum. In
particular, the decision problem for one-shot pebbling is in NP (whereas the
unrestricted pebbling problems are PSPACE-complete).

The one-shot black/black-white pebbling problems admit O(
√
logn logn) ap-

proximation ratios. We show that they are SSE-hard to approximate to within
any constant factor. For black pebbling we show that this holds for single sink
DAGs with in-degree 2, which is the canonical setting for pebbling games (it
seems plausible that the black-white hardness can be shown to hold for this case
as well, though we have not attempted to prove this).

Theorem 1.2. It is SSE-hard to approximate the one-shot black pebbling prob-
lem within any constant factor, even in DAGs with a single sink and maximum
in-degree 2.

Theorem 1.3. It is SSE-hard to approximate the one-shot black-white pebbling
problem within any constant factor.

No hardness of approximation result of any form was known for one-shot peb-
bling problems. We believe that these results can be extended to obtain hardness
for more relaxed versions of bounded time pebbling costs as well. We are cur-
rently working on this, and have some preliminary results.

1.3 The Connection: Layout Problems

The graph width and one-shot pebbling problems discussed in the previous sec-
tions may at first glance appear to be unrelated. However, both sets of problems
are instances of a general family of problems, known as graph layout problems.
In a graph layout problem (also known as an arrangement problem, or a vertex
ordering problem), the goal is to find an ordering of the vertices, optimizing some

Inapproximability of Treewidth 17

condition on the edges, such as adjacent pairs being close. Layout problems are
an important class of problems that have applications in many areas such as
VLSI circuit design.

A classic example is the Minimum Cut Linear Arrangement (MCLA) Prob-
lem. In this problem, the objective is to find a permutation π of the vertices V of
an undirected graph G = (V,E), such that the largest number of edges crossing
any point,

max
i

|{(u, v) ∈ E|π(u) ≤ i < π(v)}|, (1)

is minimized. MCLA is closely related to the Minimum Linear Arrangement
Problem (MLA), in which the max in (1) is replaced by a sum.

The MCLA problem can be approximated to within a factor O(log n
√
logn).

To the best of our knowledge, there is no hardness of approximation for MCLA
in the literature. Its cousin MLA was recently proved SSE-hard to approximate
within any constant factor [22], and we observe that the same hardness applies
to the MCLA problem.

Theorem 1.4. Assuming the SSE Conjecture, Minimum Cut Linear Arrange-
ment is hard to approximate within any constant factor.

Another example of graph layout is the Interval Graph Completion Problem
(IGC). In this problem, the objective is to find a supergraph G′ = (V,E′) of G
such that G′ is an interval graph (i.e., the intersection graph of a set of intervals
on the real line) and of minimum size. While not immediately appearing to be
a layout problem, using a simple structural characterization of interval graphs
[23] one can show that IGC can be reformulated as finding a permutation of
the vertices that minimizes the sum over the longest edges going out from each
vertex, i.e., minimizing

∑

u∈V

max
(u,v)∈E

max{π(v)− π(u), 0}. (2)

See e.g., [10]. The current best approximation algorithm for IGC achieves a ratio
of O(

√
logn log logn) [10]. It turns out that the SSE Conjecture can be used to

prove super-constant hardness for this problem as well.

Theorem 1.5. Assuming the SSE Conjecture, Interval Graph Completion is
hard to approximate within any constant factor.

There is a distinction in IGC of whether one counts the number of edges in the
final interval graph – this is the most common definition – or whether one only
counts the number of edges added to make G an interval graph (which makes
the problem harder from an approximability viewpoint). Our result holds for the
common definition and therefore applies also to the harder version.

Theorems 1.4 and 1.5 are just two examples of layout problems that we prove
hardness of approximation for. By varying the precise objective function and
also considering directed acyclic graphs, in which case the permutation π must
be a topological ordering of the graph, one can obtain a wide variety of graph

18 P. Austrin, T. Pitassi, and Y. Wu

layout problems. We consider a set of eight such problems, generated by three
natural variations (see Section 2.1 for precise details), and show super-constant
SSE-based hardness for all of them in a unified way. This set of problems includes
MLA, MCLA, and IGC, but not problems such as Bandwidth (but on the other
hand, strong NP-hardness inapproximability results for Bandwidth are already
known [12]). See Table 1 in Section 2.1 for a complete list of problems covered.

Theorem 1.6. Assuming the SSE Conjecture, all problems listed in Table 1 (see
page 20) are hard to approximate to within any constant factor.

Let us now return to the problems discussed in the previous sections. It should
not be surprising that the one-shot black pebbling problem is equivalent to a
graph layout problem: the one-shot constraint reduces the problem to determin-
ing in which order to pebble the vertices; such an ordering induces a pebbling
strategy in an obvious way. For the black-white case, it is known that the one-
shot black-white pebbling cost of D is interreducible with a layout problem on
an undirected graph G. Both of these layout problems are included in the set
of problems we show hardness for, so Theorems 1.2 and 1.3 follow immediately
from Theorem 1.6.

Turning to the width parameters, treewidth is equivalent to a graph layout
problem called elimination width. Here the objective function is somewhat more
intricate than in the set of basic layout problems we consider in Theorem 1.6, but
we are able to extend those results to hold also for elimination width. Pathwidth
is also known to be equivalent to a certain graph layout problem, and in fact is
equivalent to the layout problem which one-shot black-white pebbling reduces
to. We use these connections to prove the hardness of approximation for both
treewidth and pathwidth, thereby obtaining Theorem 1.1.

1.4 Previous Work

As the reader may have noticed, for all the problems mentioned, the best current
algorithms achieve similar poly-logarithmic approximation ratios. Given their
close relation, this is of course not surprising. Most of the algorithms are obtained
by recursively applying some algorithm for the c-balanced separator problem, An
improved algorithm for c-balanced separator will also improve the approximation
algorithms for the various layout problems. On the other hand, hardness of
approximating c-balanced separator [22] does not necessarily imply hardness of
approximating layout problems.

On the hardness side, our work builds upon the work of [22], which showed
that the SSE Conjecture implies superconstant hardness of approximation for
MLA (and for c-balanced separator). The only other hardness of relative ap-
proximation that we are aware of for these problems is a result of Ambühl et
al. [1], showing that MLA does not have a PTAS unless NP has randomized
subexponential time algorithms.

Inapproximability of Treewidth 19

1.5 Organization

The outline for the rest of the paper is as follows. In Section 2, we formally define
the layout problems studied as well as treewidth and pathwidth. Section 3 gives
a high level overview of the reductions used, and some concluding remarks and
open problems are given in Section 4. Full proofs can be found in the full version
of the paper [4].

2 Definitions and Preliminaries

2.1 Graph Layout Problems

In this section, we describe the set of graph layout problems that we consider.
A problem from the set is described by three parameters, giving rise to several
different problems. These three parameters are by no means the only interesting
graph layout problems (and some of the settings give rise to more or less unin-
teresting layout problems). However, they are sufficient to capture the problems
we are interested in except treewidth, which in principle could be incorporated
as well though we refrain from doing so in order to keep the definitions simple
(see Section 2.2 for more details).

First a word on notation. Throughout the paper, G = (V,E) denotes an
undirected graph, and D = (V,E) denotes a directed (acyclic) graph. Letting
n denote the number of vertices of the graph, we are interested in bijective
mappings π : V → [n]. We say that an edge (u, v) ∈ E crosses point i ∈ [n]
(with respect to the permutation π, which will always be clear from context), if
π(u) ≤ i < π(v).

We consider the following variations:

1. Undirected or directed acyclic: In the case of an undirected graph G,
any ordering π of the vertices is a feasible solution. In the case of a DAG D,
only the topological orderings of D are feasible solutions.

2. Counting edges or vertices: for a point i ∈ [n] of the ordering, we are
interested in the set Ei(π) of edges crossing this point. When counting edges,
we use the cardinality of Ei as our basic measure. When counting vertices,
we only count the set of vertices Vi to the left of i that are incident upon
some edge crossing i. In other words, Vi is the projection of Ei(π) to the
left-hand side vertices. Formally:

Ei(π) = {e ∈ E |π(u) ≤ i < π(v) where e = (u, v)}
Vi(π) = {u ∈ V |π(u) ≤ i < π(v) for some (u, v) ∈ E}

We refer to |Ei(π)| or |Vi(π)| (depending on whether we are counting edges
or vertices) as the cost of π at i.

3. Aggregation by sum or max: given an ordering π, we aggregate the costs
of each point i ∈ [n], by either summation or by taking the maximum cost.

Given these choices, the objective is to find a feasible ordering π that minimizes
the aggregated cost.

20 P. Austrin, T. Pitassi, and Y. Wu

Definition 2.1 (Layout value). For a graph H (either an undirected graph G
or a DAG D), a cost function C (either E or V), and an aggregation function
agg : R∗ → R (either Σ or max), we define Layout(H ;C, agg) as the minimum
aggregated cost over all feasible orderings of H. Formally:

Layout(H ;C, agg) = min
feasible π

agg
i∈[n]

|Ci(π)|.

Example 2.2. Layout(G;E,max) = minπ maxi∈[n] |Ei(π)|, where π ranges over
all orderings of V (G). This we recognize from Section 1.3 as the Minimum Cut
Linear Arrangement value of G.

Combining the different choices gives rise to a total of eight layout problems
(some more natural than others). Several of these appear in the literature under
one or more names, and some turn out to be equivalent1 to problems that at first
sight appear to be different. We summarize some of these names in Table 1 (in
some cases the standard definitions of these problems look somewhat different
than the unified definition given here, e.g., for pathwidth, one-shot pebblings,
and interval graph completion).

Table 1. Taxonomy of Layout Problems

Problem Also known as / Equivalent with

undir. edge sum Minimum/Optimal Linear Arrangement

undir. edge max Minimum Cut Linear Arrangement
CutWidth

undir. vertex sum Interval Graph Completion
SumCut

undir. vertex max Pathwidth
One-shot Black-White Pebbling
Vertex Separation

DAG edge sum Minimum Storage-Time Sequencing
Directed MLA/OLA

DAG edge max

DAG vertex sum

DAG vertex max One-shot Black Pebbling
Register Sufficiency

2.2 Treewidth and Pathwidth

Definition 2.3 (Tree decomposition, Treewidth). Let G = (V,E) be a
graph, T a tree, and let V = (Vt)t∈T be a family of vertex sets Vt ⊆ V indexed
by the vertices t of T . The pair (T,V) is called a tree decomposition of G if it
satisfies the following three conditions:

1 Here, we consider two optimization problems equivalent if there are reductions be-
tween them that change the objective values by at most an additive constant.

Inapproximability of Treewidth 21

(T1) V = ∪t∈TVt;
(T2) for every edge e ∈ E, there exists a t ∈ T such that both endpoints of e lie

in Vt;
(T3) for every vertex v ∈ V , {t ∈ T | v ∈ Vt} is a subtree of T ’.

The width of (T,V) is the number max{|Vt|− 1 | t ∈ T }, and the treewidth of G,
denoted tw(G), is the minimum width of any tree decomposition of G.

Treewidth can be characterized in terms of elimination width, which is another
example of a layout problem (see e.g., [6]). In principle this layout problem can
be formulated in the framework of Section 2.1, but the choice of cost function is
now more involved than the vertex- and edge-counting considered there.

Definition 2.4 (Path decomposition, Pathwidth). Given a graph G, we
say that (T,V) is a path decomposition of G if it is a tree decomposition of G
and T is a path. The pathwidth of G, denoted pw(G), is the minimum width of
any path decomposition of G.

As claimed earlier, pathwidth is in fact equivalent with a graph layout problem:

Theorem 2.5 ([16]). For every graph G, pw(G) = Layout(G;V,max), also
known (among many other names) as the “vertex separation” number of G.

2.3 Small Set Expansion Conjecture

In this section we define the SSE Conjecture. Let G = (V,E) be an undirected
d-regular graph. For a set S ⊆ V of vertices, we write ΦG(S) for the (normalized)
edge expansion of S,

ΦG(S) =
|E(S, V \ S)|

d|S|
The Small Set Expansion Problem with parameters η and δ, denoted SSE(η, δ),
asks if G has a small set S which does not expand or whether all small sets are
highly expanding.

Definition 2.6 (SSE(η, δ)). Given a d-regular graph G = (V,E), SSE(η, δ) is
the problem of distinguishing between the following two cases:

Yes There is an S ⊆ V with |S| = δ|V | and ΦG(S) ≤ η.
No For every S ⊆ V with |S| = δ|V | it holds that ΦG(S) ≥ 1− η.

This problem was introduced by Raghavendra and Steurer [21], who conjectured
that the problem is hard.

Conjecture 2.7 (Small Set Expansion Conjecture). For every η > 0, there
is a δ > 0 such that SSE(η, δ) is NP-hard.

As has become common for a conjecture like this (such as the Unique Games
Conjecture), we say that a problem is SSE-hard if it is as hard to solve as
the SSE problem. Formally, a decision problem P (e.g., a gap version of some
optimization problem) is SSE-hard if there is some η > 0 such that for every
δ > 0, SSE(η, δ) polynomially reduces to P .

22 P. Austrin, T. Pitassi, and Y. Wu

3 Brief Overview of Reductions

We now give a very brief overview of the reductions used to prove that the layout
problems of Table 1 are SSE-hard to approximate within any constant factor.
The details of these reductions can be found in the full version of the paper [4].

For the two undirected edge problems (i.e., MLA and MCLA), the hardness
follows immediately from the strong form of the SSE Conjecture – for the case
of MLA this was proved in [22] and the proof for MCLA is similar. This is
our starting point for the remaining problems. Unfortunately, the results do not
follow from hardness for MLA/MCLA in a black-box way; for the soundness
analyses we end up having to use the expansion properties of the original SSE
instance.

We then give a reduction from MLA/MCLA with expansion, to the four
directed problems. This reduction simply creates the bipartite graph where the
vertex set is the union of the edges and vertices of the original graph G, with
directed arcs from an edge e to the vertices incident upon e in G. The use of
direction here is crucial: it essentially ensures that both the vertex and edge
counts of any feasible ordering corresponds very closely to the number of edges
crossing the point in the induced ordering of G.

To obtain hardness for the remaining two undirected problems, we perform a
similar reduction as for the directed case, creating the bipartite graph of edge-
vertex incidences. However, since we are now creating an undirected graph, we
can no longer force the edges to be chosen before the vertices upon which they
are incident, which was a key property in the reduction for the directed case.
In order to overcome this, we duplicate each original vertex a large number of
times. This gives huge penalties to orderings which do not “essentially” obey the
desired direction of the edges, and makes the reduction work out.

The results for treewidth follows from an additional analysis of the instances
produced by the reduction for undirected vertex problems. Finally, the reduction
for directed problems, implying hardness for one-shot black pebbling, does not
produce the kind of “nice” instances promised by Theorem 1.2. We give some
additional transformation to achieve these properties in the full version as well.

Figure 1 gives a high-level overview of these reductions.

Fig. 1. Overview of Reductions. Dashed arrows indicate that the reduction is obtained
by the identity mapping, whereas solid arrows indicate a nontrivial transformation
from one problem to the other.

Inapproximability of Treewidth 23

4 Conclusion and Open Problems

We proved SSE-hardness of approximation for a variety of graph problems. Most
importantly we obtained the first inapproximability result for the treewidth
problem. Some remarks are in order. The status of the SSE conjecture is, at
this point in time, very uncertain, and our results should therefore not be taken
as absolute evidence that there is no polynomial time approximation for (e.g.)
treewidth. However, at the very least, our results do give an indication of the
difficulty involved in obtaining such an algorithm for treewidth, and builds a
connection between these two important problems. We also find it remarkable
how simple our reductions and proofs are. We leave the choice of whether to
view this as a healthy sign of strength of the SSE Conjecture, or whether to
view it as an indication that the conjecture is too strong, to the reader.

There are many important open questions and natural avenues for further
work, including:

1. It seems plausible that these results can be extended to a wider range of
graph layout problems. For instance, our two choices of aggregators max
and Σ can be viewed as taking 	∞ and 	1 norms, and it seems likely that
the results would apply for any 	p norm (though we are not aware of any
previous literature studying such variants).

2. It would be nice to obtain hardness of approximation result for our problems
based on a weaker hardness assumption such as UGC. It is conjectured in
[22] that the SSE conjecture is equivalent to UGC. Alternatively, it would
be nice to show that hardness of some of our problems imply hardness for
the SSE Problem.

3. For pebbling, it would be very interesting to obtain results for the unre-
stricted pebbling problems (for which finding the exact pebbling cost is even
PSPACE-hard). As far as we are aware, nothing is known for these problems,
not even, say, whether one can obtain a non-trivial approximation in NP. As
mentioned in the introduction, we are currently working on extending our
one-shot pebbling results to bounded time pebblings. We have some prelim-
inary progress there and are hopeful that we can relax the pebbling results
to a much larger class of pebblings.

References

[1] Ambuhl, C., Mastrolilli, M., Svensson, O.: Inapproximability Results for Spars-
est Cut, Optimal Linear Arrangement, and Precedence Constrained Scheduling.
In: Proceedings of the IEEE Symposium on Foundations of Computer Science,
pp. 329–337 (2007)

[2] Arnborg, S., Corneil, D.G., Proskurowski, A.: Complexity of finding embeddings
in a k-tree. SIAM J. Algebraic Discrete Methods 8, 277–284 (1987)

[3] Arora, S., Barak, B., Steurer, D.: Subexponential Algorithms for Unique Games
and Related Problems. In: FOCS, pp. 563–572 (2010)

[4] Austrin, P., Pitassi, T., Wu, Y.: Inapproximability of treewidth, one-shot pebbling,
and related layout problems. CoRR, abs/1109.4910 (2011)

24 P. Austrin, T. Pitassi, and Y. Wu

[5] Barak, B., Raghavendra, P., Steurer, D.: Rounding Semidefinite Programming
Hierarchies via Global Correlation. In: FOCS, pp. 472–481 (2011)

[6] Bodlaender, H.L.: Treewidth: Structure and Algorithms. In: Prencipe, G., Zaks,
S. (eds.) SIROCCO 2007. LNCS, vol. 4474, pp. 11–25. Springer, Heidelberg (2007)

[7] Bodlaender, H.L.: A Linear-Time Algorithm for Finding Tree-Decompositions of
Small Treewidth. SIAM J. Comput. 25(6), 1305–1317 (1996)

[8] Bodlaender, H.L.: Discovering Treewidth. In: Vojtáš, P., Bieliková, M., Charron-
Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 1–16. Springer,
Heidelberg (2005)

[9] Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. Journal of Algo-
rithms 18(2), 238–255 (1995)

[10] Charikar, M., Hajiaghayi, M., Karloff, H., Rao, S.: l22 spreading metrics for vertex
ordering problems. Algorithmica 56, 577–604 (2010)

[11] Courcelle, B.: Graph Rewriting: An Algebraic and Logic Approach. In: Handbook
of Theoretical Computer Science, Volume B: Formal Models and Sematics (B),
pp. 193–242 (1990)

[12] Dubey, C.K., Feige, U., Unger, W.: Hardness results for approximating the band-
width. J. Comput. Syst. Sci. 77(1), 62–90 (2011)

[13] Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for
minimum-weight vertex separators. In: Proceedings of the Thirty-Seventh Annual
ACM Symposium on Theory of Computing, pp. 563–572 (2005)

[14] Guruswami, V., Sinop, A.K.: Lasserre Hierarchy, Higher Eigenvalues, and Approx-
imation Schemes for Graph Partitioning and Quadratic Integer Programming with
PSD Objectives. In: FOCS, pp. 482–491 (2011)

[15] Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the
ACM Symposium on Theory of Computing, STOC 2002, pp. 767–775 (2002)

[16] Kinnersley, N.G.: The vertex separation number of a graph equals its path-width.
Information Processing Letters 42(6), 345–350 (1992)

[17] Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theor. Comput.
Sci. 47, 205–218 (1986)

[18] Lengauer, T.: Black-white pebbles and graph separation. Acta Informatica 16,
465–475 (1981), doi:10.1007/BF00264496

[19] Lengauer, T., Tarjan, R.E.: Asymptotically tight bounds on time-space trade-offs
in a pebble game. J. ACM 29, 1087–1130 (1982)

[20] Nordström, J.: New wine into old wineskins: A survey of some pebbling classics
with supplemental results. Draft manuscript (November 2010)

[21] Raghavendra, P., Steurer, D.: Graph expansion and the unique games conjec-
ture. In: Proceedings of the 42nd ACM Symposium on Theory of Computing,
pp. 755–764. ACM, New York (2010)

[22] Raghavendra, P., Steurer, D., Tulsiani, M.: Reductions Between Expansion Prob-
lems. To appear in CCC (2012)

[23] Ramalingam, G., Rangan, C.P.: A unified approach to domination problems on
interval graphs. Inf. Process. Lett. 27, 271–274 (1988)

[24] Robertson, N., Seymour, P.D.: Graph minors. III. Planar tree-width. J. Comb.
Theory, Ser. B 36(1), 49–64 (1984)

[25] Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-
width. Journal of Algorithms 7(3), 309–322 (1986)

[26] Sethi, R.: Complete register allocation problems. In: Proceedings of the Fifth An-
nual ACM Symposium on Theory of Computing, STOC 1973, pp. 182–195 (1973)

[27] Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14(2),
217–241 (1994)

	Inapproximability of Treewidth, One-Shot Pebbling, and Related Layout Problems
	Introduction
	Width Parameters of Graphs
	Pebbling Problems
	The Connection: Layout Problems
	Previous Work
	Organization

	Definitions and Preliminaries
	Graph Layout Problems
	Treewidth and Pathwidth
	Small Set Expansion Conjecture

	Brief Overview of Reductions
	Conclusion and Open Problems
	References

