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Abstract
We introduce and develop a new semi-algebraic proof system, called Stabbing Planes that is in
the style of DPLL-based modern SAT solvers. As with DPLL, there is only one rule: the current
polytope can be subdivided by branching on an inequality and its “integer negation.” That is, we
can (nondeterministically choose) a hyperplane ax ≥ b with integer coefficients, which partitions
the polytope into three pieces: the points in the polytope satisfying ax ≥ b, the points satisfying
ax ≤ b−1, and the middle slab b−1 < ax < b. Since the middle slab contains no integer points it
can be safely discarded, and the algorithm proceeds recursively on the other two branches. Each
path terminates when the current polytope is empty, which is polynomial-time checkable. Among
our results, we show somewhat surprisingly that Stabbing Planes can efficiently simulate Cutting
Planes, and moreover, is strictly stronger than Cutting Planes under a reasonable conjecture.
We prove linear lower bounds on the rank of Stabbing Planes refutations, by adapting a lifting
argument in communication complexity.
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1 Introduction

While defined in terms of non-deterministic algorithms for the Tautology problem, proof
complexity has also provided indispensable tools for understanding deterministic algorithms
for search problems, and in particular, for Satisfiability algorithms. Many algorithms for
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10:2 Stabbing planes

search can be classified according to the types of reasoning they implicitly use for case-
analysis and pruning unpromising branches. Particular families of search algorithms can be
characterized by formal proof systems; the size of proofs in these formal proof system, the
time of the non-deterministic algorithm, captures the time taken on the instance by an ideal
implementation of the search algorithm. This allows us to factor understanding the power of
search algorithms of a given type into two questions:
1. How powerful is the proof system? For which kinds of input are there small proofs?
2. How close can actual implementations of the search method come to the ideal non-

deterministic algorithm?
As an illustrative example, let us recall the DPLL algorithm [8,9], which is one of the simplest
algorithms for SAT and forms the basis of modern conflict-driven clause learning SAT solvers.
Let F = C1 ∧C2 ∧ · · · ∧Cm be a CNF formula over variables x1, x2, . . . , xn. A DPLL search
tree for solving the SAT problem for F is constructed as follows. Begin by choosing a variable
xi (non-deterministically, or via some heuristic), and then recurse on the formulas F � xi = 0,
F � xi = 1. If at any point we have found a satisfying assignment, the algorithm outputs
SAT. Otherwise, if we have falsified every literal in some clause C, then we record the clause
and halt the recursion. If every recursive branch ends up being labelled with a clause and
a falsifying assignment, then the original formula F is unsatisfiable and one can take the
tree as a proof of this fact; in fact, such a DPLL tree is equivalent to a tree-like Resolution
refutation of the formula F .

Modern SAT solvers still have a DPLL algorithm at the core (now with a highly tuned
branching heuristic that chooses the “right” order for variables and assignments to recurse on
in the search tree), but extends the basic recipe in two ways: smart handling of unit clauses
(if F contains a clause with a single variable x under the current partial assignment, x can
be immediately set so that the clause is satisfied), and clause learning to speed up search: if
a partial assignment ρ falsifies a clause, then the algorithm derives a new clause Cρ by a
resolution proof that “explains” this conflict, and adds the new clause to the formula F .

It is the synergy between these three mechanisms — branching heuristics, unit propagation,
and clause learning — that results in the outstanding performance of modern SAT solvers.
In other words, while these algorithms are all formalizable in the same simple proof system,
the sophistication of modern SAT-solvers comes from the attempt to algorithmically find
small proofs when they exist. In many ways, the simplicity of the proof system enables this
sophistication in proof-search methods.

In this work, we introduce a natural generalization of the DPLL-style branching algorithm
to reasoning over integer-linear inequalities, formalized as a new semi-algebraic proof system
that we call the Stabbing Planes (SP) system. We will give a more detailed description later,
but intuitively, Stabbing Planes has the same branching structure as DPLL, but generalizes
branching on single variables to branching on linear inequalities over the variables. We feel
the closeness to DPLL makes Stabbing Planes a better starting point for understanding
search algorithms based on linear inequalities, as in integer linear programming (ILP) based
solvers, than established proof systems such as Cutting Planes.

We compare the power of Stabbing Planes proofs to these other proof systems. Recall
that Cutting Planes (CP) is a proof system for reasoning over linear inequalities using
linear combination and division with rounding rules, and Krajícek’s system R(CP) combines
resolution and CP rules. We show that tree-like R(CP) is polynomially equivalent to Stabbing
Planes (Theorem 9). However, the new formulation as Stabbing Planes proofs both gives
greater motivation to studying R(CP) and greatly clarifies the power of this proof system.
Our main results about this system are:
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1. Stabbing Planes has quasi-polynomial size and poly-log rank proofs of any tautology
provable using linear algebra over a constant modulus. In particular, this is true for the
Tseitin graph tautologies, that are very frequently used to prove lower bounds for other
proof systems. (Theorem 6)

2. Stabbing Planes can simulate tree-like Cutting Planes proofs with only constant factor
increases in size and rank (Theorem 11), and general Cutting Planes proofs with a
polynomial increase in size (Theorem 12 )

3. Lower bounds on real communication protocols imply rank lower bounds for Stabbing
Planes proofs (Lemma 17)

4. Stabbing Planes proofs cannot be balanced (Theorem 21).
Together, these show that Stabbing Planes is at least as strong as established proof systems
using inequalities, and possibly much stronger. So the proof system combines strength
as a proof system with a simple branching structure that raises the possibility of elegant
algorithms based on this proof system, in particular for pseudoBoolean solvers.

We now give a more precise description of the proof system. Let us formalize the
system in stages. First, observe that the setting is quite different: we are given a system
A1x ≥ b1, A2 · x ≥ b2, . . . , Am · x ≥ bm of integer-linear inequalities over real-valued variables
x1, x2, . . . , xn (for simplicity we will always assume that the inequalities 0 ≤ xi ≤ 1 are
present for each variable xi), and we seek to prove that no {0, 1}-solution exists. The basic
DPLL algorithm works in this setting with little modification: one can still query variables
and assign them to {0, 1} values; now we label leaves of the search tree with any inequality
ai · x ≥ bi in the system that is falsified by the sequence of assignments made on the path
from the root to the leaf. If every leaf ends up being labelled with a falsified inequality, then
the tree certifies that the system of inequalities has no {0, 1}-solutions.

However, with the expanded domain we can consider the DPLL tree geometrically. To be
more specific, imagine replacing each {0, 1} query to a variable xi in the decision tree with
two “inequality queries” xi ≤ 0 and xi ≥ 1. Each node u in the tree after this replacement is
now naturally associated with a polyhedral set Pu of points satisfying each of the the input
inequalities and each of the inequalities on the path to this node. Since we began with a
DPLL refutation, it is clear that for any leaf ` the polyhedral set P` associated with the leaf
is empty, as any {0, 1} solution would have survived each of the inequalities queried on some
path in the tree and thus would exist in one of the polyhedral sets at the leaves.

The stabbing planes system is then the natural generalization of the previous object: an
SP refutation consists of a generalized DPLL refutation where each node is labelled with an
arbitrary integral linear inequality Ax ≥ b (that is, the vector A and the parameter b are both
integral), and the outgoing edges are labelled with the inequalities Ax ≥ b and Ax ≤ b− 1.
Clearly, any integral vector x ∈ Zn will satisfy at least one of the inequalities labelling the
outgoing edges, and so if the polyhedral set at each leaf (again, obtained by intersecting the
original system with the inequalities on the path to the leaf) is empty then we have certified
that the original system of inequalities has no integral solutions. (See Figure 1 for a simple
example.) The main innovation of Stabbing Planes is its simplicity: refutations are simply
decision trees that query linear inequalities. Note that the more obvious extension of DPLL
to linear inequalities would branch on Ax ≥ b and its actual negation, Ax < b. However with
this branching rule, we would have to add additional rules in order to have completeness. By
branching on an inequality and its “integer negation”, we are able to get by with just one
rule analogous to the resolution rule in DPLL.

From the perspective of SAT solving, even though tree-like Resolution and the search
for satisfying assignments encapsulated by DPLL are equivalent, it is the search point of
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Figure 1 A partial SP refutation and the result on the unit square. The shaded areas are
“removed” from the polytope, and we recurse on each side.

view of DPLL that has led to the major advances in SAT algorithms now found in modern
conflict-directed clause learning (CDCL) SAT solvers. A natural hypothesis is that it is much
easier to invent useful heuristics in the language of query-based algorithms, as opposed to
algorithms based on the resolution rule. Stabbing Planes offers a similar benefit with respect
to reasoning about inequalities.

With the exception of mixed integer programming (MIP) solvers (such as CPLEX [18]),
current solvers that, like Stabbing Planes, manipulate integer linear inequalities over Boolean
variables are generally built on the same backtracking-style infrastructure as DPLL and
CDCL SAT solvers but maintaining information as integer linear inequalities as opposed to
clausal forms. The solvers are known as pseudoBoolean solvers and have been the subject of
considerable effort and development.

PseudoBoolean solvers work very well at handling the kinds of symmetric counting
problems associated with, for example, the pigeonhole principle (PHP), which is known to be
hard for CDCL SAT solvers, as well as other problems where the input constraints are much
more succinctly and naturally expressed in inequality rather than clausal form. Innovations
in pseudoBoolean solvers include use of normal forms for expressing constraints, techniques
to generalize fast unit propogation and watched literals from DPLL to the analogue for
integer linear inequalities, as well as methods to learn from conflicts and simplify learned
constraints when integer coefficients from derived inequalities get too large [4, 28]. Despite
all of this, even for the best pseudoBoolean solvers, the benefits of expressibility are usually
not enough compensation for the added costs of manipulating and deriving new inequalities
and they outperform CDCL solvers only in very limited cases in practice [4].

A key limitation of these pseudoBoolean solvers, which likely constrains their effectiveness,
is the fact that all branching is based on assigning values to individual variables; i.e., dividing
the problem by slabs parallel to one of the coordinate axes. Stabbing Planes eliminates
this constraint on the search and allows one to apply a divide and conquer search based
on arbitrary integer linear constraints that are not necessarily aligned with one of these
coordinate axes. This opens up the space of algorithmic ideas considerably and should
allow future pseudoBoolean solvers to take fuller advantage of the expressibility of integer
linear constraints. For example, a Stabbing Planes search could choose to branch on a linear
inequality that is derived from the geometric properties of the rational hull of the current
constraints by, say, splitting the volume, or by doing a balanced split at a polytope vertex,
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since properties of the rational hull can be determined efficiently. Such operations could be
potentially be done in conjunction with solvers such as CPLEX to obtain the best of both
kinds of approaches.

Beyond the prospect of Stabbing Planes yielding improved backtracking search for
pseudoBoolean solvers, Stabbing Planes should allow the same kind of learning of inequalities
from conflicts that is being done in existing pseudoBoolean solvers, and hence get the benefits
of both. In this work we do not focus on the theoretical benefits of learning from conflicts
because we already can show considerable theoretical benefit from the more general branching
alone and because the theoretical benefits of the restricted kinds of learned linear inequalities
from conflicts available even in existing solvers are not at all clear.

From a proof complexity perspective, the SP system turns out to be polynomially
equivalent to the semi-algebraic proof system tree-like R(CP), introduced by Krajíček [22].
Roughly speaking one can think of R(CP) as a mutual generalization of both Cutting Planes
and Resolution — the lines of an R(CP) proof are clauses of integer linear inequalities, and
in a single step one can take two clauses and either apply a cutting-planes rule to a single
inequality in each clause or apply a resolution-style “cut”. However, SP perspective turns
out to be quite useful: we show that SP has quasi-polynomial size refutations of the Tseitin
principle, and also that SP can polynomially-simulate Cutting Planes (neither result was
previously known to hold for tree-like R(CP)).

We also investigate the relationship between SP refutations and communication complexity.
Given an unsatisfiable CNF F and any partition of the variables (X,Y ) of F into two sets,
one can consider the following two-party search problem SearchX,Y (F): Alice receives an
assignment to the X-variables, Bob receives an assignment to the Y -variables, and they
must communicate and output a falsified clause of F under their joint assignment. At this
time all strong lower bound results for Cutting Planes refutations essentially follow from
studying the communication complexity of SearchX,Y (F). In particular, depth-d (respectively,
length-L tree-like, length-L space s) CP refutation of F yields an d-round (respectively,
O(logL)-round, O(s logL)-round) real communication protocols for SearchX,Y (F), and a
length-L CP refutation of F yields a size L real communication game [5,10,15,23,26].

Each of these results has been used to derive strong lower bounds on Cutting Planes
refutations by proving the corresponding lower bound against the search problem [5, 10,
12, 16, 23, 26]. Furthermore, the above lower bound techniques hold even for the stronger
semantic Cutting Planes system (the lines of which are integer linear inequalities, and from
two integer linear inequalities we are allowed to make any sound deduction over integer
points) [11]. This makes the known lower bounds much stronger, and it is quite surprising
that all one needs to exploit for strong lower bounds is that the lines are linear inequalities
(rather than exploiting some weakness of the deduction rules). However, this strength also
illustrates a weakness of current techniques, as once the lines of a proof system P become
expressive enough, semantic proof techniques (i.e. ones that work for the semantic version of
the proof systems) completely break down since every tautology has a short semantic proof.
Therefore, it is of key importance to develop techniques which truly exploit the “syntax” of
proof systems, and not just the expressive power of the lines.

Hence, it is somewhat remarkable that we are able to show that these results still hold if
we replace real communication protocols with SP refutations. That is, we show:

A depth-d CP refutation of F yields a depth-d SP refutation of F .
A length-L tree-like CP refutation of F yields a depth O(logL) SP refutation of F .
A length-L, space s CP refutation of F yields a depth O(s logL) SP refutation of F .
A length-L CP refutation of F yields a size O(L) SP refutation of F .

ITCS 2018
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Since SP is a syntactic system this further motivates studying its depth- and size-complexity.
We can use semantic techniques to get some lower bounds for SP: we show that a size-S and
depth-d SP refutation yields a real communication protocol with cost O(d) and for which
the protocol tree has size O(S · n). This simulation yields new proofs of some depth lower
bounds already known in the literature; however, these lower bounds are complemented
by showing that neither SP refutations nor real communication protocols can be balanced.
This should be viewed in a positive light: the depth- and size-complexity problems are truly
different for SP, and furthermore, one seemingly cannot obtain size lower bounds for SP by
proving depth lower bounds for real communication protocols (in contrast to, say, tree-like
Cutting Planes). In sum, SP appears to be a very good candidate for a proof system on the
“boundary” where current techniques fail to prove strong size lower bounds.

The rest of the paper is outlined as follows. After some preliminaries in Section 2, we give
a simple refutation of the Tseitin problem in SP in Section 3. In Section 4, we prove a raft of
simulation and equivalence results for SP — showing it is equivalent to R(CP), relating it to
Cutting Planes in various measures such as depth, length, and space, and showing how an
SP proof yields a real communication protocol for the canonical search problem. Finally, in
Section 5, we prove depth lower bounds for SP and some impossibility results for balancing.

2 Preliminaries

Before we define the new proof system formally, we need to make a few general definitions
that are relevant to semi-algebraic proof systems.

An integer linear inequality (or simply a linear inequality) in the variables x = x1, . . . , xn
is Ax ≥ b, where A ∈ Zn and b ∈ Z. A system of linear inequalities F is unsatisfiable if there
is no Boolean assignment α ∈ {0, 1}n which simultaneously satisfies every inequality in F .
We sometimes refer to inequalities as lines and write L ≡ Ax ≥ b. The integer negation of a
line L is the inequality ¬L ≡ Ax ≤ b− 1.

An unsatisfiable formula in a conjuctive normal form (CNF) defines an unsatisfiable
system of linear inequalities F in a natural way. A clause

∨k
i=1 xi ∨

∨l
i=1 ¬xi, is translated

into the inequality
∑k
i=1 xi +

∑l
i=1(1−xi) ≥ 1, and F is the set of translations of all clauses.

We assume that F always contains the axioms xi ≥ 0 and −xi ≥ −1 for all variables xi, as
we are interested in propositional proof systems for refuting unsatisfiable Boolean formulas.

I Definition 1. A propositional proof system P is a non-deterministic polynomial time Turing
machine (TM) deciding the language of unsatisfiable CNF formulas. Given an unsatisfiable
CNF, the NP-certificate is called the proof or the refutation.

The strength of proof systems is compared using the notion of polynomial simulation.

I Definition 2. Let P1 and P2 be two proof systems. We say that P1 polynomially simulates
P2 if for every unsatisfiable formula F , the shortest refutation of F in P1 is at most
polynomially longer than the shortest refutation in P2. P1 is strictly stronger than P2 if P1
polynomially simulates P2, but the converse does not hold. Finally, we say that P1 and P2
are incomparable if neither can polynomially simulate the other.

We now describe the proof system Stabbing Planes, our central object of study.

I Definition 3. Let F be an unsatisfiable system of linear integral inequalities. A Stabbing
Planes (SP) refutation of F is a threshold decision tree: a directed binary tree in which each
edge is labelled with a linear integral inequality. If the right outgoing edge of a node is labelled
with Ax ≥ b, then the left outgoing edge has to be labelled with its integer negation, Ax ≤ b−1.
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We refer to Ax (or the pair of inequalities Ax ≤ b− 1, Ax ≥ b) as the query corresponding to
the node. The slab corresponding to the query is {x∗ ∈ Rn | b− 1 < Ax∗ < b}.

Let the set of all paths from the root to a leaf in the tree be denoted by {p1, . . . , p`}.
Each leaf i is labelled with a non-negative linear combination of inequalities in F with the
inequalities along the path pi that yields 0 ≥ 1.

The size of a SP refutation is the number of bits needed to represent every inequality in
the refutation. The length of a SP refutation is the number of nodes in the threshold tree.
The size (length) of refuting a system of linear inequalities F in SP is the minimum size
(length) of any SP refutation of F . The rank or depth of a SP refutation P is the longest
root-to-leaf path in the threshold tree of P. The rank (depth) of refuting F in SP is the
minimum rank (depth) over all SP refutations of F .

Refutations in SP have an intuitive geometric interpretation: each step of a refutation can
be viewed as nondeterministically removing a slab from the solution space and recursing on
the resulting polytopes on both sides of the slab. The aim is to recursively cover the solution
space with slabs until every feasible point within this polytope is removed. An example of
this can be seen in Figure 1 in the introduction. In particular, the polytope at any step of
the recursion is empty if and only if there exists a convex combination of the axioms and
inequalities labelling the corresponding root-to-leaf path in the refutation equivalent to 0 ≥ 1.
This is summarized in the following fact which follows directly from the Farkas’ lemma. The
“moreover” part of the following fact is an application of Carathéodory’s theorem, and will
be useful for technical reasons later in the paper. We refer the interested reader to [29] for
some background on polytope theory.

I Fact 4. Let F = {A1x ≥ b1, . . . , Amx ≥ bm} be a system of integer linear inequalities.
The polytope defined by F is empty if and only if there is a non-negative (rational) linear
combination of the inequalities of F which evaluates to 0 ≥ 1. Moreover, the non-negative
linear combination can be taken to be supported on ≤ n of the inequalities from F , where n
is the dimension of the space to which x belongs.

It is straightforward to see that SP is a sound and complete proof system. Completeness
follows from a simple observation that SP polynomially simulates DPLL. To see that SP
is sound, let R be a SP refutation of some formula F . Observe that for any node in R
with outgoing edges labelled Ax ≥ b and Ax ≤ b− 1, any 0− 1 assignment to the variables
α ∈ {0, 1}n must satisfy exactly one of the two inequalities. Therefore, if a Boolean solution
α ∈ {0, 1}n satisfies F , then for at least one of the leaves of R, one cannot derive 0 ≥ 1. This
follows by Fact 4 because the polytope formed by the inequalities labelling root-to-leaf path
is non-empty (α lies in this polytope) .

Next we recall a well-known and extensively-studied proof system: Cutting Planes (CP).
For an introduction to Cutting Planes, we refer an interested reader to Chapter 19 in [20].

I Definition 5. Let F be an unsatisfiable system of linear inequalities. A Cutting Planes
(CP) refutation of F is a sequence of linear inequalities {L1, . . . , L`} such that L` = 0 ≥ 1
and each Li is either an axiom ∈ F or is obtained from previous lines via one of the following
inference rules. Let α, β be positive integers.

Ax ≥ a Bx ≥ b
Linear Combination: (αA+ βB)x ≥ αa+ βb

αAx ≥ b
Division:

Ax ≥
⌈
b
α

⌉
We refer to ` as the length of the refutation. The length of refuting F in CP is the

minimum length of a CP refutation of F .

ITCS 2018
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The directed acyclic graph (DAG)G = (V,E) associated with a CP refutation {L1, . . . , L`}
is defined as follows. We have V = {L1, . . . , L`} and (u, v) ∈ E if and only if the line labelling
v was derived by an application of an inference rule involving the line labelling u. Without
loss of generality, we may assume that there is only one vertex with out degree 0, which we
call the root. The root of G is labelled with L` and the leaves are labelled with the axioms.

The rank or depth of the refutation is the length of the longest root-to-leaf path in G.
The rank of refuting an unsatisfiable system of linear inequalities F is the minimum rank of
any refutation of F in the given proof system. Finally, tree-like CP is defined by restricting
proofs to be such that the underlying graph G is a tree.

On the Issue of Weights. A well-known theorem of Muroga shows that for any
integer linear inequality Ax ≥ b separating two subsets U ,V ⊆ {0, 1}n of 0/1 vectors, there
is another linear integer inequality A′x ≥ b′ separating the same set of vectors and also
satisfying ||A||∞ ≤ 2poly(n) [24]. In the same vein, Cook, Coullard, and Turán showed that
any Cutting Planes refutation of length ` can be transformed into a refutation of length
at most polynomially larger and in which each coefficient has magnitude 2poly(`,n) [7]. This
implies that the size of any CP proof (measured by the length of its encoding in bits) is
polynomially related to its length, and thus we may study the length of cutting planes proofs
without loss of generality for the purpose of upper and lower bounds.

An analogous result is not known for SP and therefore we currently must make the
distinction between its size and length. Fortunately, all of our results hold in the best possible
scenario; our upper bounds are low weight (polynomial-length); the simulations are length
preserving, and our lower bounds hold for any weight.

3 Motivating Example: SP Refutations of Tseitin Formulas

Tseitin contradictions are among the most well-studied unsatisfiable formulas in proof
complexity, and are the quintessential formulas that are believed to be hard for CP [20].
Despite the fact that exponential lower bounds for CP are known for many natural families
of formulas (including recent lower bounds for random O(logn)-CNF formulas), there are
no nontrivial lower bounds known for the Tseitin contradictions, and for good reason: the
only known lower bound method for CP reduces the problem of refuting a formula in CP
to a monotone circuit problem, for which the corresponding monotone circuit problem for
Tseitin contradictions is easy.

In this section, we demonstrate the power of Stabbing Planes by showing that there exists
a shallow quasi-polynomial size SP refutation of the Tseitin formulas. This, together with
our simulation results from Section 4, show that SP is provably more powerful than CP in
terms of depth, and strongly suggests that SP is strictly more powerful than CP.

Tseitin contradictions are any unsatisfiable family of mod-2 equations subject to the
constraint that every variable occurs in exactly two equations. An instance of Tseitin, denoted
Tseitin(G, `) is defined by a connected undirected graph G = (V,E) and a node labelling
` ∈ {0, 1}V of odd total weight:

∑
v∈V `v = 1 mod 2. For each edge e ∈ E there is a variable

xe in Tseitin(G, `), and for each vertex v ∈ V an equation
∑
e3v xe ≡ `v mod 2, stating that

the sum of the variables xe incident with v is `v mod 2. The edge equations sum to zero
mod 2 since every variable occurs exactly twice, but the vertex equations sum to one mod 2,
since the node labelling is odd, and therefore the equations are unsatisfiable. When G has
degree D, we can express Tseitin(G, `) as a D-CNF formula containing |V | · 2D−1 clauses.

The obvious way to refute Tseitin(G, `) under an assignment x is to find a vertex w for
which the corresponding vertex equation is falsified. This can be achieved by the following
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divide-and-conquer procedure, which maintains a set U ⊆ V such that w ∈ U . The process
begins by setting U = V . Then, V is partitioned arbitrarily into two sets V1, V2 of roughly
the same size. Query xe for all edges e crossing the cut (V1, V2), and suppose that the sum
of all such xe is odd (the case when it is even is similar). We know that either

∑
v∈V1

`v or∑
v∈V2

`v is even: if the first sum is even then the Tseitin formula restricted to V1 contains a
contradiction, and otherwise the formula restricted to V2 contains a contradiction. In either
case, we can remove roughly half of the graph and recurse.

By keeping track of a few more variables, we can repeat this procedure recursively until
|U | = 1. Since we reduce the size of U by half each time, this procedure results in the
recursion depth logarithmic in |V |. It turns out that this procedure can be realized in
Stabbing Planes, where recursion depth roughly corresponds to the depth of the refutation.
This results in a quasi-polynomial size refutation.

I Theorem 6. Let G = (V,E) be an undirected graph, and let ` be a {0, 1} vertex labelling
with odd total weight. Then Tseitin(G, `) has an SP refutation of size nO(logn+D/ logn) and
rank O(D + log2 n), where n = |V | and D is the maximum degree in G.

Proof. If U ⊆ V is a set of vertices, then let E(U) = {uv ∈ E | u, v ∈ U}, and Cut(U) ={
uv ∈ E | u ∈ U, v ∈ U

}
. Similarly, if U1, U2 ⊆ V are disjoint then we let Cut(U1, U2) =

{uv ∈ E | u ∈ U1, v ∈ U2}. We construct the SP refutation recursively. During the recursion
we maintain a set U of current vertices (initially U = V ). At each recursive step, we split U
into two halves U1 and U2 and query the total weight k of the edges crossing (U1, U2) via SP
inequalities. Knowing k, a few additional queries allows us to determine which of U1 or U2
contains a contradiction, and we then recurse on the corresponding set of vertices.

We construct a proof while maintaining the following invariant: for the current subset of
vertices U ⊆ V , we have queried linear inequalities implying that

∑
e∈Cut(U) xe = k for some

0 ≤ k ≤ |Cut(U)| such that k 6≡
∑
v∈U `v mod 2. Note that this invariant ensures that our

Tseitin instance restricted to the edges incident on U is unsatisfiable, since summing up all
vertex constraints within U yields

∑
e∈Cut(U) xe +

∑
e∈E(U) 2xe ≡ k 6≡

∑
v∈U `v (mod 2).

Initially we have U = V and the invariant clearly holds. Now, let U be the current set
of vertices. By the invariant we know that

∑
e∈Cut(U) xe = k for some k 6≡

∑
v∈U `v mod 2.

Partition U into two halves U1 and U2 arbitrarily, subject to |U1| = b|U |/2c. We first
determine the value of the edges going between U1 and U2 by querying

∑
e∈Cut(U1,U2) xe ≥ β

for β = 1, . . . , |Cut(U1, U2)|. To each leaf of this tree we attach a second binary search tree
for determining the value |Cut(U1)| by querying

∑
e∈Cut(U1) xe ≥ γ for γ = 1, . . . , |Cut(U1)|.

After these queries, at each leaf of the “combined” tree we will have
∑
e∈Cut(U1,U2) xe = β and∑

e∈Cut(U1) xe = γ for some β and γ. Furthermore, since |Cut(U1)|+ |Cut(U2)| = |Cut(U)|+
2|Cut(U1, U2)|, we will have

∑
e∈Cut(U2) xe = δ, where δ + γ = k + 2β, 0 ≤ δ ≤ |Cut(U2)|.

For any leaf of this tree where δ > |Cut(U2)|, we can derive a contradiction by summing the
axioms −xe ≥ −1 for all e ∈ Cut(U2) with

∑
e∈Cut(U2) xe ≥ δ. Otherwise, for the remaining

leaves observe that δ+γ ≡ k 6≡
∑
v∈U1

`v+
∑
v∈U2

`v (mod 2). Now, if γ 6≡
∑
v∈U1

`(v) mod 2,
then recurse on U1. Otherwise, δ 6≡

∑
v∈U2

`(v) mod 2. Then recurse on U2.
Our recursion terminates when U contains a single vertex v. By the invariant, we

have derived
∑
e∈Cut(v) xe ≡ k 6≡ `(v) mod 2 for some 0 ≤ k ≤ |Cut({v})|. The axioms

of Tseitin(G, `) rule out Boolean assignments to the variables xe for e ∈ Cut({v}), which
contradict `(v); these axioms do not prohibit incorrect fractional assignments. Therefore,
to derive a contradiction, we still need to enforce that the variables xe for e ∈ Cut({v})
take {0, 1} values. We achieve this by querying all variables xe for e ∈ Cut({v}) via SP
inequalities xe ≥ 1, xe ≤ 0. This results in a complete binary tree of depth ≤ D. Clearly,
0 ≥ 1 is immediately obtained at the leaves that disagree with

∑
e∈Cut({v}) xe = k. At the
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leaves that agree with
∑
e∈Cut({v}) xe = k, the inequality 0 ≥ 1 immediately follows from the

assignment to the edges incident to v and one of the axioms of Tseitin.
Finally, we analyze the size and rank of the constructed SP proof. In each recursive

step, we make O((nD)2) queries to determine weights of edges crossing the two cuts. Each
recursive step is computed by a pair of binary trees, each of depth at most log(nD). Our
recursion terminates in logn rounds because we halve the number of current vertices in each
step. Once the recursion terminates, we query the variables corresponding to edges incident
to the single remaining vertex — this contributes 2D factor to size and increases depth by at
most D. Overall, the SP proof has size nO(logn+D/ logn) and rank O(D + log2 n). J

I Corollary 7. SP is strictly stronger than CP with respect to proof rank.

Proof. By Theorem 11, any Cutting Planes refutation of rank r can be converted into a SP
refutation of rank O(r). Buresh-Oppenheim et al. proved Ω(n) lower bound on the rank
of Cutting Planes of the Tseitin formulas on constant-degree expander graphs [6], while
Theorem 6 shows that SP can refute such Tseitin formulas in rank O(log2 n). J

4 Simulation Theorems

In this section, we prove simulation theorems relating the SP proof system to other similar
proof systems in the literature. We begin by showing that SP is polynomially equivalent to the
tree-like R(CP) system (introduced by Krajicek in [22]), which can be thought of as tree-like
Resolution with clauses of inequalities and allowing CP rules. Since tree-like R(CP) simulates
tree-like CP, the natural question is whether SP (and consequently R(CP)) can simulate
general CP. We answer this question positively by providing two simulations. First of all, we
observe that SP can depth-simulate CP. This simulation, while preserving depth of the proof,
can lead to an exponential increase in the size. Thus, by a different simulation we show that SP
can size-simulate CP. This time around, while the simulation preserves the size of a CP refu-
tation, it can significantly increase the depth. It is an interesting open question whether there
is a simulation of CP by SP that can simultaneously preserve depth and size of CP refutations.

To complete the picture, we note that general R(CP) can trivially
simulate tree-like R(CP) (and consequently SP) and CP. We also
show that tree-like CP refutations can be efficiently converted
into balanced (logarithmic-depth) SP refutations — this shows
that tree-like CP refutations, which cannot in general be balanced,
can be balanced in SP.

CP SP= Tree-R(CP)

Tree-CP

R(CP)

We then turn to the question of space-time simulations. Recall, that a proof system can
be thought of as a non-deterministic Turing machine. The notion of space of CP refutations
intuitively corresponds to the minimum size of the work tape of such a non-deterministic
Turing machine that is required to carry out the computation. In this analogy, the notion of
length of CP refutations corresponds to the running time of the given TM. We show that
general CP refutations that use length ` and space s can be turned into depth O(s log `) SP
refutations. Thus, sufficiently strong lower bounds on the depth of SP refutations lead to
time-space tradeoffs for CP.

4.1 Equivalence of SP with tree-like R(CP).
Here we show the SP system is polynomially equivalent to the R(CP) proof system. We begin
by formally defining the R(CP) proof system.
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I Definition 8. The R(CP) proof system is a syntactic proof system defined as follows. The
lines of the R(CP) system are disjunctions of integer linear inequalities Γ = L1 ∨L2 ∨ · · · ∨L`,
and the lines are equipped with the following deductive rules. Let Γ be an arbitrary disjunction
of integer linear inequalities, let Ax ≥ b, Cx ≥ d be arbitrary integer linear inequalities, and
let α, β be any positive integers.

(Ax ≥ b) ∨ Γ (Cx ≥ d) ∨ Γ
Linear Combination: (αA+ βC)x ≥ (αb+ βd) ∨ Γ

(αAx ≥ b) ∨ Γ
Division: (Ax ≥ db/αe) ∨ Γ

Axiom Introduction: (Ax ≥ b) ∨ (Ax ≤ b− 1)
ΓWeakening:

(Ax ≥ b) ∨ Γ
(Ax ≥ b) ∨ Γ (Ax ≤ b− 1) ∨ Γ

Cut: Γ
(0 ≥ 1) ∨ Γ

Elimination: Γ

An R(CP) proof is tree-like if the proof DAG is a tree.

I Theorem 9. Let C be an unsatisfiable CNF, and let C1, C2, . . . , Cm be the representation
of C as an integer-linear system of inequalities. For any SP refutation of C with size s and
depth d there is a tree-like R(CP) refutation of C of size O(s(d2 + dm)) and width d+ 1.

Proof. Let T be the SP refutation of C, and consider any path p in the tree T . Let
L1, L2, . . . , Lt be the sequence of inequalities on p. We first show how to derive the clause
¬L1 ∨ ¬L2 ∨ · · · ∨ ¬Lt efficiently in R(CP) from C.

Begin by using the Axiom Introduction rule to introduce the lines Li ∨ ¬Li for each
i = 1, 2, . . . , t. Then, for each i, repeatedly apply the Weakening rule to the line Li ∨ ¬Li to
deduce Li∨¬L1∨¬L2 · · ·∨¬Lt, and then for each input line Ci similarly apply the Weakening
rule to deduce Cj ∨¬L1 ∨¬L2 ∨ · · · ∨¬Lt. Since T is a Stabbing Planes refutation, there is a
convex combination of L1, L2, . . . , Lt, C1, . . . , Cm equalling 0 ≥ 1. Furthermore, by Fact 4, we
can assume without loss of generality that this convex combination contains at most a linear
number of these inequalities. Finally, because any convex combination can be performed in
tree-like Cutting Planes by repeatedly applying the “Linear Combination” rule, there is a
linear size tree-like cutting planes refutation of the system L1, L2, . . . , Lt, C1, . . . , Cm. By
simulating this proof in R(CP) on the lines above, (that is, by applying the appropriate cutting
planes rules to the first inequality in each line), we can deduce the line (0 ≥ 1)∨¬L1∨· · ·∨¬Lt,
which simplifies to ¬L1 ∨ ¬L2 ∨ · · · ∨ ¬Lt by the elimination rule. The proof of this path
requires size O(t2 + tm + t + m) = O(d2 + dm), where d is the depth of the tree T , and
clearly can be implemented as a tree-like proof.

Now we are nearly finished. In parallel, for each path p of the tree T construct the
corresponding clause in short tree-like R(CP) as above. Applying the cut rule to the paths
appropriately yields the empty clause in size O(s(d2 + dm)). J

Next, we prove the converse.

I Theorem 10. Let C be an unsatisfiable CNF, and let C1, C2, . . . , Cm be the representation
of C as an integer linear system of equations. For any tree-like R(CP) proof of the disjunction
¬C1 ∨¬C2 ∨ · · · ∨ ¬Cm with size s and depth d there is an SP refutation of C of size at most
2s and rank at most 2d.

Proof. Let R be the R(CP) proof of the disjunction, and we construct the SP refutation by
structural induction. Consider any leaf of the proof R which, by assumption, is labelled with
an input axiom L ∨ ¬L for some integer linear inequality L. It is easy to give a short SP
refutation of L,¬L: query the inequality L,¬L and refute each side of the tree appropriately.
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By induction suppose that we have a tree-like R(CP) proof of a clause Γ. We break into
cases depending on the last inference rule used to derive Γ.
Linear Combination. Write Γ as the line (αA+βB)x ≥ (αa+βb)∨∆, which was deduced
from lines (Ax ≥ a) ∨∆, (Bx ≥ b) ∨∆ by the Linear Combination rule. Let LA be the
inequality Ax ≥ a, and LB the inequality Bx ≥ b. Begin the SP proof by making the query
to the line LA and ¬LA — on the branch labelled with ¬LA, by induction we can construct
a refutation of the clause LA ∨∆. Then, on the branch labelled with LA, branch on the
inequalities LB and ¬LB . Again, on the ¬LB branch, we can apply induction to get an SP
refutation of the clause LB ∨∆. On the path labelled with LA and LB , we can immediately
deduce a contradiction in stabbing planes from LA, LB , and ¬(αLA + βLB).
Division. Write Γ as (Ax ≥ da/αe) ∨ ∆, deduced from the line (αAx ≥ a) ∨ ∆. Let
LA ≡ αAx ≥ a. Begin the SP refutation by querying the inequalities LA and ¬LA. On the
branch labelled ¬LA, we can inductively construct a refutation of the clause LA ∨∆. On the
other branch, labelled with LA, it is enough to observe that the intersection of LA, which is
αAx ≥ a, and the inequality Ax ≤ da/αe − 1, provided as an axiom to SP, is empty.

The remaining cases, Weakening and Cut, follow by direct applications of induction. At
worst, each line of the R(CP) proof is replaced with two inequality queries, of which at most
two of the children are not immediately labelled with a convex combination equalling 0 ≥ 1,
and so the size of the resulting tree is at most 2s and the depth is at most 2d. J

4.2 SP simulations of Cutting Planes.
First, we prove that there is a depth-preserving simulation of CP by SP.

I Theorem 11. For every Cutting Planes refutation of rank d, there is a SP refutation of
the same tautology with rank at most 2d. Moreover, if the CP refutation is tree-like of size s
then the resulting SP refutation is of size O(s) and rank 2d.

Proof. It is sufficient to prove the “moreover” part of the statement, since by recursive
doubling, any CP refutation can be converted into a tree-like CP refutation where the rank
remains the same, but the size may increase exponentially. Thus, from now on we assume
that RCP is a size-s rank-d tree-like Cutting Planes refutation. We show that there is a size
O(s), rank r ≤ 2d SP refutation RSP of the same contradiction.

Let G be the graph (tree) associated with RCP. The refutation RSP will be constructed
from RCP by proceeding from the root of G to the leaves. In the process, we keep track
of a subtree T in G, which we are left to simulate, and an associated current node N in
RSP, which we are constructing. Along the way the following invariant will be maintained:
at every recursive step (N,T ) such that T 6= G, if the root of the subtree T is labelled
with the inequality Cx ≥ c, then the edge leading to N in RSP is labelled with Cx ≤ c− 1.
Originally T = G and RSP contains only a single node N . Consider the subtree T at the
current recursive step in the proof, and we break into three cases.

Case 1. The root of T labelled with Cx ≥ c has
two children labelled with Ax ≥ a and Bx ≥ b. Non-
negative linear combinations are the only inferences in
CP which take two premises, therefore, Cx ≥ c is a
non-negative linear combination of Ax ≥ a and Bx ≥ b.
In the SP refutation RSP at the current node N , query
Ax ≥ a. On the branch labelled Ax ≥ a, query Bx ≥ b.

Cx

Ax

N (1) Bx

N (2) N (3) ` 0 ≥ 1

≤ c− 1

≤ a− 1 ≥ a

≤ b− 1 ≥ b
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This sequence of queries results in three leaf nodes, labelled N (1), N (2), N (3). For the leaf
N (1) of the edge labelled with Ax ≤ a− 1 in RSP let T (1) be the subtree rooted at the child
of the root of T labelled with Ax ≥ a. Recurse on (N (1), T (1)). Similarly, for the leaf N (2)

of the pair of introduced edges labelled with Ax ≥ a and Bx ≤ b− 1, let T (2) be the subtree
rooted at the child of the root of T labelled with Bx ≥ b. Recurse on (N (2), T (2)).

For the final leaf N (3) we can derive 0 ≥ 1. To see this, observe that if the current
subtree T is G (i.e. the base case) then the root node of T is labelled with 0 ≥ 1. In this
case, Ax ≥ a and Bx ≥ b are the premises used to derive 0 ≥ 1 by a non-negative linear
combination in RCP, and we can use this very non-negative combination at the leaf N (3).
Otherwise, the root of the current subtree T is labelled with some inequality Cx ≥ c. By
the invariant, the edge leading to N in the refutation RSP we are constructing was labelled
with Cx ≤ c − 1. In the CP refutation RCP, Cx ≥ c was derived by a non-negative linear
combination of Ax ≥ a and Bx ≥ b. Therefore, a non-negative combination of Cx ≤ c− 1,
Ax ≥ a, and Bx ≥ b derives 0 ≥ 1, so, label N (3) with this combination.

Case 2: The root of T , labelled with Ax ≥ a, has a single child derived by an application
of the division rule from Bx ≥ b. Note that by the invariant, the edge leading to the current
node is labelled with Ax ≤ a− 1. Thus, at this current node we query Bx ≥ b. Let N (1) be
the leaf node labelled with Bx ≤ b− 1 and N (2) the leaf labelled with Bx ≥ b. At N (1), we
let T (1) be the subtree of T rooted at the child of the root of T and recurse on (N (1), T (1)).
On the other hand, at N (2) we can derive 0 ≥ 1 by a non-negative linear combination. This
follows like so: by the division rule of CP the inequality Ax ≥ a is exactly the inequality
B
d x ≥

⌈
b
d

⌉
for some d ∈ Z≥0 dividing all entries in B. Therefore, subtracting dAx ≤ d(a− 1)

from Bx ≥ b, we derive 0 ≥ b−d bde+d ≥ 1, and so we label N (2) with this linear combination.
Case 3: T is a single node — a leaf of the CP refutation labelled with some axiom Ax ≥ a.

By the invariant, the edge leading to N in the SP refutation RSP is labelled Ax ≤ a− 1. We
derive 0 ≥ 1 at N by subtracting Ax ≤ a− 1 from the axiom Ax ≥ a.

To see that this SP refutation has rank at most twice that of the tree-like CP refutation,
observe that non-negative linear combinations are the only inference rule of CP which this
construction requires depth 2 to simulate, while all other rules require depth 1.

To measure the size, note that every CP rule with a single premise is simulated in SP
by a single query with one outgoing edge immediately labeled 0 ≥ 1. Each rule with two
premises (case 1) is simulated by two queries in the SP refutation, where one of the three
outgoing edges is immediately labelled with 0 ≥ 1. Each of these queries branch only on the
inequalities belonging to RCP. Therefore, the size of the SP refutation RSP is O(s). J

I Theorem 12. SP polynomially simulates CP.

Proof. Let R = {A1x ≥ a1, A2x ≥ a2, . . . , Amx ≥ am} be a CP refutation of an unsatisfiable
set of integer linear inequalities F . We construct a SP refutation of F line by line, following
R. Our SP refutation is a tree where the right-most path is of length m+1 with edges labelled
A1 ≥ b1, . . . , Am ≥ bm. The left child of node i ≤ m along this path is labelled with 0 ≥ 1,
which is derived as a non-negative linear combination of Ajx ≥ aj for j < i, Aix ≤ ai − 1,
and F . The last node in the path is also labelled with 0 ≥ 1. Since Amx ≥ am ≡ 0 ≥ 1, the
last node is trivially labelled with 0 ≥ 1. Thus, we only need to show that the left child of
every node can be legally labelled with 0 ≥ 1. If Aix ≥ ai is an axiom, we can derive 0 ≥ 1
by subtracting Aix ≤ ai − 1 from Aix ≥ ai ∈ F . If Aix ≥ ai is a non-negative combination
of two previous inequalities, i.e., Aix ≥ ai is αAj1x+βAj2x ≥ αaj1 +βaj2 for some j1, j2 < i

and α, β ∈ Z≥0, we can derive 0 ≥ 1 by subtracting Aix ≤ ai − 1 from the non-negative
linear combination of Aj1x ≥ aj1 and Aj2x ≥ aj2 used to derive Aix ≥ ai. Finally, suppose
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that Aix ≥ ai is obtained by an application of the division rule to Ajx ≥ aj for some j < i,
i.e., Aix ≥ ai is Aj

c x ≥
⌈aj

c

⌉
where c ∈ N divides every entry in Aj . On the path to this node

in our SP refutation we queried Ajx ≥ aj . Dividing this inequality by c and subtracting
Aix ≤ ai − 1, we obtain 0 ≥ aj/c− (daj/ce − 1) . This gives us 0 ≥ aj

c + 1−
⌈aj

c

⌉
. Since the

right-hand side is strictly positive this can be normalized to give 0 ≥ 1. J

4.3 CP and Balanced SP.
It is known that CP refutations cannot be balanced (i.e. size-s refutations being turned into
size O(s) depth O(log s) refutation) in CP. Here, we show that CP proofs can be turned into
balanced SP proofs. More specifically, we prove the following.

I Theorem 13. Suppose there is a size s tree-like CP refutation of a set of linear integer
inequalities F . Then there is a size s depth O(log s) SP refutation of F .

Proof. The construction is recursive. Let T be the tree corresponding to P. If |T | = O(1),
use one of the previous simulation theorems to create an SP refutation of P . Now, let v be a
node in T such that the subtree Tv rooted at v satisfies |T |/3 ≤ |Tv| ≤ 2|T |/3, which must
exist since the size measure is additive. Let Bx ≥ b be the line in P corresponding to v. Our
SP simulation starts by querying Bx. If Bx ≥ b then we apply the recursive construction to
T \ Tv, treating Bx ≥ b as a new axiom. Otherwise, if Bx ≤ b− 1 (which contradicts the the
input set of inequalities F) we apply the recursive construction to Tv. The size is clearly
preserved, and the depth of the proof becomes logarithmic, since we are reducing the size of
the proof to be simulated by a constant factor on each branch of a query. J

We can also show that bounded depth and space CP refutations yield balanced SP proofs.
See full version for the proof of the following theorem.

I Theorem 14. Suppose that we have a length `, space s CP refutation of an unsatisfiable
set of linear integral inequalities. Then there is a depth O(s log `) SP refutation of the same
set of linear integral inequalities.

5 Impossibility Results

In this section, we prove near-optimal lower bounds on SP rank via reductions to random-
ized and real communication complexity. We then tackle the harder problem of proving
unrestricted superpolynomial size lower bounds for SP. Although we are unable to prove
such lower bounds we explain why current approaches fail. Essentially all lower bounds
for CP have been obtained by reducing to a communication complexity problem; in the
case of tree-like CP, the reduction is to the communication complexity of a corresponding
search problem. For more general dag-like CP, the reduction is to the size of “communication
games” [12,16] (communication games are a dag-like model of communication that gives an
equivalence between communication size and monotone circuit size, analogous to the famous
equivalence between communication depth and monotone formula size). Although tree-like
CP proofs cannot be balanced in general, communication protocols (both deterministic and
randomized) can be balanced, and thus tree-like CP lower bounds follow from communication
complexity lower bounds. Similarly, we show that it is not possible to balance SP refutations,
and thus we cannot in general obtain size lower bounds directly from rank lower bounds.
Moreover, we show that SP refutations imply real communication protocols , and unlike
ordinary communication protocols, we show that real protocols cannot in general be balanced.
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This rules out proving length lower bounds on SP refutations from (real) communication
complexity lower bounds.

5.1 SP Refutations Imply Communication Protocols.
Real communication protocols were introduced by Krajíc̆ek [23]. In this model, the players
are allowed to communicate by sending real-valued functions of their inputs to a referee who
announces their comparison.

I Definition 15. A real communication protocol is a full binary tree in which every non-leaf
node v is labeled with a pair of functions av : X → R, bv : Y → R, and the leaves are labelled
with elements in Z. Two players, Alice and Bob, receive inputs from X × Y, with Alice
receiving x ∈ X and Bob receiving y ∈ Y . Beginning at the root, the players traverse the tree
as follows: at each node, they send real values av(x) and bv(y) to a “referee” who returns
(to both of them) a bit indicating the result of the comparison av(x) ≥ bv(y); the players
proceed to the left child if av ≥ bv, and to the right child otherwise. Once they reach a leaf,
the protocol halts, and the players output the value in Z labelling the leaf; it computes a
function f : X × Y → Z in the natural way.

The cost of a real protocol is the depth of the tree, or equivalently the maximum number
of rounds of communications with the referee over any input (x, y), and the size is the number
of nodes in the protocol. Similarly, the cost (size) of computing a function f is the smallest
cost (size) real protocol computing f .

Krajíc̆ek showed that from a low-rank CP refutation of an unsatisfiable CNF, one can
obtain a real communication protocol for solving a related search problem [23]. We describe
this search problem next.

I Definition 16. Let F = C1 ∧ C2 ∧ · · · ∧ Cm be an unsatisfiable CNF and (X,Y ) be a
partition of the variables. The relation SearchX,Y (F) ⊆ {0, 1}X × {0, 1}Y × [m] consists
of all triples (x, y, i) such that the total assignment z = (x, y) to all of the variables of Ci
falsifies the clause i.

The search problem is the natural interpretation of a refutation in the setting of commu-
nication. Indeed, essentially every lower bound for CP has been proved by reducing to the
communication complexity of the search problem. In a similar manner, we show that SP
refutations can be turned into both randomized and real protocols for the search problem
which preserve the rank of the refutation.

I Lemma 17. Let F be an unsatisfiable CNF formula and (X,Y ) be any partition of the
variables. Any SP refutation of F of rank r implies a real communication protocol of cost
O(r+ logn) and an O(r logn+ log2 n) randomized bounded-error protocol for SearchX,Y (F).

The protocol consists of traversing the SP tree until a leaf is reached (r rounds), then
finding a clause falsified at the leaf in O(logn) rounds: note that evaluating any linear
inequality can be done using a single bit of communication.

For the second part of the lemma, Alice and Bob run the ε-error O(logm+ log ε−1)-bit
protocol of Nisan [25] for deciding an m-bit linear inequality. By the well-known result of
Muroga [24], any inequality on n Boolean variables only requires coefficients representable
by O(n logn) bits (recall that Alice and Bob’s input will always be a Boolean assignment
and so this suffices). Because there are at most r + logn inequalities evaluated along any
root-to-leaf path in the refutation, the protocol is repeated at most r + logn many times.
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By a union bound, we require ε < c/(logn+ r), where c is some constant bound on the error
that we allow. Therefore, every inequality can be computed in O(logn+ log r) many bits to
compute, giving a O(r logn+ log2 n) bounded-error randomized protocol for SearchX,Y (F).

5.2 Rank Lower Bounds For SP.
To take advantage of Lemma 17, we need to find some candidate formulas on which to
prove rank lower bounds and then study the search problem obtained from applying this
transformation. We do so for both the Tseitin formulas and a variant of the pebbling
contradictions, a reformulation of the classical black pebbling games as an unsatisfiable
3-CNF formula, originally introduced by Ben-Sasson et al. [2, 3].

The black pebbling game can be phrased as a contradictory 3-CNF as follows: Let G be
a DAG with a set of source nodes S ⊆ V (G) (having fanin 0), a unique sink node t (with
fanin 2 and fanout 0), and the remaining nodes each having fanin exactly 2. The pebbling
contradictions PebG consists of the following n+ 1 clauses over variables v ∈ V (G):

sink axiom: a single clause ¬t,
source axioms: a clause s for every source s ∈ S.
pebbling axioms: a clause ¬u ∨ ¬v ∨ w for every w ∈ V \ S with immediate children u, v.

Unfortunately, both the pebbling contradictions and the Tseitin formulas have short SP
refutations. In particular, for any graph G, the polytope formed by the constraints of PebG
is empty and therefore a nonnegative combination of the constraints yielding 0 ≥ 1 exists,
this is a valid rank-1 SP refutation. For Tseitin, this follows from the poly-logarithmic rank
upper bound in Theorem 6. We modify these formulas to make them harder to solve.

A standard technique for amplifying the hardness of computing some function f : Xn → Z
is by lifting that function. This is done by obscuring the input variables by replacing them
each by a small function g : A → X known as a gadget, which must be evaluated before
learning the input to the original function. For an input α ∈ An, the function f lifted by
gadget g is then (f ◦ gn)(α) = (g(α1), . . . , g(αn)). The intuition is that this lifted function
f ◦ gn should be much harder than the original because the players must first evaluate the
gadget g(αi) to learn each bit of the actual input to the function f . Furthermore, intuition
says that if the gadget is sufficiently difficult to compute, then the model will be reduced to
using much more rudimentary methods to evaluate the lifted function.

The standard hard-to-compute gadget is the pointer or index gadget, IND` : [`]×{0, 1}` →
{0, 1}. For an input (x, y) ∈ [`]× {0, 1}`, x is a log `-bit string encoding a pointer into the
`-bit string y ∈ {0, 1}`. The output of IND`(x, y) is y[x], the x-th bit in the string y. This
is most often applied in communication complexity, where typically the variable partition
between the players is that Alice is given x ∈ [`] and Bob is given y ∈ {0, 1}`. In any standard
model of communication, for this partition of the variables, it is difficult to imagine any
communication protocol which could compute the index gadget with significant advantage
over the trivial protocol; sending every bit of Alice’s pointer x to Bob.

Raz and McKenzie formalized this intuition, in what has become known as a lifting
theorem [14,27]. They show that deterministic communication protocols cannot compute any
function f lifted by the index gadget significantly better than simply mimicking a decision
tree computing f , and performing the trivial protocol for evaluating the index gadget every
time a bit of the input to f is needed.

Lifting theorems for real communication were originally proved by Bonet et al. [5] based
on the techniques of Raz-McKenzie. Their theorem lifts lower bounds on the decision tree
complexity of a function f to lower bounds on the cost of real communication protocols
computing f ◦ INDn` . The decision tree complexity DT(f) of a function f is simply the
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minimum depth need by any decision tree to compute f . We use a simplified lifting theorem
for real communication by de Rezende et al. [10], which we state next.

I Theorem 18. (de Rezende et al. [10]) Let f be a function with domain {0, 1}n and let
` = n4. If there is a real communication protocol of cost c that solves f ◦ INDn` where Alice
is given x ∈ [`]n and Bob is given y ∈ {0, 1}n`, then there is a decision tree solving f using
O(c/ log `) queries.

Our goal is now to is to combine this theorem with Lemma 17 in order to prove lower
bounds on the rank of SP refutations of PebG ◦ INDn` . Syntactically speaking though,
PebG ◦ INDn` is not a valid input to our proof system. Therefore, we must show that the
lifted function can indeed be phrased as a small CNF formula. The following encoding is due
to Beame et al. [1]:

Let F = C1∨ . . .∨Cm be a CNF formula over variables x1, . . . , xn. The CNF representing
F ◦ INDn` is defined on new sets of variables yi,j and zi,j for all i ∈ [n] and j ∈ [`]. This CNF
has the following set of clauses

Pointer clauses: for each i ∈ [n], a clause yi,1 ∨ . . . ∨ yi,`.
F-clauses: for each clause Ci ∈ F , where Ci = yi1 ∨ . . . ∨ yik ∨ ¬xik+1 ∨ . . . ∨ ¬xis and
for every (j1, . . . , jn) ∈ [`]n, a clause
(yi1,j1 → zi1,j1)∨ . . .∨(yik,jk

→ zik,jk
)∨(yik+1,jk+1 → ¬zik+1,jk+1)∨ . . .∨(yis,js

→ ¬zis,js
).

We will abuse notation and use F ◦ INDn` to denote the function, as well as it’s CNF
formulation, and use context to differentiate between the two.

A final subtlety that should be mentioned is that applying Theorem 18 to an SP refutation
of PebG ◦ INDn` yields a protocol for SearchX,Y (PebG ◦ INDn` ) which is not in the correct form
to apply Theorem 18 (SearchX,Y (PebG ◦ INDn` ) is a function of a lifted function, whereas
Theorem 18 can only be applied to lifted functions). Luckily, this is not a significant issue;
Huynh et al. [17] show that, for any unsatisfiable CNF F , any real communication protocol
for SearchX,Y (F ◦ INDn` ), where X = [`]n and Y = {0, 1}n`, implies a real communication
protocol for SearchX,Y (F) ◦ INDn` with the same parameters.

It is now straightforward to obtain lower bounds on the rank of SP refutations. For
the lifted pebbling formulas, SP rank lower bounds follow from combining Lemma 17 and
Theorem 18 with a lower bound on the complexity of decision trees solving PebG proved by
de Rezende et al. [10].

I Theorem 19. There exists a graph G of indegree 2 on n vertices such that the unsatisfiable
CNF formula PebG ◦ INDn` , for ` = n4, on n(`+ log `) variables requires rank Ω(

√
n logn) to

refute in SP.

Proof. Consider the pebbling formulas. de Rezende et al. [10] showed the existence of a
graph G on n vertices with indegree 2 such that the decision tree complexity of outputting
a falsified clause of the PebG formulas is Ω(

√
n/ logn). Applying the real communication

lifting theorem (Theorem 18) and combining this with the fact that shallow SP refutations
give efficient protocols for the associated search problem (Lemma 17), proves the desired
Ω(
√
n logn) lower bound on the rank of SP refutations of PebG ◦ INDn` . J

Finally, a similar technique can be applied to obtain a lower bound on the rank of
SP refutations for a lifted variant of the Tseitin formulas. This follows from the lower
bound on the randomized communication complexity of the search problem for the Tseitin
formulas lifted by a small constant-size gadget, which was obtained by Göös and Pitassi [13].
In particular, they use the versatile gadget, VER : Z4 × Z4 → {0, 1}, which is defines as
VER(x, y) = 1 ⇐⇒ x+ y (mod 4) ∈ {2, 3}.
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I Theorem 20. (Göös and Pitassi [13]) There exists a constant-degree graph G on n vertices
such that, if ` is any {0, 1} vertex labelling with odd total weight and (X,Y ) is any partition
of the variables, any bounded-error randomized communication protocol for
SearchX,Y (Tseitin(G, `) ◦ VERn) on O(n) variables, requires Ω(n/ logn) bits of communica-
tion.

Furthermore, Göös and Pitassi showed how, for any CNF formula F , the composed
function F ◦ VERn can be encoded as a CNF formula. For brevity, we refer the reader to
Göös and Pitassi [13] for the definition of encoding of F ·VERn as a CNF formula, and recall
that if F is a CNF with m clauses and width w, then F ◦ VERn contains at most m · 24w

clauses. The width of every clause in the Tseitin formulas are bounded by maximal degree d
in the underlying graph. Using this fact, we are able to obtain near-optimal lower bounds
on the rank of SP refutations by combining Theorem 20 with Lemma 18 as in the proof of
Theorem 19. This lower bound should be contrasted with the logarithmic-rank SP upper
bound on Tseitin from Theorem 6.

I Theorem 21. There a constant-degree graph G on n vertices such that if ` is any {0, 1}
vertex labelling with odd total weight, the CNF formula Tseitin(G, `)◦VERn, on O(n) variables
and clauses, requires SP refutations of rank Ω(n/ log2 n).

5.3 SP Refutations Cannot Be Balanced.
Optimistically, one could hope that the length and rank of SP refutations may be closely
related and therefore that we could leverage these rank bounds to obtain lower bounds on
the length of SP refutations. We answer this question negatively, showing that there exists a
contradictory CNF which admits short refutations, but for which these refutations must be
almost maximally deep. That is, we show that SP refutations cannot be balanced; an SP
refutation of length S does not imply one of rank O(logS). This shows that in SP the rank
of refutations is a distinct complexity measure from the length.

In order to obtain time-space tradeoffs, de Rezende et al. [10] proved Resolution upper
bounds on the lifted pebbling contradictions. Combining this upper bound (which can be
simulated efficiently in SP) with the lower bound from Theorem 19 exhibits a formula that
requires small size, but near-maximal rank to refute in SP.

I Theorem 22. SP refutations cannot be balanced.

Proof. Suppose that a SP refutation of length S implied the existence of a SP refutation
of the same formula of rank O(logS). Let G be the graph from Theorem 19 on n vertices,
and let PebG be the pebbling contradictions defined on this graph. It follows immediately
from Lemmas 7.2 and 7.3 from de Rezende et al. [10] that for any graph of indegree 2 on
n vertices, that there is a Resolution refutation of PebG ◦ INDn` of length O(n`3). Since SP
can p-simulate Resolution, this implies a poly(n) upper bound on the same formula in SP.
Under the assumption that SP refutation can be balanced, this would imply a SP refutation
of depth O(logn) of PebG ◦ INDn` , contradicting the lower bound from Corollary 19. J

Although it is a well-known fact that tree-like Cutting Planes refutations cannot be
balanced, Impagliazzo et al. [19] show that the randomized communication protocols for the
search problem obtained from CP refutations can be balanced. Using this fact, they show
that a length S tree-like Cutting Planes proof implies a depth O(logS) protocol for the
search problem. This implies that communication cost lower bounds for the search problem
imply length lower bounds for tree-like Cutting Planes refutations.
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Optimistically one could hope that a similar approach could be applied to SP refutations.
This is reinforced by the fact that the real communication protocols for the search problem
obtained from SP refutations (Lemma 17) maintains the same topology as the refutation.
That is, the cost and size of the resulting protocol are approximately equal to the rank and
length of the proof (unfortunately, this is not the case for the randomized protocols obtained
from SP refutations). Therefore, one might hope that even though SP cannot be balanced,
the corresponding real communication protocols for the search problem can be balanced.
Thus, lower bounds on the rank of real-communication protocols for the search problem
would imply lower bounds on the size of SP proofs.
I Corollary 23. Any SP refutation of length S and rank r of an unsatisfiable formula F
implies a real communication protocol of size O(S ·n) and cost O(r+logn) for SearchX,Y (F).

This follows from observing that the protocol obtained in Lemma 17 also preserves the
topology (and therefore both the rank and the length) of the refutation.

5.4 Real Communication Protocols Cannot Be Balanced.
Analogous to Theorem 22 ( SP proofs cannot be balanced) in this section we will show that
real communication protocols cannot be balanced. This should be contrasted with other
standard models of communication such as randomized and deterministic, which can be
balanced. In particular, we exhibit a function which has a real communication protocol of
small size, but for which every real protocol must have high cost. Towards this end, we prove
lower bounds on the real communication complexity of the famous set disjointness function.

The set disjointness function DISJn is the canonical NPcc-complete problem. Each player
is given an n-bit string, interpreted as indicator vectors for an underlying set of n elements,
and they are asked to determine whether their sets are disjoint. That is, the players aim to
solve the function DISJn(x, y) =

∨
i∈[n](xi∧yi). To our knowledge, the only known technique

for obtaining lower bounds on the real communication of any problem are via lifting theorems,
reducing the task of proving lower bounds on lifted functions to the decision tree complexity
of the un-lifted function. Although DISJn can be seen as a lifted function (the ORn function
lifted by the two-bit AND gadget), these real communication lifting theorems work only
for super-constant sized gadgets, and therefore cannot be applied directly to DISJn. We
circumvent this difficulty by exploiting the fact that DISJn is NPcc-complete. To do so, we
find a lifted function in NPcc to which our simulation theorems can be applied. Consider the
n-bit ORn function composed with the index gadget, OR ◦ INDn` , for some ` defined later.

I Lemma 24. ORn ◦ INDn` ∈ NPcc, for any ` ≤ 2polylog(n).

Proof. First, observe that the index gadget IND`(xi, yi), for a single bit i of the input to the
ORn function, can be computed by a brute force protocol in log ` bits of communication.
Alice simply sends to Bob the log ` bits of her input xi = xi,1, . . . , xi,log `. Bob is then able
to evaluate IND`(xi, yi).

Now, consider the following NPcc protocol for ORn ◦ INDn` : Alice and Bob are given
as a proof, a logn-bit string indicating the index i ∈ [n] of the ORn function where
IND`(xi, yi) = 1. They then perform the brute force protocol to evaluate IND`(xi, yi) and
verify that the outcome is indeed 1. In total, this requires log `+ logn+ 1 = polylog(n) bits
of NPcc-communication. J

To obtain lower bounds on ORn ◦ INDn` , we appeal to the real communication simulation
theorem (Theorem 18), reducing communication lower bounds for ORn ◦ INDn` on the lifted
problem to the well-known linear decision tree lower bounds on the ORn function.
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I Lemma 25. Let ` = n4. The cost of any real communication protocol computing ORn◦INDn`
is Ω(n log `).

Proof. Combining the Ω(n) lower bound on the decision tree complexity of computing the
ORn function with the simulation theorem of de Rezende et al. [10] proves the result. J

I Theorem 26. The cost of any real communication protocol for DISJn is Ω((n logn)1/5).

Proof. Let ` = n4. Consider the following reduction from OR ◦ INDn` to an instance of set
disjointness. By Lemma 24, the NPcc-complexity of ORn ◦ INDn` is log `+ logn+ 1. That
is, there exists a cover of the 1s of the communication matrix of ORn ◦ INDn` with at most
2n` rectangles. Enumerating the 1-rectangles gives us an instance of set disjointness: on
input (x, y) to ORn ◦ INDn` , Alice constructs the 2n`-bit string which is the indicator vector
Ix(x) of the set of 1 rectangles which x belongs to, similarly Bob constructs Iy(y) the same
for y. Thus ORn ◦ INDn` (x, y) = 1 iff DISJ2n`(Ix(x), Iy(y)) = 1. Combining this with the
lower bound from Lemma 25 gives a lower bound of Ω((n log `)1/5) on the cost of any real
communication protocol computing DISJn. J

I Corollary 27. Real communication protocols cannot be balanced.

Proof. We begin by giving a cost n, size 2n+ 1 real communication protocol for DISJn =
∨ni=1(xi ∧ yi). Sequentially from i = 1, . . . , n, Alice and Bob solve xi ∧ yi. To do this, Alice
sends xi to the referee and Bob sending 2− yi. Observe that xi ∧ yi = 1 iff xi ≥ 2− yi. This
protocol contains exactly 2n nodes, one for each query to xi ∧ yi for i ∈ [n], one for each
node announcing that xi = yi = 1 and a single node announcing that x ∩ y = ∅.

Suppose by contradiction that one could balance real communication protocols. The size
2n+1 protocol would therefore imply a cost log(2n+1) real protocol for DISJn, contradicting
the lower bound from Theorem 26. J

6 Conclusions

This paper introduces and develops the Stabbing Planes proof system as a natural extension
of DPLL and pseudoBoolean solvers to handle a more expressive set of queries. Although it
is equivalent to a tree-like version of a system already in the literature, this new perspective
turns out to be quite useful for proving upper bounds. This paper is only a preliminary
exploration of the SP proof system and leaves open many interesting problems from both a
theoretical as well as a practical perspective.

As mentioned in the preliminaries, we do not have an analog to Cook et al. [7] for Stabbing
Planes and so it is unknown whether for SP refutations, the length and size (number of bits)
can be treated as the same measure. That is, is it possible to prove that any SP refutation
of length l can be simulated by an SP planes refutation of size poly(l, n)?

We have shown that that CP refutations of small rank can be simulated by SP refutation
of small rank, and that CP refutations of small size can also be simulated by SP refutations
of small size. Can we simulate both rank and size efficiently? That is, can any CP refutation
of rank r and size s be simulated by a SP refutation of rank poly(r) and size poly(s)?

Is it possible to prove superpolynomial lower bounds for SP? Krajíc̆ek [22] gave exponential
lower bounds on the length of R(CP) refutations when both the width of the clauses, and
the size of the coeficients appearing in the inequalities are sufficiently bounded. This was
later improved by Kojevnikov [21] to remove the restriction on the size of the coefficients
for tree-like R(CP). In particular, to obtain any lower bound at all, the width of the clauses
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appearing in the R(CP) refutations must be bounded by o(n/ logn). From Theorem 9, a size
S and rank D SP refutation implies an R(CP) proof of size O(S) and width O(D). Therefore,
this result is also a size lower bound for bounded-depth SP. Unfortunately, it appears that
these techniques are fundamentally limited to be applicable only to SP refutations with low
depth, and so new techniques seem needed to overcome this barrier.

As mentioned in the introduction, we feel that SP has potential, in combination with state-
of-the-art algorithms for SAT and ILP, for improved performance on some hard instances,
and problems such as maxSAT and counting satisfying assignments. The upper bound on the
Tseitin example illustrates the kind of reasoning that SP is capable of: arbitrarily splitting the
solution space into sub-problems based on some measure of progress. It would be interesting
to build a SP-based solver, or to add SP-like branching to a solver such as CPLEX.

It has been a long-standing conjecture that CP does not have short refutations of the
Tseitin formulas, as CP is unable to count mod2. On the other hand, Theorem 17 gives a
quasi-polynomial upper bound on the Tseitin formulas in SP. Therefore, a natural approach
to separating SP and CP is through proving CP lower bounds for Tseitin formulas.
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