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Abstract 

Ajtai [Ajt] recently proved that if for some fixed d, ev- 
ery formula in a Frege proof of the propositional pi- 
geonhole principle PHP, has depth at most d, then 
the proof size is not less than any polynomial in n. 
By introducing the notion of an “approximate proof” 
we demonstrate how to  eliminate the non-standard 
model theory, including the non-constructive use of the 
compactness theorem, from Ajtai’s lower bound. An 
approximate proof is one in which each inference is 
sound on a subset of the possible truth assignments 
- possibly a different subset for each inference. We 
also improve the lower bound, giving a specific super- 
polynomial function (nSl(’og’d+l’ ”)) bounding the proof 
size from below. 

1 Introduction 

A Frege proof is a sequence of propositional formulas, 
each of which is either an axiom instance or follows from 
previous formulas by one of a fixed set of inference rules. 
The pigeonhole principle can be expressed by a class of 
propositional formulas, {PHP, : n E N } ,  where PHP, 
asserts that there is no 1-1 mapping from a set Do of 
size n + 1 to a set D1 of size n. 

Ajtai [Ajt] recently proved that if for some fixed d ,  ev- 
ery formula in a Frege proof of PHP, has depth at most 
d, then the proof size is not less than any polynomial in 

CH3022-1/91/0000/0367/$01 .OO Q 1991 IEEE 

n. His proof, while combinatorial in part, is proven for 
a nonstandard model of Peano Arithmetic; the com- 
pactness theorem is then applied to obtain the result 
for standard values of n. 

We demonstrate how to eliminate non-standard model 
theory from Ajtai’s lower bound by introducing the no- 
tion of an “approximate proof”. An approximate proof 
is one in which each inference is sound on a subset of 
the possible truth assignments - possibly a different 
subset for each inference. 

Our notion of approximation resembles that of 
Razborov [Raz] where functions are approximated by 
introducing small errors at each gate. However, instead 
of approximating just one formula, we are approximat- 
ing each formula in a sequence of related formulas. 
The approximation made for each individual formula 
changes how the formulas relate to each other: instead 
of each formula being a sound conclusion from previ- 
ous formulas, the inference is only an “approximately 
sound” inference. The use of approximation gives a 
more direct lower bound proof than was obtained us- 
ing non-standard model theory. 

In this paper we also improve on Ajtai’s result, giving 
a specific super-polynomial function which bounds the 

where logtdt1] n is d + 3  iterations of log. Although the 
possibility of an exponential bound remains open, we 
give a reason why the proof method cannot be improved 
to yield an exponential bound. 

We also demonstrate that if the Frege proof is of poly- 

Frege proof size from below. The bound is nn(log‘d+ll 4 1  
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nomial size, then its dept,h must be R(log* n). This 
improves the statement which can be inferred from tZj- 
tai’s result, namely that polynomial size proofs must 
have non-constant depth. 

Constant-depth lower bounds for PHP, are related 
to the power of the systems of bounded arithmetic, 
IAo(f), and &(f). In particular, a super-polynomial 
bound for PHP, implies that IAo(f) cannot prove the 
sentence asserting the pigeonhole principle for f ,  while 
an exponential lower bound imples that S:! (f) cannot 
prove the pigeonhole principle for f .  See Paris, Wilkie 
& Woods [PWW], Paris & Wilkie [PW], and Ajtai [Ajt] 
for discussions of this question. 

Lower bounds for propositional proof systems also bear 
on broader complexity issues. For example, the prob- 
lem “NP =? CO-NP” is equivalent to the problem, “Is 
there a propositional proof system in which the cor- 
rectness of a derivation can be checked in polynomial 
time, and which admits polynomial size proofs of all 
tautologies?” [CR] . 

Our lower bound is proved using a particular Frege s y s  
tem over the basis { v , ~ } ,  but it holds for any Frege 
system: by a theorem of Cook and Reckhow [CR], all 
Frege systems are polynomially equivalent; and exam- 
ining their theorem one finds that the small depth of 
proofs is preserved in the polynomial length simulation. 

The base case of our result is a generalization of an 
argument originally given by Haken [Ha] (and later ab- 
stracted by Urquhart [Urql) showing that any resolu- 
tion refutation of PHP, must contain a large clause. 

As in previous results ([FSS], [Ajt2], [HI, [Ajt]) involv- 
ing bounded depth formulas, we proceed by induction 
on the depth. Applying a random restriction at each 
depth, we can simplify the formulas enough to reduce 
the depth, without simplifying the problem too much. 
However, instead of obtaining a depth d -  1 proof of the 
(restricted) pigeonhole principle which is completely 
sound, we obtain a depth d - 1 “approximate” proof of 
the (restricted) pigeonhole principle, which is only ap- 
proximately sound. This approximation is introduced 
using a “pseudo complement” similar to Ajtai’s. 

2 Overview, and Definitions 

2.1 Overview 

We encode PIIP, using (n+l)n propositional variables, 
{Pij : i E Do & j E D l } ,  where DO and D1 are 
disjoint sets such that 1001 = n + 1 and = n. 
Intuitively, Pij = 1 iff i is mapped to j. Since our proof 
system will be a refutation system, we are concerned 
with the statement -PHP,, which can be written as 
the conjunction of the following pigeonhole clauses: 

In a refutation, one starts with the negated clauses 
TPHP,  as axioms and then derives v{}, i.e. False. 
More exact definitions of the formal system are given 
below. 

We obtain the lower bound by induction on the depth, 
d ,  of the Frege refutation. Applying a random restric- 
tion to  the refutation, we can simplify the bottom lev- 
els so that each occurrence of negation at depth 3 of 
each formula is replaced by the ‘pseudo complement’. 
This reduces the depth of each formula to d - 1, but 
the resulting sequence of formulas may now only be an 
approximate refutation. 

An approximate refutation is a F’rege refutation where 
each inference is sound with respect to a large subset 
of all truth assignments. In contrast, an inference in 
a regular Frege refutation is sound with respect to all 
truth assignments. Note that our notion of an approx- 
imate proof is a local one: each inference can be sound 
with respect to a different subset of truth assignments, 
and there may be no single assignment which validates 
all the inferences. A ‘good’ approximation for an in- 
ference can be obtained if every OR of small ANDs at 
the bottom levels can be ‘covered’ by a small set after 
the restriction is applied. This covering set, which was 
also used by Ajtai, is analogous to the set of variables 
remaining after restriction in [FSS]; it is dissimilar to 
the minterms of Hhtad  [HI. 

We repeat the restriction argument d-2 times to obtain 
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an approximate depth 2 Frege refutation of the pigeon- 
hole principle, i .e. a refutation in which each formula 
is an OR of small ANDs. We then apply one more re- 
striction to obtain a refutation in which each formula in 
the proof is an OR of small ANDs, covered by a small 
set. The existence of such a refuhtion contradicts the 
base case, which states that any good approximation to 
a Frege proof of the pigeonhole principle must contain 
a formula which has no small covering set. 

2.2 Definitions 

The system H 

The lower bound for the pigeonhole clauses will be 
proven for the Frege refutation system H, described in 
Figure 1, for unbounded fan-in formulas. This system 
is a modification of the inference system in Shoenfield 
[Sh p. 211. The formulas of H are unordered rooted 
trees defined inductively by the rules: (1) if y is a set 
of variables then V {  A 7 )  is a formula; if A is a formula 
then - A  is a formula, and if r is a finite set of formulas, 
then v r is a formula. Thus the system allows A only 
a t  the bottom level, and in fact requires A’s there. This 
syntactic requirement simplifies the exposition. 

In the schemas of Figure 1, A,  B, and C represent for- 
mulas, and and A are finite sets of formulas. NOTE: 
AGB is the formula A V B with the OR’s merged tc- 
gether. More formally, AGB = V(DISJUNCTS(A) U 

DISJUNCTS(B)); where DISJUNCTS(X) is the set of dis- 
juncts of X if X is a disjunction and DISJUNCTS(X) = 
{ X }  otherwise. 

The size of a formula is one plus the number of occur- 
rences of V and -, in the formula; the size of a Frege 
proof is the sum of the sizes of the formulas occurring 
as lines in the proof. Since each formula consists of 
ORs of ANDs in the bottom 2 levels, and the rest of 
gates are ORs and NOTs, the depth of a formula is 
2 plus the number of alternations of ORs and NOTs. 
The depth of a Frege proof is the maximum depth of 
the formulas in the proof. 

If a is a propositional formula in the ordinary sense 

Excluded Middle Axiom: A t - A  

A 
Weakening Rule: ___ 

( A ~ B )  

( A ~ B ) ,  (-A;c) 

(&C) 
Cut Rule: 

Figure 1: Rules of the system H 

of, say, [Sh], then we can transform it into a formula 
aH of the system H as follows: write it using the basis - and V; then replace every propositional variable Pij 
with V{A{ Pi j } } ;  then merge together any adjacent v ’ s  
created a t  heights 2 and 3. For example, the images of 
the negated PHP, clauses are: 

Now, given a set of ordinary propositional formulas, say 
{a i } ,  and given another ordinary formula p, we define 
an H-proof of p from (Y over D to be a sequence of 
formulas such that the final formula is P H ,  and each 
formula is either a: for some i or follows from zero 
or more preceding formulas using one of the axioms or 
rules of H (see Figure 1). A refutation of a over D is 
an H-proof of V { }  from a. 

I t  is easy t o  see that the system H is implicationally 
complete, using for example the fact that the propo- 
sitional fragment of Shoenfield’s system is implication- 
ally complete. If {a} i  k @ in Shoenfield’s system then 
we can obtain an H-proof of ,B from (Y by replacing ev- 
ery line y of the Shoenfield proof with y H ;  additionally 
we must insert appropriate combinations of the Merg- 
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ing and Unmerging rules in H 

The system H is not suited to a direct proof of the lower 
bound. We will describe a modified version of H ,  H ' ,  
that allows cert.ain unsound inferences to be made. In 
spite of this unsoundness, we can retain control over the 
complexity by severely restricting the type of unsound 
inference which we permit. The new inference system 
will contain all of the rules of H plus additional rules 
that allow us to replace TA by the pseudo complement 
of A ,  when A is of a simple form. In order to describe 
the pseudo complement, we need some definitions. 

Maps; t-disjunctions; covering sets; 1-1 assign- 
ments. 

First recall that the variables over D = DO U D1 are 
{Pij : i E Do, j E Dl}. A map over D is defined to be 
a conjunction of the form A r, where r is a set of vari- 
ables over D such that distinct variables in r have dis- 
tinct left subscripts and distinct right subscripts. Maps 
describe bijections between subsets of DO and subsets 
of D1. The size of a map A I' is IF!; if the size of a map 
is bounded by t ,  it is said to be a t-map. An OR of 
maps is called a map disjunction; if all the maps are of 
size at most t ,  then it is a t-disjunction. 

For a map disjunction G, define min(G) to be the 
disjunction obtained by deleting every map from G 
which implies some other map in G. For example, 
 PI^ = min((P11) V   PI^ A I&)). In other words, we 
remove the map C from G if there is some other map 
BSC in G. Of course, G and min(G) have the same 
truth value on all assignments. 

A formula A is covered by a set V 5 DO U D1 if every 
variable in A has either its left or right subscript in V; 
A is k-coverable if it is covered by some set V of size L. 
We write Cover(X) for the size of the smallest covering 
set of X .  

A map or formula B is properly covered by V if it is 
covered by V and every element of V covers some vari- 
able of B;  that is, if V covers B and every vertex in V 
is hit by an edge of B.  

A truth assignment 'p over D is any total assignment 
of {0,1} to the variables over D.  An assignment 'p is 
1-1 on V if {(i, j )  : cp(Pi,) = 1 & (i E V v j E V ) }  is 
a bijection (a map) properly covered by V .  

Conflicting maps; pseudo-complements. 

Two maps A I' and A A are said to confzict if there are 
variables P;, E r and E A so that either i = k and 
j # I ,  or j = 1 and i # k. Notice that there is no map 
which conflicts with A{}. 
If A is a map disjunction such that min(A) is covered 
by V ,  then the pseudo complement, c ( A ,  V,D), of A 
with respect to V on universe D is the following map 
disjunction: 

V { B  : B is a map over D properly covered 
by V ,  and B conflicts with all maps in A}. 

Notice min(A) doesn't have to be properly covered by 
V ,  just covered. 

The complement we have defined is not quite the same 
as the complement defined by Ajtai, for two reasons. 
First, we require the conflicting maps to be properly 
covered where Ajtai just requires them to be covered; 
we need this change make the Distribution Lemma hold 
(see below). Second, we do not require that A be cov- 
ered by V ,  only that min(A) be covered by V. This sim- 
plifies the Conversion Lemma (below), and is a harm- 
less change: a map conflicts with all the maps of min(A) 
if and only if it conflicts with all the maps of A. 

Making these changes to Ajtai's pseudo-complement 
does not spoil its key property: c (A ,V ,D)  is equiva- 
lent to TA with respect to all truth assignments over 
D which are 1-1 on V .  More exactly, we have the fol- 
lowing easy lemma. 

Lemma 2.1 (Complement Property) If cp is  
a truth assignment which is 1-1 on V, then 

cp(c(A, v, D)) = cp(TA). 

Proof. If V = 0 then, since V covers min(A), either 
A = v{} or else A{} is a map in A; the lemma is 
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easily seen to hold in these cases. Therefore we assume 
v f .0 .  
If ’p(c(A, V, D ) )  = 1, then let B be a (nonempty) map 
in c ( A ,  V, D )  set to 1 by p. Every map C in A conflicts 
with B at some point in V ;  since ‘p is 1-1 on V and 
assigns 1 to all variables of B ,  ‘p assigns 0 to the con- 
flicting variable in C. Considering all C this implies 
p(A) = 0, SO ‘p(7A) = 1. 

In the other direction, suppose p(A)  = 0. Let B be 
the (nonempty) map properly covered by V ,  induced 
by the  assignment ‘p. That is , B = A\(& : p(Pij) = 
1 & P,jis covered byV}. Considering any map C E A ,  
we have p(C) = 0; therefore there is a variable in 
C which is set to zero by ’p (and covered by V ) .  
This variable conflicts with some variable in B ,  be- 
cause p(B) = l and ‘p is l-l.on V .  We conclude 
B E c (A ,  V, 0) and therefore ’p(c(A, V, 0)) = 1. 

The system H’; approximate refutations; t- 
soundness 

The new proof system, H‘, is obtained by adding the 
following schemes to  H ,  for every map disjunction A 
and set V covering A: 

Approximate 
Excluded Middle Axiom 

Approximate (AGB), (c(A, V, D ) t C )  

Cut Rule ( B t  C) 

A ~ ( A ,  v, D )  

Notice that these inferences depend on the fixed set D 
in the same sense as the PHP clauses depend on D. 
However, V can vary. 

I t  should also be noted that the approximate comple- 
ments in different parts of an approximate proof can 
be defined relative to  quite different sets. 

Neither the approximate excluded middle axiom nor 
the approximate cut rule are logically sound; however, 
by the Complement Property they are sound for the 
class of assignments which define 1-1 maps on‘V. 

More formally, an inference in an approximate proof is 
t-sound if there is a set V DO U D1 with [VI 5 t so 

that any assignment which defines a 1-1 map on V and 
makes all premises of the inference true also ma.kes the 
conclusion true. A sound rule of inference is a 0-sound 
rule. If IVI = t is large, there are only a small number 
of truth assignments which are 1-1 on V and hence the 
inference is not very sound. On the other hand, the 
smaller IVI is, the closer the inference is to a perfectly 
sound inference. 

Lemma 2.2 (Soundness Fact) The Approximate 
Rules are !VI-sound. 

Proof. This follows immediately from the Comple- 
ment Property. 

Using this fact, we can slightly strengthen the notion 
of t-soundness as follows: a proof in H‘ is strongly 
t-sound if every inference is either 0-sound or is one 
of the Approximate rules involving .(A, V ,  D )  where 
IVI 5 t .  In other words, we strengthen the condition 
so we know that the particular set V used in taking the 
pseudo-complement is also the set which witnesses the 
t-soundness. 

We can think of “strongly t-sound” as a syntactic con- 
dition which is used to guarantee that the semantic 
requirement, “t-sound” , holds. 

Restrictions; miscellany 

In choosing random restrictions, we use the same prob- 
ability space as Ajtai. Each random restriction defines 
a one-to-one function between a subset of DO and a 
subset of D1. Specifically, the probability space Qnie 

is the set of all pairs p = (r,s) where: s is a subset 
of D = DO U D1 such that SO = s n DO is uniformly 
chosen with size ne + 1 and, separately, SI = s n D1 
is uniformly chosen with size n‘; and r is a uniformly 
chosen bijection from DO \ s to  D1 \ s. 

Every p = (r,  s) in U”” determines a unique restriction, 
p,  of the variables Pij, (i E Do, j 01) as follows. 
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Notice that. variables assigned * by p are Variables on 
S. 

We th ink  of restrictions as being performed syntacti- 
cally on a formula: to apply a restriction, we remove 
from each map those variables which the restriction sets 
to 1;  and we remove from a map disjunction those maps 
in which some variable was set to 0. Thus, for example, 
the identity (AtB) t , ,=  AtP GBt,, holds. Of course, by 
the definition of a formula, a given map cannot appear 
twice in a disjunction. When we want to perform addi- 
tional simplifications, we explicitly mention the min() 
operation. 

The notation Pr;"[A] denotes the probability that A 
occurs when p is drawn from R",'. For a Boolean for- 
mula F and an element p E R,,,, F restricted by p will 
be denoted by F I,,. The notation log['] n indicates 1 
applications of the base-:! log function (not (log n)'). 

Throughout this paper, DO is a set of size n + 1 and 
D1 is a set of size n; where it is convenient, we shall 
assume that an ordering is given for each of DO and D1. 

Whenever we write a real number where an integer is 
required, we mean the integer part of the real number 
(floor). When we assert an inequality involving n, we 
shall often assume tacitly that n is sufficiently large. 

3 Reducing the Depth 

In this section we show how a proof of depth d is con- 
verted into one of depth d - 1, while preserving approx- 
imate soundness. 

All formulas in the proof will be approximated simu- 
laneously in a bottom-up, level-by-level fashion by re- 
peatedly applying restrictions, replacing each negation 
at height 3 by an approximating OR, and merging, un- 
til we eventually obtain all depth 2 formulas. Note that 
while the approximation of each gate is quite good, an 
original depth d formula may eventually be transformed 
into a very different depth 2 formula. The key point 
is that our inference rules have the syntactic property 
that only one gate may be eliminated per inference, 
and hence our gate-by-gate approximation leads to a 

new sequence of formulas which are still approximately 
sound. 

At each stage, the depth is reduced by 1 and some 
of the inferences are converted from being 0-sound to 
being t'-sound for some t'. Inferences which were made 
t-sound in some previous stage will remain at worst t- 
sound; they will automatically be t'-sound since we will 
have t' 2 t .  

In this connection, notice that in the Cut Rule (and 
in the Approximate Cut Rule), replacing, say, B by an 
approximating formula B' in both the hypothesis and 
conclusion does not affect the soundness of the infer- 
ence. The soundness of the inference is only affected 
when we approximate the negations at the top level of 
the formulas; for example when we use the pseudo com- 
plement on the negation which is explicitly mentioned 
in the Cut Rule. 

We will need to prove that the conversion process re- 
sults in a syntactically proper approximate proof; as 
a step towards this, we show in the following lemma 
that the pseudo complement is in an appropriate sense 
invariant under restrict ions. 

Lemma 3.1 (Distribution Lemma) Let A be a 

map disjunction over D such that V covers min(A); 
and let  p = (r,  s) E V"". Then c(A,  V, D) I,= c(A 1, 
, v n S, D n S )  . 

Proof. First we show that any given map B' in 
c(A,  V, D )  r p  is also in c(A t p ,  V n s, D n s). Let B 
be a map in c(A, V, D )  such that B I,= B' # 0. We 
wish to show that Bt, is in c(Ar,, V n s, D n s). First 
of all, because B is properly covered by V and B con- 
tains only variables set to 1 or * by p ,  BrP is properly 
covered by V n s. Secondly, variables in B I,, are all 
variables over D n s because other variables are as- 
signed values by p; since Br, is a map, it is a map over 
D n s. Now, if Alp=  0 = v{} then trivially Br, is in 
c(At,, V n s, D n s). Otherwise, let D' be any map in 
A I,,, and let D be a map in A such that D' = D 1,. 
By definition of c (A ,  V, D), B conflicts with D; using 
symmetry, let us assume that Pij is in B,  and Pik in 
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D ,  where j # I C .  If PzJ (or Pis) were set to 0 by p, a 

contradiction would hold because then BrP (or, respec- 
tively, DIP) would be 0 and therefore would not be a 
map in c(A,  V, D)r, (respectively, A t p ) .  And if either 
of the two variables were set to 1, the other would be 
set to 0; hence p(Pij)  = p(Pik) = *. Therefore, B' and 
D' conflict. 

In the other direction, let B' = Ar be any 
given map in c(A rP,V n s, D n s). Define B by 

A = {Pij : 

B = A(I'UA) 

Pij is a variable over D, 
pij I,= 1, and Pij covered by V } 

Notice that (AI')r,# 0 because I' consists of variables 
over D n s, and any variable set to 0 by p is not a 
variable over D n s. Therefore the variables in r and 
A don't conflict. 

By construction, Brp= B'. We wish to show that B is 
in c(A,  V, D), implying B' E c(A,  V, D)t,. Firstly, B is 
a map over D covered by V ,  by construction. Secondly, 
V covers B properly, because vertices of V are either 
in V \ s and hit by edges of A, or are in V n s and hit 
by edges of B', using the properness of V n s for B'. 

Now, if A = 0 = v{} then trivially B conflicts with all 
maps in A and therefore is in c(A,  V, 0 ) ;  else consider 
any map C in A .  We must show that B and C conflict. 
Notice C is a map over D covered by V ,  and Cl, is a 
map over D n s covered by V n s. 

If B r p  conflicts with C r p ,  then B conflicts with C, 
as desired. Otherwise, Br, doesn't conflict with Cr,; 
since B t P E  c ( A  I,, V n s, D n s) ,  it must be that C 1, 
is not in A 1,. Yet C is in A ,  and because c(A I,, V n 
s, D n s )  # 0, A t p #  1; therefore p removes C from A ,  
i.e. Cl,= 0. This means some variable PZy in C is set 
to 0. 

By the properness of V n s for I', if Pzy were covered 
by V n s then it would either be in r (contradicting 
B I,# 0) or would conflict with I' (implying that B 
conflicts with C ,  as desired). Since C is covered by V ,  
the only remaining case is that Pzy is a variable covered 
by V \ s and set to zero by p. 

Let us say, using symmetry, that y E V \ s .  Now let 

Pvy be a variable set to 1 by p ,  and which therefore 
conflicts with Pry. Since PtmY is in A,  B conflict,s with 

c. I 

Definition 3.2 An approximate refutation of PHP, is 
(d,t)-good if it has depth a t  most d, map size at most 
t ,  and is strongly t-sound. Notice that if a refutation is 
( d ,  t)-good, then it is (d, 1')-good for all t' 2 t .  

Below, we will describe a sufficient condition which 
allows us to convert a (d,t)-good refutation into a 
( d  - 1,t)-good refutation. First we describe the con- 
version mechanism. 

Let P be a (d, t)-good refutation over D of PHP,  ( d  > 
2), and let p be a restriction. P is converted into a 
depth d - 1 refutation in four steps. 

(1) Let Go . . . G, be the distinct map disjunctions ap- 
pearing in formulas of P t,. (We only need con- 
sider maximal map disjunctions, which appear in 
PIP other than as proper subformulas of map dis- 
junctions.) 

Let WO . . . W, C D n s be minimum size covering 
sets for min(Go1,) . . . min(G, 1,). In case G is just 
V { A { P j k } }  for some j, k, then we prefer to cover 
min(Gr,) with W = {IC}. 

(2) Apply the restriction p to each formula of P.  

(3) Replace each occurrence of 1G; 1, by c(G; r p  
, W ; , D n s ) .  

(4) Merge together OR gates appearing a t  heights 2 
and 3 in the new proof. 

L e m m a  3.3 (Conversion L e m m a )  Let P be a 
(d, t)-good approximate refutation over  D of PHP, 
(d > 2), and let p = ( T , s )  E U')'. If t' 2 t and 
Cover(min(G1,)) 5 t' for every maximal map disjunc- 
tion G in P ,  then P converted by p is a ( d -  1,t')-good 
approximate refutation over D n s of PHP,,. . 

Proof. Let Go..  .G, and W O . .  . W, be as described 
above. 
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We must consider each inference of the original proof 
and see that after the conversion process, it remains a 
strongly sound inference in the system H’. 

Suppose that the inference is At-A (Excluded Middle 
Axiom). If DEPTH(A) > 2 then the conversion results 
in another Excluded Middle Axiom. This is strongly 0- 
sound and therefore strongly t‘-sound. If DEPTH(A) = 
2 (i.e. A = Gi is a map disjunction) then the conversion 
results in Gi r p  Gc(Gi f p ,  Wi, D n s), an instance of the 
Approximate Excluded Middle Axiom. Since lWil 5 t’ 
is given, the instance is strongly t‘-sound. 

Suppose the inference is ( A t B ) ,  (YAGC) =+ ( R t C )  
(Cut Rule). If DEPTH(A) > 2 then the conver- 
sion results in another instance of the Cut Rule If 
DEPTH(A) = 2 then A = Gi for some i and the con- 
version results in (G~GB) I,,, (C(G~ r p ,  ~ i ,  D n S)VC r r  
ho) + (BGC)lp;  by the definition of 1 this is identi- 

( B f ,  ;CY,), a strongly lWil 5 t’ sound instance of the 
Approximate Cut Rule over D n s. 

If the inference is an instance of the Weakening Rule, 
the Merging Rule, or the Unmerging Rule, then the 
converted inference is an instance of the same rule. ( E s  
sentially, this holds because 7 does not appear in these 
rules). 

Suppose the inference is AGc(A, V, D )  for some map 
disjunction A and some set V covering min(A) (Ap- 
proximate Excluded Middle Axiom over 0). The con- 
verted formula is A f p  Gc(A, V, D )  r p ,  which by the 
Distribution Lemma is A t p  Gc(A r p ,  V n s, D n s), an 
instance of Approximate Excluded Middle over D n s. 

Since AGc(A, V, D) was a strongly h o u n d  instance, we 
have IVI 5 1 and therefore J V  n SI 5 t 5 t’. Therefore 
A t p  Gc(Arp, V n s, D n s) is a strongly t’-sound infer- 
ence. 

Suppose the inference is (AGB), (c(A, V,D)GC) j 
(BGC) (Approximate Cut Rule over 0). Using the 
Distribution Lemma again, the converted inference is 
an instance of the Approximate Cut Rule over D n s. 

Using reasoning similar to that for the Approximate 
Excluded Middle Axiom, the inference is strongly t 5 t’ 

0 

cally (Gi f p  GB f p , )  (c(Gi Cp, Wi, D n s)GC ho) * 

sound. 

Finally, we analyse the PHP, clauses its follows. 

o V{A{P,j} : j E 01) becomes V{A{}} if i s; 
this is an instance of the Approximate Excluded 
Middle over D n s, with A = v{) and V = 8. If 
i E s, it becomes a PHP,. clause over D fl s. 

o For ( ~ v { A { P i k } )  V ( i V { ~ { P j k } ) ,  recall that 
we preferred to cover both the disjuncts with 
{ I C } .  Therefore both complements will be taken 
with respect to { I C }  and the result will be 
V { A { P h k }  : h E DO n s}. This is an instance 
of the Approximate Excluded Middle over D n s, 
with A = v{} and V = { I C } .  

The condition that maps in the converted proof be of 
size at most t’, is easy, because every map disjunction 
in the converted proof is t’-coverable. I 

4 The Lower Bound 

In this section the lower bound is stated and proven 
using the following Lemma (see 55), which says that 
under suitable conditions, applying a random restric- 
tion to  a map disjunction makes it coverable by a small 
set. 

Lemma 5.1 (Covering Lemma) Let G be a t- 
disjunction and let E be a constant such that 0 < 6 < 
1/16. I f t  = o(log1ogn) and 8/& 5 k 5 ntat then (for 
sufficiently large n), 

91 

Pr i?  ‘ [Cover(min(Gfp)) > k] 5 a:’t, 

It is convenient to introduce some constants and func- 
tions. We also indicate some relationships between the 
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quantities. 

Theorem 4.1 (Lower Bound on Size) For SUB- 
ciently large n, any refutation of PHP, of depth d must 
have size at least s d ( n )  = n~(log"++*' *I. 

Proof. Suppose there were such a refutation, P .  Since 
it is a refutation in H it  is easily seen that P h a s  map 
size a t  most 1, and is strongly 0-sound; therefore P is 
a (d ,  td(n))-good approximate refutation of P H P ,  of 
size less than Sd(n) .  Without loss of generality we can 
assume that P has depth a t  least 2; now applying the 
Induction and Base lemmas below gives a contradic- 
tion. 1 

Theorem 4.2 (Lower Bound on Depth) For SUB- 
ciently large n, any Frege refutation of P H P ,  of poly- 
nomial size must have depth R(log* n) .  

Proof. The asymptotics in the lower bound on size 
hold at least for d up to O(log* n). 

Supposing the size to be bounded by nk and setting 
nk = &(n) gives 

To prove the following results, we let n be sufficiently 
large that the required asymptotic relationships hold 
for all depths up to  d ,  and then proceed by induction 
on the depth, d. Each time we reduce the depth by 
applying a restriction to a universe of size n,  the size 
of the resulting universe is 

n = k, i.e. d = Q(1og' n). I 

Lemma 4.3 (Induction Lemma) For n sufficiently 
large, if d > 2 a n d  P is any (d,td(n))-good refutation of 
PHP, of size less than Sd(n), then there is a restriction 
p E Rn~6d(") such that: P converted b y  p is a ( d  - 
1, td-l(n6d(n)))-good refutation of P H P ( ~ ~ ~ ( " ) )  of size 
less than sd-l(n6"(")). 

Proof. For each map disjunction G in P ,  the 
Covering Lemma implies that Cover(min(G l p ) )  > 
t d - l (n6d(n ) )  with probability at most a ~ ~ ~ , ~ ~ 6 d , , , , ,  = 
1/Sd- l (n6d(n) ) .  The conditions required by the Cov- 
ering Lemma, that t d ( n )  = o(log1ogn) and that 
td-1(n6d(n)) 5 n6d(n),  are easily seen to hold for d 2 2.  

Since 1/Sd-1(n6'((")) 5 1/Sd(n) ,  and there are fewer 
than Sd(n) map disjunctions in P ,  the probabil- 
ity is less than one that some map disjunction has 
Cover(min(G r p ) )  > td-l(n6d(")).  In particular there 
is a restriction p which makes all the map disjunc- 
tions coverable by small sets after taking mino.. 
Since t&l (nsd (" ) )  2 t d (n ) ,  we can apply the Conver- 
sion Lemma to show that P converted by p is ( d  - 
1, td-l(n6d(n)))-good. The size of P after conversion is 
still at most Sd(n) ,  which is at most Sd-l(n6d(n)). I 

It is interesting to notice that depth 2 proofs never con- 
tain any of the second type of PHP, clause (7 v A PikV 
1 v A Pjk), because these have depth 3. These clauses 
all get converted into instances of Approximate Ex- 
cluded Middle, the very first time a restriction is ap- 
plied. 

Lemma 4.4 (Base Lemma) For sufficiently large n, 
there is no (2,ts(n))-good refutation of PHP, o f  size 
less than &(n). 

Proof. Suppose there were such a refutation, P .  The 
same calculations as in the Induction Lemma allow us 
to use the Covering Lemma to show that there is a 
restriction p E R">6z(") such that Cover(min(G l p ) )  5 
tl(nba(")) for all maximal map disjunctions G in P .  
These maximal map disjunctions of P are exactly the 
formulas of P ,  because d = 2. 

Applying p to P and replacing each map disjunction 
X with min(X) gives ta(n)-sound refutation P' of 
PHP,s,(,) such that every formula of P' is t ~ ( n ~ ~ ( " ) ) -  
coverable. Since t l(n6a(")) 5 n6'(")/12 for sufficiently 
large n, the existence of P' contradicts the Criticality 
Lemma below. We have not shown that PI is a refuta- 
tion in H',  but that doesn't matter to the Criticality 
Lemma. I 
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The Criticality Lemma, which provides the argument 
for the base case of the t.heorem, is a modification of 
Urquhart's argument [Urq] generalizing the resolution- 
system lower bound of Haken [Ha]. 

Definition 4.5 An assignment is z-critical if it is 1-1 
on Do \ {i) (and therefore is also 1-1 on 0 1 ) .  For any 
formula A, the critical set CRIT(A) is defined by 

CRIT(A) = {i : Atp= 0 for some i-critical p } .  

L e m m a  4.6 (Criticality L e m m a )  There is no 
nll2-sound approximate refutation of PHP,, in which 
all formulas are (n/8 - 1)-coverable. 

Proof. Suppose P were such an approximate refu- 
tation. Let A be the first formula in P such that 
IcRIT(A)I 2 n/3. There is such a formula because 
IcRIT(VQ)I = n + 1. 
Let {&, . . . Bk} be the k preceding formulas from 
which A is derived, with k 5 2 and k 2 0. Since the 
inference is n/l2-sound1 there is a set V of size at most 
n/12 such that any assignment which is 1-1 on V and 
makes B1 . . . B k  true, also makes A true. Whenever 
i V and 'p is i-critical, 'p is 1-1 on V and therefore 
Atcp= 0 j 31, BI I,,,= 0. Hence 

Since ICRIT(&)I < n / 3  by the minimality of A ,  this 
implies IcRIT(A)] < n/12+kn/3 5 n/12+2n/3 = 3n/4 
and ID0 \ CRIT(A)I 2 n/4. 

Now we use these facts, that both CRIT(A) and Do \ 
CRIT(A) are large, to show that A is not (n/8 - 1)- 
coverable. Specifically, we find n/8 variables in A which 
have disjoint subscripts. 

For any i-critical assignment 'p and j # i, let r ( j )  be 
such that v(P',~(,)) = 1. Now let p b , i ]  be the assign- 
ment which agrees with 'p except that ~ [ j ,  2](Pj,r(j)) = 
0 and ~ [ j , i ] ( P * , ~ ( j ) )  = 1. By switching j and i in 
this way, we get p[j, i] to be j-critical; when j E 
Do \ CRIT(A), this implies that ArWb,i]# 0. 

For each i E CRIT(A), fix an i-critical a.ssignment cp 
such that A r v =  0. Consider any j E DO \ CRIT(A). 
Since A r v =  0 but, A rVb,i]# 0,  either Pj,.(j) or Pi,r(j) 
occurs in A .  Let V A R ( ( ~ , ~ )  be the variables so discov- 
ered, among all j E DO\CRIT(A). Since 'p defines a 1-1 
function and ID0 \ CRIT(A)I 2 n/4, there are at least 
n/4 distinct variables in each VAR((P, i). 

Case 1: For some i, V A R ( ( P , ~ )  contains at least n/8 
variables of the form Pj,?(j), j E DO \ CRIT(A). These 
variables have mutually disjoint subscripts, because 'p 

defines a 1-1 function (namely, r ) .  

Case 2: Otherwise. For every i E CRIT(A), V A R ( ( P , ~ )  

contains at least n/8 variables of the form Pi,r(j) for 
some j E DO \ CRIT(A). There are at least n/8 values 
for i and by considering each in turn we can select a 
matching of size n/8 from the variables in U;VAR((P, i ) .  

I 

5 Covering Lemma 

In this section we prove the Covering Lemma, which 
states that if you apply a sufficiently strong restric- 
tion to a t-disjunction, then the result is probably k- 
coverable (for suitable t and I C ) .  

The proof is a simplification of Ajtai's T2 [Ajt], in 
which we extract specific bounds from the combina- 
torics. The Covering Lemma demonstrates that with 
high probability, applying a random restriction to  a 
map disjunction results in a formula which can be cov- 
ered by a small set. I t  is proved using a combinato- 
rial lemma (5.2), which we derived from Ajtai's Lemma 
Cl.' 

L e m m a  5.1 (Covering Lemma)  Let G be a t -  
disjunction and let E be a constant such that 0 < E < 
1/16. If t = o(log1ogn) and 8/& 5 k 5 nca' for 

~ ~~ 

'Ajtai's lemma C1, appearing in [Ajt] and [Ajt3], contains 
an error in the statement of (**) and a consequent error in the 
application of (**). He showed the proof of the corrected (**) 
in a private communication, which does not comment on the 
application of (**). 
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suficiently large n ,  then for  siificiently large n,  

where 

Proof. Given a fixed but sufficiently large value for n ,  
the proof proceeds by induction on t .  

Base case. For the base case (t = l), write G in the 
form G = ViEDo VjEw,  Pij for appropriate sets W, 
D1. Let B = {i E DO : lWil 2 nl-"}. 

Taking cases on the size of B, suppose IBI 2 n3', so 
that for n sufficiently large, IB \ S I  2 n5'l2.  A restric- 
tion p = ( T , s )  can be chosen as follows: first choose 
s = SO U SI where Is11 = n" and Is01 = Is11 + 1; let 
B, 2 B \ s be any particular subset of size n5'f2; next, 
for each i E B, in increasing order, choose ~ ( i )  uni- 
formly from the remaining elements of D1; then choose 
the rest of T .  Each time ~ ( i )  is chosen for i E B,, the 
probability is I(Wi \ s )  \ { r ( k )  : k E B, & k < i}l out 
of I(D1 \ s) \ {r(k) : k E B, & k < ;}I that ~ ( i )  E Wi. 
Hence, for i E B,, the probability that (yjEwz Pij)rp= 

1 is at least (nl-2' - nC2 - n5'/2>/(n - ne 2 1/(2n").  
It follows that the probability of this happening for 
at least one of the n5'l2 possible i E B, is a t  least 
1 - (1 - A)" . Since (1 - :)$ 5 i, this probability 
is a t  least 1 Because t = 1 and k 5 n C 2 ,  this 
probability is greater than or equal to 1 - ail', for n 
sufficiently large. Finally, whenever this happens (i.e. 
whenever (VjEW, Pij) I,,= 1 for any i E B \ s), then 
GIp= 1 and therefore Cover(min(Gt,)) = 0. 

On the other hand, suppose that IBI < n3' and a ran- 
dom p = ( T , s )  is chosen from On?' . 

Firstly, we show that with high probability IB n sol 5 
k/2. Applying Lemma 5.3 below, with the parameters 
A' = { B } ,  c' = 0, t' = k/2, 6' = (1 - 3 ~ ) ,  and 6' = f 2 ,  

we obtain that the probability of ) B  n S I  > k / 2  is at 

sell 

21 

most 2n- (1 -3e - -2 )k /4 .  

Secondly, we show that with high probability all vari- 
ables {P;j I i B }  in GIP are covered by a subset of 

s1 of size at most k / 2 .  We apply Lemma 5.2 to t.he 
system 

{ i + W ; :  i E D o \ B ) U { i + @ :  i E B } ,  

with parameters t' = k / 2  > 4/&, 6' = 46, and t' = 
c 2 .  Lemma 5.2 implies that with probability at most 
n - ' 2 k / 1 0 ,  the subsystem fails to be k/2-coverable after 
a restriction from 02'~'2' is chosen and applied. 

The variables remaining in G after ( r , s )  is applied 
are those in the subsystem just described, plus some 
variables which are covered by B n s. (Variables in 
{ p . .  . . z ' E B\s, j E Wi} are all set to either 0 or 1.) It 

follows that with probability at most Zn-(1-3 ' - '2)k/4 + 
n - f 2 k / 1 0  

coverable. 

Induction step. For all pairs ( i , j ) ,  a' E Do, j E D1, 
construct the formulas q5ij = V{(Y : (Y is a map in G 
containing Pij}. Then construct the formulas 4ij = 

V{a' : is Q;j  

with P;j removed. 

The induction step proceeds in three phases: in phase 
0 we use the induction hypothesis on each q5:j to obtain 
sets C,, covering the formulas min(q5ij tP); in phase 1 
we apply Lemma 5.2 to  the systems { j  + C;j} for each 
i, to obtain sets C;; and in phase 2 we apply Lemma 5.2 
once more to the system {i + C,}. The resulting set 
covers every min(q5ij tp) and therefore covers min(G1,). 
In phases 0, 1 and 2 we apply successive restrictions 
PO E % , 0 , L 2 ( t - 1 ) ,  PI E %,,e, and pz E fln2,c whose corn- 
position is the restriction p required for the lemma. 

€21-1 
Here we define no = n; n1 = nc2'-2; and n2 = n 
corresponding to the domain size remaining before each 
of the three phases. The domains themselves we de- 

reserving (G, D:) for the domain at the end of phase 
2. Among all the formulas q5;j , the only ones which will 
ultimately be significant are those for which i E D: and 
j E D:, since a cover of these formulas after applying 
p is sufficient to cover G after applying p. 

Phase 0. Each of the no2 different formulas q5ij is a 
t - 1 disjunction. Applying the induction hypothesis, 

, the function min(G t p )  is not k- - 

( ( Y ' A P ; ~ )  is a map in q5ij}, where 

note b~ (@, @) = (DO, DI), (Oh, @), and (o,", o?), 
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we have that a random restriction po from C 2 n o , c ~ ( t - 1 )  

has probability at least no2ay12-1 of making all the 
formulas I-coverable, for appropriately small 1. 

Let C& be a set, of size 1 covering min(&j l p o ) .  We 
need a small set Ci, covering min(4jj t p ) .  Observe that 
every A-clause of min(4ij t p o )  is a clause of min(4ij r p o  
), possibly with Pi, added. (Consider cases in which 
po(Pij) = 0, 1, or *. If po(Pij) = * then P,j appears 
in every clause of 4ij t p o ;  therefore clauses eliminated 
from 4:j t p o  by the min operator will also be eliminated 
from 4ij l p 0 . )  Therefore, min(4ij t p o )  is covered by 
cij = c;j U {i}. 

Fixing any 6 such that  0 < 6 < 1/4, and choosing 
1 = the required induction condition 1 5 neat 
follows trivially. Finally, we can observe that Cij 
DA U DA since the only variables set to * by po are 
those in {Pz, : t E DA & y E D i } .  

Phase 1. By the choice of I ,  Lemma 5.2 can be applied 
to the n1 different systems Si = { j  + Cij : j E D i } ,  
where i E Di.  We choose a single random restriction p1 

from R,,,, and obtain that the covering sets described 
in 5.2 fail to  exist with probability at most n1,Bl;l for 
appropriately small A. Thus with high probability we 
obtain sets Cj, for i E DA, such that Ci = UjEo;(Cij n 
(DZ U DI)), and lC;l 5 A. 

For each i E DA, C, covers every variable which is 
both covered by some Cij ( j  E 0:) and set to  * by 
p l .  Since C;j covers min(&j r p o ) ,  this implies that C, 
covers min(4ij r p o )  r p l  for j E 0:. Hence Ci covers 
min(q5ij t P o P 1 )  for i E D i ,  j E D f .  Choose X = np-6). 

Phase 2. By the choice of A,  Lemma 5.2 can be applied 
to the system S = {i + Ci : i E D i } .  After choosing 
p 2  E Rt,,,,, the covering set described by 5.2 fails to 
exist with probability a t  most p i 2 .  Thus we probably 

obtain a set C such that C = UiEp(Ci  (0: U D;)) 
and (Cl 5 k. The set C covers every variable which is 
both covered by some Ci (i E DZ) and set to * by p2. 

Since Ci covers min(&j r p o p l ) ,  this implies that C cov- 
ers min(& l p o p l ) t p 2 .  This gives the desired final result 
that a set C ,  of size at most k, covers min(4ij r p o p l p 2 )  
for i E D:, j E 0:. 

Analysis. The total probability that we fail to obtain 
the covering set is at most the sum of the probabilities 
in the three phases. This a.mount is n o 2 a ~ " - ' + n l P ~ ' +  
PFZ. Using the constraint on iE. from the statement of 
the Lemma, it ca.n be seen that p;' is the dominant 
term in this sum. The amount is: 

The last inequalities are obtained as follows. The con- 
dition t E o(log1ogn) implies that near is increasing 
(i.e. ~ ( 1 ) ) ;  therefore the conditions k 5 near and 
(1 - 6 ) / ~  > 1 imply that 

These two inequalities imply that the third exponent 
above, (kc2'k) ,  is smaller than the other two. 

The following lemma states that if g is a function taking 
t E Do UD1 to  a small subset of Do U D1 not containing 
2, then g, when restricted to a random subset of size 
n', will have a small sized range. Recall n = ID11 = 
ID01 - 1. 

Lemma 5.2 Let 0 < S < 113, 0 5 E 5 b2/4 and let 
g be a function defined on DO U D1, such that g(z) C 
DoUDl, Ig(z)l< n1-6 and z g(t)  for all z E DoUDl. 
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Th,en f o r  all  t > 4/& and f o r  all sufficiently large n 
we have 

Jy;,:q NJ n s > tl L P1“ 
X E S  

where 
p: = n-t($) 

We will need the following lemmas, based on Ajtai’s (*) 
and (**), to prove Lemma 5.2. 

Lemma 5.3 Let A be a set of subsets of DoUD1 such 
that IAl 5 nC, and 1x1 < n1-61 for all X E A .  Then 
for all t > 0 and for  all suficiently large n, 

Lemma 5.4 Let g’ be a function defined on DO U D1 
such that g’(z) c D ,  Ig’(z)\ 5 t ,  and 1: # g‘(x), f o r  
every x E DO U D1. Then for all t > 0 and for all 
suficiently large n ,  

6 Limitations of the proof 
method 

The covering lemma states that with high probability 
any given t-disjunction will be covered by a set of size k, 
after O(t)  restrictions. Because of the large number of 
restrictions that must be applied for every application 
of the covering lemma, the map size, t ,  cannot be too 
large (otherwise we quickly end up with an assignment 
to all of the variables). Therefore, one way of improving 
the bound would be to prove the covering lemma for 
a single restriction. This stronger form of the covering 
lemma could be stated as: For any t ,  E < 1, and for any 
t-disjunction, G, Pris‘[Cover(min(Gtp)) > k] 5 ak, for 
some a < 1, where (Y depends possibly on n and t .  Set- 
ting t = k approximately equal to nild, this strength- 
ened covering lemma would yield an exponential lower 
bound for PHP,. 

Unfortunately, this strengthened version is false for 
6 > logn. This situation is similar to the impos- 
sibility of obtaining an exponential lower bound for 
bounded depth circuits computing the parity function 
by simply improving the combinatorial lemma in [FSS]. 
Here we briefly describe a function, due to Russell Im- 
pagliazzo, which contradicts this strengthened covering 
statement, for t = log n + 1. 

The multiplexor function is a function on n+logn bits, 
{xk}, where the first logn bits are used to index the 
remaining n bits. The function is “1” iff the value in- 
dexed by the first log n bits is “1”. This function can be 
written as the OR of n minterms, each of size logn + 1. 

The counterexample to the strengthened covering 
lemma is a t-disjunction which encodes the multiplexor 
function on {zk} using the pigeonhole variables Pij. 
Because the new function has to be monotone, we will 
encode negation by using the range elements, D1. The 
“pigeonhole” multiplexor function is a function on vari- 
ables {Pij I i E DO, j E 01) where ID01 = l o g n + n + l ,  
and ID11 = logn + n.  Let T be a fixed subset of D1 
of size 1011/2. A assignment p for {Pab} which is 1- 
1 on D1 induces an assignment to the n + logn vari- 
ables {xi} by: xi = 1 iff 3 j  E T such that p(P i j )  = 1. 
The value of the pigeonhole multiplexor function is the 
value of the multiplexor function on these induced val- 
ues. Note that the modified function can be written as 
a t-disjunction, for t = logn + 1. 

Let p =< r , s  > be a random restriction from CY““. 
Intuitively, if all of the logn index variables in DO are 
included in s, then the restricted function will have 
large covering sets. The probability of this happening 
is approximately ( $)logn, which is larger than ak , for 
(Y < 1. and k = n1I2. 

This counterexample shows that an exponential lower 
bound for PHP,, cannot be obtained by simply im- 
proving the Covering Lemma. However, we feel that 
the covering lemma can be improved to yield a lower 
bound of d o g e  n ,  for a small constant c ,  independent of 
the depth. 

379 



7 Conclusions and Open 
Problems 

In this paper we have given a proof-theoretic superpoly- 
nomial lower bound for constant depth Frege proofs of 
the pigeonhole principle. Our approach introduces the 
notion of using approximations for a sequence of formu- 
las, and shows how to  use a proof theoretic approach 
to  eliminate the non-standard model theory which was 
used by Ajtai. We also improve the lower bound of Aj- 
tai. In addition, this proof more directly explains why 
bounded depth Frege proofs are weak for proving the 
pigeonhole principle. 

We avoid the non-constructivity of the Compactness 
Theorem; in fact it appears that our proof can be made 
feasibly constructive as defined in [CUI. Informally, a 
feasibly constructive lower bound proof is one which 
involves only polynomial-time concepts. In contrast, it 
was shown in [CUI that a superpolynomial lower bound 
for extended Frege systems cannot have a feasibly con- 
structive proof. A formalization of our result as a feasi- 
bly constructive proof requires describing exactly how 
to choose the restrictions, using Spencer’s “probabilis- 
tic method” for transforming probabilistic algorithms 
into deterministic ones [Sp, p.311. 

An outstanding open question is to prove a truly ex- 
ponential lower bound for bounded depth Frege proofs. 
Such a bound would imply that 5’2 (a subsystem of 
Peano arithmetic containing IAo) augmented by a 
function symbol f, cannot prove the sentence asserting 
P H P  for f. (See [PWW], [Bu] for the connection be- 
tween subsystems of bounded arithmetic and bounded 
depth Frege proofs.) As i t  is, current results simply 
imply that IAo(f) cannot prove PHP(f). I t  is known 
[PWW] that IAo(f) together with the existence of the 
function d o g n  can prove the weak pigeonhole principle 
for f ,  i.e. the principle that f is not a bijection between 
[2n] and [n]. 
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