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ABSTRACT
We present a general method for converting any family of
unsatisfiable CNF formulas that is hard for one of the sim-
plest proof systems – tree resolution – into formulas that
require large rank in very strong proof systems, including
any proof system that manipulates polynomials of degree at
most k (known as Th(k) proofs). These include high degree
versions of Lovász-Schrijver and Cutting Planes proofs.

We introduce two very general families of these proof sys-
tems, denoted T cc(k) and Rcc(k). The proof lines of T cc(k)
are arbitrary Boolean functions, each of which can be evalu-
ated by an efficient k-party randomized communication pro-
tocol. T cc(k) proofs include Th(k − 1) proofs as a special
case. Rcc(k) proofs generalize T cc(k) proofs and require only
that each inference be checkable by a short k-party protocol.

For all k ∈ O(log log n), our main results are as follows:
First, any unsatisfiable CNF formula of high resolution rank
can be efficiently transformed into another CNF formula re-
quiring high rank in all Rcc(k) systems, and exponential
tree size in all T cc(k) systems. Secondly, there are strict
rank hierarchies for all Rcc(k) systems, and strict tree-size
hierarchies for all T cc(k) systems. Finally, we apply our
general method to give optimal integrality gaps for low rank
Rcc(2) proofs for MAX-2t-SAT, which imply optimal inte-
grality gaps for low rank Cutting Planes and Th(1) proofs.

Categories and Subject Descriptors
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General Terms
Theory
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1. INTRODUCTION
Over the last decade or so there have been a large number

of results proving lower bounds on the rank required to re-
fute (or approximately optimize over) systems of constraints
in a wide variety of semi-algebraic (a.k.a. polynomial thresh-
old) proof systems. These include systems such as Lovász-
Schrijver [25], Cutting Planes [14, 9], Positivstellensatz [15],
Sherali-Adams [33], and Lasserre [23] proofs.

Highlights of this work include recent linear rank lower
bounds for Lasserre proofs [30, 36] for many constraint opti-
mization problems as well as rank lower bounds for semi-
algebraic proof systems for other important optimization
problems [7, 31, 13]. In addition to these rank lower bounds,
there are a few superpolynomial lower bounds on the size of
tree-like proofs in specific semi-algebraic proof systems [16,
15, 20]. Exciting and important as these results are, their
proofs rely on delicate constructions of problem-specific local
distributions on inputs that satisfy constraints based on the
specific rules for each proof system. Furthermore, because
there are few effective reductions for such proof systems,
lower bounds for one problem usually do not translate to
other problems.

A very different approach for proving lower bounds for
semi-algebraic proofs was developed in [2], whereby the prob-
lems of lower-bounding the rank or tree-like proof size are
reduced to a lower bound problem in communication com-
plexity. This allows the results to be applicable to a much
wider class of proof systems, called Th(k) proofs, which gen-
eralizes the semi-algebraic proof systems discussed above. In
these systems, a proof consists of a sequence of lines, each
of which is a multivariate polynomial inequality of degree
at most k; the only requirement is that each line either ex-
presses an input constraint or is a semantic consequence of
a constant number (say two or three) of its predecessors. [2]
showed that if an unsatisfiable CNF formula G has a small-
rank (or small tree-like size) Th(k− 1) refutation then, over
every partition of the variables of G for k parties, there
is an efficient k-party randomized NOF protocol that out-
puts a falsified clause in G. Thus to lower bound the rank
of Th(k − 1) proofs it suffices find an unsatisfiable family
of CNF formulas with the property that the k-player NOF
complexity of this underlying search problem (outputting a
falsified clause) is hard.

Though this communication complexity approach was de-
coupled from the specifics of the proof system, the reduction
given in [2] was very problem-specific and delicate. One
source of the difficulty was that the clause search problem
needs to be hard for randomized protocols to solve but is



always easy nondeterministically, as the players can simply
guess and verify a violated clause. Much of the delicacy
of the argument was in carefully embedding a specific can-
didate function (set disjointness), which appeared to have
these characteristics, into the search problem of an unsatis-
fiable CNF.

Indeed, using a long and involved argument, [2] showed
the feasibility of this communication complexity approach
by constructing a particular family of CNF formulas, (k−1)-
fold Tseitin tautologies over Θ(logn)-degree LPS expander
graphs, such that lower bounds on the k-party randomized
NOF communication complexity of the k-party set disjoint-
ness function yield rank and tree-like size lower bounds for
Th(k − 1) refutations. The recent lower bounds of Lee and
Shraibman [24] and Chattopadhyay and Ada [8] for the k-
party randomized communication complexity of set disjoint-
ness thus yield unconditional rank bounds for Th(k) proofs.
Unfortunately, though the set disjointness bounds apply for
k up to (1 − o(1)) log logn, the details of the reduction
in [2], which was claimed for each constant k, only apply
for k = O(log log logn). Moreover, the method only applies
to this one particular family of unsatisfiable formulas, and
no other lower bounds for Th(k) proofs have been known by
any other method.

In this paper for the first time we provide a simple and
general method that produces unsatisfiable formulas requir-
ing proofs of large rank and tree-like size in semi-algebraic
proof systems. This applies to a broad range of systems
including all of Th(k) for k up to (1 − o(1)) log logn. Our
method allows one to take any unsatisfiable formula requir-
ing large rank in a very simple proof system, resolution, and
derive new formulas that require large rank and tree-like
proof size in these very powerful semi-algebraic systems. In
particular, this construction applies to all formulas of large
resolution width [4] since resolution width is a lower bound
on resolution rank. A simplified statement of our main result
is the following.

Theorem 1.1. Let F be any family of polynomial-size 3-
CNF formulas in m variables with resolution rank r. Then
for any ε > 0 and integer 1 ≤ k ≤ (1 − ε) log logn, there is
a family of polynomial-size CNF formulas G = Liftk(F )

on n = mO(k) variables such that G requires Th(k + 1)

refutations of rank rΩ(1)/ logO(1) n and tree-size exp(rΩ(1)).

In particular, if r is mΩ(1) then G requires Th(k + 1) rank

nΩ(1/k), and tree-size exp(nΩ(1/k)).

Our lower bounds are much more general than this state-
ment. In particular, our proof shows that the lifted formula
requires large rank in any proof system in which the truth
of each line in a proof can be verified by an efficient k-party
randomized communication protocol; the above theorem fol-
lows by the reduction in [2]. Our lower bounds also apply to
proof systems in which individual proof lines may not be ef-
ficiently verifiable but in which any falsifying assignment at
an inferred line can be traced to one of its antecedents using
an efficient k-party randomized communication protocol.

Our method is an example of a kind of hardness amplifi-
cation that we term hardness escalation. The usual form of
hardness amplification in circuit complexity is a method for
amplifying the probability of error. That is, a complexity
class C is fixed (or nearly fixed), and the goal is to go from
a function that is weakly hard (e.g., any circuit in C that

approximates f has non-negligible probability of error) to a
function that is much harder (e.g., any circuit in a slightly
smaller class than C that approximates f has error expo-
nentially close to 1/2). With hardness escalation, we start
with an object, a function f (or in this case an unsatisfiable
3-CNF formula), that is hard for some complexity class (a
proof system here), and we construct a related function g (or
lifted formula in this case) that is nearly as hard for a larger
complexity class (respectively, more powerful proof system).

Our proof uses intuition and ideas from the pattern ma-
trix method developed by Sherstov [35] and from a related
method developed earlier by Raz and McKenzie [29]. Both
of these are hardness escalation methods for communica-
tion complexity. Each method begins with a computational
problem that is hard for a weak complexity measure, either a
relation R of large decision tree complexity ([29]), or a func-
tion f of large approximate polynomial degree ([35]), and
extends the problem using a “pattern matrix” to produce a
problem of large deterministic ([29]), or large randomized
and quantum ([35]), two-party communication complexity.

We use the k-party generalizations of the pattern matrix
method developed in [24, 8]. Starting with a function f on
m variables, and a parameter k, these generalizations lift f
to obtain another function g = Liftk(f) on mk bit-strings.
The transformation replaces each original variable ei by a
Boolean selector function Ψ on k bit-strings. As long as f is
hard in the weak measure, g is hard in the k-player number-
on-forehead (NOF) randomized communication complexity
model (for a particular partition of the new variables).

A key obstacle when trying to apply the pattern matrix
method to the proof complexity setting is that the approach
only works with Boolean functions, and not with unsatisfi-
able CNF formulas. To overcome this obstacle, we associate
a family of Boolean functions ZF with every unsatisfiable
CNF F and show that if the hardness assumption on F is
satisfied then there is some function f ∈ Z that has large
decision tree complexity. Furthermore, if there is an effi-
cient communication protocol that outputs falsified clauses
in Lift(F ), then there is an efficient protocol for Lift(f) for
any f ∈ Z. In this way we are able to combine the hardness
escalation ideas of [29, 35] to obtain our results. We can also
prove a converse to our result, thus characterizing the Th(k)
rank of our lifted formulas. That is, in addition to deriving
lower bounds on the rank of proofs for Liftk(F ) in terms of
the resolution rank r of F , we also show that the rank of
T cc(2) proofs (and even resolution) proofs of Liftk(F ) is not
much larger than r.

Using the above lower bounds, we prove new rank separa-
tion theorems for hierarchies of polynomial threshold proof
systems. By considering Liftk(F ) for certain unsatisfiable
CNF formulas F that require large rank resolution refuta-
tions but need only small rank Cutting Planes refutations,
we obtain strong rank separations between the power of
T cc(k + 1) and Rcc(k), between Th(k) and Th(k − 1), and
between CP(k) and CP(k − 1) refutations where CP(k) is
the natural generalization of Cutting Planes to degree k.

Finally, using Sherstov’s strengthened degree-discrepancy
lemma for 2-player communication complexity [35], we apply
our techniques to prove optimal integrality gaps for a large
family of optimization problems even after nε rounds of CP
or Th(1).

Due to space limitations some proofs are omitted or only
sketched. Details appear in the full paper.



Related Work on Hardness Escalation. Hardness es-
calation results have been obtained in models such as com-
munication complexity [35], sub-exponential time complex-
ity [17], and circuit depth ([19, 12, 29]). A similar concept
called hardness condensing was introduced in [6].

There have been a few papers in proof complexity im-
plicitly using the idea of hardness escalation. First, several
papers use the fact that if a formula F requires large resolu-
tion width, then the xorification of F , obtained by replacing
each variable by an xor of several variables (and then rewrit-
ing as a CNF), is hard with respect to resolution size. [26]
show how to replace variables in a somewhat hard unsat-
isfiable formula by hard functions in order to prove hard-
ness escalation theorems for restricted tree-like proof sys-
tems. Lastly, Schoenebeck [30] obtains rank lower bounds
for Lasserre proofs based on resolution rank lower bounds
for particular families of formulas.

2. PRELIMINARIES
For a CNF formula F , let clauses(F ) denote the set of

clauses of F and let |F | denote |clauses(F )|. F is a t-
CNF formula iff every clause contains at most t literals.
For any function f on m bits and any function h on s
bits, we denote by f ◦ h the following function on ms bits:
f ◦ h := f(h(· · · ), · · · , h(· · · )).

Let F be an unsatisfiable CNF formula over variables
x1, . . . , xn consisting of m clauses. The canonical Boolean
relation associated with F is the predicate RF (x, y), where
x is a vector of length n, and y is a number, 1 ≤ y ≤ m.
RF (α, β) is true if and only if α is a Boolean assignment
and the clause Cβ in F is falsified by α. Associated with
a Boolean relation R(x, y) is a search problem: given x,
output a y such that R(x, y) is satisfied. Given a Boolean
relation R(x, y), we call a function g a subfunction of R if
R(x, g(x)) is satisfied for every x. In other words, g is a par-
ticular function that solves the search problem associated
with R. For example, for the canonical Boolean relation RF
associated with an unsatisfiable CNF formula F , the search
problem, Fsearch is the problem of finding a violated clause
given a Boolean assignment to the variables of F . A func-
tion g is a subfunction of RF if for any truth assignment α,
g(α) returns a clause of F that is falsified by α.

We adopt the usual notion of Boolean decision tree for a
Boolean function. For a relation R, a decision tree T com-
putes the search problem associated with R if it computes
some subfunction of R. The decision tree complexity of f ,
denoted D(f), is the minimum height of all decision trees
computing f .

Hard Search Problems. Given an unsatisfiable CNF
formula F that is somewhat hard (the decision tree com-
plexity of Fsearch, D(Fsearch), is superpolylogarithmic in the
size of F ), we want to identify a set Z of Boolean functions
associated with F that witnesses the hardness of F . Specif-
ically, we want Z to have the property that if D(Fsearch)
is large then Z contains a function with large decision tree
complexity. This alone would be straightforward. However,
we also want Z to be constructable from algorithms com-
puting Fsearch.

A natural choice for the collection of functions from Fsearch

would be to define fS(α) = 1 for some S ⊆ clauses(F ) if and
only if there is some clause in S that is falsified by α. One
might hope to argue that one such fS would have decision
tree complexity close to that of Fsearch. The obvious way to

try to show this would be to reason by reduction; however, it
is not clear how to construct a decision tree for Fsearch from
decision trees for such a collection of fS since both fS(α) and
fS(α) may equal 1. Some sort of symmetry-breaking scheme
is required and this scheme must satisfy the property that
for S ⊂ T we have fT (α) = 1 whenever fS(α) = 1.

We say that a set Z of Boolean functions over the set of
variables of an unsatisfiable CNF formula F is a consistent
system of functions for F iff Z = {fS | S ⊆ clauses(F )}
and for any input assignment α there exists a clause C in
F falsified by α such that for any fS ∈ Z we have that
fS(α) = 1 if and only if C ∈ S.

Proposition 2.1. Given an unsatisfiable CNF formula F ,
any function f∗ that is a subfunction of RF (that is, it solves
the search problem Fsearch) yields a consistent system Zf∗ of
functions for F .

Proof. Use the clause C = f∗(α) and define fS(α) = 1 iff
C ∈ S.

The following proposition says that any consistent system
of functions for F witnesses the hardness of F .

Proposition 2.2. For any unsatisfiable CNF formula F
and any consistent system Z of functions for F , there exists
a function fS ∈ Z such that D(Fsearch) ≤ D(fS)dlog2 |F |e.
Proof. Build a decision tree for Fsearch using binary search
by querying the fS for subsets S ⊆ clauses(F ) to narrow
down the search. The requirement of consistency ensures
that the path followed by binary search on input α yields
the falsified clause C. To derive the tree for Fsearch replace
each query of fS by the optimal decision tree for fS , yielding
the claimed bound.

Communication Complexity. Given a function (or re-
lation) f , some number k ≥ 2 of players, and a partition of
the input of f for these players, we consider the number-on-
the-forehead (NOF) communication model (cf.[22]), in which
each player sees all inputs except the those in the block of
the partition that is assigned to him, and the goal is com-
pute f using a minimum of communication. Let |P| denote
the maximum number of bits communicated in a commu-
nication protocol P and P(x) the output of the protocol
on input x. A randomized protocol P is said to compute
a function f with error at most ε if on any input x, with
probability at least 1− ε (over the players’ random coins c),
P(x, c) = f(x).

If f is a search problem, the standard definition (e.g. [22])
of randomized communication complexity states that P com-
putes f with error at most ε if and only if on any input x,
for at least 1 − ε fraction of the outcomes of random coins
c, P(x, c) ∈ f(x). Among these good outcomes, the values
P(x, c) may not be the same element in f(x). However, for
our construction, we require a stronger notion.

A randomized protocol P is said to consistently compute
a relation f with error at most ε if there is a function f∗

contained in f – that is, f∗(x) ∈ f(x) for every x, such that
P computes f∗ with error at most ε.

Proof Systems and the Complexity of Clause Search.
A wide variety of proof systems exist in the literature. In
most of these proof systems, a proof or refutation can be
expressed as a sequence of lines, each of which is either (a
translation of) an input clause or follows from some previous



lines via some sound inference rule. We call such proofs
standard proofs. Similarly in a standard refutation system
of an unsatisfiable formula f , a proof is again a asequence
of lines, where the first line is f , the last line is the trivially
false formula, and all other lines follow from some sound
inference rule of the underlying proof system.

We associate a DAG G = (V,E) with every standard proof
P , where V is the set of lines in P and (u, v) ∈ E if line v
is derived via some inference rule using line u. The size
of P is the number of bits in P , which is lower-bounded
by the number of lines in P . The rank of P is the length
of the longest path in G. We consider G to be a tree if
every internal node has fanout one. (The axioms, which
are not internal nodes, can be repeated.) If G is a tree,
we say that P is tree-like. The size complexity and rank
complexity of F in a standard proof system are the minimum
size and minimum rank, respectively, of all proofs for F in
that system. Similarly, we define tree-like size complexity as
the minimum over all proofs are restricted to be tree-like.

Note that restricting a proof to be tree-like does not in-
crease the rank of a proof because the same line can be re-
derived multiple times without affecting the rank. Tree-like
size, however, can be much larger than general size.

In the most well-studied proof systems, there is a set
of derivation rules (which can be thought of as inference
schemas) of the form F1, F2, . . . , Ft ` G and each deriva-
tion step in a proof must be an instantiation of one of these
rules. One such basic system is resolution, which manipu-
lates clauses. Its only rule is the resolution rule: the clause
(A∨B) is derived from (A∨ x) and (B ∨¬x), where A and
B are arbitrary disjunctions of literals and x is a variable.
A resolution refutation of an unsatisfiable CNF formula f
is a sequence of clauses, ending with the empty clause, such
that each clause is either a clause of f , or follows from two
previously derived clauses via the resolution rule. The well-
known connection showing that DPLL executions and tree-
like resolution proofs are equivalent gives us the following
proposition.

Proposition 2.3. [11] For any CNF formula F , the mini-
mum rank of any resolution proof of F is equal to D(Fsearch).

Another proof system is the Cutting Planes (CP) proof
system which manipulates integer linear inequalities. A CP
refutation is a sequence of inequalities, ending with 0 ≥ 1,
such that all other inequalities are either axioms (0 ≤ xi,
xi ≤ 1), translated input clauses (input clause (`1 ∨ · · · ∨ `t)
is translated as `′1 + · · · + `′t ≥ 1 where `′ = x if ` = x and
`′ = (1−x) if ` = ¬x) or follow from two previously derived
inequalities via either addition

p1 ≥ 0, . . . , pt ≥ 0 `
tX
i=1

λipi ≥ 0,

where each pi is a linear form, or division with roundingX
i

caixi ≥ b `
X
i

aixi ≥ db/ce,

where ai, b, c, and λi ≥ 0 are integers. There is a natu-
ral extension of CP, denoted CP(k), in which the above CP
proof rules are extended to include pi that are degree k mul-
tivariate polynomials and the xi are replaced by degree k
monomials. Since the input clauses are linear there are two
other rules that allow the creation of higher degree inequal-
ities, namely p ≥ 0 ` xip ≥ 0 and p ≥ 0 ` p ≥ xip for
all polynomials p of degree at most k − 1 and variables xi.

Other important well-studied proof systems are the Lovász-
Schrijver proof systems (LS0, LS, LS+, and LS+,?) which
manipulate polynomial inequalities of degree at most 2, and
the Sherali-Adams and Lasserre proof systems which gener-
alize the Lovász-Schrijver systems to higher degree.

Each of the above proof systems has a specific set of infer-
ence rule schemas, which allows them to have polynomial-
time verifiers. We also consider more powerful semantic
proof systems which restrict the form of the lines and the
fan-in of the inferences but dispense with the requirement of
a polynomial-time verifier and allow any semantically sound
inference rule with a given fan-in. (Each line is a clause or
follows via some semantic inference rule.) The fan-in must
be restricted because the semantic rules are so strong.

For integer k ≥ 1, we denote by Th(k) the semantic proof
system, introduced in [2], whose proofs have fan-in 2, lines
consist of polynomial inequalities of degree at most k, and
input clauses and axioms are represented as linear inequali-
ties as in the definition of CP above.

The following proposition follows from Caratheodory’s
Theorem. It is not hard to show that one can extend these
simulations by Th(k) proofs to CP(k) and LSk+,?.

Proposition 2.4. (1) Any CP proof of size (tree-like size)
S and rank r can be converted to a Th(1) proof of size (tree-
like size) O(S) and rank O(r logn). (2) Any LS0, LS, or
LS+ proof of size (tree-like size) S and rank r can be con-
verted to a Th(2) proof of size (tree-like size) O(S) and rank
O(r logn).

In this paper we also consider more general semantic proof
systems than Th(k), namely those for which the fan-in is
bounded and the truth value of each line can be computed
by a multiparty communication protocol.

For any k, C ≥ 1, we denote by T cc(k, C) the semantic
proof system of fan-in 2 in which each proof line is a Boolean
function whose value, for every partition of the input vari-
ables into k groups, can be computed by a C-bit randomized
k-party NOF communication protocol of error at most 1/3.
Both k and C may be integer functions of the input size
of the formulas. In keeping with the usual notions of what
constitutes efficient communication protocols, we use T cc(k)

to denote the union of all T cc(k, C) over all C in logO(1) n.
Via standard boosting, we can replace the error 1/3 in

the above definition by ε at the cost of increasing C by an
O(log 1/ε) factor. So, without loss of generality, in defining

T cc(k) we can assume that the error is at most 1/nlogΩ(1) n.
Note also that a semantic proof of rank r that satisfies

the same conditions as a T cc(k, C) proof except that it
has rules of fan-in at most t ≥ 2 can be simulated by a
T cc(k, 2Ct log2 t) proof of rank r log2 t by replacing each in-
ference by a binary tree of height log2 t in which lines of
internal nodes are conjunctions of their predecessors.

For polylogarithmic k, the following lemma shows that
Th(k) is a subclass of T cc(k + 1).

Lemma 2.5. For some constant c > 0, every Th(k) refu-
tation of a CNF formula on n variables is also a T cc(k +
1, ck3 log2 n) proof.

Proof. By the well-known result of Muroga [27], linear
threshold functions on n Boolean values only require co-
efficients of O(n logn) bits. Since a degree k threshold poly-
nomial is a linear function on at most nk monomials, it is



equivalent to a degree k threshold polynomial with coeffi-
cients of O(knk logn) bits. As shown in [2], over any input
partition there is a randomized (k+1)-party communication

protocol of cost O(k log2 s) and error ≤ 1/sΩ(1) to verify a
degree k polynomial inequality with s-bit coefficients.

We also define another class of proofs based on k-party
communication complexity that we will see is even more
general than T cc(k, C). For any integer functions k, C ≥ 1,
we denote by Rcc(k, C) the semantic proof system of arbi-
trary fan-in in which each proof line is a Boolean function
such that the proof satisfies the following property: for ev-
ery partition of the input variables into k groups, and every
inference of B from A1, . . . , As in the proof, there is a C-bit
randomized k-party NOF communication protocol of error
at most 1/3 that computes a (partial) function fA1,...,As`B
from the inputs to the set [s] such that on every input α, if B
evaluates to false on input α then AfA1,...,As`B(α) evaluates

to false on input α. We write Rcc(k) to denote the union of

all Rcc(k, C) over all C in logO(1) n.

Lemma 2.6. Every T cc(k, C) proof is an Rcc(k, C) proof.

Proof. The inferences in the T cc(k, C) are all of fan-in at
most 2 and hence derive each line B from some lines A1 and
A2. To compute the function fA1,A2`B the players evalu-
ate A1 on input α using the protocol given by the T cc(k, C)
proof. If that evaluates to false then they output 1; other-
wise, they output 2.

We can sharpen this relationship further using a standard
method for strengthening a proof system S by adding reso-
lution rules over the lines of S [21]. Given a proof system
S, we define related proof system R(S) as follows: Lines of
R(S) are unordered disjunctions of lines of S and their nega-
tions. For every inference rule in S, A1, . . . , At ` B, there is
the corresponding rule (G∨A1), . . . , (G∨At) ` (G∨B) where
G is an arbitrary disjunction of lines of S and their nega-
tions. In addition there are extended resolution rules that al-
low the introduction of new disjuncts, G ` (G∨A1∨ ...∨At),
or cuts on lines of S, namely (G ∨A), (H ∨ ¬A) ` (G ∨H),
where A is a line of S and G and H are arbitrary disjunctions
of lines of S and their negations.

Lemma 2.7. Every R(T cc(k, C)) proof is an Rcc(k, C) proof.

Proof. For rules that correspond to rules of T cc(k, C) we
apply the simple argument from Lemma 2.6 on the lines
that are not common to all formulas. For the resolution
rules, observe that the players only need to evaluate the line
A to determine whether to select (G ∨A) or (H ∨ ¬A).

In particular, this shows via Lemma 2.5 that Rcc(k +
1, ck3 log2 n) proofs include the proof system R(Th(k)) (sug-
gested by Hirsch). It is not clear whether one can efficiently
simulate R(Th(k)) using T cc(k) proofs.

The following lemma, which is implicit in [2], gives the
key relationships between T cc(k) and Rcc(k) proofs and ran-
domized communication protocols that consistently com-
pute Fsearch.

Lemma 2.8. Let ε > 0 and F be an n-variable CNF formula.

(i) If F has an Rcc(k, C) refutation of rank r then, over
any partition of the variables, there is an ε-error ran-
domized k-party communication protocol P consistently
computing Fsearch such that |P| is O(Cr log(r/ε)).

(ii) If F has a tree-like T cc(k, C) refutation of size S then,
over any partition of the variables, there is an ε-error
randomized k-party protocol P consistently computing
Fsearch such that |P| is O(C logS log log S

ε
).

Proof. First assume that we have a rank r refutation in
Rcc(k, C). On input α, the k players backtrack from the
last derived inequality in the proof (0 ≥ 1) to find some
clause that is falsified by α. When they are at a line B that
follows from lines A1, . . . , As in the proof, they run the pro-
tocol for fA1,...,As`B , implied by the Rcc(k, C) definition for
the inference at B, O(log(r/ε)) times and take the majority
answer to reduce its error below ε/r. Then the players move
to the line indicated by that answer. The probability that
this protocol makes an error is at most the sum of all error
probabilities on any path in the proof. Since the last line
evaluates to false on input α, in the case that there is no er-
ror the players will return a fixed clause in the proof that is
falsified by α, which implies that they consistently compute
Fsearch.

For the second case of a size S tree-like refutation, there
is some line in the refutation that is derived from between
S/3 and 2S/3 of the lines of the refutation tree. The play-
ers first evaluate that line with error at most ε/(2 log2 S)
by repeating the protocol O(log(logS/ε)) times. If the line
evaluates to false then they continue within that subtree;
otherwise, they remove the nodes of that subtree. This is
done recursively until a falsified clause is found. The depth
of recursion is at most 2 log2 S. The rest is similar to the
first case.

3. HARDNESS ESCALATION
The high level idea of our method of hardness escalation is

to take a somewhat hard an unsatisfiable t-CNF formula F
(one for which Fsearch requires a large height decision tree)
over variables e1, . . . , em, and build a new CNF formula G =
Lift(F ) of size mO(t) by lifting F using some function ψ
that encodes ei using a larger collection of input bits. This
lifting over CNF is adapted from previous work for Boolean
functions, which we review next.

3.1 Lifting Decision Tree Complexity
Given k, s > 0 and a domain A, a function ψk : {0, 1}s ×

Ak 7→ {0, 1} is called a selector if there is some h : Ak 7→
[s] such that ψk(x, y1, . . . , yk) = xh(y1,...,yk) for every x ∈
{0, 1}s and yi ∈ A. Informally, ψk outputs a bit in x that is
selected by the values of y1, . . . , yk.

We consider two specific selector encodings ψk: the tensor
selector ψT

k,` and the parity selector ψ⊕k,a. For the tensor

selector ψT
k,`(x, y), we have s = `k and A = [`], and we think

of x ∈ {0, 1}s as indexed by Ak and hence h(·) is just the
identity function on Ak. For the parity selector ψ⊕k,a(x, y),

we have s = 2a, A = {0, 1}a, and we think of x as indexed
by a-bit arrays and h(y1, . . . , yk) = y1 ⊕ · · · ⊕ yk.

Given an initial function f over variables x, define g, the
(k + 1)-lifted version of f , to be the function f ◦ ψk.

It is not hard to see that if the decision tree complexity
of f is d, then for any k ≥ 2, and over any partition of the
variables into k groups, there is a k-party communication
protocol computing g of cost approximately d · c, where c
is the cost of computing ψk. The k players just simulate
the decision tree for f and the cost of computing any sin-
gle variable in f encoded by ψk is c bits. If ψk is simple



enough, and therefore c is negligible, then this cost is ap-
proximately equal to d. Ideally, we would like to argue that
this is the best that the players can do. Intuitively, since
we have encoded each input bit in f indirectly, the players
need to communicate Ω(1) bits in order to be able to “learn”
any single bit. If the decision tree complexity of f is large,
we would hope that g has large communication complex-
ity. Recent results in communication complexity show that
we cannot do much better than the above trivial protocol,
subject to some constraints on ψk.

We need the following approximation notion to bridge
decision tree complexity and communication complexity.
Given any 0 ≤ ε < 1, the ε-degree of a real-valued func-
tion f , degε(f), is the smallest d for which there exists a
multivariate real-valued polynomial p of degree d such that
||f − p||∞ = maxx |f(x) − p(x)| ≤ ε. This notion of ap-
proximating a real-valued function is polynomially related
to decision tree complexity.

Proposition 3.1. [28, 1] For every Boolean function f ,
deg5/6(f) ≤ D(f) ≤ (4 deg5/6(f))6.

Finally we state the communication lower bounds for g =
f◦ψk. The following input partition is always assumed when
the communication complexity of g is discussed: there are
k + 1 players and for each input (x, y1, . . . , yk) to each ψk,
player 0 is assigned x, and each player i, for 1 ≤ i ≤ k,
is assigned yi. Intuitively, the inputs y1, . . . , yk given to
players 1 through k determine which bits of x are given to
f . The next two results say that, when ψk is either ψT

k,` or

ψ⊕k,a, and the encoding ψk is over a large enough number of
new variables, then the communication complexity of g is
polynomial related to D(f) (up to a factor depending only
on k).

Theorem 3.2. [8] Let f : {0, 1}m 7→ {0, 1} with 5/6-degree

d > 2. If ` > 22k+1
kem

d
then any (k + 1)-party communica-

tion protocol P computing g = f ◦ ψT
k,` with error 1/3 must

have |P| = Ω( d
2k ).

Theorem 3.3. [3] Let f : {0, 1}m 7→ {0, 1} with 5/6-degree

d > 2. If 2a > 22k+1+2kem
d

then any (k + 1)-party commu-

nication protocol P computing g = f ◦ ψ⊕k,a with error 1/3

must have |P| = Ω( d
2k ).

The first theorem uses the tensor selector while the sec-
ond uses the parity selector. We will use both to prove lower
bounds for T cc(k) and Rcc(k) proof systems. The parity se-
lector requires fewer bits to encode each variable, thus lead-
ing to stronger proof complexity lower bounds as a function
of the number of variables (though it is no more efficient
with respect to formula size). In contrast, the lifted CNF
formula derived using the tensor selector is easier to refute
by small degree threshold proofs, allowing us to prove rank
separations for the hierarchies of T cc(k) and Rcc(k) proof
systems.

Overview of the Hardness Escalation Argument. Be-
fore giving the formal construction and proofs for the two
selectors, we present a brief overview of our argument. Let
F be any t-CNF over the variables e1, . . . , em. To lift F
to obtain a harder unsatisfiable formula G, every variable
ei of F will be replaced by a set of variables Vi. The Vi

variables be comprised of k + 1 sets of variables: x, and
y1, . . . , yk. A selector function ψk will use the y variables to
select one x variable to represent ei. The clauses in G will
state that the Vi variables represent a valid ψ-encoding, and
that with respect to this encoding, F is true. By Lemma
2.8, we know that if G has low T cc(k) rank, then there is an
efficient (k + 1)-party protocol for solving the search prob-
lem associated with G, Gsearch. Thus to prove a T cc(k) rank
lower bound for G, it suffices to prove that Gsearch is hard
in the (k + 1)-party NOF model.

Now any function associated with G is also a lifting of
the corresponding function associated with F . In particu-
lar, Gsearch = Fsearch ◦ ψk. The intuition for why it should
be hard is similar to that of the lifting of Boolean functions:
here Gsearch is a lifting of Fsearch, and the decision tree com-
plexity of Fsearch is large. To prove this, assume for sake of
contradiction that Gsearch is easy for (k + 1)-party commu-
nication. Then the players can efficiently compute Gsearch

over the variables Vi. This in turn means that given the
variables Vi, they can efficiently compute Fsearch(e1, . . . , em),
where each ei = ψk(Vi). It follows that there exists a consis-
tent system Z of functions for F such that for any function
fS ∈ Z, the players can easily compute fS ◦ ψk. In other
words, the lifting of any fS ∈ Z is easy for k-party commu-
nication. It then follows that for appropriate choices of ψk,
any function in Z has low decision tree complexity. Then by
Proposition 2.2, we can conclude that the decision tree com-
plexity of Fsearch is small, contradicting our assumption. We
now proceed to the formal arguments for each of the selector
functions.

3.2 Hardness using the Tensor Selector
Let F be any t-CNF over the variables e1, . . . , em. Given

k, ` ≥ 2, G = LiftT
k,`(F ) is a CNF formula defined overm sets

of variables V1, . . . , Vm, where each Vi is further partitioned
into two sets Xi of size `k and Yi of size k`. Intuitively, every
Vi is an encoding of ei based on ψT

k,`. Each Xi represents

a k-dimensional tensor of size `k each of whose cells c is
associated with a variable xi,c ∈ Xi. Yi, which is indexed
as {yi,p,a : 1 ≤ p ≤ k, 1 ≤ a ≤ `}, selects a unique cell c
in this tensor as follows: For each p ∈ [k], exactly one of
the variables yi,p,a for a ∈ [`] is true, and the value ap such
that yi,p,ap is true is the p-th coordinate of c. Every clause
in F is then transformed into a set of clauses over these Vi.
Formally, the clauses in G consist of:

• For 1 ≤ i ≤ m, 1 ≤ j ≤ k, exactly one of yi,p,1, . . . , yi,p,`
is 1:

(I) yi,p,1 ∨ · · · ∨ yi,p,`
(II) (1 ≤ a < a′ ≤ `): ¬yi,p,a ∨ ¬yi,p,a′

• For every clause, say ¬ei1 ∨ ei,2 ∨ · · · ∨ eit , in F and
for every t-tuple of cells (c1, . . . , ct), if Yi1 selects c1,
Yi2 selects c2, etc., then ¬xi1,c1 ∨xi2,c2 · · ·∨xit,ct must
be satisfied: this is translated into one clause of tk+ t
literals. For example, if the coordinates of c1, . . . , ct
are (a1

1, . . . , a
1
k), . . . , (at1, . . . , a

t
k), respectively, then the

clause would be:
(III) ¬yi1,1,a1

1
∨ · · · ∨ ¬yi1,k,a1

k
∨ · · · ∨ ¬yit,1,at

1
∨ · · ·

∨ ¬yit,k,at
k
∨ ¬xi1,c1 ∨ xi2,c2 ∨ · · · ∨ xit,ct

The next proposition shows that as long as the clauses of F
are not too large, then G is also not too large, and that G
is unsatisfiable as long as F is.



Proposition 3.4. If F is a t-CNF over m variables, then
G = LiftT

k,`(F ) is a CNF formula of |F |`tk+O(mk`2) clauses

of size at most max{tk+ t, `} over n = m(`k+k`) variables.
Furthermore, if F is unsatisfiable, then so is G.

We say that an assignment to X1, Y1, . . . , Xm, Ym of G
is a valid encoding of an assignment to variables e1, . . . , em
of F if all clauses (I) and (II) are satisfied and for every i,
xi,c = ei where c is selected by Yi.

We fix the following input partition to k+ 1 players when
discussing the communication complexity of Gsearch: player
0 is assigned all of the Xi’s, and each player p, for 1 ≤ p ≤ k,
is assigned {yi,p,a : 1 ≤ i ≤ m, 1 ≤ a ≤ `}.

The following lemma says that if Gsearch is easy in com-
munication complexity, then there exists a consistent system
Z = {fS : S ⊆ clauses(F )} for F such that for every fS ∈ Z,
computing fS ◦ψT

k,` is also easy in communication complex-
ity.

Lemma 3.5. Given any unsatisfiable t-CNF formula F and
G = LiftT

k,`(F ). Suppose that there is a (k + 1)-party com-
munication protocol P consistently computing Gsearch with
error ε such that |P| ≤ C. Then there exists a consistent
system Z = {fS : S ⊆ clauses(F )} of functions for F such
that for every S, there is a (k+1)-party communication pro-
tocol PS consistently computing fS ◦ ψT

k,` with error ε such
that |PS | ≤ C.

Proof. For every input assignment α to F , we fix any input
assignment αT to G that is a valid encoding of α. Let g∗ be
the subfunction of Gsearch that is computed by P.

We first observe that on any input assignment α and αT,
g∗(αT) always outputs a type (III)-clause. This is because
αT is a valid encoding. This clause corresponds to a unique
clause in F that is falsified by α. Thus g∗ uniquely deter-
mines a subfunction f∗ of Fsearch.

Given f∗, we define the consistent system Z = Zf∗ for F
using the construction in Proposition 2.1. For every fS ∈
Z, the protocol PS for fS ◦ ψT

k,` is adapted from P in the
straightforward way.

The next theorem is our main result on the proof com-
plexity of G which glues all the parts together.

Theorem 3.6. There are absolute constants c, c′ > 0 such
that the following holds. Let F be any t-CNF formula on
m variables having resolution rank at least r and let G =

LiftT
k,`(F ) for ` ≥ c22k+1

km

(r/ log |F |)1/6 . Then for any C and M =

c′(r/ log2 |F |)1/6/(C2k),

• any Rcc(k+ 1, C) refutation of G of rank R must have
R log2 R ≥M , and

• any tree-like T cc(k + 1, C) refutation of G of size S
must have logS log logS ≥M .

Proof. We will prove only the first part; the second part
follows similarly. Let P be a Rcc(k + 1, C) refutation of G
of rank R. Lemma 2.8, there exists a (k+ 1)-party protocol
P consistently computing Gsearch of error 1/3 such that |P|
is O(CR logR).

Now on the one hand, by Lemma 3.5, there exists a con-
sistent system Z = {fS : S ⊆ clauses(F )} of functions for
F such that for every S, there exists a (k + 1)-party pro-
tocol PS computing fS ◦ ψT

k,` of error 1/3 such that |PS | is
O(CR logR).

On the other hand, by Proposition 2.3, the assumption
on the resolution rank of F implies that D(Fsearch) ≥ r. By
Proposition 2.2, there exists a function fS ∈ Z such that

D(fS) ≥ D(Fsearch)

dlog2 |F |e
=

r

dlog2 |F |e
.

By Proposition 3.1, we have d = deg5/6(fS) ≥ (D(fS))1/6/4

≥ ( r
log2 |F |

)1/6/4.

Finally, by Theorem 3.2, we must have CR logR that is
Ω(d/2k) which is Ω((r/ log2 |F |)1/6/2k).

We note that we have a somewhat matching upper bound
on the rank complexity of G.

Lemma 3.7. Let F be a t-CNF formula on m variables hav-
ing resolution rank r. Then for any ` ≥ 1, there is an
T cc(2, log2(rk`)) proof of G = LiftT

k,`(F ) of rank at most
crk log2 `, where c > 0 is some absolute constant.

Proof Sketch. The main idea is to first build a deci-
sion tree (over linear inequalities) for Gsearch using the deci-
sion tree for Fsearch, and then convert this decision tree to a
T cc(2) refutation. For every ei there is precisely one variable
xi,(a1,...,ak) whose value will replace that of ei in evaluating
G. This selection is determined by the one tuple for which
all of yi,1,a1 , . . . , yi,k,ak evaluate to 1. Whenever the deci-
sion tree for Fsearch queries a variable ei, the decision tree
for Gsearch does k binary searches to find this tuple. Then
the query of ei is replaced by a query to xi,(a1,...,ak).

The second step is carried out by following the standard
conversion of decision trees to proofs implicit in the equiva-
lence in Proposition 2.3. The conversion produces a binary
proof tree where each line can be viewed as a disjunction of
two linear inequalities on at most rk` variables which can be
evaluated efficiently by a 2-party randomized protocol.

The following corollary, which implies Theorem 1.1, fol-
lows easily from Theorem 3.6, Lemma 3.7, and Proposi-
tion 3.4.

Corollary 3.8. Let t be some constant. Suppose that a
family of polynomial-size t-CNF formulas F on m variables
has resolution rank complexity r = r(m). Then, for every
constant ε > 0 and k ≤ (1− ε) log logn, there is a family of

CNF formulas G = LiftT
k (F ) on n = mO(k) variables of size

nO(t) such that

• G requires Rcc(k + 1) rank complexity Ω(r1/7);

• there is a T cc(2) refutation of G of rank O(r logn);

• G requires T cc(k + 1) tree-size exp(Ω(r1/7)).

3.3 Hardness using the Parity Selector
Let F be any t-CNF over the variables e1, . . . , em. Given

k, a ≥ 2, Lift⊕k,a(F ) is a CNF defined over m sets of variables
V1, . . . , Vm, where each Vi is further partitioned into two
sets Xi and Yi. The difference here with Lift⊕k,a(F ) is that

every Vi is an encoding of ei based on ψ⊕k,a. That is, each
Xi has 2a variables that are indexed by a-bit vectors, each
Yi = {yi,p,b : 1 ≤ p ≤ k, 1 ≤ b ≤ a} has ka variables, and
each Yi selects a unique a-bit vector c with cb = ⊕kp=1yi,p,b,

for 1 ≤ b ≤ a. The clauses in Lift⊕k,a(F ) consist of:



(*) For every clause, say ei1 ∨ · · · ∨ eit , in F and for every
t-tuple of a-bit vectors (c1, . . . , ct), if Yi1 selects c1, Yi2
selects c2, etc., then xi1,c1∨· · ·∨xit,ct must be satisfied.
For every clause and t-tuple, this is translated into
≤ 2tka clauses of size tka + t in the straightforward
way. That is, there are ≤ 2ka assignments to the bits
in Yi1 that make them select c1, and similarly for Yi2 ,
etc. There is one clause, similar to the clauses of type
(III) in the tensor selector case, corresponding to each
such assignment.

Proposition 3.9. If F is a t-CNF over m variables, then
G = Lift⊕k,a(F ) is a CNF formula of at most |F |2tka+ta

clauses of size at most ka + t over n = m(2a + ka) vari-
ables. Furthermore, if F is unsatisfiable, then so is G.

The rest of the proofs for this section are very similar to
those in the last section. The first difference is that since
ψ⊕k,a gives a more efficient encoding than ψT

k,`, the blow-up
in the number of variables of G is significantly reduced. The
second difference is that, here, G has a small rank resolution
refutation, as opposed to a CC(2) refutation in the last sec-
tion when the lifting was done using tensor-encoding. There,
small rank resolution refutation was impossible because the
final clauses were too large.

By using Theorem 3.3 for ψ⊕k,a in place of Theorem 3.2

we can replace the function G = LiftT
k,`(F ) in Theorem 3.6

by G = Lift⊕k,a(F ) and obtain exactly the same conclusion

provided that 2a > (c22k+1+2km)/(r/ log |F |)1/6.
On the other hand, one can upper bound the rank com-

plexity of Lift⊕k,a(F ) in terms of that of F , even in resolution.

Lemma 3.10. Let F be a t-CNF formula on m variables hav-
ing resolution rank r. There is some absolute constant c > 0
such that for any a ≥ 1, there is a resolution refutation of
G = Lift⊕k,a(F ) of rank at most crka.

Corollary 3.11. Let t be some constant. Suppose that a
family of polynomial size t-CNF formulas F on m variables
has resolution rank complexity r = r(m). Then, for every
ε > 0 and k ≤ (1 − ε) log logn, there is a family of CNF

formulas G = Lift⊕k (F ) on n = mO(1) variables of size nO(tk)

such that

• G has Rcc(k + 1) rank complexity Ω(r1/7);

• there is a resolution refutation of G of rank O(rk logn);

• G requires T cc(k + 1) tree-size exp(Ω(r1/7)).

4. PROOF SYSTEM HIERARCHIES
In this section we separate Rcc(k) and CP(k) in terms

of rank and separate T cc(k) and CP(k) in terms of tree-
like size, thereby separating Rcc(k + 1) from Rcc(k) and
T cc(k + 1) from T cc(k). In particular we show that if an
unsatisfiable t-CNF formula F has a small rank CP proof,
then G = LiftT

k−1,`(F ) has a small rank CP(k) proof (that
can be made small and tree-like). Moreover, if F requires
large resolution rank, then with the right parameters, G has
no small rank Rcc(k) (or small tree-like T cc(k)) proof. Thus
G is a separating instance.

The pigeonhole principle is known to be hard for resolu-
tion but admits a small rank CP proof. Since we need the
clauses of the input formula to be of constant size for the

size of the formula LiftT
k,`(F ) to be polynomial, we use the

following generalization of the pigeonhole principle [4].
Let G = (U ∪ V,E) be any bipartite graph, where U rep-

resents the pigeons and V the holes and associate a variable
0 ≤ e(u,v) ≤ 1 with each edge (u, v) ∈ E. G−PHP con-
sists of the following clauses, which have been translated to
inequalities:

(P) for all u ∈ U :
P

(u,v)∈E e(u,v) ≥ 1

(H) for all u 6= u′ ∈ U, v ∈ V s.t. (u, v), (u′, v) ∈ E:
e(u,v) + e(u′,v) ≤ 1

Proposition 4.1. [4] For every n, there is a bipartite graph
G = (U ∪ V,E), where |U | = |V | + 1 = n and the degree of
every vertex in U is ≤ 5, such that G−PHP is a polynomial
size 5-CNF on m = 5n variables and requires resolution rank
Ω(m).

From this and Corollary 3.8, we immediately obtain a rank
lower bound for a lifting of G−PHP.

Lemma 4.2. There is a family of bipartite graphs G and a
family of polynomial-size CNF formulas LiftT

k−1(G−PHP)

on n variables that requires Rcc(k) rank nΩ(1/k) and T cc(k)

tree-like refutation size exp(nΩ(1/k)) for k ≤ (1− ε) log logn
and any constant ε > 0.

Our upper bound for the lifted versions of G−PHP will be
derived from the following CP rank upper bound for G−PHP
itself.

Proposition 4.3. [5] For any G = (U ∪ V,E) with |U | =
|V |+ 1, G−PHP has a CP refutation of rank O(log |U |).

Before considering the lifted version of G−PHP, we de-
fine some convenient CP(k) consequences for lifted formu-
las. Suppose that F has variables e1, . . . , em and let G =
LiftT

k−1(F ). The variables in G are xi,c (each cell c is in-

dexed by a tuple in [`]k−1) and yi,p,a, where 1 ≤ i ≤ m,
1 ≤ p ≤ k − 1, and 1 ≤ a ≤ `. For each variable ei of F
define a degree k polynomial

ei :=
X

c=(a1,...,ak)∈[`]k−1

xi,cyi,c,

where yi,c := yi,1,a1 · yi,2,a2 · · · yi,k−1,ak−1 and then define
the following forms:

(I’) for all 1 ≤ i ≤ m:
P
c∈[`]k−1 yi,c ≥ 1

(II’) for all 1 ≤ i ≤ m and c 6= c′ ∈ [`]k−1: yi,c + yi,c′ ≤ 1

(III’) for all clauses in F , say ¬ei1 ∨ ei2 ∨ · · · ∨ eit , and for
every t-tuple of cells (c1, . . . , ct),

yi1,c1xi1,c1 +yi2,c2(1−xi2,c2)+· · ·+yit,ct(1−xit,ct) ≤ t−1

Lemma 4.4. For any k, ` ≥ 2 and any CNF formulas F and
G = LiftT

k−1,`(F ), given the families of clauses (I), (II), and
(III) in G, there are CP(k) derivations of rank k of all (I’),
(II’), and (III’) inequalities as well as 0 ≤ yi,c ≤ 1 and
0 ≤ ei ≤ 1.

Lemma 4.5. For any G = (U ∪ V,E) with |U | = |V | + 1
and the degree of every vertex in U is at most t, the for-
mula G = LiftT

k−1,`(G−PHP) has a CP(k) refutation of rank
O(log |U |+ tk log `), for any k, ` ≥ 2.



Proof Sketch. For ease of notation, we denote the vari-
ables in F = G−PHP by e1, . . . , em where m = |E|. We
apply Lemma 4.4 to obtain a rank k derivation of the in-
equalities (I’), (II’), (III’) and 0 ≤ ei ≤ 1 from the original
inequalities for G. Given the inequalities (I’),(II’), and (III’)
we then show that for each (P)-type axiom ei1 + . . .+eit ≥ 1
(for some t > 0) in F , we can derive the corresponding in-
equality ei1 + . . . + eit ≥ 1 via a rank-O(tk log `) proof in
CP(k). Given inequalities (I’),(II’), and (III’), we also show
that for all (H) axioms ei1 + ei2 ≤ 1 in F , ei1 + ei2 ≤ 1
is derivable via a rank-O(k log `) proof in CP(k). Finally,
we simulate the CP-refutation for F in Proposition 4.3 with
each variable ei replaced by the degree k polynomial ei.

We remark that the construction in Lemma 4.5 can be
similarly applied to any unsatisfiable t-CNF formula F to
show that if F has small rank CP proof, then LiftT

k−1,`(F )
has a small rank CP(k) proof. Lemmas 4.2 and 4.5 together
yield the following separations of our proof systems.

Theorem 4.6. For any ε > 0 there is a family of un-
satisfiable CNF formulas G on n variables that requires
nearly polynomial rank nΩ(1/ log logn) in all Rcc(k) systems

and nearly exponential tree-like size exp(nΩ(1/ log logn)) in
all T cc(k) systems, but has logarithmic rank and polynomial
tree-like size in CP(k) systems, for any k ≤ (1− ε) log logn.

5. INTEGRALITY GAPS
The MAX-SAT problem is well-studied in the theory of

approximation algorithms and optimal inapproximability re-
sults are known under the assumption that P 6= NP. There
are also unconditional inapproximability results known for
a restricted class of algorithms that involve applying Cut-
ting Planes or LS+ procedures to a relaxation of the stan-
dard integer program (e.g. [5, 30]). Here we use our lifting
approach to derive optimal unconditional inapproximability
results for small rank Th(1) proofs.

Given a CNF formula G = {C1 ∧ · · · ∧Cm} over variables
x1, . . . , xn, we can add a new set of variables z1, . . . , zm,
and define C′i = ¬zi ∨ Ci. Let G′ be C′1 ∧ · · · ∧ C′m. If we
convert these clauses into linear constraints and add Boolean
constraints, we obtain a linear program LG with objective
function

P
i zi that is a natural LP relation of the MAX-SAT

problem for G.
There are 2t

`
n
t

´
clauses over n variables that contain ex-

actly t different variables. Let N t,n
m be the probability dis-

tribution induced by choosing m of these clauses uniformly
and independently.

Let F be a t-CNF formula. We consider G = LiftT
1,2(F )

as described earlier, except that since we have set k = 1 and
` = 2, the form of G can be considerably simplified. That
is, the variables of G will consist of two bit-vectors, x and
y, in which x will contain n blocks, each of size 2, y will
be a vector of length n, where yi indicates which of the two
elements of block i will be chosen in x. Each clause of F is
transformed into 2t clauses in G, corresponding to each of
the 2t possible bits of x that could be chosen by y. Thus if F
has m clauses, each of size t, G has 2tm clauses, each of size
2t, and F is unsatisfiable if and only if G is unsatisfiable.
(There is no need for the clauses on the yi-variables that
were used in the case of larger `.)

The following theorem, which is key to getting an integral-
ity gap, is a quantitatively stronger version of Theorem 3.2,
for the case k = 1 and ` = 2.

Theorem 5.1. Let F be any t-CNF formula on n variables
having resolution rank at least r, and let G = LiftT

1,2(F ).
Then any Rcc(2, C) refutation of G of rank R must have
CR logR ≥ rδ for some constant δ > 0.

The proof of Theorem 5.1 relies on the following stronger
version of Theorem 3.2 for the special case of 2 players due
to Sherstov [35]. Theorem 3.2 requires that ` be large. The
theorem below has much less dependence on the degree, and
as a result it does not require ` to be large. However, this
quantitatively stronger version is currently only known to
hold for 2-player communication complexity.

Theorem 5.2. [35] Let f be a boolean function on n vari-
ables with sign-degree at least d (and hence 5/6-degree at
least d). Then any 2-party communication protocol P com-
puting g = f ◦ ψT

1,2 with error 1/3 must have |P| = Ω(d).

The proof of Theorem 5.1 is similar to that of Theorem 3.6,
using Theorem 5.2 instead of Theorem 3.2, and is omitted.

We now see how the above theorem can be applied to
derive an integrality gap for small rank Th(1) or Cutting
Planes proofs.

Corollary 5.3. Let t ≥ 3 be an integer. There exists δ < 1
such that for all ε > 0 there is a ∆ > 1 such that for a
randomly chosen F from N t,n

∆n , the integrality gap of any

nδ round Cutting Planes (or Th(1)) relaxation of LG, the
linear relaxation of the 2t-CNF G = LiftT

1,2(F ), is at least
1− 1/22t + ε with high probability.

Proof. Given ε, fix ∆ � 2t ln 2/ε′2, where (1 − 1/2t +
ε′)(2t/(2t− 1)− ε) = 1. A random assignment satisfies each
of F ’s clauses with probability 1−1/2t, so the expected num-
ber of satisfied clauses of F is (1−1/2t)∆n. For appropriate
choice of ∆, the probability that a random assignment sat-
isfies more than a 1 − 1/2t + ε′ fraction of equations is less
than 2−n by Chernoff bounds. Thus with high probability,
no assignment satisfies more than a 1 − 1/2t + ε′ fraction
of F ’s equations. By the construction of G from F , each
clause of F has precisely 2t corresponding clauses in G. It
follows that with high probability, no assignment satisfies
more than a 1− 1/22t + ε fraction of G’s clauses.

On the other hand, since t ≥ 3, any Resolution refutation
of F requires linear rank [10, 4]. Thus by Theorem 5.1 even
after Th(1) inference of rank nδ (and in particular nδ rounds
of Cutting Planes), there is some non-integral assignment α
to the x′is that satisfies all linear constraints corresponding
to the clauses of G. Extend this assignment by setting all
the zi’s to 1 and it follows that all constraints of LG, are also
satisfied. Thus we have a solution satisfying all equations
that survives even after nδ rounds.

Note that since a random assignment on average satisfies
a 1 − 1/22t fraction of clauses of any 2t-CNF formula, this
yields an optimal integrality gap for rank nδ Th(1) inference
for MAX-2t-SAT for any t ≥ 3. Such a result was previously
only known for the special case of Cutting Planes proofs [5]
and the proof relied on the specific form of inference rather
than the general sound inference allowed for Th(1) proofs.

6. DISCUSSION
We can obtain a similar integrality gap to that of Corol-

lary 5.3 for any problem for which we can prove a decision
tree lower bound. That is, take any optimization problem



that can be expressed naturally as a t-CNF formula, and
such that an integrality gap of 1 − γ can be proven for
decision trees. (Such a result is usually elementary to ob-
tain.) Then by our lifting technique, we can show that any
small Rcc(2, C) refutation (including Cutting Planes and
Th(1) proofs) for the lifted version has an integrality gap of
1− γ/2t. Our approach only works at present for proof sys-
tems that correspond to 2-player communication complexity.
However, an extension of Theorem 5.2 to the multiparty set-
ting (as was done with the qualitatively weaker Theorem 3.2
which was originally proven for the 2-player case [34]) would
immediately yield integrality gaps for stronger matrix cut
systems, such as LS+ and Lasserre.

Our work raises several other natural open questions. Our
lower bounds apply for k up to (1− o(1)) log logn. We con-
jecture that it should be possible to derive hardness escala-
tion results that work when k is Ω(log n). Can our meth-
ods be strengthened to obtain general (dag-like) size lower
bounds? Such a result, even for k = 3, would give the first
unrestricted size lower bounds for Lovász-Schrijver proofs.

Finally, there are many general questions related to hard-
ness escalation. What relationships are there between the
various forms of hardness amplification, hardness escalation,
hardness condensing, and hardness amplification? What
other examples of hardness escalation can be shown, pos-
sibly given reasonable assumptions? It would be very inter-
esting to obtain a hardness escalation result that lifts lower
bounds for a circuit class where cryptography is not possible
to a circuit class were cryptography is possible (e.g., lifting
from DNF lower bounds to TC0 lower bounds) as such a
result would cross the ”natural proof” barrier.
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