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Abstract. We prove that anω(log3 n) lower bound for the three-party number-
on-the-forehead (NOF) communication complexity of the set-disjointness func-
tion implies annω(1) size lower bound for tree-like Lovász-Schrijver systems that
refute unsatisfiable CNFs. More generally, we prove that annΩ(1) lower bound
for the(k +1)-party NOF communication complexity of set-disjointness implies

a 2nΩ(1)
size lower bound for all tree-like proof systems whose formulas are

degreek polynomial inequalities.

1 Introduction

Linear programming, the problem of optimizing a linear objective function over the
points of a given polyhedron, was shown to be polynomial-time solvable over the ra-
tionals by Khachian [15]. When integrality constraints are added, however, the result-
ing integer linear programming problem becomesNP-hard. Many algorithms for such
problems attempt to apply efficiencies from rational linear programming to the integral
case.

One of the most powerful of such approaches is to begin with the polytope defined
by the original linear program without integrality constraints and systematically pare
down the polytope by repeatedly refining the linear program with “cutting planes” that
remove only nonintegral solutions until we are left with the convex hull of the integral
solutions. These are local methods in which the initial polytopeQ (expressed by the
natural cutting planes constraints) is transformed through a sequence of local operations
to smaller and smaller polytopes (each contained in the original one), until the integral
hull of Q is reached. (At this point, rational linear programming will find the correct
solution.) For decision problems, this sequence terminates with the empty polytope if
and only if the initial polytope contains no integral points.

One such method is that of Gomory-Chvátal cuts [6] which derives each new cutting
plane as a linear combination and shift of existing facet constraints. There are even more
subtle methods available, particularly in the case of 01-programming, which is also
NP-complete. In a seminal paper, Lovász and Schrijver [16] introduced a variety of
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cutting planes methods that derive new cutting planes by first “lifting” the inequalities
to higher degree polynomial inequalities (in particular quadratic inequalities) and then
“projecting” them down to linear inequalities using polynomial identities and the fact
thatx2 = x for x ∈ {0, 1}. These systems are now known asLovász-Schrijver systems
(LS).

It may be too costly to apply these techniques to pare all the way down to the
integral hull. However, even applying a smaller number of rounds of the procedure can
often lead to a smaller polytope that has good approximability ratio, one for which the
best nonintegral solution is not too far away from the best integral solution, so that by
rounding we can achieve a good approximation to the optimal value.

Two complexity measures are commonly studied for Lovász-Schrijver and related
cutting planes proof systems:sizeandrank. Intuitively, rank is the number of interme-
diate polytopes that must be passed through before arriving at the integral hull. In [16]
it was shown that for any (relaxed) polytopeP , if the rank ofP is d, then the opti-
mization and decision problems forP can be solved exactly deterministically in time
nO(d). This very nice algorithmic property of Lovász-Schrijver systems makes them
especially appealing for solving or approximating NP-hard optimization problems via
linear programming. A variety of rank lower bounds for exact solution are known, even
for the case of unsatisfiable systems [4, 8, 11, 7, 12]. Moreover, interesting bounds on
the ranks required for good approximations to vertex cover [1] and MaxSAT [5] have
been obtained. This, in turn, implies inapproximability results for these problems for
anypolynomial-time algorithm based on rank.

While there is a rich and growing body of results concerning rank, very little is
known about the size of LS proofs. Informally, the size of an LS procedure with respect
to some polytopeP is the smallest number of hyperplanes defining all of the polytopes
that we need to pass through before arriving at the integral hull. Clearly size lower
bounds imply rank lower bounds, and even tree-size lower bounds imply rank lower
bounds, but the converse is not known to be true. The one unconditional (tree-like)
size lower bound known for LS [12] is for a family of polytopes for which decision
and optimization are trivial and for which the integral hull has a trivial derivation in
Chvátal’s cutting planes proof system.

Problems in which the facets represent clauses of a CNF formula and a decision
algorithm for 01-programming yields a propositional proof system are particularly im-
portant to analyze. Proving (tree-like) size lower bounds for such polytopes was given
as one of the main open problems in [12]. The only LS size lower bounds known at
present for such polytopes formulas are conditional results. First, it is an easy observa-
tion thatNP 6= coNP implies superpolynomial LS size lower bounds for some family
of unsatisfiable CNF formulas. It has also been shown by [19, 9, 10] that these lower
bounds also hold under other natural complexity assumptions.

In this paper we develop a new method for attacking size lower bounds for LS and
for systems that generalize LS. Our main result is a proof that lower bounds on the 3-
party communication complexity of set disjointness (in the number-on-forehead model)
imply lower bounds on the size of tree-like LS proofs for a particular family of unsat-
isfiable CNF formulas. We also generalize this result to a much more powerful family
of proof systems known as semanticLSk, where lines are now degreek polynomial



inequalities. All versions ofLS are special cases ofLS2, and Chv́atal’s Cutting Planes
proof system is a special case ofLS1.

More generally, we show that proving lower bounds on the(k + 1)-party commu-
nication complexity of set disjointness implies lower bounds on the size of tree-like
semanticLSk proofs. By a natural extension of the ideas in [2] one can show that the
(k + 1)-party set disjointness problem is “complete” for the(k + 1)-party commu-
nication complexity class(k + 1)-NPcc and a lower bound showing that it is not in
(k + 1)-RPcc would already given excellent lower bounds forLSk proofs. Such a re-
sult is already known in the casek = 1 [2] (and was used in [13] to derive tree-like
size lower bounds for Chvátal’s Cutting Planes system) and set disjointness is one of
the most well-studied problems in communication complexity.

Our proof can be seen as a generalization of [13] to arbitraryk but the extension
requires a number of new ideas and a substantially more complicated argument that
includes a detailed analysis of large sets of vertex-disjoint paths in expander graphs.

2 Definitions
2.1 Multiparty Communication Complexity and Set Disjointness
Thek-party number-on-the-forehead (NOF) model of communication complexitycom-
putes functions (or relations) of input vectors(x1, . . . , xk) ∈ X1× . . .×Xk distributed
amongk parties, such that partyi ∈ [k] sees allxj for all j ∈ [k], j 6= i.

Thek-party set disjointness problemDISJk,n : ({0, 1}m)k → {0, 1} is defined by
DISJk,n(~x) = 1 iff there is somej ∈ [n] such thatxi,j = 1 for all i ∈ [k]. (We follow
standard terminology although it might be more appropriate to call this set intersection
rather than disjointness.)

A (0, ε)-error k-party NOF communication protocolfor set disjointness is a proto-
col that for every disjoint input produces output 0 and for intersecting inputs outputs 1
with probability at least1− ε.

It is conjectured that for anyk ≥ 2 the k-party set disjointness problem requires
nearly linear randomized NOF communication complexity. This conjecture is equiva-
lent showing that nondeterministick-party communication complexity can be almost
optimally separated from randomizedk-party communication complexity. The conjec-
ture is proven fork = 2 [14], but the best known lower bound fork ≥ 3 is Ω(log n) for
general models andΩ(n1/k) for more restricted models [3].

2.2 Threshold Logics and the Complexity of a Search Problem
The two most prevalent classes of threshold logics are Gomory-Chvátal cutting planes
[6], and matrix cuts, defined by Lovász and Schriver [16]. These proof systems, CP
LS, LS0, and LS+, are special cases of more generalsemanticthreshold logic proof
systems.

A k-threshold formulaover Boolean variablesx1, . . . , xn is a formula of the form∑
j γjmj ≥ t, whereγj , t are integers, and for allj, mj is a multilinear monomial of

degree at mostk. Thesizeof a k-threshold formula is the sum of the sizes ofγj andt,
written in binary notation.

Letf1, f2, g bek-threshold formulas in the variables~x. We say thatg is semantically
entailedby f1 andf2 if for every0/1 assignment to~x that satisfies bothf1 andf2, g is
also satisfied.



Let f be an unsatisfiable CNF formula overx1, . . . , xn, and lett1, . . . , tm be the
underlying set of clauses off , written as 1-threshold inequalities. ATh(k) refutation
of f ,P, is a sequence ofk-threshold formulas,L1, . . . , Lq, where eachLj is one of the
inequalitiesti, i ∈ [m], or is semantically entailed by two formulasLi andLi′ with
i, i′ < j, and the final formulaLq is 0 ≥ 1. Thesizeof P is the sum of the sizes of all
k-threshold formulas occurring inP. The proof istree-like if the underlying directed
acyclic graph, representing the implication structure of the proof, is a tree. (That is,
every formula in the proof, except for the formulas fromf , is used at most once as an
antecedent of an implication.)

CP refutations are a special case ofTh(1) semantic refutations, and thus lower
bounds for tree-likeTh(1) semantic refutations imply similar lower bounds for tree-
like CP. (This was already shown in [13].)

As mentioned earlier, since we can assume that any of the Lovász-Schrijver systems
can be assumed to have fan-in two, it follows that any of the systemsLS0, LS and
LS+ can easily be converted intoTh(2) semantic refutations with at most a polynomial
increase in size, and if the original proof is tree-like, so is the semantic refutation. Thus,
lower bounds for tree-likeTh(2) semantic refutations imply similar lower bounds for
all tree-like Lov́asz-Schrijver systems.

Let f be an unsatisfiable CNF formula. We will be interested in the following search
problem,Searchf associated withf : given a truth assignmentα, find a clause fromf
which is falsified byα. The model for this computation is a decision tree whose nodes
evaluate polynomial threshold functions:

A k-threshold decision treeis a rooted, directed tree whose vertices are labeled
with k-threshold functions and edges are labeled with either 0 or 1. The leaves of the
tree are labeled with clauses off . A k-threshold decision tree solvesSearchf in the
obvious way: start at the root and evaluate the threshold function; follow the edge that
is consistent with the value of the threshold function; continue until the computation
reaches a leaf and output the associated clause. The sizeS of ak-threshold decision tree
is the sum of the sizes of all threshold formulas in the tree, where the coefficients are
written in binary. The depth of ak-threshold decision tree is the depth of the underlying
tree.

Theorem 1. Suppose thatf has a tree-likeTh(k) -semantic refutation of sizeS. Then
there exists ak+1-party 0-error randomized NOF communication complexity protocol
for Searchf (over any partition of the variables intok groups) that communicates
O(log3 S) bits and produces an answer with probability at least1− 1/n.

Further, if all k-threshold formulas in theTh(k) -semantic refutation have coeffi-
cients bounded by a polynomial inn, then the 0-error randomized communication com-
plexity can reduced toO(log S(log log n)2) or the protocol can be made deterministic
usingO(log S log n) bits.

Proof (Sketch).First, following ideas similar to the degree 1 case in [13], we recur-
sively search the proof tree using the1

3 - 2
3 trick to derive ak-threshold decision tree

for Searchf of depthO(log S) and sizeO(S). Then, adapting arguments from [18],
we show that any relation computed by a shallowk-threshold decision tree can also be
efficiently computed by ak + 1 player communication complexity protocol (number-
on-forehead model), over any partition of the variables.



2.3 k-fold Tseitin formulas

Our hard examples are based on the well-known Tseitin graph formulas. LetG =
(V,E) be any connected, undirected graph and let~c ∈ {0, 1}V . TheTseitin formula
for G with respect to charge vector~c, TS(G,~c), has variables Vars(G) = {ye | e ∈ E}.
The formula states that for every vertexv ∈ V , the parity of the edges incident withv
is equal to the charge,cv, at nodev. It is expressed propositionally as the conjunction
of the clauses obtained by expanding⊕e3vye = cv for eachv ∈ V . For a graph with
maximum degreed, each clause is of width≤ d and the number of clauses is≤ |V |2d.

TS(G,~c) is satisfiable if and only if
∑

v∈V cv is even. For odd~c, SearchTS(G,~c)

takes a 0/1 assignmentα to Vars(G) and outputs a clause ofTS(G,~c) that is violated.
In particular, a solution toSearchTS(G,~c) will produce a vertexv such that the parity
equation associated with vertexv is violated byα.

To make the search problem hard fork-party NOF communication protocols (and
thus, by Theorem 1, hard fork − 1-threshold decision trees) we modifyTS(G,~c) by
replacing each variableye by the conjunction ofk variables,

∧k
i=1 yi

e, and expanding
the result into clauses. We call the resultingk-fold Tseitin formula, TSk(G,~c), and its
variable set, Varsk(G) = {yi

e | e ∈ E, i ∈ [k]}.
For a fixed graphG and different odd-charge vectors~c ∈ {0, 1}V (G), the various

problemsSearchTSk(G,~c) are very closely related. Define ODDCHARGEk(G) to be the
k-party NOF communication search problem which takes as input an odd charge vector
~c ∈ {0, 1}V (G), seen by all players, and an assignmentα to Varsk(G), in which player
i sees all values but the assignmentαi

e to yi
e for e ∈ E(G), and requires that the players

output a vertexv that is a solution toSearchTSk(G,~c).

3 Reduction from Set Disjointness toODDCHARGE

We give a sequence of reductions to show that for a suitably chosen graphG, an ef-
ficient k-party NOF communication complexity protocol for ODDCHARGEk(G) will
imply an efficient 1-sided error randomizedk-party NOF protocol for the set disjoint-
ness relation.

We apply the Valiant-Vazirani argument to show that, without loss of generality,
it suffices to derive a 1-sided error protocol for a version of set disjointness in which
the input has intersection size 0 or size 1, and the job of the players is to distinguish
between these two cases. We call this promise problemzero/one set disjointness.

Our reduction from zero/one set disjointness to ODDCHARGEk(G) goes via
an intermediate problem, EVENCHARGEk(G), which is the exact analog of
ODDCHARGEk(G) except that the input charge vector~c is even rather than odd and
the requirement iseitherto find a charge violation or to determine that no charge viola-
tion exists.

The reduction from EVENCHARGEk(G) to ODDCHARGEk(G), which is similar in
spirit to a reduction of Raz and Wigderson [20], works by planting a single randomly
chosen additional charge violation. This yields a protocol for EVENCHARGEk(G) that
works well on average for each class of inputs with a given number of charge violations.

The most difficult part of our argument is the reduction from zero/one set disjoint-
ness to EVENCHARGEk(G) for suitable graphsG. The key idea is that for even~c,
charge violations ofTSk(G,~c) come in pairs: Given an instance~x ∈ ({0, 1}m)k of



zero/one set disjointness, using the public coins, the players randomly choose an even
charge vector~c andm vertex-disjoint paths inG, p1, . . . , pm, for eachj ∈ [m], the play-
ers plant thex1,j , . . . , xk,j as the assignment along each edge of pathpj , in a random
solution that otherwise meets the chosen charge constraint. By construction, a charge
violation can occur only at the endpoints of a path and only if there is an intersection in
the set disjointness problem.

It is tricky to ensure that the resulting problem looks sufficiently like a random in-
stance of EVENCHARGEk(G) with either 0 or 2 charge violations so that we can apply
the average case properties of the protocol for EVENCHARGEk(G). This places ma-
jor constraints on the graphG and in particular requires thatm ≤ n1/3/ log n where
|V (G)| = n. The bulk of the work is in showing that a small number of specific prop-
erties: rapid mixing, modest degree, and high girth – properties all met by a family of
expanders constructed in [17] – are sufficient.

Distributions on labeled graphs For the rest of the paper in the Tseitin tautologies we
will use a family of graphsHn that is the union of two edge-disjoint graphs on the same
set ofn vertices[n], Gn andTn. Gn will be a ∆-regular expander graph of the form
defined by Lubotzky, Phillips, and Sarnak [17] for∆ = Θ(log n). SinceGn has degree
> n/2, there is a spanning treeTn of maximum degree 2 (a Hamiltonian path) inGn.
ClearlyHn also has maximum degreeΘ(log n) and thusTSk(Hn,~c) has sizenO(k).

Let Hn be such a graph and let~c be an even charge vector. We defineSol(Hn,~c)
to be the set of all 0/1 assignments to the edges ofHn so that for each vertexv ∈ [n],
the parity of edges incident withv is equal tocv. A uniform random distribution over
Sol(Hn,~c) can be obtained by first selecting 0/1 values uniformly at random for all
edges inGn and then choosing the unique assignment to the edges ofTn that fulfill the
charge constraints given by~c.

Given a bit valueb associated with an edgee ∈ Gn, we can define a uniform dis-
tributionLk = Lk(b) over the corresponding variablesyi

e, i ∈ [k]. Such an assignment
is chosen randomly fromLk on inputb by the following experiment. Ifb = 1 then set
all variables associated with edgee, yi

e, i ∈ [k] to 1. Otherwise ifb = 0, set the vector
(~ye)i∈[k] by choosing uniformly at random from the set of2k − 1 not-all-1 vectors.

Definition 1. For anyt ≥ 0 letDt be a distribution given by the following experiment
on inputHn = Gn ∪ Tn.
1. Choose an even charge vector~c ∈ {0, 1}n uniformly at random.
2. Choose someβ ∈ Sol(Hn,~c) uniformly at random.
3. For eache ∈ Gn, select the values for the vector(ye)i∈[k] from Lk(βe) and for

eache ∈ Tn, setyi
e = βe for all i ∈ [k].

4. Select a random subsetU ⊆ [n] of 2t vertices and produce charge vector~c U from
~c by toggling all bitscv for v ∈ U .

5. Return the pair(α,~c U ) whereα is the boolean assignment to the variablesyi
e,

i ∈ [k], e ∈ Hn.

Reduction from EVENCHARGE to ODDCHARGE

Lemma 1. Let G be any connected graph onn vertices and let∆(G) be the max-
imum degree inG. Suppose thatΠodd is a randomizedk-party NOF protocol for



ODDCHARGEk(G) that produces an answer with probability at least1 − ε, is cor-
rect whenever it produces an answer, and uses at mosts bits of communication. Then
there is a randomizedk-party NOF protocolΠeven for EVENCHARGEk(G) that uses
s + ∆(G) bits of communication and has the following performance:

Pr
(α,~c)∈D0

[Πeven(α,~c) = true] = 1

Pr
(α,~c)∈Dt

[Πeven(α,~c) ∈ Err(α,~c)] ≥ 2/3− ε for t ≥ 1.

Proof. Let Πodd be a protocol for ODDCHARGEk(G) and assume thatV (G) = [n].
We give a protocolΠeven for EVENCHARGEk(G). On input(α,~c) and random public
stringr: Usingr, choose a random vertexv ∈ [n]. Check whether the parity equation
associated with vertexv is satisfied byα using at most∆(G) bits of communication.
If it is not, returnv. Otherwise, create an odd charge vector,~c {v}, which is just like~c
except that the value ofcv is toggled. Now runΠodd on input(~c {v}, α). If Πodd returns
the planted errorv or if Πodd does not return a value then return “true”; ifΠodd returns
u 6= v, outputu.

Suppose that(α,~c) ∈ D0. Thenα satisfies all charges specified by~c, so when
Πodd returns a vertex the above protocol must output “true” becauseΠodd has one-
sided error–that is,Πodd will only return a vertexu when there is an error on the parity
equation associated withu. Now suppose that(α,~c) ∈ Dt so exactly2t parity equations
are violated. If the random vertexv does not satisfy its parity constraints, then the
algorithm is correct. The remaining case is whenv satisfies the parity equation and in
this case we callΠodd on a pair(α,~c {v}) where exactly2t + 1 parity equations are
violated.

We show the probability bound separately for eachT ∈ [n](2t+1). Because the
events Err(α, ~c′) = T partition the probability space, this proves the claim. By
symmetry, forT ∈ [n](2t+1) and any function g with codomainT , we have that
Prα,~c,v[g(α,~c {v}) = v | Err(α,~c {v}) = T ] = 1/(2t + 1) since it is equally likely for
~c′ = ~c {v} to be generated as~c {u} for anyu ∈ T . Thus we obtain:

Pr
α,~c,v

[Πeven(α,~c {v}) errs | Err(α,~c {v}) = T ]

= Pr
α,~c,v

[Πodd(α,~c {v}) = v or Πodd(α,~c {v}) is not defined| Err(α,~c {v}) = T ]

≤ 1/(2t + 1) + ε ≤ 1/3 + ε for t ≥ 1.

Reduction from Zero/One Set Disjointness toEVENCHARGE: We now show
how to use a k-party NOF communication complexity protocolΠeven for
EVENCHARGEk(Hn) as guaranteed by Lemma 1 to produce ak-party NOF protocol
for the zero/one set disjointness problem which uses the following definition.

Definition 2. LetP (m)
l be the set of all sequences ofm vertex-disjoint lengthl paths in

Gn.

Lemma 2. Letm = n1/3/ log n. For sufficiently largen and for any even charge vector
~c, if there is a probabilistick-party NOF communication complexity protocol,Πeven

for EVENCHARGEk(Hn) usings bits, satisfying the conditions in Lemma 1 forD0 and



D1, then there is a randomized(0, 1/3 + ε + o(1)) error k-party NOF communication
complexity protocolΠ01disj for zero/one set disjointness on input~x ∈ ({0, 1}m)k that
usess bits of communication.

Proof. Let ~x be an instance of zero/one set disjointness. ProtocolΠ01disj will call
Πeven on the graphHn, on a pair(α,~c) chosen according to the following distribu-
tion/experiment:
1. On input~x with public coinsr:

(a) Using public coinsr, choose a random even charge vector~c ∈ {0, 1}n.
(b) Using public coinsr, choose a sequence ofm vertex-disjoint lengthl paths,

p1, . . . pm uniformly at random fromP
(m)
l .

(c) Using the public coinsr, chooseβ ∈ Sol(Hn −
⋃m

j=1 pj ,~c)
2. For all edgese ∈ Hn, all players other than playeri computeαi

e as follows:
(a) If e ∈ pj for j ∈ [m], setαi

e = xi,j

(b) If e ∈ Gn and e 6∈
⋃m

j=1 pj , choose the vectorα1
e . . . αk

e according to the
distributionLk(βe).

(c) For the remaining edgese ∈ Tn, set all variablesαi
e for i ∈ [k] equal toβe.

3. Return(α,~c)

We writeR(~x) to denote the distribution on assignment/charge pairs produced by
reductionΠ01disj when given an input~x. The following lemma, proven in section 4,
has the main technical argument and shows that fort = | ∩ ~x| ∈ {0, 1}, althoughR(~x)
is not the same asDt,R(~x) is close to the distributionDt in the`1 norm.

Lemma 3. Let~x ∈ ({0, 1}m)k and| ∩ ~x| = 1. Then||R(~x)−D1||1 is o(1).

ProtocolΠ01disj will output 0 if Πeven returns “true” and 1 otherwise. If∩~x = ∅,
by the above construction, the support ofR(~x) is contained in that ofD0 and thus
onR(~x), Πeven must answer “true” and the vector~x is correctly identified as being
disjoint. In the case that∩~x contains exactly one element,Pr[Π01disj(~x)) = 0] ≥
2/3− ε− o(1). This completes the proof of the Lemma 2.

Reduction from Set disjointness to Zero/One Set disjointness

Lemma 4. If there is an(0, ε) randomized NOF protocol for thek-party zero-one-
promise set-disjointness problem that usess bits of communication whereε is a constant
< 1, then there is a(0, 1

3 ) randomized NOF protocol for thek-party set-disjointness
problem that usesO(s log n) bits of communication.

Naturally, our starting point is the well-known result of Valiant and Vazirani [21].

Lemma 5 (Valiant-Vazirani). Leta be a positive integer. Fix a nonemptyS ⊆ {0, 1}a,
and choosew1, . . . wa ∈ {0, 1}a independently and uniformly. With probability at least
1/4, there existsj ∈ {0, . . . , a} so that|{x ∈ S | ∀i ≤ j, x · wi = 0}| = 1.

Proof (of Lemma 4).Let Π be the protocol for the promise problem. Seta = dlog ne.
Using public coins, independently and uniformly choosew1, . . . wl ∈ {0, 1}a. Forj ∈
{0, . . . a}, the players run the protocolΠ, using the following rule for evaluating the



input xi,r for i ∈ [k], r ∈ [m]: interpretr as a vector in{0, 1}a, and replace the value
of xi,r by zero if for somej′ ≤ j, wj′ · r 6= 0, and use the valuexi,r if for all j′ ≤ j,
wj′ · r = 0. If the protocolΠ returns 1, the players halt and output 1, otherwise, the
players proceed to roundj + 1. If no intersection is found after alla + 1 rounds, the
players announce that the inputs are disjoint.

Clearly, this protocol usesO(s log n) bits of communication, and by the 0-error
property ofΠ on disjoint inputs, it never outputs 1 when the inputs are disjoint. When
the inputs are non-disjoint, the Valiant-Vazirani construction ensures that with proba-
bility at least1/4, at some roundj the protocolΠ is used on an input with a unique
intersection, and therefore, conditioned on this event, the correct answer is returned
with probability at least1−ε. Therefore, the correct answer is returned with probability
at least14 −

ε
4 . Becauseε is bounded away from1 and the error is one-sided, a constant

number of repetitions decreases the probability of error to1/3.

Combining the reductions

Theorem 2. Letk ≥ 2 andm = n1/3/ log n. For eachn there is an odd charge vector
~c ∈ {0, 1}n such that for anyε < 1/2 the size of any tree-likeTh(k-1) refutation

of TSk(Hn,~c) is at least2Ω((Rk
ε (DISJk,m)/ log n)1/3). Further if the coefficients in the

Th(k-1) refutations are bounded by a polynomial inn then the refutation size must be
at least2Ω(Rk

ε (DISJk,m)/(log n(log log n)2)) or at least2Ω(Dk
ε (DISJk,m)/ log2 n).

Proof (Sketch).By Theorem 1 and the definition of ODDCHARGEk(Hn), if for every
~c ∈ {0, 1}n there is tree-likeTh(k-1) refutation ofTSk(Hn,~c) of size at mostS, then
there is a1/n-error randomizedk-party NOF communication complexity protocol for
ODDCHARGEk(Hn) in which at mostO(log3 S) bits are communicated. By sending
one more bit the players can check that the answer is correct and only output it in this
case. Then applying Lemmas 1, 2, and 4 in turn yields an error1/3 randomizedk-
party NOF protocol for DISJk,m of complexityO(log3 S log n + log2 n) bits in total.
Applying a similar reduction using the other parts of Theorem 1 yields the claimed
result.

In the full paper we prove that the same lower bounds as Theorem 2 hold forevery
odd charge vector~c ∈ {0, 1}n.

4 Proximity of distributions D1 and R(~x) when | ∩ ~x| = 1
In this section we prove Lemma 3 that for| ∩ ~x| = 1 the distributionsR(~x) andD1

are close in thè1 norm. LetµD1 andµR(~x) be their associated probability measures.
We will show that for all but a set of(α,~c) with µD1 measureo(1), µD1(α,~c) = (1 ±
o(1))µR(~x)(α,~c).

Given an instance of the set disjointness variables,~x = ({0, 1}m)k, for j ∈ [m]
we say that thecolor of j is the tuple(x1,j , . . . , xk,j) ∈ {0, 1}k. By construction, the
assignmentR(~x) produced byR on this instance has color(x1,j , . . . , xk,j) on each
edge of the pathpj .

Definition 3. Given an ordered sequence of paths~p ∈ P
(m)
l , an~x ∈ ({0, 1}m)k, and

an assignmentα, write χ(α~p) = ~x if and only if every edge on pathpj has color
(x1,j , . . . , xk,j) for everyj ∈ [m].



We first observe that for any(α,~c) with |Err(α,~c)| = 2 the probabilityµDt
(α,~c)

depends only on the number of edgese ∈ Gn having color1k in α.

Definition 4. Letφ(a, b) = 2−a(2k − 1)−(a−b).

Lemma 6. For any(α,~c) with |Err(α,~c)| = 2t andm1 = |{e ∈ E(Gn) | αe = 1k}|,
µD1(α,~c) = φ(|E(Gn)|,m1)/(2n−1

(
n
2

)
).

Proof. Let U = Err(α,~c). The probability underD1 thatU is chosen to be flipped is
1/

(
n
2t

)
and, givenU , all of the2n−1 even charge vectors~cU are equally likely. Con-

ditioned on these events, the chance thatα labels the edges for the randomly selected
element ofSol(Hn,~c) is 2−|E(Gn)|(2k − 1)−(|E(Gn)|−m1).

Definition 5. For U ⊂ V with |U | = 2 let P (m)
l (U) be the set of all elements ofP

(m)
l

that have a path whose endpoints areU .

Now consider the measureµR(~x)(α,~c). Let {i} = ∩~x ⊆ [n], U = Err(α,~c) with
|U | = 2, andm1 = |{e ∈ E(Gn) | αe = 1k}|. By the definition ofR,

µR(~x)(α,~c) = Pr
~p∈P

(m)
l

[Ends(pi) = Err(α,~c) ∧ χ(α~p) = ~x]

× Pr
~c′∈{0,1}n, α′∈Lk(Sol(Hn−~p,~c′))

[α′ = αGn−~p and~c′ = ~c]

= Pr
~p∈P

(m)
l

[Ends(pi) = Err(U)]× Pr
~p∈P

(m)
l (U)

[χ(α~p) = ~x]

× φ(|E(Gn)| −ml,m1 − l)/2n−1.

Observe thatpi is a uniformly chosen element ofPl and we can analyze the first
term using the following property of random paths on LPS expanders proven in the full
paper.

Lemma 7. For u 6= v ∈ V (Gn) andl ≥ c1 log n/ log log n,
Prp∈Pl

[Ends(p) = {u, v}] = (1± o(1))/
(
n
2

)
.

ThusµR(~x)(α,~c) = (1± o(1))
φ(|E(Gn)| −ml,m1 − l)(

n
2

)
2n−1

· Pr
~p∈P

(m)
l (U)

[χ(α~p) = ~x]

= (1± o(1))
µD1(α,~c)
φ(ml, l)

· Pr
~p∈P

(m)
l (U)

[χ(α~p) = ~x].

It follows that we will obtain the desired result if we can show that for all but ao(1)
measure of(α,~c) underµD1 ,

Pr
~p∈P

(m)
l (U)

[χ(α~p) = ~x] = (1± o(1))φ(ml, l) = (1± o(1))2−ml(2k − 1)−(m−1)l

whereU = Err(α,~c). In the case that this happens, we say that(α,~c) is well-distributed
for ~x.

Using the second moment method we prove the following lemma which shows that
for all but ao(1) measure of(α,~c) underµD1 , (α,~c) is indeed well-distributed for~x.
The detailed proof is given in the full paper; the proof uses the fact thatΘ(log n)-degree
LPS expanders haveO(log n/ log log n) mixing time andΩ(log n/ log log n) girth.



Lemma 8. Let m ≤ n1/3/ log n and l = 2dc1 log n/ log log ne and~x ∈ ({0, 1}m)k

with | ∩ ~x| = 1. For almost allU ⊂ [n] with |U | = 2,
Pr(α,~c)∈D1 [(α,~c) is well-distributed for~x | Err(α,~c) = U ] = 1− o(1).

Lemma 3 follows from this almost immediately.

Proof (of Lemma 3).Let~x ∈ ({0, 1}m)k and|∩~x| = 1. By Lemma 8 and the preceding
argument, for all but a setB of U that formso(1) fraction of all subsets[n] of size
2, Pr

(a,~c)∈D1

[µR(~x)(α,~c) = (1 ± o(1))µD1(α,~c) | Err(α,~c) = U ] = 1 − o(1). By

Lemma 7,Pr(α,~c)∈D1 [Err(α,~c) ∈ B] = o(1). Therefore by summing over distinct
choices ofU , we obtain that with probability1− o(1) over(α,~c) ∈ D1, µR(~x)(α,~c) =
(1± o(1))µD1(α,~c). This is equivalent to the desired conclusion that||D1−R(~x)||1 is
o(1).

5 Discussion

There are a couple of interesting open problems related to our work beyond the natural
problem of the communication complexity of DISJk. First, does semanticLSk have
a separation oracle, asLS does? This is closely related to whether or notLSk is au-
tomatizable and we conjecture that the answer to both questions is negative. Secondly,
is it possible to extend our lower bounds to other tautologies that would imply inap-
proximability results for polynomial-timeLSk-based algorithms? (For example, if we
could prove superpolynomial lower bounds for tree-likeLSk proofs of random 3CNF
formulas, this would imply inapproximability results forLSk-based linear program-
ming algorithms for MaxSAT [5].)

Finally we would like to point out a connection between our main result and the
complexity of disjointNP pairs. An open question in complexity theory is whether or
not all pairs of disjointNP sets can be separated by a set inP. This is known to be
false under the assumptionP 6= UP and also by the assumptionP 6= NP ∩ coNP. It
is an open question whether or not it is implied byP 6= NP. Let us consider the same
question with respect to communication complexity rather than polynomial time: can
every pair of relations with small nondeterministick-party communication complex-
ity be separated by a small probabilistic/deterministic protocol? In [20] the answer is
shown to be unconditionally false fork = 2. In particular, they give a pair of disjoint
properties on3m-vertex graphsG, a matching on2m vertices ofG and an independent
set of2m + 1 vertices ofG, and show that this pair cannot be separated by any small
probabilistic/deterministic protocol. In this paper, we have shown that for anyk, the
question is still false, underk-RPcc 6= k-NPcc.
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