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Abstract. We prove that aw(log® n) lower bound for the three-party number-
on-the-forehead (NOF) communication complexity of the set-disjointness func-
tion implies am* (V) size lower bound for tree-like Lész-Schrijver systems that
refute unsatisfiable CNFs. More generally, we prove that@f’ lower bound

for the (k + 1)-party NOF communication complexity of set-disjointness implies
a 2" size lower bound for all tree-like proof systems whose formulas are
degreek polynomial inequalities.

1 Introduction

Linear programming, the problem of optimizing a linear objective function over the
points of a given polyhedron, was shown to be polynomial-time solvable over the ra-
tionals by Khachian [15]. When integrality constraints are added, however, the result-
ing integer linear programming problem beconm#3-hard. Many algorithms for such
problems attempt to apply efficiencies from rational linear programming to the integral
case.

One of the most powerful of such approaches is to begin with the polytope defined
by the original linear program without integrality constraints and systematically pare
down the polytope by repeatedly refining the linear program with “cutting planes” that
remove only nonintegral solutions until we are left with the convex hull of the integral
solutions. These are local methods in which the initial polyt@oéexpressed by the
natural cutting planes constraints) is transformed through a sequence of local operations
to smaller and smaller polytopes (each contained in the original one), until the integral
hull of @ is reached. (At this point, rational linear programming will find the correct
solution.) For decision problems, this sequence terminates with the empty polytope if
and only if the initial polytope contains no integral points.

One such method is that of Gomory-Gial cuts [6] which derives each new cutting
plane as a linear combination and shift of existing facet constraints. There are even more
subtle methods available, particularly in the case of 01l-programming, which is also
NP-complete. In a seminal paper, Lasz and Schrijver [16] introduced a variety of
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cutting planes methods that derive new cutting planes by first “lifting” the inequalities
to higher degree polynomial inequalities (in particular quadratic inequalities) and then
“projecting” them down to linear inequalities using polynomial identities and the fact
thatz? = = for » € {0, 1}. These systems are now knownlLasasz-Schrijver systems
(LS)

It may be too costly to apply these techniques to pare all the way down to the
integral hull. However, even applying a smaller number of rounds of the procedure can
often lead to a smaller polytope that has good approximability ratio, one for which the
best nonintegral solution is not too far away from the best integral solution, so that by
rounding we can achieve a good approximation to the optimal value.

Two complexity measures are commonly studied for s+ Schrijver and related
cutting planes proof systemsizeandrank. Intuitively, rank is the number of interme-
diate polytopes that must be passed through before arriving at the integral hull. In [16]
it was shown that for any (relaxed) polytogg if the rank of P is d, then the opti-
mization and decision problems fét can be solved exactly deterministically in time
n©(d_ This very nice algorithmic property of Lé&sz-Schrijver systems makes them
especially appealing for solving or approximating NP-hard optimization problems via
linear programming. A variety of rank lower bounds for exact solution are known, even
for the case of unsatisfiable systems [4, 8, 11, 7, 12]. Moreover, interesting bounds on
the ranks required for good approximations to vertex cover [1] and MaxSAT [5] have
been obtained. This, in turn, implies inapproximability results for these problems for
anypolynomial-time algorithm based on rank.

While there is a rich and growing body of results concerning rank, very little is
known about the size of LS proofs. Informally, the size of an LS procedure with respect
to some polytope” is the smallest number of hyperplanes defining all of the polytopes
that we need to pass through before arriving at the integral hull. Clearly size lower
bounds imply rank lower bounds, and even tree-size lower bounds imply rank lower
bounds, but the converse is not known to be true. The one unconditional (tree-like)
size lower bound known for LS [12] is for a family of polytopes for which decision
and optimization are trivial and for which the integral hull has a trivial derivation in
Chvatal's cutting planes proof system.

Problems in which the facets represent clauses of a CNF formula and a decision
algorithm for 01-programming yields a propositional proof system are particularly im-
portant to analyze. Proving (tree-like) size lower bounds for such polytopes was given
as one of the main open problems in [12]. The only LS size lower bounds known at
present for such polytopes formulas are conditional results. First, it is an easy observa-
tion thatNP # coNP implies superpolynomial LS size lower bounds for some family
of unsatisfiable CNF formulas. It has also been shown by [19, 9, 10] that these lower
bounds also hold under other natural complexity assumptions.

In this paper we develop a new method for attacking size lower bounds for LS and
for systems that generalize LS. Our main result is a proof that lower bounds on the 3-
party communication complexity of set disjointness (in the number-on-forehead model)
imply lower bounds on the size of tree-like LS proofs for a particular family of unsat-
isfiable CNF formulas. We also generalize this result to a much more powerful family
of proof systems known as semanfi§*, where lines are now degréepolynomial



inequalities. All versions of.S are special cases 52, and Chwatal’s Cutting Planes
proof system is a special caselof.

More generally, we show that proving lower bounds on(the- 1)-party commu-
nication complexity of set disjointness implies lower bounds on the size of tree-like
semanticL.S* proofs. By a natural extension of the ideas in [2] one can show that the
(k + 1)-party set disjointness problem is “complete” for thie+ 1)-party commu-
nication complexity clas$k + 1)-NP““ and a lower bound showing that it is not in
(k + 1)-RP“° would already given excellent lower bounds fos* proofs. Such a re-
sult is already known in the cage= 1 [2] (and was used in [13] to derive tree-like
size lower bounds for Clatal's Cutting Planes system) and set disjointness is one of
the most well-studied problems in communication complexity.

Our proof can be seen as a generalization of [13] to arbittaoyt the extension
requires a number of new ideas and a substantially more complicated argument that
includes a detailed analysis of large sets of vertex-disjoint paths in expander graphs.

2 Definitions

2.1 Multiparty Communication Complexity and Set Disjointness
The k-party number-on-the-forehead (NOF) model of communication compladity
putes functions (or relations) of input vectdrs, . . ., zx) € X1 x ... x X}, distributed
amongk parties, such that partye [k] sees alk;; for all j € [k], j # i.

The k-party set disjointness probleBisy ,, : ({0,1}™)* — {0, 1} is defined by
DisJ; »(Z) = 1iff there is somej € [n] such that; ; = 1 for all ¢ € [k]. (We follow
standard terminology although it might be more appropriate to call this set intersection
rather than disjointness.)

A (0, €)-error k-party NOF communication protocébr set disjointness is a proto-
col that for every disjoint input produces output 0 and for intersecting inputs outputs 1
with probability at least — e.

It is conjectured that for any > 2 the k-party set disjointness problem requires
nearly linear randomized NOF communication complexity. This conjecture is equiva-
lent showing that nondeterministicparty communication complexity can be almost
optimally separated from randomizéeparty communication complexity. The conjec-
ture is proven fok = 2 [14], but the best known lower bound fbr> 3 is 2(log n) for
general models anf(n'/*) for more restricted models [3].

2.2 Threshold Logics and the Complexity of a Search Problem

The two most prevalent classes of threshold logics are Gomorgat@hsutting planes
[6], and matrix cuts, defined by Lasz and Schriver [16]. These proof systems, CP
LS, LSy, and LS,, are special cases of more genesaianticthreshold logic proof
systems.

A k-threshold formuleover Boolean variables,, ..., z, is a formula of the form
>_;vim; > t, wherevy;, t are integers, and for afl, m; is a multilinear monomial of
degree at most. Thesizeof a k-threshold formula is the sum of the sizesygfandt,
written in binary notation.

Let f1, f2, g bek-threshold formulas in the variablgsWe say thay is semantically
entailedby f, and f if for every 0/1 assignment ta’ that satisfies botlf; and fs, g is
also satisfied.



Let f be an unsatisfiable CNF formula ovey, ..., z,, and letty, ..., ¢, be the
underlying set of clauses gf, written as 1-threshold inequalities. Ph(k) refutation
of f, P, is a sequence df-threshold formulasl+, ..., L, where eaclL; is one of the
inequalitiest;, « € [m], or is semantically entailed by two formulds and L;; with
i,3" < j, and the final formuld, is 0 > 1. Thesizeof P is the sum of the sizes of all
k-threshold formulas occurring i?. The proof istree-likeif the underlying directed
acyclic graph, representing the implication structure of the proof, is a tree. (That is,
every formula in the proof, except for the formulas frgimis used at most once as an
antecedent of an implication.)

CP refutations are a special caseTdf(1) semantic refutations, and thus lower
bounds for tree-likeTh(1) semantic refutations imply similar lower bounds for tree-
like CP. (This was already shown in [13].)

As mentioned earlier, since we can assume that any of thedze8chrijver systems
can be assumed to have fan-in two, it follows that any of the systefgs .S and
LS can easily be converted infih(2) semantic refutations with at most a polynomial
increase in size, and if the original proof is tree-like, so is the semantic refutation. Thus,
lower bounds for tree-likd'h(2) semantic refutations imply similar lower bounds for
all tree-like Lovasz-Schrijver systems.

Let f be an unsatisfiable CNF formula. We will be interested in the following search
problem,Search; associated witlf: given a truth assignment, find a clause frony
which is falsified bya. The model for this computation is a decision tree whose nodes
evaluate polynomial threshold functions:

A k-threshold decision treés a rooted, directed tree whose vertices are labeled
with k-threshold functions and edges are labeled with either O or 1. The leaves of the
tree are labeled with clauses 6f A k-threshold decision tree solvé&archy in the
obvious way: start at the root and evaluate the threshold function; follow the edge that
is consistent with the value of the threshold function; continue until the computation
reaches a leaf and output the associated clause. Thé efzek-threshold decision tree
is the sum of the sizes of all threshold formulas in the tree, where the coefficients are
written in binary. The depth of &-threshold decision tree is the depth of the underlying
tree.

Theorem 1. Suppose thaf has a tree-likeTh(k) -semantic refutation of sizg. Then
there exists & + 1-party 0-error randomized NOF communication complexity protocol
for Search; (over any partition of the variables inté groups) that communicates
O(log® S) bits and produces an answer with probability at least 1/n.

Further, if all k-threshold formulas in th&@h(k)-semantic refutation have coeffi-
cients bounded by a polynomialin then the 0-error randomized communication com-
plexity can reduced t®(log S(loglogn)?) or the protocol can be made deterministic
usingO(log S'log n) bits.

Proof (Sketch)First, following ideas similar to the degree 1 case in [13], we recur-
sively search the proof tree using t%e% trick to derive ak-threshold decision tree
for Searchy of depthO(log.S) and sizeO(S). Then, adapting arguments from [18],
we show that any relation computed by a shallethreshold decision tree can also be
efficiently computed by & + 1 player communication complexity protocol (number-
on-forehead model), over any partition of the variables.



2.3 k-fold Tseitin formulas

Our hard examples are based on the well-known Tseitin graph formulass Let
(V, E) be any connected, undirected graph andFlet {0,1}V. The Tseitin formula
for G with respect to charge vectar 7'S (G, ¢), has variables Va(é/) = {y. | e € E}.
The formula states that for every vertexe V, the parity of the edges incident with

is equal to the charge,,, at nodev. It is expressed propositionally as the conjunction
of the clauses obtained by expandisgs,y. = ¢, for eachv € V. For a graph with
maximum degred, each clause is of widtk d and the number of clausesds|V|2¢.

TS(G,c) is satisfiable if and only i, c, is even. For odd, Searchrg(c,z)
takes a 0/1 assignmentto VargG) and outputs a clause @S (G, ¢) that is violated.
In particular, a solution t&earchrs(g,# Will produce a vertexw such that the parity
equation associated with vertexs violated byc.

To make the search problem hard feparty NOF communication protocols (and
thus, by Theorem 1, hard fdr — 1-threshold decision trees) we modifyS (G, &) by
replacing each variablg. by the conjunction of variables,/\f:1 y!, and expanding
the result into clauses. We call the resultingold Tseitin formula7S*(G, @), and its
variable set, Val{G) = {y! | e € E,i € [k]}.

For a fixed graptG and different odd-charge vectafse {0,1}" (%), the various
problemsSearchrgk .z are very closely related. DefinedDD CHARGE" (G) to be the
k-party NOF communication search problem which takes as input an odd charge vector
@ e {0,1}V(©), seen by all players, and an assignmeno Vars(G), in which player
i sees all values but the assignmeftio % for e € E(G), and requires that the players
output a vertex that is a solution t&earchy gk (e -

3 Reduction from Set Disjointness tdtODDCHARGE

We give a sequence of reductions to show that for a suitably chosen Gtag ef-
ficient k-party NOF communication complexity protocol fOI’D@CHARGEk(G) will
imply an efficient 1-sided error randomizéeparty NOF protocol for the set disjoint-
ness relation.

We apply the Valiant-Vazirani argument to show that, without loss of generality,
it suffices to derive a 1-sided error protocol for a version of set disjointness in which
the input has intersection size 0 or size 1, and the job of the players is to distinguish
between these two cases. We call this promise prolkenmone set disjointness

Our reduction from zero/one set disjointness t@O@HARGE"(G) goes via
an intermediate problem, VENCHARGE"(G), which is the exact analog of
ODDCHARGEk(G) except that the input charge vect®is even rather than odd and
the requirement isitherto find a charge violation or to determine that no charge viola-
tion exists.

The reduction from EENCHARGE" () to ODDCHARGE" (G), which is similar in
spirit to a reduction of Raz and Wigderson [20], works by planting a single randomly
chosen additional charge violation. This yields a protocol fee ECHARGE" (G) that
works well on average for each class of inputs with a given number of charge violations.

The most difficult part of our argument is the reduction from zero/one set disjoint-
ness to RENCHARGE"(G) for suitable graphga. The key idea is that for eved
charge violations of'S* (G, ¢) come in pairs: Given an instanaec ({0,1}™)* of



zero/one set disjointness, using the public coins, the players randomly choose an even
charge vectof andm vertex-disjoint paths id7, p1, . . ., pm, for eachy € [m], the play-

ers plant ther 5, ...,z ; as the assignment along each edge of patfin a random
solution that otherwise meets the chosen charge constraint. By construction, a charge
violation can occur only at the endpoints of a path and only if there is an intersection in
the set disjointness problem.

It is tricky to ensure that the resulting problem looks sufficiently like a random in-
stance of FENCHARGE" (G) with either 0 or 2 charge violations so that we can apply
the average case properties of the protocol fUEECHARGEk(G). This places ma-
jor constraints on the grapfi and in particular requires that < n'/3/logn where
|V (G)| = n. The bulk of the work is in showing that a small number of specific prop-
erties: rapid mixing, modest degree, and high girth — properties all met by a family of
expanders constructed in [17] — are sufficient.

Distributions on labeled graphs For the rest of the paper in the Tseitin tautologies we
will use a family of graphd7,, that is the union of two edge-disjoint graphs on the same
set ofn vertices[n|, G,, andT,,. G,, will be a A-regular expander graph of the form
defined by Lubotzky, Phillips, and Sarnak [17] far= ©(log n). SinceG,, has degree

> n/2, there is a spanning tré®, of maximum degree 2 (a Hamiltonian path)Gh,.
Clearly H,, also has maximum degré&(log n) and thus'S*(H,,, ¢) has sizex® %),

Let H,, be such a graph and Iétbe an even charge vector. We defisi@ (H,,, )
to be the set of all 0/1 assignments to the edgeH p&o that for each vertex € [n],
the parity of edges incident with is equal toc,. A uniform random distribution over
Sol(H,, ) can be obtained by first selecting 0/1 values uniformly at random for all
edges in7,, and then choosing the unique assignment to the eddEs thiat fulfill the
charge constraints given &

Given a bit value) associated with an edgee G,,, we can define a uniform dis-
tribution £* = L,.(b) over the corresponding variablgs i € [k]. Such an assignment
is chosen randomly front,, on inputb by the following experiment. 16 = 1 then set
all variables associated with edgey’, i € [k] to 1. Otherwise iy = 0, set the vector
(e )iepr) by choosing uniformly at random from the setdf— 1 not-all-1 vectors.

Definition 1. For anyt > 0 let D, be a distribution given by the following experiment
oninputd, = G, UT,.
1. Choose an even charge vectog {0, 1}™ uniformly at random.
2. Choose som@ € Sol(H,, ¢) uniformly at random.
3. For eache € G, select the values for the vecty. );cx) from £;.(5.) and for
eache € T,, sety! = 3. for all i € [k].
4. Select a random subsEtC [n] of 2¢ vertices and produce charge vec@®¥ from
¢ by toggling all bitse,, for v € U.
5. Return the pairfa, cV) wherea is the boolean assignment to the variablés
1 € [k],e € Hp.

Reduction from EVENCHARGE to ODDCHARGE

Lemma 1. Let G be any connected graph an vertices and letA(G) be the max-
imum degree inG. Suppose thafl,,, is a randomizedk-party NOF protocol for



ODDCHARGE® () that produces an answer with probability at ledst- e, is cor-
rect whenever it produces an answer, and uses at mb#s of communication. Then
there is a randomized-party NOF protocolll.,.,, for EVENCHARGEk(G) that uses
s + A(G) bits of communication and has the following performance:

Pr  [Heyen(a, ) = true] =1
(a@epo[ (a,0) ]

Pr [Heyen(a,¢) € Err(a,c)] >2/3 —efort > 1.
(0, @) €Dy

Proof. Let 1,44 be a protocol for @0CHARGE"(G) and assume thdt (G) = [n].
We give a protocoll.,.,, for EVENCHARGEk(G). On input(«, ¢) and random public
stringr: Usingr, choose a random vertexe [n]. Check whether the parity equation
associated with vertex is satisfied byn using at mostA(G) bits of communication.
If it is not, returnv. Otherwise, create an odd charge vecidr}, which is just like¢
except that the value ef, is toggled. Now runT,4, on input(c {"}, ). If IT,44 returns
the planted erroo or if I1,,4 does not return a value then return “true”fi,q4 returns

u # v, outputu.

Suppose thata, @) € Dy. Thena satisfies all charges specified Byso when
11,44 returns a vertex the above protocol must output “true” becdiigg has one-
sided error—that isll, 4 will only return a vertexu when there is an error on the parity
equation associated with Now suppose thdty, ¢) € D, so exactly2t parity equations
are violated. If the random vertex does not satisfy its parity constraints, then the
algorithm is correct. The remaining case is whesatisfies the parity equation and in
this case we callT,;; on a pair(«a, & t*}) where exactly2t 4 1 parity equations are
violated.

We show the probability bound separately for edehe [n](?*+1). Because the
events Er(af’) = T partition the probability space, this proves the claim. By
symmetry, forT € [n]*+1) and any function g with codomainT’, we have that
Pro zo[g9(a, @11 = v | Err(a, e (1) = T] = 1/(2t + 1) since it is equally likely for
¢ = v} to be generated as*} for anyu € T. Thus we obtain:

Pr [Heyen (o, vy errs | Err(a, @) = 1)

a,C,v

= Pr [[,ga(a, @) = v or Mga(e, @ (1) is not defined| Err(a, @ {¥}) = 77

«,C,v

<1/(2t+1)+e < 1/3+¢ fort > 1.

Reduction from Zero/One Set Disjointness toEVENCHARGE: We now show
how to use ak-party NOF communication complexity protocall.,., for
EVENCHARGEk(Hn) as guaranteed by Lemma 1 to produck-party NOF protocol
for the zero/one set disjointness problem which uses the following definition.

Definition 2. LetPl(m) be the set of all sequencesmfvertex-disjoint lengtfi paths in
Gh.

Lemma 2. Letm = n'/3/log n. For sufficiently large: and for any even charge vector
¢, if there is a probabilistick-party NOF communication complexity protoc@l..,c,,
for EVENCHARGE" (H,,) usings bits, satisfying the conditions in Lemma 1 2§ and



D, then there is a randomiz€®, 1/3 + € + o(1)) error k-party NOF communication
complexity protocolly; 45, for zero/one set disjointness on inptie ({0, 1}™)* that
usess bits of communication.

Proof. Let £ be an instance of zero/one set disjointness. Protdkgl;s; will call
.., On the graphH,,, on a pair(«, ¢) chosen according to the following distribu-
tion/experiment:
1. On inputZ with public coinsr:
(a) Using public coing, choose a random even charge vectar {0, 1}".
(b) Using public coing:, choose a sequence of vertex-disjoint length paths,
P1, ... pm uniformly at random fron’Pl(’”).
(c) Using the public coins, chooses € Sol(H,, — U;.”:lpj, 0)
2. For all edges € H,, all players other than playélcomputen’ as follows:
(@) Ife € pjforj € [m], setal = x; ;
(b) If e € G, ande & (JJ~, p;, choose the vector, . ..a¥ according to the
distribution L (5, ).
(c) For the remaining edgesc T, set all variables’ for i € [k] equal to3..
3. Return(a, )

We write R(Z) to denote the distribution on assignment/charge pairs produced by
reductionfly14;5; When given an input. The following lemma, proven in section 4,
has the main technical argument and shows that forf N Z| € {0, 1}, althoughR (&)
is not the same @B;, R(Z) is close to the distributio®; in the ¢; norm.

Lemma 3. Letz € ({0,1}™)* and| N | = 1. Then||R(Z) — D11 is o(1).

Protocol 11 4;s; Will output 0 if 1., returns “true” and 1 otherwise. ffiz = 0,
by the above construction, the support®{z) is contained in that oD, and thus
on R(Z), ..., Must answer “true” and the vecta@ris correctly identified as being
disjoint. In the case thatZ contains exactly one elememy[I1y14is;(Z)) = 0] >
2/3 — e — o(1). This completes the proof of the Lemma 2.

Reduction from Set disjointness to Zero/One Set disjointness

Lemma 4. If there is an(0, ¢) randomized NOF protocol for th&é-party zero-one-
promise set-disjointness problem that use#ts of communication wheeds a constant
< 1, then there is &0, %) randomized NOF protocol for the-party set-disjointness
problem that use®(slogn) bits of communication.

Naturally, our starting point is the well-known result of Valiant and Vazirani [21].

Lemma5 (Valiant-Vazirani). Leta be a positive integer. Fix a nonempyC {0,1}¢,
and choosev, ... w, € {0,1}* independently and uniformly. With probability at least
1/4, there existg € {0,...,a} sothat{x € S | Vi < j, v -w; =0} = 1.

Proof (of Lemma 4)Let IT be the protocol for the promise problem. Get [logn].
Using public coins, independently and uniformly choese. .. w; € {0,1}*. Forj €
{0,...a}, the players run the protocdl, using the following rule for evaluating the



inputz; - for i € [k],r € [m]: interpretr as a vector i0, 1}¢, and replace the value
of z; » by zero if for somej’ < j, w; - r # 0, and use the value; ,. if for all j* < j,

wj - r = 0. If the protocollI returns 1, the players halt and output 1, otherwise, the
players proceed to roungd+ 1. If no intersection is found after all + 1 rounds, the
players announce that the inputs are disjoint.

Clearly, this protocol use®(slogn) bits of communication, and by the 0-error
property of Il on disjoint inputs, it never outputs 1 when the inputs are disjoint. When
the inputs are non-disjoint, the Valiant-Vazirani construction ensures that with proba-
bility at least1/4, at some round the protocoll7 is used on an input with a unique
intersection, and therefore, conditioned on this event, the correct answer is returned
with probability at least — e. Therefore, the correct answer is returned with probability
at Ieast% — ¢. Because is bounded away fronh and the error is one-sided, a constant
number of repetitions decreases the probability of erray/g

Combining the reductions

Theorem 2. Letk > 2 andm = n'/?/logn. For eachn there is an odd charge vector
¢ € {0,1}™ such that for any < 1/2 the size of any tree-lik&h(k-1) refutation
of TS*(H,,?) is at least2?(E(D1Sk.m)/1ogn) ") " Fyrther if the coefficients in the
Th(k-1) refutations are bounded by a polynomialrirthen the refutation size must be
at IeaStZQ(R]:(DISJk’M)/(IOg n(loglogn)?)) or at IeaStzQ(Df(DISJk””)/ log? n)

Proof (Sketch)By Theorem 1 and the definition of @ CHARGE" (H,,), if for every

¢ € {0,1}" there is tree-likéTh(k-1) refutation of 'S*(H,,, &) of size at mostS, then

there is al /n-error randomized-party NOF communication complexity protocol for
ODDCHARGE* (H,,) in which at mosiO(log® S) bits are communicated. By sending
one more bit the players can check that the answer is correct and only output it in this
case. Then applying Lemmas 1, 2, and 4 in turn yields an éy®mrandomizedk-

party NOF protocol for D8y, ,,, of complexity O(log® S log n + log® n) bits in total.
Applying a similar reduction using the other parts of Theorem 1 yields the claimed
result.

In the full paper we prove that the same lower bounds as Theorem 2 hadddor
odd charge vectar € {0, 1}".

4 Proximity of distributions D; and R(Z) when| N &| =1
In this section we prove Lemma 3 that fpn Z| = 1 the distributionsR (%) and D,
are close in thé; norm. Letup, andurz) be their associated probability measures.
We will show that for all but a set dfe, ¢) with up, measurex(1), pp, (a,é) = (1 +
o(1)) (@) (a, ).

Given an instance of the set disjointness variabies; ({0,1}™)*, for j € [m)]
we say that theolor of j is the tuple(zy ;, ...,z ;) € {0,1}*. By construction, the
assignmenfR(Z) produced byR on this instance has coldt, j, ...,z ;) on each
edge of the patp;.

Definition 3. Given an ordered sequence of pafhs Pl(m), anZ € ({0,1}™)*, and
an assignmenty, write (o) = & if and only if every edge on path; has color
(1,5, ..., zk,;) foreveryj € [m].



We first observe that for anf, ¢) with |Err(a, ¢)| = 2 the probabilityup, («, €)
depends only on the number of edges G,, having colorl” in a.

Definition 4. Let¢(a,b) = 27¢(2F — 1)~ (a=b),

Lemma 6. For any (v, ¢) with |Err(a, ©)| = 2t andm; = |{e € E(G,,) | o = 1¥}],
p, (@,6) = ¢(|E(Gn)l,m1) /(2" (5))-

Proof. Let U = Err(a, ¢). The probability undeD; thatU is chosen to be flipped is
1/(;) and, givenU, all of the2"~! even charge vector@ are equally likely. Con-

ditioned on these events, the chance thddbels the edges for the randomly selected
element ofSol (H,,, &) is 2~ 1E(Gml(2k — 1)~ (E(Gn)l=ma),

Definition 5. For U  V with [U] = 2 let P{"™ (U/) be the set of all elements &{"
that have a path whose endpoints &fe

Now consider the measuyer ) (o, c). Let {i} = NZ C [n], U = Err(a, c) with
|U| =2, andm; = |{e € E(G,) | a. = 1¥}|. By the definition ofR,

Urz)(a,C) = P1<r )[Ends{pi) = Err(e, &) A x(az) = 7]
ﬁGPl m

X Pr [a' = ag, _gandd = ¢
Fe{0,1}7, o/ €Ly, (Sol(Hn—5,&))

= Pr [Endgp;) =EmU)] x Pr [x(ap) =]
pep™ pep™ (U)
x O(|E(G,)| —ml,my —1)/2" L.

Observe thap; is a uniformly chosen element @, and we can analyze the first
term using the following property of random paths on LPS expanders proven in the full
paper.

Lemma 7. Foru # v € V(G,) andl > ¢; logn/loglogn,
Pryep[Enddp) = {u,v}] = (1 £ 0(1))/(3)-
|E(G)| —ml,mq —1)

Thusyim(e 0, = (1 o) AIEE D Py () =
2 pehy

HDy (a, 5) s
=(1xo(l)—/——=—- Pr x(az) = .
( ( )) ¢)(ml, l) ﬁepl(m)([j)[ ( [)) ]
It follows that we will obtain the desired result if we can show that for all but®
measure of o, ) underup, ,
P [x(ap) = @] = (1 £ 0(1))¢(ml, 1) = (1% o(1))27™ (2" — 1)~ (n 1!
per™ (U)

whereU = Err(«, ¢). In the case that this happens, we say that) is well-distributed
for Z.

Using the second moment method we prove the following lemma which shows that
for all but ao(1) measure of«, ¢) underup,, (¢, €) is indeed well-distributed fof.
The detailed proof is given in the full paper; the proof uses the facQliai; n)-degree
LPS expanders hav@(log n/ log logn) mixing time and2(log n/ loglog n) girth.



Lemma 8. Letm < n'/3/logn andl = 2[¢; logn/loglogn] andZ € ({0,1}™)"
with | N Z| = 1. For almost allU C [n] with |U| = 2,
Pr(q.5ep, [(o, €) is well-distributed forz' | Err(a, ¢) = U] = 1 — o(1).

Lemma 3 follows from this almost immediately.

Proof (of Lemma3)et € ({0,1}™)* and|NZ| = 1. By Lemma 8 and the preceding
argument, for all but a seB of U that formso(1) fraction of all subsets$n| of size

2, (a’gém[un(m(a’é’) = (1 £ o(1))pp, (o, ¢) | Em(a,¢) = U] =1 —o(1). By

Lemma 7,Pr, #ep, [EMM(a,c) € B] = o(1). Therefore by summing over distinct
choices of/, we obtain that with probability — o(1) over(«, ¢) € Dy, prz) (o, ¢) =
(1+0(1))pup, (e, é). This is equivalent to the desired conclusion ey — R(Z)||1 is

o(1).

5 Discussion

There are a couple of interesting open problems related to our work beyond the natural
problem of the communication complexity ofi€y,. First, does semanti€S* have

a separation oracle, dsS does? This is closely related to whether or A¢t* is au-
tomatizable and we conjecture that the answer to both questions is negative. Secondly,
is it possible to extend our lower bounds to other tautologies that would imply inap-
proximability results for polynomial-timé.S*-based algorithms? (For example, if we
could prove superpolynomial lower bounds for tree-liké* proofs of random 3CNF
formulas, this would imply inapproximability results f@rS*-based linear program-

ming algorithms for MaxSAT [5].)

Finally we would like to point out a connection between our main result and the
complexity of disjointNP pairs. An open question in complexity theory is whether or
not all pairs of disjointNP sets can be separated by a sePinThis is known to be
false under the assumptiéh# UP and also by the assumptiéh# NP N coNP. It
is an open question whether or not it is implied®y# NP. Let us consider the same
guestion with respect to communication complexity rather than polynomial time: can
every pair of relations with small nondeterministieparty communication complex-
ity be separated by a small probabilistic/deterministic protocol? In [20] the answer is
shown to be unconditionally false fér = 2. In particular, they give a pair of disjoint
properties or3m-vertex graphsz, a matching or2m vertices ofG and an independent
set of2m + 1 vertices ofGG, and show that this pair cannot be separated by any small
probabilistic/deterministic protocol. In this paper, we have shown that forkarlye
question is still false, unddr-RP“ #£ k-NP“.
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