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We introduce a new and natural algebraic proof system, whose complexity measure is essentially the algebraic

circuit size of Nullstellensatz certi�cates. �is enables us to exhibit close connections between e�ective

Nullstellensatzë, proof complexity, and (algebraic) circuit complexity. In particular, we show that any super-

polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not

have polynomial-size algebraic circuits (VNP , VP). We also show that super-polynomial lower bounds on

the number of lines in Polynomial Calculus proofs imply the Permanent versus Determinant Conjecture. Note

that there was no proof system prior to ours for which lower bounds on an arbitrary tautology implied any
complexity class lower bound.

Our proof system helps clarify the relationships between previous algebraic proof systems. In doing so,

we highlight the importance of polynomial identity testing (PIT) in proof complexity. In particular, we use

PIT to illuminate AC0
[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory

explanation as to their apparent di�culty.

Finally, we explain the obstacles that must be overcome in any a�empt to extend techniques from algebraic

circuit complexity to prove lower bounds in proof complexity. Using the algebraic structure of our proof

system, we propose a novel route to such lower bounds. Although such lower bounds remain elusive, this

proposal should be contrasted with the di�culty of extending AC0
[p] circuit lower bounds to AC0

[p]-Frege

lower bounds.
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1 INTRODUCTION
NP versus coNP is the very natural question of whether, for every graph without a Hamiltonian

path, there is a short proof of this fact. One of the arguments for the utility of proof complexity

is that proving lower bounds for standard proof systems is a necessary step towards proving

NP , coNP. Moreover, standard proof systems correspond to standard circuit classes; for example,

Frege corresponds to NC1
and Extended Frege corresponds to P/poly; since the corresponding
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proof system can reason over the corresponding circuit class, it is speculated that a proof system

lower bound would imply the corresponding circuit class lower bound, e. g., that lower bounds

on Frege would imply NP , NC1
. However, until now these arguments have been more the

expression of a philosophy or hope, as there is no known proof system for which lower bounds

imply computational complexity lower bounds of any kind, let alone NP , coNP.

We remedy this situation by introducing a very natural algebraic proof system, which has tight

connections to (algebraic) circuit complexity (albeit a proof system for which we only know a

randomized e�cient veri�cation procedure). We show that any super-polynomial lower bound on

any Boolean tautology in our proof system implies that the permanent does not have polynomial-

size algebraic circuits (VNP , VP). Additionally, lower bounds on bounded-depth versions of

our system imply the corresponding algebraic circuit lower bounds, e. g., lower bounds on the

logarithmic-depth version of our proof system imply VNP * VNC1
. Note that, prior to our work,

essentially all implications went the opposite direction: a circuit complexity lower bound implying

a proof complexity lower bound. We use this result to begin to explain why several long-open

lower bound questions in proof complexity—lower bounds on Extended Frege, on AC0
[p]-Frege,

and on number-of-lines in Polynomial Calculus-style proofs—have been so apparently di�cult.

1.1 Background and Motivation
Algebraic Circuit Complexity. �e most natural way to compute a polynomial function f (x1, . . . ,xn )

is with a sequence of instructions д1, . . . ,дm = f , starting from the inputs x1, . . . ,xn , and where

each instruction дi is of the form дj ◦ дk for some j,k < i , where ◦ is either a linear combination or

multiplication. Such computations are called algebraic circuits or straight-line programs. �e goal

of algebraic complexity is to understand the optimal asymptotic complexity of computing a given

polynomial family ( fn (x1, . . . ,xpoly(n) ))
∞
n=1

, typically in terms of size (=number of instructions) and

depth (the depth of the natural directed acyclic graph associated to the instruction sequence of a

straight-line program) of algebraic circuits. In addition to the intrinsic interest in these questions,

since Valiant’s work [102–104] algebraic complexity has become more and more important for

Boolean computational complexity. Valiant argued that understanding algebraic complexity could

give new intuitions that may lead to be�er understanding of other models of computation (see

also [108]); several direct connections have been found between algebraic and Boolean complexity

[23, 48, 50, 74]; and the Geometric Complexity �eory Program (see, e. g., the overview [76] and

references therein) suggests how algebraic techniques might be used to resolve major Boolean

complexity conjectures.

Two central functions in this area are the determinant and permanent polynomials, which are

fundamental both because of their prominent role in many areas of mathematics and because they

are complete for various natural complexity classes. In particular, the permanent of {0, 1}-matrices

is #P-complete, and the permanent of arbitrary matrices is VNP-complete in odd characteristic.

Valiant’s Permanent versus Determinant Conjecture [102] states that the permanent of an n × n
matrix, as a polynomial in n2

variables, cannot be wri�en e�ciently as the determinant of any

polynomially larger matrix all of whose entries are variables or constants. In some ways this is an

algebraic analog of P , NP, although it is in fact much closer to FNC2 , #P. In addition to this

analogy, the Permanent versus Determinant Conjecture is also known to be a formal consequence

of the nonuniform lower bound NP * P/poly [23], and is thus thought to be an important step

towards showing P , NP.

Unlike in Boolean circuit complexity, (slightly) non-trivial lower bounds for the size of algebraic

circuits are known [9, 97]. �eir methods, however, only give lower bounds up to Ω(n logn).
Moreover, their methods are based on a degree analysis of certain algebraic varieties and do
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not give lower bounds for polynomials of constant degree. Recent work [2, 55, 99] has shown

that polynomial-size algebraic circuits computing functions of polynomial degree can in fact be

computed by sub-exponential-size depth 4 algebraic circuits. �us, strong enough lower bounds

for depth 4 algebraic circuits for the permanent would already prove VP , VNP.

E�ective Nullstellensatzë. A special case of Hilbert’s famous Nullstellensatz says that over a �eld

F, a set of polynomials F1 (x1, . . . ,xn ), . . . , Fm (x1, . . . ,xn ) of degree at most d has no common zero

over the algebraic closure F if and only if the ideal they generate contains 1, or equivalently if there

exists polynomials Gi such that

∑
GiFi = 1. Doubly-exponential upper bounds on the degree of

the GiFi were shown as early as 1983 [68], of the form dO (2n )
. �ese were later improved to singly-

exponential bounds of the form O (dn ) [20] (in characteristic zero), and subsequently improved

to bounds that hold over an arbitrarily algebraically closed �eld, have tighter dependence on the

degrees of each Fi , and are essentially tight [56]. Since then, more re�ned geometric information

than merely degree bounds has been obtained by a number of authors [21, 30, 49, 57, 96]. For a

good overview of this work, see the introduction of Ein and Lazarsfeld [30] and references therein.

In this paper, we raise the question of extending E�ective Nullstellensatzë from degree bounds to

bounds on the algebraic circuit complexity of Nullstellensatz certi�cates. (�is question was perhaps

implicit in Pitassi [81, 82], and a syntactically more complicated variant of this question was raised

in Grigoriev-Hirsch [35].) It has long been known [42]—although perhaps not well-known—that

bounds on algebraic circuit complexity can have geometric consequences; indeed, this is one of

the philosophical underpinnings of the current Geometric Complexity �eory Program towards

resolving questions like P versus NP (see, e. g., [36, 64, 75–78] and references therein). Here, we

show that the algebraic circuit complexity of the Nullstellensatz has deep connections to Boolean

proof complexity, and we use ideas motivated by this question to forge new bridges between proof

complexity and computational complexity.

Proof Complexity. Despite considerable progress obtaining super-polynomial lower bounds for

many weak proof systems (resolution [40], cu�ing planes [17], bounded-depth Frege systems

[58]), there has been essentially no progress in the last 25 years for stronger proof systems such

as Extended Frege systems or Frege systems. More surprisingly, no nontrivial lower bounds are

known for the seemingly weak AC0
[p]-Frege system. In contrast, the analogous result in circuit

complexity—proving super-polynomial AC0
[p] lower bounds for an explicit function—was resolved

by Razborov and Smolensky over 25 years ago [86, 94]. To date, there has been no satisfactory

explanation for this state of a�airs.

In proof complexity, there are no known formal barriers such as relativization [8], Razborov–

Rudich-natural proofs [87], or algebrization [1] that exist in Boolean function complexity. Moreover,

there has not even been progress by way of conditional lower bounds. �at is, trivially NP , coNP
implies superpolynomial lower bounds for AC0

[p]-Frege, but we know of no weaker complexity

assumption that implies such lower bounds. �e only formal implication in this direction shows that

certain circuit lower bounds imply lower bounds for proof systems that admit feasible interpolation,

but unfortunately only weak proof systems (not Frege nor even AC0
-Frege) have this property,

under standard complexity-theoretic assumptions [18, 19]. In the converse direction, there are

essentially no implications at all. For example, we do not know if AC0
[p]-Frege lower bounds—nor

even Frege nor Extended Frege lower bounds—imply any nontrivial circuit lower bounds.
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1.2 Our Results
In this paper, we de�ne a simple and natural proof system that we call the Ideal Proof System (IPS)

based on Hilbert’s Nullstellensatz. Our system is similar in spirit to related algebraic proof systems

that have been studied previously, but is di�erent in a crucial way that we explain below.

Given a set of polynomials F1, . . . , Fm in n variables x1, . . . ,xn over a �eld F without a common

zero over the algebraic closure F of F, Hilbert’s Nullstellensatz says that there exist polynomials

G1, . . . ,Gm ∈ F[x1, . . . ,xn] such that

∑
FiGi = 1, i. e., that 1 is in the ideal generated by the Fi . In

the Ideal Proof System, we introduce new variables yi which serve as placeholders into which the

original polynomials Fi will eventually be substituted:

De�nition 1.1 (Ideal Proof System). An IPS certi�cate that a system of F-polynomial equations

F1 (~x ) = F2 (~x ) = · · · = Fm (~x ) = 0 is unsatis�able over F is an F-polynomial C (~x , ~y) in the variables

x1, . . . ,xn and y1, . . . ,ym such that

(1) C (x1, . . . ,xn ,~0) = 0, and

(2) C (x1, . . . ,xn , F1 (~x ), . . . , Fm (~x )) = 1.

�e �rst condition is equivalent to C being in the ideal generated by y1, . . . ,ym , and the two

conditions together therefore imply that 1 is in the ideal generated by the Fi , and hence that

F1 (~x ) = · · · = Fm (~x ) = 0 is unsatis�able.

An IPS proof of the unsatis�ability of the polynomials Fi is an F-algebraic circuit on inputs

x1, . . . ,xn ,y1, . . . ,ym computing some IPS certi�cate of unsatis�ability.

For any class C of polynomial families, we may speak of C-IPS proofs of a family of systems of

equations (Fn ) where Fn is Fn,1 (~x ) = · · · = Fn,poly(n) (~x ) = 0. When we refer to IPS without further

quali�cation, we mean IPS certi�cates whose proofs are computed by circuits of polynomial size

(with no a priori bound on the degree), unless speci�ed otherwise.
1

�e Ideal Proof System is easily shown to be sound, and (without any size bounds) its completeness

follows from the Nullstellensatz.

We note that although the Nullstellensatz says that if F1 (~x ) = · · · = Fm (~x ) = 0 is unsatis�able

then there always exists a certi�cate that is linear in the yi—that is, of the form

∑
yiGi (~x )—our

de�nition of IPS certi�cate does not enforce ~y-linearity. �e de�nition of IPS certi�cate allows

certi�cates with ~y-monomials of higher degree, and it is conceivable that one could achieve a savings

in size by considering such certi�cates rather than only considering ~y-linear ones. (Subsequent

to this work it was shown [34] that, for general IPS, super-polynomial savings are not possible;

but the result does not rule out a savings for C-IPS proofs for various restricted classes C; see

Section 8.2 below for details.) As the linear form is closer to the original way Hilbert expressed

the Nullstellensatz (see, e. g., the translation [44]), we refer to certi�cates of the form

∑
yiGi (~x ) as

Hilbert-like IPS certi�cates.
We typically consider IPS as a propositional proof system by translating a CNF tautology φ into

a system of equations as follows. We translate a clause κ of φ into a single algebraic equation F (~x )
as follows: x 7→ 1 − x , x ∨ y 7→ xy. �is translation has the property that a {0, 1} assignment

satis�es κ if and only if it satis�es the equation F = 0. Let κ1, . . . ,κm denote all the clauses of

φ, and let Fi be the corresponding polynomials. �en the system of equations we consider is

F1 (~x ) = · · · = Fm (~x ) = x2

1
− x1 = · · · = x2

n − xn = 0. �e la�er equations force any solution to this

system of equations to be {0, 1}-valued. Despite our indexing here, when we speak of the system of

equations corresponding to a tautology, we always assume that the x2

i −xi are among the equations,

1
In an earlier version of this paper we de�ned IPS to be VP-IPS, that is, with polynomially bounded degree as well; however,

it was pointed out in [34, 65] and by an anonymous referee that the simulation of EF by IPS seemed to need unbounded

degree. Most of our results go through unchanged; those that change are only in the statement of the result, not in the proof.
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unless explicitly stated otherwise (and, indeed, there are a few situations where we do not need the

equations x2

i − xi ).
Like previously de�ned algebraic systems [14, 27, 81, 82], proofs in our system can be checked

in randomized polynomial time. �e key di�erence between our system and previously studied

ones is that those systems are axiomatic in the sense that they require that every sub-computation

(derived polynomial) be in the ideal generated by the original polynomial equations Fi , and thus

be a sound consequence of the equations F1 = · · · = Fm = 0. In contrast our system has no such

requirement: An IPS proof can compute potentially “unsound” sub-computations (whose vanishing

does not follow from F1 = · · · = Fm = 0), as long as the �nal polynomial is in the ideal generated

by the equations. �is key di�erence allows IPS proofs to be ordinary algebraic circuits, and thus

nearly all results in algebraic circuit complexity apply directly to the Ideal Proof System. To quote

the tagline of a common US food chain, the Ideal Proof System is a “No rules, just right” proof

system.

Our �rst main theorem shows one of the advantages of this close connection with algebraic

circuits. To the best of our knowledge, this is the �rst implication showing that a proof complexity

lower bound implies any sort of computational complexity lower bound.

Theorem 1.2 (Brief; see Section 4 for the full statement). Super-polynomial lower bounds
for the Ideal Proof System imply that the permanent does not have polynomial-size algebraic circuits,
that is, VNP , VP.

�e preceding theorem is perhaps somewhat unsurprising—though not completely immediate—

given the de�nition of IPS, because of the close connection between the de�nition of IPS proofs and

algebraic circuits. However, the following result is signi�cantly more surprising—showing a relation

between a standard rule-based algebraic proof system and algebraic circuit lower bounds—and we

believe we would not have come to this result had we not �rst considered the rule-less Ideal Proof

System.

Corollary 1.3. Super-polynomial lower bounds on the number of lines in Polynomial Calculus
proofs imply the Permanent versus Determinant Conjecture. 2 ,3

Corollary 1.3 follows from the proof of �eorem 1.2 together with one of our simulation results

(Proposition 3.4).

Under a reasonable assumption on polynomial identity testing, which we discuss further below,

we are able to show that Extended Frege is equivalent to the Ideal Proof System. Polynomial Identity

Testing (PIT) is the problem of deciding whether a given algebraic circuit computes the identically

zero polynomial or not; unless otherwise stated, we take PIT to allow arbitrary circuits as input,

with no restriction on their degree. Even without degree restriction, the standard randomized

algorithm places PIT into coRP, by working over an extension �eld of polynomial degree if needed

[29, 89, 109]. Extended Frege (EF) is the strongest natural deduction-style propositional proof

system that has been proposed, and is the proof complexity analog of P/poly (that is, Extended

Frege = P/poly-Frege).

2
Although Corollary 1.3 may seem to be saying that lower bounds on PC imply a circuit lower bound, this is not precisely

the case, because size complexity in PC is typically measured not by the number of lines, but rather by the total number of

monomials appearing in a PC proof.

3
A folklore result might mislead one to think that the premise of our Corollary 1.3 is false: Proposition 2.3 of the ECCC

preprint of [72] states the folklore result that every unsatis�able k-CNF tautology has a PC refutation using only a linear

number of lines over F2, in the version of PC in which the axioms x 2

i = xi may be applied for free. In contrast, even over F2,

we are considering the number of lines here for proofs in which each use of the axioms x 2

i = xi counts as a line. As shown in

this paper, a polynomial upper bound on the la�er system would imply NP ⊆ coAM and hence that PH collapses. See also

Open �estion 7.9.
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Theorem 1.4. Let K be a family of polynomial-size Boolean circuits for PIT such that the PIT
axioms for K (see De�nition 5.1) have polynomial-size EF proofs. �en EF polynomially simulates IPS,
and hence EF and IPS are polynomially equivalent.

In light of �eorem 1.4, a promising direction for proving EF lower bounds is to try to prove

lower bounds for IPS instead. Since this suggestion seems counter to the usual philosophy of trying

to prove lower bounds on the next-hardest proof system, and proving IPS lower bounds may be

much harder, this suggestion deserves a li�le discussion. First, by considering C-IPS for restricted

circuit classes C, we recover some of the usual philosophy of trying to prove lower bounds on

incrementally harder proof systems �rst, rather than jumping straight to (full) IPS lower bounds.

Second, and more importantly, IPS gives a new way of thinking about propositional proof systems

and creates the possibility of harnessing tools from algebra, representation theory, and algebraic

circuit complexity. Indeed, tools from algebraic circuit complexity have already been used to prove

lower bounds for some restricted IPS systems [34] , and in Section 6 we give one suggestion of how

to apply tools from algebraic geometry to obtain IPS lower bounds.

Remark 1.5. �e combination of �ereoms 1.2 and 1.4 together state that if the PIT axioms are

provable in EF, then EF lower bounds imply circuit lower bounds (VNP , VP). �e hypothesis

that the PIT axioms are provable in EF is orthogonal but still closely related to the more standard

hypothesis that PIT is in P. Since upper bounds on PIT are also known to imply lower bounds, we

would like to address the di�erences between the two conclusions. �e best lower bound known

to follow from PIT ∈ P is an algebraic circuit-size lower bound on an integer polynomial that

can be evaluated in NEXP ∩ coNEXP [25, 48] (via personal communication we have learned that

Impagliazzo and R. Williams have also proved similar results), whereas our conclusion is a lower

bound on algebraic circuit-size for an integer polynomial computable in the much smaller class

#P ⊆ PSPACE.

Although PIT has long been a central problem of study in computational complexity—both

because of its importance in many algorithms, as well as its strong connection to circuit lower

bounds—our theorems highlight the importance of PIT in proof complexity. Next we prove that

�eorem 1.4 can be scaled down to obtain similar results for weaker Frege systems, and discuss

some of its more striking consequences.

Theorem 1.6. Let C be any of the standard circuit classes ACk , ACk
[p], ACCk , TCk , NCk . Let

K be a family of polynomial-size Boolean circuits for PIT (not necessarily in C) such that the PIT
axioms for K have polynomial-size C-Frege proofs. �en C-Frege is polynomially equivalent to IPS,
and consequently to Extended Frege as well.

�eorem 1.6 also highlights the importance of our PIT axioms for ge�ing AC0
[p]-Frege lower

bounds, which has been an open question for nearly thirty years. (For even weaker systems,

�eorem 1.6 in combination with known results yields an unconditional lower bound on AC0
-Frege

proofs of the PIT axioms.) In particular, we are in the following win-win scenario:

Corollary 1.7. For any d , either:
• �ere are polynomial-size AC0

[p]-Frege proofs of the depth-d PIT axioms, in which case any

superpolynomial lower bounds on AC0
[p]-Frege imply VNPFp does not have polynomial-

size depth-d algebraic circuits, thus explaining the di�culty of obtaining such lower bounds,
or

• �ere are no polynomial-size AC0
[p]-Frege proofs of the depth-d PIT axioms, in which case we

have AC0
[p]-Frege lower bounds.
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Finally, in Section 6 we show what obstacles must be overcome in any a�empt to extend proof

techniques from lower bounds on (C-)algebraic circuits to lower bounds on (C-)IPS proofs—which

may also apply to Extended Frege via �eorem 1.4. We then use the algebraic structure of IPS to

suggest a new approach to proving lower bounds which we feel has promise. In particular, the

set of all IPS-certi�cates for a given unsatis�able system of equations is, in a certain precise sense,

“�nitely generated.” We suggest how one might take advantage of this �nite generation to transfer

techniques from algebraic circuit complexity to prove lower bounds on IPS, and consequently

on Extended Frege (since IPS p-simulates Extended Frege unconditionally), giving hope for the

long-sought length-of-proof lower bounds on an algebraic proof system. We hope to pursue this

approach in future work.

1.3 Related Work

Other proof systems. We will see in Section 3.3 that many previously studied proof systems can

be p-simulated by IPS, and furthermore can be viewed simply as di�erent complexity measures

on IPS proofs, or as C-IPS for certain classes C. In particular, the Nullstellensatz system [14], the

Polynomial Calculus (or Gröbner) proof system [27], and Polynomial Calculus with Resolution [4]

are all particular measures on IPS, and Pitassi’s previous algebraic systems [81, 82] are subsystems

of IPS.

Raz and Tzameret [85] introduced various multilinear algebraic proof systems. Although their

systems are not so easily de�ned in terms of IPS, the Ideal Proof System nonetheless p-simulates all

of their systems. Among other results, they show that a super-polynomial separation between two

variants of their system—one representing lines by multilinear circuits, and one representing lines

by general algebraic circuits—would imply a super-polynomial separation between general and

multilinear circuits computing multilinear polynomials. However, they only get implications to

lower bounds on multilinear circuits rather than general circuits, and they do not prove a statement

analogous to our �eorem 1.2, that lower bounds on a single system imply algebraic circuit lower

bounds.

Grigoriev and Hirsch [35] introduced two proof systems, F-NS and F-PC, analogous to Null-

stellensatz and Polynomial Calculus, respectively, but in which the basic objects of the proofs are

allowed to be algebraic formulae, rather than only sums of monomials, and equivalence of formulae

must be veri�ed line-by-line using the axioms for a polynomial ring (associativity, commutativity,

distributivity, etc.). Again, although these systems are not so easily de�ned in terms of IPS, they are

easily p-simulated by IPS; indeed, in IPS the standard axioms for a polynomial ring come nearly

for free—the main cost is that the veri�cation is randomized instead of deterministic. �ey did

not draw connections between algebraic circuit lower bounds and lower bounds on their proof

systems.

Finally, we mention that Hrubeš and Tzameret [46] have studied the proof complexity of poly-

nomial identity testing (PIT). In particular, they studied the question of how many basic ring

identities—associativity, distributivity, etc.—are needed to verify a polynomial identity. While

one of the messages of our paper is the importance of the proof complexity of PIT, the way it

shows up in our work is in proving that a Boolean circuit deciding PIT is correct (see our PIT

axioms, De�nition 5.1), whereas in [46] they study the complexity of proving individual polynomial

identities.

Ideal Membership and E�ective Nullstellensatzë. Prior to our work, much work was done on

bounds for the Ideal Membership Problem (EXPSPACE-complete [70, 71]), the so-called E�ective

Nullstellensatz (where exponential degree bounds are known, and known to be tight [20, 30, 56, 96]),
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and the arithmetic Nullstellensatz over Z, where one wishes to bound not only the degree of the

polynomials but also the sizes of the integer coe�cients appearing [61]. �e viewpoint a�orded by

the Ideal Proof Systems raises new questions about potential strengthening of these results (or at

least simpli�es and highlights questions that were implicit in [35, 81, 82]).

In particular, the following is a natural extension of De�nition 1.1.

De�nition 1.8. An IPS certi�cate that a polynomial G (~x ) ∈ F[~x] is in the ideal [respectively,

radical of the ideal] generated by F1 (~x ), . . . , Fm (~x ) is a polynomial C (~x , ~y) such that

(1) C (~x ,~0) = 0, and

(2) C (~x , F1 (~x ), . . . , Fm (~x )) = G (~x ) [respectively, G (~x )k for any k > 0].

An IPS derivation of G [resp. Gk
] from F1, . . . , Fm is a circuit computing some IPS certi�cate that

G ∈ 〈F1, . . . , Fm〉 [resp., G ∈
√
〈F1, . . . , Fm〉].

Grigoriev and Hirsch [35, Section 2.5] introduced a related system, denoted (F-)PC
√

, for proving

that a polynomial is in the radical of an ideal. �e key di�erence between (F-)PC
√

and (F-)PC being

that they add the rule from which derives a polynomial P from P2
. But otherwise, their system has

similar trade-o�s relative to IPS: On the one hand, their system can be deterministically veri�ed,

on the other hand it is restricted to syntactic derivations.

Observation 1.9. �ere is no sub-exponential (

⋂
ε>0

O (2n
ε
)) upper bound on the size of constant-

free circuits computing IPS-certi�ces of ideal membership. Similarly for general algebraic circuits

in characteristic zero, assuming the Generalized Riemann Hypothesis (GRH).

Under special circumstances, of course, one may be able to achieve be�er upper bounds.

Proof. Suppose that for every G (~x ) ∈ 〈F1 (~x ), . . . , Fm (~x )〉 there were a constant-free circuit of

sub-exponential size computing some IPS certi�cate for the membership of G in 〈F1, . . . , Fm〉. �en

guessing that circuit and verifying its correctness using PIT gives a MAsubexp ⊆ SUBEXPSPACE
algorithm for the Ideal Membership Problem. �e EXPSPACE-completeness of Ideal Membership

[70, 71] would then imply that EXPSPACE ⊆ SUBEXPSPACE, contradicting the Space Hierarchy

�eorem [41]. In characteristic zero, if we assume GRH, we may drop the assumption that the

circuits are constant-free, using essentially the same argument as in Proposition 3.2. �

�e preceding observation, however, does not seem to apply to e�ective Nullstellensatzë, which

are generally about showing that a function G is in the radical of an ideal (which, in particular,

always applies for G = 1). We thus raise the following question:

Open �estion 1.10. For any G (~x ) ∈
√
〈F1 (~x ), . . . , Fm (~x )〉 is there always an IPS-certi�cate, as

in De�nition 1.8, of sub-exponential size that G is in the radical of 〈F1, . . . , Fm〉? Similarly, for

G, F1, . . . , Fm ∈ Z[x1, . . . ,xn], is there a constant-free IPSZ-certi�cate of sub-exponential size that

aG (~x ) is in the radical of the ideal 〈F1, . . . , Fm〉 for some integer a?

1.4 Outline
In Section 2 we give the necessary preliminaries from algebraic circuit complexity, proof complexity,

and commutative algebra. We really begin in Section 3, by proving several basic facts about IPS.

We discuss the relationship between IPS and previously studied proof systems. We also highlight

several consequences of results from algebraic complexity theory for the Ideal Proof System, such

as division elimination [98] and the chasms at depth 3 [39, 99] and 4 [2, 55, 99].

In Section 4, we prove that lower bounds on IPS imply algebraic circuit lower bounds (�eo-

rem 1.2). We also show how this result gives as a corollary a new, simpler proof that NP * coMA⇒
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VNP0

F , VP0

F over any �eld F (Corollary 4.1). In Section 5 we introduce our PIT axioms in detail

and prove �eorems 1.4 and 1.6.

We also discuss in detail many variants of �eorem 1.6 and their consequences, as brie�y

mentioned above. In Section 6 we show what obstacles need to be overcome to extend lower

bounds from algebraic circuit complexity to (algebraic) proof complexity; we also suggest a new

framework for transferring techniques in this direction. Finally, in Section 7 we gather a long list

of open questions raised by our work, many of which we believe may be quite approachable.

In Section 8 we discuss some developments that occurred subsequent to the appearance of

the preliminary version of this paper [37]. Namely, Li, Tzameret, and Wang [65] showed—along

the lines suggested in Section 5—that non-commutative formula IPS is unconditionally quasi-

polynomially-equivalent to Frege. We discuss their result and its signi�cance for proving Frege

lower bounds. Also, Forbes, Shpilka, Tzameret, and Wigderson [34] showed several fundamental

results about IPS as well as how to transfer some techniques from circuit complexity to prove lower

bounds on some simple polynomials in C-IPS for various C.

In Appendices A and B we introduce two variants of the Ideal Proof System—one of which

allows certi�cates to be rational functions and not only polynomials, and one of which has a more

geometric �avor—and discuss their relationship to IPS. �ese systems further suggest that tools

from geometry and algebra could potentially be useful for understanding the complexity of various

propositional tautologies and more generally the complexity of individual instances of NP-complete

problems.

2 PRELIMINARIES
As general references, we refer the reader to Sipser [93] or Arora–Barak [5] for Boolean computa-

tional complexity, to Bürgisser–Clausen–Shokrollahi [24] and two surveys [26, 92] for algebraic

complexity, to Krajı́ček [59] for proof complexity, and to any of the standard books [6, 31, 69, 88]

for commutative algebra.

We use poly(n) as a synonym for nO (1)
, i. e., any function N → N that is eventually bounded

by nk for some k . Di�erent instances of “poly(n),” even in the same sentence, may mean di�erent

polynomials. We use the quanti�er ∃p to mean “there exists a string of length poly(n)”, and ∀p to

mean “for all strings of length poly(n).” Similarly, Pr (X ) denotes the probability of an event X , and

Pr
p
r (X ) denotes the probability of the event X , taken over a uniformly random choice of strings r

of length poly(n).

2.1 Algebraic Complexity
Over a ring R, VPR is the class of families f = ( fn )

∞
n=1

of formal polynomials—that is, considered as

symbolic polynomials, rather than as functions—fn such that fn has poly(n) input variables, is of

poly(n) degree, and can be computed by algebraic circuits over R of poly(n) size. VNPR is the class

of families д of polynomials дn such that дn has poly(n) input variables and is of poly(n) degree,

and can be wri�en as

дn (x1, . . . ,xpoly(n) ) =
∑

~e ∈{0,1}poly(n )

fn (~e, ~x )

for some family ( fn ) ∈ VPR .

A linear combination gate is a gate д, with incoming edges from gates f1, . . . , fk , and with scalar

weights wi ∈ F on its incoming edges, which computes the linear combination

∑
i wi fi . For the

de�nitions of VP and VNP it does not ma�er whether we use gates of bounded fan-in or unbounded

fan-in, and whether we allow general linear combination gates or merely addition gates (with no
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weights). But when we consider families of algebraic circuits of bounded-depth, we will by default

allow linear combination gates and product gates of unbounded fan-in.

A family of algebraic circuits is said to be constant-free if the only constants used in the circuit

are {0, 1,−1}. Other constants can be used, but must be built up using algebraic operations, which

then count towards the size of the circuit. �e class VP0
is de�ned by restricting the circuits used in

the de�nition of VP to be constant-free; similarly for VNP0
. We note that over a �xed �nite �eld Fq ,

VP0

Fq
= VPFq , since there are only �nitely many possible constants. Consequently, VNP0

Fq
= VNPFq

as well. Over the integers, VP0

Z coincides with those families inVPZ that are computable by algebraic

circuits of polynomial total bit-size: note that any integer of polynomial bit-size can be constructed

by a constant-free circuit by using its binary expansion bn · · ·b1 =
∑n−1

i=0
bi2

i
, and computing

the powers of 2 by linearly many successive multiplications. A similar trick shows that over the

algebraic closure Fp of a �nite �eld, VP0

Fp
coincides with those families in VPFp that are computable

by algebraic circuits of polynomial total bit-size, or equivalently where the constants they use lie

in sub�elds of Fp of total size bounded by 2
nO (1)

. (Recall that Fpa is a sub�eld of Fpb whenever a |b,

and that the algebraic closure Fp is just the union of Fpa over all integers a.)

A polynomial f (~x ) is a projection of a polynomialд(~y) if f (~x ) = д(L(~x )) identically as polynomials

in ~x , for some map L that assigns to each yi either a variable or a constant. A family of polynomials

( fn ) is a polynomial projection or p-projection of another family (дn ), denoted ( fn ) ≤p (дn ), if

there is a function t (n) = nΘ(1) such that fn is a projection of дt (n) for all (su�ciently large) n. �e

primary value of projections is that they are very simple, and thus preserve bounds on nearly all

natural complexity measures. Valiant [102, 104] was the �rst to point out not only their value but

their ubiquity in computational complexity—nearly all problems that are known to be complete for

some natural class, even in the Boolean se�ing, are complete under p-projections. We say that two

families f = ( fn ) and д = (дn ) are of the same p-degree if each is a p-projection of the other, which

we denote f ≡p д.

Despite its central role in computation, and the fact that VP = VNC2
[105], the determinant is not

known to be VP-complete under p-projections. �e determinant is VQP-complete (VQP is de�ned

just like VP but with a quasi-polynomial n(logn)O (1)
bound on the size and degree of the circuits)

under qp-projections (like p-projections, but with a quasi-polynomial bound). �e complexity of

the determinant is clari�ed by skew and weakly-skew circuits. An algebraic circuit is skew if every

multiplication gate has only two inputs, one of which is a variable or a constant. An algebraic

circuit is weakly-skew if every multiplication gate has at least one input that is computed solely

for the purposes of that multiplication gate; more precisely, each multiplication gate f = д0 × д1

has the property that for at least one of its input дi , removing the edge connecting дi to f in the

directed acyclic graph corresponding to the circuit results in a disconnected graph. VPs is the class

of polynomials of poly(n) variables computed by skew circuits of poly(n) size; VPws is de�ned

analogously with “skew” replaced by “weakly-skew.” In both these classes, poly(n) bounded degree

follows from the de�nition for free, thus VPs ⊆ VP and VPws ⊆ VP. Let VPdet denote the class of

polynomials that are p-projections of the determinant. It turns out that VPs = VPws = VPdet [101]

(see also Malod and Portier [67]). We will use weakly skew circuits and VPdet in Proposition 3.4.

�e semantic degree of any gate in an algebraic circuit is just the degree of the polynomial it

computes; the semantic degree of a (single-output) algebraic circuit is the semantic degree of its

output gate. �e syntactic degree of an algebraic circuit is de�ned inductively as follows: �e

syntactic degree of a constant is 0; the syntactic degree of a variable is 1; the syntactic degree

of a product gate with children f1, . . . , fk is the sum of the syntactic degrees of the fi ; and the

syntactic degree of a sum or linear combination gate with children f1, . . . , fk is the maximum of
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the syntactic degrees of the fi . Semantic degree can be exponentially smaller than syntactic degree

due to cancellations.

2.2 Proof Complexity
Here we give formal de�nitions of proof systems and probabilistic proof systems for coNP languages,

and discuss several important and standard proof systems for TAUT.

De�nition 2.1. Let L ⊆ {0, 1}∗ be a coNP language. A proof system P for L is a polynomial-time

function of two inputs x ,π ∈ {0, 1}∗ (“π ” for “proof”) with the following properties:

(1) (Perfect Soundness) If x is not in L, then for every π , P (x ,π ) = 0.

(2) (Completeness) If x is in L, then there exists a π such that P (x ,π ) = 1.

P is polynomially bounded if for every x ∈ L, there exists a π such that |π | ≤ poly( |x |) and

P (x ,π ) = 1.

As this is just the de�nition of an NP procedure for L, it follows that for any coNP-complete

language L, L has a polynomially bounded proof system if and only if coNP ⊆ NP.

Cook and Reckhow [28] formalized proof systems for the language TAUT (all Boolean tautologies)

in a slightly di�erent way, although their de�nition is essentialy equivalent to the one above. We

mildly prefer the above de�nition as it is consistent with de�nitions of interactive proofs.

De�nition 2.2. A Cook–Reckhow proof system is a polynomial-time function P ′ of just one input

π , and whose range is the set of all yes-instances of L. If x ∈ L, then any π such that P ′(π ) = x is

called a P ′-proof of x . P ′ must satisfy the following properties:

(1) (Soundness) For every x ,π ∈ {0, 1}∗, if P ′(π ) = x , then x ∈ L.

(2) (Completeness) For every x ∈ L, there exists a π such that P ′(π ) = x .

(�at is, the image of P ′ must be exactly L.)

P ′ is polynomially bounded if for every x ∈ L, there exists a π such that |π | ≤ poly( |x |) and

P ′(π ) = x .

Intuitively, we think of P ′ as a procedure for verifying that π is a proof that some x ∈ L and if so,

it outputs x . (For all strings z that do not encode valid proofs, P ′(z) may just output some �xed

x0 ∈ L.) It is a simple exercise to see that for every language L, any propositional proof system P
according to our de�nition can be converted to a Cook–Reckow proof system P ′, and vice versa,

and furthermore the runtime properties of P and P ′ will be the same. In the forward direction, say

P is a proof system for L according to our de�nition. De�ne π as encoding a pair (x ,π ′); on input

π = (x ,π ′), P ′ runs P on the pair (x ,π ′). If P accepts, then P ′(π ) outputs x , and if P rejects, then

P ′(π ) outputs (the encoding of) a canonical x0 in L. Conversely, say that P ′ is a Cook–Reckhow

proof system for L. P (x ,π ) runs P ′ on π and accepts if and only if P ′(π ) = x .

De�nition 2.3. Let P1 and P2 be two proof systems for a language L in coNP. P1 polynomially
simulates or p-simulates P2 if for every x ∈ L and for every π such that P2 (x ,π ) = 1, there exists π ′

such that |π ′ | ≤ poly( |π |), and P1 (x ,π
′) = 1.

Informally, P1 p-simulates P2 if proofs in P1 are no longer than proofs in P2 (up to polynomial

factors).

De�nition 2.4. Let P1 and P2 be two proof systems for a language L in coNP. P1 and P2 are

polynomially equivalent or p-equivalent if P1 p-simulates P2 and P2 p-simulates P1.
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Standard Propositional Proof Systems. For TAUT (or UNSAT), there are a variety of standard and

well-studied proof systems, the most important ones including Extended Frege (EF), Frege, Bounded-

depth Frege, and Resolution. A Frege rule is an inference rule of the form: B1, . . . ,Bn =⇒ B,

where B1, . . . ,Bn ,B are propositional formulas. If n = 0 then the rule is an axiom. For example,

A ∨ ¬A is a typical Frege axiom, and A,¬A ∨ B =⇒ B is a typical Frege rule. A Frege system is

speci�ed by a �nite set, R, of rules. Given a collection R of rules, a derivation of a 3DNF formula f
is a sequence of formulas f1, . . . , fm such that each fi is either an instance of an axiom scheme, or

follows from previous formulas by one of the rules in R, and such that the �nal formula fm is f . In

order for a Frege system to be a proof system in the Cook–Reckhow sense, its corresponding set of

rules must be sound and complete. Work by Cook and Reckhow in the 70’s [28] showed that Frege

systems are very robust in the sense that all Frege systems are polynomially-equivalent.

Bounded-depth Frege proofs (AC0
-Frege) are Frege proofs but with the additional restriction that

each formula in the proof has bounded depth. (Because our connectives are AND, OR and negation,

by depth we assume the formula has all negations at the leaves, and we count the maximum

number of alternations of AND/OR connectives in the formula.) Polynomial-sized AC0
-Frege

proofs correspond to the complexity class AC0
because such proofs allow a polynomial number of

lines, each of which must be “syntactically in AC0
” (that is, syntactically it must be described by a

bounded-depth circuit).

Bounded-depth Frege proofs with mod p connectives (AC0
[p]-Frege) are bounded-depth Frege

proofs that also allow unbounded fan-in MODp connectives, namely MODi
p for i ∈ {0, . . . ,p − 1}.

MODi
p (x1, . . . ,xk ) evaluates to true if the number of xi that are true is congruent to i (mod p),

and evaluates to false otherwise.

Extended Frege systems generalize Frege systems by allowing, in addition to all of the Frege

rules, a new axiom of the form y ↔ A, where A is a formula, and y is a new variable not occurring

in A nor in the �nal formula (i. e., the formula being proved). Whereas polynomial-size Frege proofs

allow a polynomial number of lines, each of which must be a polynomial-size formula, using the

new axiom, polynomial-size EF proofs allow a polynomial number of lines, each of which can be a

polynomial-size circuit. See [59] for precise de�nitions of Frege, AC0
-Frege, and EF proof systems.

Probabilistic Proof Systems. �e concept of a proof system for a language in coNP can be general-

ized in the natural way, to obtain randomized Merlin–Arthur-style proof systems.

De�nition 2.5. Let L be a language in coNP, and letV (for “veri�er”) be a probabilistic polynomial-

time algorithm with two inputs x ,π ∈ {0, 1}∗. V is a probabilistic proof system for L if:

(1) (Perfect Soundness) For every x that is not in L, and for every π ,

Prr [P (x ,π ) = 1] = 0,

where the probability is over the random coin tosses, r of P .

(2) (Completeness) For every x in L, there exists a π such that

Prr [P (x ,π ) = 1] ≥ 3/4.

P is polynomially bounded if for every x ∈ L, there exists π such that |π | ≤ poly( |x |) and

Prr [P (x ,π ) = 1] ≥ 3/4.

It is clear that for any coNP-complete language L, there is a polynomially bounded probabilistic

proof system for L if and only if coNP ⊆ MA (which implies the collapse of PH).

Again we have chosen to de�ne our probabilitic proof systems to match the de�nition of MA. �e

probabilistic proof system that would be analogous to the standard Cook–Reckhow proof system

would be somewhat di�erent, as de�ned below. Again, a simple argument like the one above shows
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that our probablistic proof systems are essentially equivalent to probabilistic Cook–Reckhow proof

systems.

De�nition 2.6. A probabilistic Cook–Reckhow proof system for a language L ∈ coNP is a proba-

bilistic polynomial-time algorithm A (whose run time is independent of its random choices) such

that

(1) �ere is a surjective function f : Σ∗ → L such that A(x ) = f (x ) with probability at least

2/3 (over A’s random choices), and

(2) Regardless of A’s random choices, its output is always in L.

Such a proof system is polynomially bounded or p-bounded if for every x ∈ L, there is some π
such that f (π ) = x and |π | ≤ poly( |x |).

We note that both Pitassi’s algebraic proof system [81] and the Ideal Proof System are probabilistic

Cook–Reckhow systems. �e algorithm P takes as input a description of a (constant-free) algebraic

circuit C together with a tautology φ, and then veri�es that the circuit is indeed an IPS-certi�cate

for φ by using the standard Schwartz–Zippel–DeMillo–Lipton [29, 89, 109] coRP algorithm for

polynomial identity testing. �e proof that Pitassi’s algebraic proof system is a probabilistic

Cook–Reckhow system is essentially the same.

2.3 Commutative algebra
�e following preliminaries from commutative algebra are needed only in Section 6 and Appendix A.

A module over a ring R is de�ned just like a vector space, except over a ring instead of a �eld.

�at is, a module M over R is a set with two operations: addition (making M an abelian group), and

multiplication by elements of R (“scalars”), satisfying the expected axioms (see any textbook on

commutative algebra, e. g., [6, 31]). A module over a �eld R = F is precisely a vector space over F.
Every ring R is naturally an R-module (using the ring multiplication as the scalar multiplication),

as is Rn , the set of n-tuples of elements of R. Every ideal I ⊆ R is an R-module—indeed, an ideal

could be de�ned, if one desired, as an R-submodule of R—and every quotient ring R/I is also an

R-module, by r · (r0 + I ) = rr0 + I .
Unlike vector spaces, however, there is not so nice a notion of “dimension” for modules over

arbitrary rings. Two di�erences will be particularly relevant in our se�ing. First, although every

vector subspace of Fn is �nite-dimensional, hence �nitely generated, this need not be true of every

submodule of Rn for an arbitrary ring R. Second, every (�nite-dimensional) vector space V has a

basis, and every element of V can be wri�en as a unique F-linear combination of basis elements,

but this need not be true of every R-module, even if the R-module is �nitely generated, as in the

following example.

Example 2.7. Let R = C[x ,y] and consider the ideal I = 〈x ,y〉 as an R-module. For clarity, let

us call the generators of this R-module д1 = x and д2 = y. First, I cannot be generated as an

R-module by fewer than two elements: if I were generated by a single element, say, f , then we

would necessarily have x = r1 f and y = r2 f for some r1, r2 ∈ R, and thus f would be a common

divisor of x and y in R (here we are using the fact that I is both a module and a subset of R). But the

GCD of x and y is 1, and the only submodule of R containing 1 is R , I . So {д1,д2} is a minimum

generating set of I . But not every element of I has a unique representation in terms of this (or,

indeed, any) generating set: for example, xy ∈ I can be wri�en either as r1д1 with r1 = y or r2д2

with r2 = x .

A ring R is Noetherian if there is no strictly increasing, in�nite chain of ideals I1 ( I2 ( I3 ( · · · .
Fields are Noetherian (every �eld has only two ideals: the zero ideal and the whole �eld), as are the
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integers Z. Hilbert’s Basis �eorem says that every ideal in a Noetherian ring is �nitely generated.

Hilbert’s (other) Basis �eorem says that if R is �nitely generated, then so is the polynomial ring

R[x] (and hence so is any polynomial ring R[~x]). �otient rings of Noetherian rings are Noetherian,

so every ring that is �nitely generated over a �eld (or more generally, over a Noetherian ring R) is

Noetherian.

Similarly, an R-module M is Noetherian if there is no strictly increasing, in�nite chain of

submodules M1 ( M2 ( M3 ( · · · . If R is Noetherian as a ring, then it is Noetherian as an

R-module. It is easily veri�ed that �nite direct sums of Noetherian modules are Noetherian, so

if R is a Noetherian ring, then it is a Noetherian R-module, and consequently Rn is a Noetherian

R-module for any �nite n. Just as for ideals, every submodule of a Noetherian module is �nitely

generated.

3 FOUNDATIONAL RESULTS AND SIMULATIONS
3.1 Relation with coMA and coAM

Proposition 3.1 (Cf. [81, Theorem 4]). For any �eld F, if every propositional tautology has a
polynomial-size constant-free IPSF-proof, then NP ⊆ coMA, and hence the polynomial hierarchy
collapses to its second level.

�is result and its proof are essentially the same as [81, �eorem 4]; here we mainly take

advantage of history, that PIT and coMA are now much more standard than they were in 1996.

We also note that the proof allows arbitrary �elds, as long as one is careful about the use of

constant-freeness.

If we wish to drop the restriction of “constant-free” (which, recall, is no restriction at all over a

�nite �eld), we may do so either by using the Blum–Shub–Smale analogs of NP and coMA using

essentially the same proof, or over �elds of characteristic zero using the Generalized Riemann

Hypothesis (Proposition 3.2).

Proof. Merlin nondeterministically guesses the polynomial-size constant-free IPS proof, and

then Arthur must check conditions (1) and (2) of De�nition 1.1. (We need constant-free so that

the algebraic proof has polynomial bit-size and thus can in fact be guessed by a Boolean Merlin.)

Both conditions of De�nition 1.1 are instances of Polynomial Identity Testing (PIT), which can

thus be solved in randomized polynomial time by the standard Schwartz–Zippel–DeMillo–Lipton

[29, 89, 109] coRP algorithm for PIT. �

Proposition 3.2. Over any �eld F of characteristic zero, if every propositional tautology has a
polynomial-size IPSF-proof, then NP ⊆ coAM, assuming the Generalized Riemann Hypothesis.

�e key di�erence between this result and Proposition 3.1 is that we do not need to assume the

proofs are constant-free. �e price we pay is the use of GRH, and that we do not know how to

improve this result from coAM to coMA (as in Proposition 3.1). We thank Pascal Koiran for the

second half of the proof.

Proof (with P. Koiran). �e key fact we will use is that deciding Hilbert’s Nullstellensatz—that

is, given a system of integer polynomials over Z, deciding if they have a solution over C—is in AM
[54]. Rather than looking at solvability of the original set of equations F1 (~x ) = · · · = Fm (~x ) = 0,

we consider solvability of a set of equations whose solutions describe all of the polynomial-size

IPS-cert�ciates for F .

�e equations we consider will come from a generic polynomial-size circuit; here we use the

model of generic circuits from [77, Section 6]. �e generic circuit will have depth d ≤ poly(n) and

width n+m ≤ w ≤ poly(n), consisting of d + 1 layers of gates, the 0th layer consisting of the inputs
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to a potential IPS certi�cate—x1, . . . ,xn ,y1, . . . ,ym—the d-th layer consisting of a single output

gate, and each intermediate layer containing w nodes. Each node in level ` is connected to every

node in level ` + 1. �ere are also new variables zi, j,k . We de�ne the circuit to compute as follows;

we use fk to denote the function computed at gate k . If k is an input gate, then fk is equal to the

appropriate input variable; otherwise, fk (~x , ~y,~z)
def
=

∑
i, j zi, j,k fi fj where the sum is over all pairs

of gates i, j in the layer immediately preceding the layer of k . �e output gate of this generic circuit

computes a polynomial C (~x , ~y,~z), and for any se�ing of the zi, j,k variables to constants ζi, j,k , we

get a particular polynomial C~ζ (~x , ~y)
def
= C (~x , ~y, ~ζ ) that is easily seen to be computed by circuits

of polynomial size. Furthermore, any function computed by a polynomial-size circuit is equal to

C~ζ (~x , ~y) for some se�ing of
~ζ . In particular, there is a polynomial-size IPS proof C ′ for F if and

only if there is some
~ζ ∈ Fn such that C ′ = C~ζ (~x , ~y).

We will translate the conditions that a circuit be an IPS certi�cate into equations on the new z

variables. Pick su�ciently many random values
~ξ (1), ~ξ (2), . . . , ~ξ (h) to be substituted into ~x . Heintz

and Schnorr [42, �eorem 4.4] showed that by picking h ∼ poly(n) random values from [N ]
n

for

some N ≤ exp(nO (1) ) (which therefore have poly(n) bit-size), with high probability {~ξ (1), . . . , ~ξ (h) }
will be a hi�ing set against all n-variable polynomials of circuit-size ≤ poly(n). �en we consider

the solvability of the following set of 2h equations in ~z:

(For i = 1, . . . ,h) C (~ξ (i ),~0,~z) = 0

(For i = 1, . . . ,h) C (~ξ (i ), ~F (~ξ (i ) ),~z) = 1

Determining whether a system of polynomial equations, given by circuits over a �eld F of char-

acteristic zero, has a solution in the algebraic closure F can be done in AM [54]. If there is an IPS

proof, let
~ζ be such that C~ζ (~x , ~y) = C (~x , ~y, ~ζ ) is an IPS proof. �en the preceding equalities will

be satis�ed regardless of the choices of the
~ξ (i ) . Conversely, suppose that

~ζ is a solution to the

above system of equations. SinceC (~ξ (i ), 0, ~ζ ) = 0 for each
~ξ (i ) , and {~ξ (1), . . . , ~ξ (h) } is a hi�ing set, it

follows thatC (~x , 0, ~ζ ) is identically zero as a polynomial in ~x . Similarly forC (~x , ~F (~x ), ~ζ ) − 1. Hence

C~ζ (~x , ~y) is an IPS proof.

Composing Koiran’s AM algorithm for the Nullstellensatz with the random guesses for the
~ξ (i ) ,

and assuming that every family of propositional tautologies has polynomial-size IPS certi�cates,

we get an AM algorithm for TAUT. �

3.2 Chasms, depth reduction, and other circuit transformations
Recently, many strong depth reduction theorems have been proved for circuit complexity [2, 39,

55, 99], which have been called “chasms” since Agrawal and Vinay [2]. In particular, they imply

that su�ciently strong lower bounds against depth 3 or 4 circuits imply super-polynomial lower

bounds against arbitrary circuits. Since an IPS proof is just a circuit, these depth reduction chasms

apply equally well to IPS proof size. Note that it was not clear to us how to adapt the proofs of

these chasms to proofs in the Polynomial Calculus or other previous algebraic systems [82], and

indeed this was part of the motivation to move to our more general notion of IPS proof.

Observation 3.3 (Chasms for IPS proof size). If a system of poly(n) polynomial equations in n
variables has an IPS proof of unsatis�ability of size s = s (n) and (semantic) degree d = d (n), then it

also has:
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(1) A O (logd (log s + logd ))-depth IPS proof of size poly(ds ) (follows from Valiant–Skyum–

Berkowitz–Racko� [105]);

(2) A depth 4 IPS formula proof of size nO (
√
d )

(follows from Koiran [55]) or a depth 4 IPS proof

of size 2
O (
√
d log(ds ) logn)

(follows from Tavenas [99]).

(3) (Over �elds of characteristic zero) A depth 3 IPS proof of size 2
O (
√
d logd logn log s )

(follows

from Gupta, Kayal, Kamath, and Saptharishi [39]) or even 2
O (
√
d logn log s )

(follows from

Tavenas [99]). C

�is suggests that size lower bounds for IPS proofs in restricted circuit classes would be interest-

ing, even for restricted kinds of depth 3 circuits.

Similarly, since IPS proofs are just circuits, any IPS certi�cate family of polynomially bounded

degree that is computed by a polynomial-size family of algebraic circuits with divisions can also be

computed by a polynomial-size family of algebraic circuits without divisions (follows from Strassen

[98]). We note, however, that one could in principle consider IPS certi�cates that were not merely

polynomials, but even rational functions, under suitable conditions; divisions for computing these

cannot always be eliminated. We discuss this “Rational Ideal Proof System,” the exact conditions

needed, and when such divisions can be e�ectively eliminated in Appendix A.

3.3 Definitions of other algebraic proof systems in terms of IPS
Previously studied algebraic proof systems can be viewed as particular complexity measures on

the Ideal Proof System, including the Polynomial Calculus (or Gröbner) proof system (PC) [27],

Polynomial Calculus with Resolution (PCR) [4], the Nullstellensatz proof system [14], and Pitassi’s

algebraic systems [81, 82], as we explain below.

All of the previous algebraic proof systems are rule-based systems, in that they syntactically

enforce the condition that every line of the proof is a polynomial in the ideal of the original

polynomials F1 (~x ), . . . , Fm (~x ). Typically they do this by allowing two derivation rules: 1) from

G and H , derive αG + βH for α , β constants, and 2) from G, derive Gxi for any variable xi . By

“rule-based circuits” we mean circuits with inputs y1, . . . ,ym having linear combination gates

and, for each i = 1, . . . ,n, gates that multiply their input by xi . In particular, rule-based circuits

necessarily produce Hilbert-like certi�cates.

In Pitassi’s 1998 system [82], a proof is a rule-based derivation of 1, as above, starting from the

Fi , with size measured by number of lines. �is is essentially the same as the Polynomial Calculus,

but with size measured by the number of lines, rather than by the total number of monomials

appearing.

In Pitassi’s 1996 system [81], a proof of the unsatis�ability of F1 (~x ) = · · · = Fm (~x ) = 0 is a circuit

computing a vector (G1 (~x ), . . . ,Gm (~x )) such that

∑
i Fi (~x )Gi (~x ) = 1. Size is measured by the size

of the corresponding circuit.

Now we come to the de�nitions of previous algebraic proof systems in terms of complexity

measures on the Ideal Proof System:

• Complexity in the Nullstellensatz proof system [14], or “Nullstellensatz degree,” is the

minimal degree of any Hilbert-like certi�cate (for systems of equations of constant degree,

such as the algebraic translations of tautologies.)

• “Polynomial Calculus size” [27] is the sum of the (semantic) number of monomials at each

gate in C (~x , ~F (~x )), where C ranges over rule-based circuits.

• “PC degree” [27] is the minimum over rule-based circuitsC (~x , ~y) of the maximum semantic

degree at any gate in C (~x , ~F (~x )).
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• Pitassi’s 1998 algebraic proof system [82] is essentially PC, except where size is measured

by number of lines of the proof (rather than total number of monomials appearing). �is

corresponds exactly to the smallest size of any rule-based circuit C (~x , ~y) computing any

Hilbert-like IPS certi�cate. Below we show that this is p-equivalent to VPdet-IPS.

• Polynomial Calculus with Resolution (PCR) [4] also allows variables x i and adds the

equations x i = 1 − xi and xix i = 0. �is is easily accommodated into the Ideal Proof

System: add the x i as new variables, with the same restrictions as are placed on the xi ’s in

a rule-based circuit, and add the polynomials x i − 1 + xi and xix i to the list of equations Fi .
Note that while this may have an e�ect on the PC size as it can decrease the total number

of monomials needed, it has essentially no e�ect on the number of lines of the proof.

• Pitassi’s 1996 algebraic proof system [81] is equivalent to Hilbert-like IPS.

We prove the precise relationships between Pitassi’s previous algebraic proof systems [81, 82]

and IPS next.

3.4 Number of lines in Polynomial Calculus is equivalent to determinantal IPS
Recall from Section 2.1 the de�nitions of VPdet and VPws ; for readability and ease of speech, we

refer to VPdet-IPS = VPws -IPS as “determinantal IPS” or “det-IPS,” for short.

Proposition 3.4. �e number-of-lines measure on PC proofs—equivalent to Pitassi’s 1998 algebraic
proof system [82]—is p-equivalent to Hilbert-like det-IPS or VPws -IPS.

Furthermore, Pitassi’s 1996 algebraic proof system [81] is p-equivalent to Hilbert-like IPS.

In light of this proposition, we henceforth refer to the systems from [81] and [82] as Hilbert-like

IPS and Hilbert-like det-IPS, respectively. Pitassi [81, �eorem 5] showed that Hilbert-like IPS

p-simulates Polynomial Calculus and Frege. Essentially the same proof shows that Hilbert-like IPS

p-simulates Extended Frege as well. Unfortunately, the proof of the simulation in [81] does not

seem to generalize to give a depth-preserving simulation. In Section 3.5 we show there is indeed a

depth-preserving simulation (�eorem 3.5).

Proof. We start with the proof of the second statement, as its proof is a simpler version of the

proof of the �rst statement.

Let C be a proof in the 1996 system [81], namely a circuit computing (G1 (~x ), . . . ,Gm (~x )). �en

with m product gates and a single fan-in-m addition gate, we get a circuit C ′ computing the

Hilbert-like IPS certi�cate

∑m
i=1

yiGi (~x ).
Conversely, if C ′ is a Hilbert-like IPS-proof computing the certi�cate

∑
i yiG

′
i (~x ), then by Baur–

Strassen [9] there is a circuit C of size at most O ( |C ′ |) computing the vector

(
∂C ′
∂y1

, . . . , ∂C
′

∂ym

)
=

(G ′
1
(~x ), . . . ,G ′m (~x )), which is exactly a proof in the 1996 system. (Alternatively, more simply, but

at slightly more cost, we may createm copies of C ′, and in the i-th copy of C ′ plug in 1 for one of

the yi and 0 for all of the others.

�e proof of the �rst statement takes a bit more work. At this point the reader may wish to recall

the de�nition of weakly skew circuit from Section 2.1.

Suppose we have a derivation of 1 from F1 (~x ), . . . , Fm (~x ) in the 1998 system [82]. First, replace

each Fi (~x ) at the beginning of the derivation with the corresponding placeholder variable yi . Since

size in the 1998 system is measured by number of lines in the proof, this has not changed the size.

Furthermore, the �nal step no longer derives 1, but rather derives an IPS certi�cate. By structural

induction on the two possible rules, one easily sees that this is in fact a Hilbert-like IPS-certi�cate.

Convert each linear combination step into a linear combination gate, and each “multiply by xi ”
step into a product gate one of whose inputs is a new leaf with the variable xi . As we create a new
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leaf for every application of the product rule, these new leaves are clearly cut o� from the rest of

the circuit by removing their connection to their product gate. As these are the only product gates

introduced, we have a weakly-skew circuit computing a Hilbert-like IPS certi�cate.

�e converse takes a bit more work, so we �rst show that a Hilbert-like formula-IPS proof can be

converted at polynomial cost into a proof in the 1998 system [82], and then explain why the same

proof works for VPws -IPS. �is proof is based on a folklore result (see the remark a�er De�nition 2.6

in Raz–Tzameret [85]); we thank Iddo Tzameret for a conversation clarifying it, which led us to

realize that the result also applies to weakly skew circuits.

Let C be a formula computing a Hilbert-like IPS-certi�cate

∑m
i=1

yiGi (~x ). Using the trick above

of substituting in {0, 1}-values for the yi (one 1 at a time), we �nd that each Gi (~x ) can be computed

by a formula Γi no larger than |C |. For each i we show how to derive Fi (~x )Gi (~x ) in the 1998 system.

�ese can then be combined using the linear combination rule. �us for simplicity we drop the

subscript i and refer to y, F (~x ), G (~x ), and the formula Γ computing G. Without loss of generality

(with a polynomial blow-up if needed) we can assume that all of Γ’s gates have fan-in at most 2.

We proceed by induction on the size of the formula Γ. Our inductive hypothesis is: for all

formulas Γ′ of size |Γ′ | < |Γ |, for all polynomials P (~x ), in the 1998 system one can derive P (~x )Γ′(~x )
starting from P (~x ), using at most |Γ′ | lines. �e base case is |Γ | = 1, in which case G (~x ) is a single

variable xi , and from P (~x ) we can compute P (~x )xi in a single step using the variable-product rule.

If Γ has a linear combination gate at the top, say Γ = αΓ1 + βΓ2. By induction, from P (~x ) we

can derive P (~x )Γi (~x ) in |Γi | steps for i = 1, 2. Do those two derivations, then apply the linear

combination rule to derive αP (~x )Γ1 (~x ) + βP (~x )Γ2 (~x ) = P (~x )Γ(~x ) in one additional step. �e total

length of this derivation is then |Γ1 | + |Γ2 | + 1 = |Γ |.
If Γ has a product gate at the top, say Γ = Γ1 × Γ2. Unlike the case of linear combinations

where we proceeded in parallel, here we proceed sequentially and use more of the strength of our

inductive assumption. Starting from P (~x ), we derive P (~x )Γ1 (~x ) in |Γ1 | steps. Now, starting from

P ′(~x ) = P (~x )Γ1 (~x ), we derive P ′(~x )Γ2 (~x ) in |Γ2 | steps. But P ′Γ2 = PΓ1Γ2 = PΓ, which we derived in

|Γ1 | + |Γ2 | ≤ |Γ | steps. �is completes the proof of this direction for Hilbert-like formula-IPS.

For Hilbert-like weakly-skew IPS the proof is similar. However, because gates can now be reused,

we must also allow lines in our constructed proof to be reused (otherwise we would e�ectively be

unrolling our weakly skew circuit into a formula, for which the best known upper bound is only

quasi-polynomial). We still induct on the size of the weakly-skew circuit, but now we allow circuits

with multiple outputs. We change the induction hypothesis to: for all weakly skew circuits Γ′ of

size |Γ′ | < |Γ |, possibly with multiple outputs that we denote Γ′out,1, . . . , Γ
′
out,s , from any P (~x ) one

can derive the tuple PΓ′out,1, . . . , PΓ
′
out,s in the 1998 system using at most |Γ′ | lines.

To simplify ma�ers, we assume that every multiplication gate in a weakly skew circuit has a

label indicating which one of its children is separated from the rest of the circuit by this gate.

�e base case is the same as before, since a circuit of size one can only have one output, a single

variable.

Linear combinations are similar to before, except now we have a multi-output weakly skew

circuit of some size, say s , that outputs Γ1 and Γ2. By the induction hypothesis, there is a derivation

of size ≤ s that derives both PΓ1 and PΓ2. �en we apply one additional linear combination rule, as

before.

For a product gate Γ = Γ1 × Γ2, suppose without loss of generality that Γ2 is the child that is

isolated from the larger circuit by this product gate (recall that we assumed Γ comes with an

indicator of which child this is). �en we proceed as before, �rst computing PΓ1 from P , and then

(PΓ1)Γ2 from (PΓ1). Because we apply “multiplication by Γ1” and “multiplication by Γ2” in sequence,

it is crucial that the gates computing Γ2 do not depend on those computing Γ1, for the gates д in Γ1
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get translated into lines computing Pд, and if we reused that in computing Γ2, rather than ge�ing д
as needed, we would be ge�ing Pд. �

It is interesting to note that the condition of being weakly skew is precisely the condition we

needed to make this proof go through.

3.5 Depth-preserving simulation of Frege systems by the Ideal Proof System
�roughout this section, all algebraic circuits may have linear combination gates—with weights on

their incoming edges (see Section 2.1)—and product gates of unbounded fan-in. We measure the

size of all circuits C (Boolean and algebraic), denoted size(C ), by the number of gates. �e depth of

a circuitC (Boolean or algebraic), denoted depth(C ), is the maximum number of gates encountered

on any path from a leaf to the root.

Theorem 3.5. Let p be prime and F any �eld of characteristic p. �en IPSF p-simulates Frege with
MODp connectives in such a way that depth-d Frege proofs are simulated by depth-O (d ) IPSF proofs.

In particular, AC0
[p]-Frege is p-simulated by bounded-depth IPSF and Frege is p-simulated by

logarithmic-depth IPSF, i. e., VNC1

F-IPS.

�e “O (d )” above is . 4d ; in a forthcoming preprint [38], we prove a tighter depth-preserving

simulation, which has the advantage of drawing connections to depth-six algebraic circuits; the two

proofs follow the same outline, but the tighter result requires several new technical ingredients.

Proof. We will use a small modi�cation of the sequent-calculus formalization of AC0
[p]-Frege

as given by Maciel and Pitassi [66]. Changing between a Frege system and sequent calculus does not

increase the depth by more than an additive constant. �e underlying connectives are unbounded

fan-in OR, unbounded fan-in MODi
p for i ∈ {0, . . . ,p − 1}, and unary negation. �e inputs are xi

and the constants 0, 1.

We will work in a sequent calculus style proof system, where lines are cedents of the form

Γ → ∆, where both Γ and ∆ are sets of {∨,¬,MOD0

p , . . . ,MOD
p−1

p }-formulas whose inputs are

xi , 0, 1, where each of Γi ∈ Γ and ∆i ∈ ∆ has depth at most d ; the intended meaning is that the

conjunction of the formulas in Γ implies the disjunction of the formulas in ∆. �e commutativity

of the arguments to each connective is implicit. �roughout we use Γ,∆ to denote sets of formulae,

and A, Ai to denote individual formulae. Although Γ and ∆ are sets, we use sequence notation for

convenience, viz. “∆,A” actually means “∆ ∪ {A}.”
Because we are working with gates of unbounded fan-in, we use the pre�x notation∨(A1, . . . ,Ak )

for a single OR gate whose inputs are A1, . . . ,Ak , and similarly MODi
p (A1, . . . ,Ak ). In particular,

∨() is the OR with no inputs, which is equal to 0 by convention, MOD0

p () is equal to 1 by convention,

and MODi
p () for i , 0 is equal to 0 by convention.

�e axioms are as follows:

(1) A→ A
(2) ∨() →
(3) → MOD0

p ()

(4) MODi
p () → for i , 0

�e rules of inference are as follows; throughout, “i − 1” is to be interpreted modulo p.
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Weakening

Γ → ∆

Γ → ∆,A

Γ → ∆

A, Γ → ∆
Cut

→ A, Γ A→ Γ

→ Γ

Negation

Γ,A→ ∆

Γ → ¬A,∆

Γ → A,∆

Γ,¬A→ ∆

Or-Le�

A1, Γ → ∆ ∨ (A2, . . . ,Ak ), Γ → ∆

∨(A1, . . . ,Ak ), Γ → ∆

Or-Right

Γ → A1,∨(A2, . . . ,Ak ),∆

Γ → ∨(A1, . . . ,Ak ),∆

Mod-p-Le�

A1,MODi−1

p (A2, . . . ,Ak ), Γ → ∆ ¬A1,MODi
p (A2, . . . ,Ak ), Γ → ∆

MODi
p (A1, . . . ,Ak ), Γ → ∆

Mod-p-Right

Γ → ¬A1,MODi−1

p (A2, . . . ,Ak ),∆ Γ → A1,MODi
p (A2, . . . ,Ak ),∆

Γ → MODi
p (A1, . . . ,Ak ),∆

Mod-p Constants

Γ → MODi
p (1,A2, . . . ,Ak ),∆

Γ → MODi−1

p (A2, . . . ,Ak ),∆

Γ → MODi
p (0,A2, . . . ,Ak ),∆

Γ → MODi
p (A2, . . . ,Ak ),∆

A refutation of a 3CNF formula φ = κ1 ∧ κ2 ∧ · · · ∧ κm in Frege with mod p connectives is a

sequence of cedents, where each cedent is either one of the κi ’s, or an instance of an axiom scheme,

or follows from two earlier cedents by one of the above inference rules, and the �nal cedent is the

empty cedent.

We de�ne a translation t (A) from Boolean formulas to algebraic formulae over F such that for

any assignment α , A(α ) = 1 if and only if t (A) (α ) = 0. �e translation is de�ned inductively as

follows:

(1) t (x ) = 1 − x for x atomic (a Boolean variable).

(2) t (¬A) = 1 − t (A)
(3) t (∨(A1, . . . ,Ak )) = t (A1)t (A2) · · · t (Ak )
(4) t (MODi

p (A1, . . . ,Ak )) = (k − i − t (A1) − t (A2) · · · − t (Ak ))
p−1

Note that

depth(t (A)) ≤ 2depth(A) + 1 and size(t (A)) ≤ 2size(A) + 1.

�e factor of 2 comes from (4), and the +1 comes from (1). (Here we are counting negation gates

towards the size and depth of a Boolean circuit; even if we do not, we will still incur a constant-factor

increase in the size and depth, since we may assume without loss of generality that there are no

two successive negation gates).

For a cedent Γ → ∆, we will translate the cedent by moving everything to the right of the arrow.

�at is, the cedent L = A1, . . . ,Ak → B1, . . . ,B` will be translated to t (L) = t (¬A1 ∨ · · · ∨ ¬Ak ∨

B1 ∨ · · · ∨ B` ) = (1 − t (A1)) (1 − t (A2)) · · · (1 − t (Ak ))t (B1) · · · t (B` ). �is may again increase the

depth by 1, since the product gate used to simulate the→ was not counted in the depth of the

Ai ,Bi .
Let R be a Frege refutation (with mod p connectives) of φ. Without loss of generality, we

may assume that R is tree-like. Recall that a Frege (or sequent calculus) proof is tree-like if the

underlying directed acyclic graph structure of the proof is a tree, and therefore every cedent in
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the refutation, other than the �nal empty cedent, is used exactly once. Any Frege proof can be

e�ciently converted into a tree-like proof at a polynomial increase in size, and increasing the depth

by one [58, Proposition 1.1] (although not stated there for Frege with mod p connectives, the same

proof still works, see [90, Section 3.2]).

We will prove by induction on the number of cedents of R that for each cedent L in the refutation,

we can derive t (L) via a Hilbert-like IPS proof (see De�nition 1.8) whose size is polynomial in the

original size, and whose depth is at most a constant factor greater than the depth of R.

For the base case, each initial cedent of the form→ κi translates to yi , and thus has the right

form.

Axioms (2), (3), and (4) translate to the identically zero polynomial, so they have the right form.

�e axiom A→ A translates to t (A) (1 − t (A)); we need to show that t (A) (1 − t (A)) can be derived

from the Boolean axioms x2

i − xi by an IPS proof of appropriate size and depth.

Lemma 3.6. Let p be any prime and F any �eld of characteristic p. For any Boolean formula A of
size s and depth d with connectives ¬, ∨, MOD0

p , . . . , MOD
p−1

p , t (A) (1 − t (A)) can be derived from
{x2

i − xi : i ∈ [n]} by a Hilbert-like IPSF derivation of size O (s2) and depth O (d ).

Proof. To make our formulae clearer, we writeb (Aj ) for the IPS circuit that derives t (Aj )
2−t (Aj )

from the placeholder variablesyi for the Boolean axioms x2

i −xi . We build up the IPS circuit starting

from the leaves (inputs) of A; in fact, we will derive t (д)2 − t (д) for every gate д of A. Our IPS

circuit will include a single copy of the (natural) circuit for t (A); whenever we write t (дi ) inside

an expression for some b (д), we mean to use the gate t (дi ) in this single copy of the circuit for

t (A). �is incurs an additive cost of size(t (A)) ≤ size(A) and means the depth of b (A) is at least

depth(t (A)) ≤ 2depth(A) + 1.

Case 0: For an input gate xi , we have t (xi ) (1 − t (xi )) = (1 − xi )xi = x2

i − xi , so its IPS derivation

is just b (xi ) = yi . Both the input gate and its IPS derivation have depth zero and size one (or size

zero, depending on how you count, but either way will not a�ect the rest of the result).

Case 1: For a negation gate, say д = ¬д1. �en t (д) (1 − t (д)) = (1 − t (д1))t (д1), so b (д) = b (д1)
and the depth and size do not increase at all.

Case 2: д = ∨(д1, . . . ,дk ). First, we claim that the following is polynomial identity which holds

over any ring:

*
,

k∏
i=1

zi+
-

2

−

k∏
i=1

zi =
k∑
i=1

(z2

i − zi )
*.
,

∏
j<i

z2

j
+/
-

*.
,

∏
j>i

zj
+/
-
. (1)

�is is readily veri�ed by induction on the number of variables. Indeed, for k = 1, (1) becomes

z2

1
− z1 = z2

1
− z1. For k > 1, suppose inductively that (1) holds for k − 1, then we have:

*
,

k−1∏
i=1

zi+
-

2

−

k−1∏
i=1

zi =
k−1∑
i=1

(z2

i − zi )
*.
,

∏
1≤j<i

z2

j
+/
-

*.
,

∏
i<j≤k−1

zj
+/
-

zk *
,

k−1∏
i=1

zi+
-

2

−

k∏
i=1

zi =
k−1∑
i=1

(z2

i − zi )
*.
,

∏
1≤j<i

z2

j
+/
-

*.
,

∏
i<j≤k

zj
+/
-

(multiply by zk )

zk *
,

k−1∏
i=1

zi+
-

2

−

k∏
i=1

zi + (z2

k − zk )
∏
j<k

z2

j =

k∑
i=1

(z2

i − zi )
*.
,

∏
1≤j<i

z2

j
+/
-

*.
,

∏
i<j≤k

zj
+/
-

(add to both sides)

*
,

k∏
i=1

zi+
-

2

−

k∏
i=1

zi =
k∑
i=1

(z2

i − zi )
*.
,

∏
j<i

z2

j
+/
-

*.
,

∏
j>i

zj
+/
-
,
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as claimed.

Now, as t (д) =
∏k

i=1
t (дi ), plugging in t (дi ) for zi into the above identity, we �nd that

b (д) =
k∑
i=1

b (дi )
*.
,

∏
j<i

t (дj )
2+/
-

*.
,

∏
j>i

t (дj )
+/
-

is an IPS derivation of t (д)2 − t (д) from the Boolean axioms. �e preceding formula shows that we

increase both the depth and size by at most 2.

Case 3: д = MODi
p (д1, . . . ,дk ). �e idea of the proof in this case as follows: First we show that

adding up a bunch of {0, 1} values over F, possibly with a constant from {0, . . . ,p − 1}, results in an

element z of the prime �eld Fp (which sits inside any �eld F of characteristic p), in other words,

we derive zp − z where z = −i +
∑

j t (дj ). (Note that the proof holds for symbolic polynomials in

characteristic p, not only with the corresponding functions, so it is allowed within the framework of

IPSF.) �en we show that zp−1 ∈ {0, 1} by noting that (zp−1)2 − zp−1 = z2p−2 − zp−1 = zp−2 (zp − z).
Let us now implement the preceding idea carefully: Let z = −i +

∑
j t (дj ). �en we have

zp − z = (−i +
∑
j

t (дj ))
p − (−i +

∑
j

t (дj ))

= (−i )p +
∑
j

t (дj )
p − (−i +

∑
j

t (дj ))

=
(
(−i )p + i

)
+

∑
j

(
t (дj )

p − t (дj )
)
,

where the second inequality follows from the fact that for any two polynomials f ,д in a �eld of

characteristic p, ( f + д)p = f p + дp , symbolically. �e �rst term, (−i )p + (−i ), is identically zero,

since i ∈ {0, . . . ,p − 1}. �e remaining terms can be derived as follows:

t (дj )
p − t (дj ) =

*.
,

p−2∑
`=0

t (дj )
`+/
-
(t (дj )

2 − t (дj ))

=

p−2∑
`=0

t (дj )
`b (дj ).

Pu�ing these together with the idea outlined above, we then get our derivation of (zp−1)2 − zp−1
as:

b (д) = *.
,
−i +

∑
j

t (дj )
+/
-

p−2

*.
,

∑
j ∈[k]

p−2∑
`=0

t (дj )
`b (дj )

+/
-

(2)

�e preceding formula shows that we can derive b (д) by a formula whose depth has increased from

that of t (дj ),b (дj ) by at most 3 (the formula is a product of sums of products of the t (дj ),b (дj )),
and whose size has increased by at most k (p − 1) + 3 ≤ O (ps ).

In total, we have included a copy of t (A), and for each gate we add at most O (ps ) = O (s ) gates

to our IPS derivation, so the total size is at most s + sO (s ) = O (s2), and the depth has increased by

a factor of at most 3. �

�e preceding lemma handled the only nontrivial axiom; we now conclude the proof of �eo-

rem 3.5. For the inductive step, it is a ma�er of going through all of the rules. We assume inductively

that we have an IPS proof of appropriate size and depth of all the antecedents.
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(1) (Weakening) LetC (~x , ~y) be an Hilbert-like IPS derivation of t (Γ → ∆). We want to obtain a

derivation of t (Γ → ∆,A). Since we move everything to the right when we translate, this is

equivalent to showing that if C is a derivation of t (→ A1, . . . ,Ak ) = t (A1)t (A2) · · · t (Ak ),
that we can obtain a derivation of t (→ A1, . . . ,Ak ,B) = t (A1)t (A2) · · · t (Ak )t (B). Mul-

tiplying C by t (B) achieves this, and is still Hilbert-like. �e depth has become 1 +

max{depth(C ), depth(t (B))}, and the size has increased by at most size(t (B)) + 1.

(2) (Cut) LetC (~x , ~y) be a Hilbert-like IPS derivation of t (→ ¬A,B1, . . . ,Bk ) = (1−t (A))t (B1) · · · t (Bk )
andC ′(~x , ~y) be a Hilbert-like IPS derivation of t (→ A,B1, . . . Bk ) = t (A)t (B1) · · · t (Bk ). We

want to derive t (→ B1 . . . Bk ) = t (B1) · · · t (Bk ), which is easily done as C +C ′; the depth

and size have both increased by 1, and the result is still Hilbert-like.

(3) (Negation) Because our translation moves everything to the right, the translated versions

become syntactically identical, and there is nothing to do for the negation rules.

(4) (Or-Le�) Let C (~x , ~y) be a derivation of t (→ ¬A1,∆), and C ′(~x , ~y) be a derivation of t (→
¬ ∨ (A2, . . . ,Ak ),∆). We want to derive t (→ ¬ ∨ (A1, . . . ,Ak ),∆) We have

C (~x , ~F ) = t (→ ¬A1,∆) = (1 − t (A1))t (∆),

C ′(~x , ~F ) = t (→ ¬ ∨ (A2, . . . ,Ak ),∆) = (1 − t (A2)t (A3) · · · t (Ak ))t (∆).

�e desired derivation is C ′ · t (A1) +C , which increases the size and depth by at most 2.

(5) (Or-Right) �e translation of the derived formula is syntactically identical to the original

formula, so there is nothing to do.

(6) (Mod-p-Right) LetC be a derivation of t (→ ¬A1,MODi−1

p (A2, . . . ,Ak ),∆) andC ′ be a deriva-

tion of t (→ A1,MODi
p (A2, . . . ,Ak ),∆). We want to derive t (→ MODi

p (A1, . . . ,Ak ),∆).
For notational convenience, let a = 1−t (A1) and letb = (k−i )−t (A2)−t (A3)−· · ·−t (Ak ).

In terms of a and b, our antecedents and consequent are:

t (→ ¬A1,MODi−1

p (A2, . . . ,Ak ),∆) = a(b + 1)p−1t (∆)

t (→ A1,MODi
p (A2, . . . ,Ak ),∆) = (1 − a)bp−1t (∆)

t (→ MODi
p (A1, . . . ,Ak ),∆) = (a + b)p−1t (∆)

Next we rewrite the consequent (a+b)p−1t (∆) in a way that tries to leverage the antecedents

as much as possible. We start by adding and subtracting t (→ ¬A1,MODi−1

p (A2, . . . ,Ak ),∆),

and then expand and combine terms, we �nd that (a + b)p−1t (∆) is equal to:

=
(
(a + b)p−1 − a(b + 1)p−1 + a(b + 1)p−1

)
t (∆)

=
*.
,

p−1∑
k=0

(
p − 1

k

)
bkap−1−k − a

p−1∑
k=0

(
p − 1

k

)
bk1

p−1−k + a(b + 1)p−1+/
-
t (∆)

=
*.
,

p−1∑
k=0

(
p − 1

k

)
bk (ap−1−k − a) + a(b + 1)p−1+/

-
t (∆)

Every term of the sum has ap−1−k − a as a factor, and for k < p − 2, we have p − 1 − k ≥ 2,

so in these cases we may derive ap−1−k −a from a2 −a as ap−1−k −a = (
∑p−k−3

`=0
a` ) (a2 −a),

and we can derive a2 − a using Lemma 3.6. For k = p − 2, note that the term is identically

zero, since it is multiplied by a − a = 0. And for k = p − 1, the term is bp−1 (1 − a), which is
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exactly our other antecedent. �us we are le� with a derivation of the form:

*.
,

p−3∑
k=0

(
p − 1

k

)
bk *.

,

p−k−3∑
`=0

a`+/
-
(a2 − a) + (1 − a)bp−1 + (1 − a)bp−1+/

-
t (∆)

=
*.
,

p−3∑
k=0

(
p − 1

k

)
bk *.

,

p−k−3∑
`=0

a`+/
-
(a2 − a)+/

-
t (∆) +C +C ′ (3)

�e preceding derivation is a ΣΠΣΠ formula whose inputs are a, b, the derivation of a2 − a
from Lemma 3.6, and the derivationsC,C ′ of the antecedents. �us the depth has increased

by at most 4, and the size has increased by at most O (p2) = O (1).
(7) (Mod-p-Le�) �is case is similar to Mod-p-Right, but with “1−” �oating around in various

places; because of the la�er we write it out here, but we do so quickly since the explanation

for the derivation is essentially identical to the preceding case. Let a = 1 − t (A1) and

b = k − i − t (A2) − · · · − t (Ak ), as above. �en from

t (A1,MODi−1

p (A2, . . . ,Ak ) → ∆) = a(1 − (b + 1)p−1)t (∆) and

t (¬A1,MODi
p (A2, . . . ,Ak ) → ∆) = (1 − a) (1 − bp−1)t (∆)

we want to derive

t (→ MODi
p (A1, . . . ,Ak ),∆) = (1 − (a + b)p−1)t (∆).

Deriving as before, we begin with the conclusion and modify it to see how to derive it:

(1 − (a + b)p−1)t (∆) =
(
1 − (a + b)p−1 − a(1 − (b + 1)p−1) + a(1 − (b + 1)p−1)

)
t (∆)

=
*.
,
1 − a + a

p−1∑
k=0

(
p − 1

k

)
bk −

p−1∑
k=0

(
p − 1

k

)
bkap−1−k + a(1 − (b + 1)p−1)+/

-
t (∆)

=
*.
,
1 − a −

p−1∑
k=0

(
p − 1

k

)
bk (ap−1−k − a) + a(1 − (b + 1)p−1)+/

-
t (∆)

=
*.
,
1 − a − bp−1 (1 − a) −

p−3∑
k=0

(
p − 1

k

)
bk (ap−1−k − a) + a(1 − (b + 1)p−1)+/

-
t (∆)

=
*.
,

[
(1 − a) (1 − bp−1)

]
−

p−3∑
k=0

(
p − 1

k

)
bk (ap−1−k − a) +

[
a(1 − (b + 1)p−1)

]+/
-
t (∆)

As with Mod-p-Right, the depth increases by at most 4 and the size by at most O (p2).
(8) (Mod-p Constants) �e translation of the derived formula is syntactically identical to the

original formula, so there is nothing to do.

At each step, we have increased the depth by at most 4 and, except for the axiom A→ A, the

size by at most a constant as well. Since Lemma 3.6 can increase the size quadratically, our overall

size increase is quadratic and the depth has been multiplied by at most 4. �

3.6 General versus Hilbert-like IPS
Proposition 3.7. Let F1 = · · · = Fm = 0 be a polynomial system of equations in n vari-

ables x1, . . . ,xn and let C (~x , ~y) be an IPS-certi�cate of the unsatis�ability of this system. Let D =
maxi degyi C and let t be the number of terms of C , when viewed as a polynomial in the yi with
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coe�cients in F[~x]. SupposeC and each Fi can be computed by a circuit of size ≤ s . �en a Hilbert-like
IPS-certi�cate for this system can be computed by a circuit of size poly(D, t ,n, s ).4

�e proof uses known sparse multivariate polynomial interpolation algorithms. �e threshold

T is essentially the number of points at which the polynomial must be evaluated in the course of

the interpolation algorithm. Here we use one of the early, elegant interpolation algorithms due to

Zippel [110]. Although Zippel’s algorithm chooses random points at which to evaluate polynomials

for the interpolation, in our nonuniform se�ing it su�ces merely for points with the required

properties to exist (which they do as long as |F| ≥ T ). Be�er bounds may be achievable using more

recent interpolation algorithms such as those of Ben-Or and Tiwari [16] or Kaltofen and Yagati

[51]. We note that all of these interpolation algorithms only give limited control on the depth of

the resulting Hilbert-like IPS-certi�cate (as a function of the depth of the original IPS-certi�cate f ),

because they all involve solving linear systems of equations, which is not known to be computable

e�ciently in constant depth.

Forbes, Shpilka, Tzameret, and Wigderson [34] subsequently improved on this result; see Sec-

tion 8.

Proof. Using a sparse multivariate interpolation algorithm such as Zippel’s [110], for each

monomial in the placeholder variables ~y that appears in C , there is a polynomial-size algebraic

circuit for its coe�cient, which is an element of F[~x]. For each such monomial ~y~e = ye1

1
· · ·yemm , with

coe�cient c~e (~x ), there is a small circuit C ′ computing c~e (~x )~y
~e
. Since every ~y-monomial appearing

in C is non-constant, at least one of the exponents ei > 0. Let i0 be the least index of such an

exponent. �en we get a small circuit computing c (~e ) (~x )yi0Fi0 (~x )
ei

0
−1Fi0+1 (~x )

ei
0
+1 · · · Fm (~x )em as

follows. Divide C ′ by yi0 , and then eliminate this division using Strassen [98] (or alternatively

consider
1

ei
0

∂C ′
∂yi

0

using Baur–Strassen [9]). In the resulting circuit, replace each input yi by a small

circuit computing Fi (~x ). �en multiply the resulting circuit by yi0 . Repeat this procedure for each

monomial appearing (the list of monomials appearing in C is one of the outputs of the sparse

multivariate interpolation algorithm), and then add them all together. �

4 LOWER BOUNDS ON IPS IMPLY CIRCUIT LOWER BOUNDS
Theorem 1.2. A super-polynomial lower bound on [constant-free] Hilbert-like VP-IPSR proofs of

any family of tautologies implies VNPR , VPR [respectively, VNP0

R , VP0

R ], for any ring R.
A super-polynomial lower bound on the number of lines in Polynomial Calculus proofs implies the

Permanent versus Determinant Conjecture (VNP , VPws ).

Together with Proposition 3.1, this immediately gives an alternative, and we believe simpler,

proof of the following result:

Corollary 4.1. If NP * coMA, then VNP0

F , VP0

F, for any �eld F.

�e previous proofs we are aware of all depend crucially on the random self-reducibility of

the permanent or of some function complete for ModpP/poly. In contrast, our proof is quite

di�erent, in that it avoids random self-reduciblity altogether, and does not need any completeness

results: indeed, we do not even know if there exist tautologies and a choice of ordering of the

clauses such that the VNP-IPS certi�cates of Lemma 4.2 are random self-reducible nor (separately)

VNP-complete.

4
If the base �eld F has size less than T = Dt

(
n
2

)
, and the original circuit had multiplication gates of fan-in bounded by k ,

then the size of the resulting Hilbert-like certi�cate should be multiplied by (logT )k .
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For comparison, here is a brief sketch of three previous proofs (we thank Lance Fortnow for

one, and an anonymous reviewer for the other two). Note that all of these proofs rely on several

seminal results from computational complexity (all of them rely on Valiant’s completeness result

[102], and each relies on a subset of [7, 23, 33, 50, 100, 102, 106]), whereas our proof uses li�le more

than the Nullstellensatz, a result over 100 years old.

Proof 1: this proof seems to only work when F is a �nite �eld or, assuming the Generalized

Riemann Hypothesis, a �eld of characteristic zero. First, Bürgisser’s results [23] relate VP and VNP
over various �elds to standard Boolean complexity classes such as NC/poly, #P/poly (uses GRH),

and ModpP/poly. �e result then follows from the implication NP * coMA⇒ NC/poly , #P/poly
(and similarly with #P/poly replaced by ModpP/poly), which uses the downward self-reducibility

of complete functions for #P/poly (the permanent [102]) and ModpP/poly [33], as well as Valiant–

Vazirani [106]. Proof 2: this proof seems to only work when R is a �nite ring of odd characteristic.

If VNPR ⊆ VPR for a �nite ring R of odd characteristic, then the permanent over R has polynomial-

size R-algebraic circuits, and hence—since R is �nite—polynomial-size Boolean circuits. �is

implies PModmP ⊆ coMA by Babai–Fortnow–Nisan–Wigderson [7], wherem is the characteristic

of R. �e proof concludes by using either Toda’s �eorem [100]—or the slightly weaker result of

Valiant and Vazirani [106]—to show that NP ⊆ PModmP
. Proof 3: Similar to Proof 2, but instead

of Babai–Fortnow–Nisan–Wigderson [7], uses Kabanets–Impagliazzo [50] to conclude from the

polynomial-size R-algebraic circuits for the permanent that NP ⊆ coNPRP ⊆ coMA.

�e following lemma is the key to �eorem 1.2.

Lemma 4.2. Every family of CNF tautologies (φn ) has a Hilbert-like family of IPS certi�cates (Cn )
in VNP0

R .

We �rst show how �eorem 1.2 follows from Lemma 4.2, and then return to the proof of the

lemma.

Proof of Theorem 1.2, assuming Lemma 4.2. For a given set F of unsatis�able polynomial

equations F1 = · · · = Fm = 0, a lower bound on IPS refutations of F is equivalent to giving

the same circuit lower bound on all IPS certi�cates for F . A super-polynomial lower bound on

Hilbert-like IPS implies that some function in VNP—namely, the VNP-IPS certi�cate guaranteed by

Lemma 4.2—cannot be computed by polynomial-size algebraic circuits, and hence that VNP , VP.

Since Lemma 4.2 even guarantees a constant-free certi�cate, we get the analogous consequence for

constant-free lower bounds.

�e second part of �eorem 1.2 follows from the fact that number of lines in a PC proof is

p-equivalent to Hilbert-like det-IPS (Proposition 3.4). As in the �rst part, a super-polynomial lower

bound on Hilbert-like det-IPS implies that some function family in VNP is not a p-projection of the

determinant. Since the permanent is VNP-complete under p-projections, the result follows. �

Proof of Lemma 4.2. We mimic one of the proofs of completeness for Hilbert-like IPS [81,

�eorem 1] (recall Proposition 3.4), and then show that this proof can in fact be carried out in

VNP0
. We omit any mention of the ground ring, as it will not be relevant.

Let φn (~x ) = κ1 (~x ) ∧ · · · ∧ κm (~x ) be an unsatis�able CNF, where each κi is a disjunction of

literals. Let Ci (~x ) denote the (negated) polynomial translation of κi via ¬x 7→ x , x 7→ 1 − x
and f ∨ д 7→ f д; in particular, Ci (~x ) = 0 if and only if κi (~x ) = 1, and thus φn is unsatis�able

if and only if the system of equations C1 (~x ) = · · · = Cm (~x ) = x2

1
− x1 = · · · = x2

n − xn = 0 is

unsatis�able. In fact, as we will see in the course of the proof, we will not need the equations

x2

i − xi = 0. It will be convenient to introduce the function b (e,x ) = ex + (1 − e ) (1 − x ), i. e.,

b (1,x ) = x and b (0,x ) = 1 − x . For example, the clause κi (~x ) = (x1 ∨ ¬x17 ∨ x42) gets translated
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into Ci (~x ) = (1 − x1)x17 (1 − x42) = b (0,x1)b (1,x17)b (0,x42), and therefore an assignment falsi�es

κi if and only if (x1,x17,x42) 7→ (0, 1, 0).
Just as 1 = x1x2 + x1 (1 − x2) + (1 − x2)x1 + (1 − x2) (1 − x1), an easy induction shows that

1 =
∑

~e ∈{0,1}n

n∏
i=1

b (ei ,xi ). (4)

We will show how to turn this expression—which is already syntactically in VNP0
form—into a

VNP certi�cate refuting φn .

Let ci be the placeholder variable corresponding to Ci (~x ). For any property Π, we write JΠ(~e )K
for the indicator function of Π: JΠ(~e )K = 1 if and only if Π(~e ) holds, and 0 otherwise. We claim

that the following is a VNP0
-IPS certi�cate:

m∑
i=1

ci ·
*.
,

∑
~e ∈{0,1}n

J~e falsi�es κi and satis�es κj for all j < iK
∏

j :x j<κi

b (ej ,x j )
+/
-
. (5)

First, let us prove that this is indeed a certi�cate, then we will show it is in VNP0
.

To see that (5) is a certi�cate, we claim that upon substituting Ci (~x ) for ci , the resulting sum

becomes syntactically identical to (4), and therefore sums to 1. (It is clear from its form that it

is in the ideal generated by the ci .) Note that an assignment ~e falsi�es clause κi if and only if

Ci (x ) =
∏

j :x j ∈κi b (ej ,x j ). LetAi be the set of assignments ~e satisfying the i-th condition in brackets:

Ai = {~e ∈ {0, 1}
n

: ~e falsi�es κi and satis�es κj for all j < i}. �en, upon substituting the Ci (~x ) for

the ci , (5) becomes:

m∑
i=1

Ci (~x ) ·
*.
,

∑
~e ∈{0,1}n

J~e falsi�es κi and satis�es κj for all j < iK
∏

j :x j<κi

b (ej ,x j )
+/
-

=

m∑
i=1

∑
~e ∈{0,1}n

*.
,
J~e falsi�es κi and satis�es κj for all j < iKCi (~x )

∏
j :x j<κi

b (ej ,x j )
+/
-

=

m∑
i=1

∑
~e ∈{0,1}n

*.
,
J~e falsi�es κi and satis�es κj for all j < iK *.

,

∏
j :x j ∈κi

b (ej ,x j )
+/
-

*.
,

∏
j :x j<κi

b (ej ,x j )
+/
-

+/
-

=

m∑
i=1

∑
~e ∈{0,1}n

*.
,
J~e falsi�es κi and satis�es κj for all j < iK

∏
j ∈[n]

b (ej ,x j )
+/
-

=

m∑
i=1

∑
~e ∈Ai

∏
j ∈[n]

b (ej ,x j ) (6)

Now, note that the condition de�ning Ai automatically excludes any ~e ∈ Aj , so the Ai are disjoint

from one another. Furthermore, as φ was unsatis�able, every assignment ~e must falsify some

clause, and therefore must appear in some Ai . �us the Ai form a partition of {0, 1}n , so the sum∑m
i=1

∑
~e ∈Ai is the same as

∑
~e ∈{0,1}n , and (6) becomes syntactically identical to the right-hand side

of (4). �erefore (5) is a certi�cate, as claimed.

Indeed, as noted in [81, �eorem 1], the same proof would have worked had the Ai been any
partition of {0, 1}n such that every ~e ∈ Ai falsi�ed clause κi ; we will now use this particular partition
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to show that the certi�cate (5) is in VNP0
. We have:

m∑
i=1

ci ·
*.
,

∑
~e ∈{0,1}n

J~e falsi�es κi and satis�es κj for all j < iK
∏

j :x j<κi

b (ej ,x j )
+/
-

=

m∑
i=1

ci ·
*.
,

∑
~e ∈{0,1}n

JCi (~e ) = 1 and Cj (~e ) = 0 for all j < iK
∏

j :x j<κi

b (ej ,x j )
+/
-

=

m∑
i=1

ci ·
*.
,

∑
~e ∈{0,1}n

*.
,
Ci (~e )

∏
j<i

(1 −Cj (~e ))
+/
-

∏
j :x j<κi

b (ej ,x j )
+/
-

=
∑

e ∈{0,1}n

m∑
i=1

ciCi (~e )
*.
,

∏
j<i

(1 −Cj (~e ))
+/
-

*.
,

∏
j :x j<κi

b (ej ,x j )
+/
-

Finally, it is readily visible that the polynomial function of ~c , ~e , and ~x that is the summand of the

outermost sum

∑
~e ∈{0,1}n is computed by a polynomial-size circuit of polynomial degree, and thus

the entire certi�cate is in VNP. Indeed, the expression as wri�en exhibits it as a small formula of

constant depth with unbounded fan-in gates. By inspection, this circuit only uses the constants

0, 1,−1, hence the certi�cate is in VNP0
. �

5 PIT AS A BRIDGE BETWEEN CIRCUIT COMPLEXITY AND PROOF COMPLEXITY
In this section we state our PIT axioms and prove �eorems 1.4 and 1.6, which say that Extended

Frege (EF) (respectively, AC0
- or AC0

[p]-Frege) is polynomially equivalent to the Ideal Proof

System if there are polynomial-size circuits for PIT whose correctness—suitably formulated—can

be e�ciently proved in EF (respectively, AC0
- or AC0

[p]-Frege). More precisely, we identify a small

set of natural axioms for PIT and show that if these axioms can be proven e�ciently in EF, then EF

is p-equivalent to IPS. �eorem 1.6 begins to explain why AC0
[p]-Frege lower bounds have been so

di�cult to obtain, and highlights the importance of our PIT axioms for AC0
[p]-Frege lower bounds.

We begin by describing and discussing these axioms.

5.1 Axioms for circuits for Polynomial Identity Testing
Fix some standard Boolean encoding of constant-free algebraic circuits, so that the encoding of

any size-m constant-free algebraic circuit has size poly(m). We use “[C]” to denote the encoding of

the algebraic circuit C . Let K = (Km,n ) denote a family of Boolean circuits for solving polynomial

identity testing. �at is, Km,n is a Boolean function that takes as input the encoding of a size m
constant-free algebraic circuit, C , over variables x1, . . . ,xn , and if C has polynomial degree, then K
outputs 1 if and only if the polynomial computed by C is the 0 polynomial.

Notational convention: We underline parts of a statement that involve propositional variables.

For example, if in a propositional statement we write “[C]”, this refers to a �xed Boolean string

that is encoding the (�xed) algebraic circuit C . In contrast, if we write [C], this denotes a Boolean

string of propositional variables, which is to be interpreted as a description of an as-yet-unspeci�ed

algebraic circuit C; any se�ing of the propositional variables corresponds to a particular algebraic

circuit C . �roughout, we use ~p and ~q to denote propositional variables (which we do not bother

underlining except when needed for emphasis), and ~x , ~y,~z, . . . to denote the algebraic variables

that are the inputs to algebraic circuits. �us, C (~x ) is an algebraic circuit with inputs ~x , [C (~x )] is a

�xed Boolean string encoding some particular algebraic circuitC , [C (~x )] is a string of propositional

variables encoding an unspeci�ed algebraic circuit C , and [C (~p)] denotes a Boolean string together
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with propositional variables ~p that describes a �xed algebraic circuit C whose inputs have been set

to the propositional variables ~p.

De�nition 5.1. Our PIT axioms for a Boolean circuit K are as follows. (�is de�nition makes

sense even if K does not correctly compute PIT, but that case is not particularly interesting or

useful.)

(1) Intuitively, the �rst axiom states that ifC is a circuit computing the identically 0 polynomial,

then the polynomial evaluates to 0 on all Boolean inputs.

K ([C (~x )]) → K ([C (~p)])

Note that the only variables on the le�-hand side of the implication are Boolean propo-

sitional variables, ~q, that encode an algebraic circuit of size m over n algebraic variables

~x (these la�er are not propositional variables of the above formula). �e variables on the

right-hand side are ~q plus Boolean variables ~p, where some of the variables in ~q—those

encoding the xi—have been replaced by constants or ~p in such a way that [C (~p)] encodes a

circuit that plugs in the {0, 1}-valued pi for its algebraic inputs xi . In other words, when

we say [C (~p)] we mean the encoding of the circuit C where Boolean constants are plugged

in for the original algebraic ~x variables, as speci�ed by the variables ~p.

(2) Intuitively, the second axiom states that if C is a circuit computing the zero polynomial,

then the circuit 1 −C does not compute the zero polynomial.

K ([C (~x )]) → ¬K ([1 −C (~x )])

Here, if ~q are the propositional variables describing C , these are the only variables that

appear in the above statement. We abuse syntax slightly in writing [1 −C]: it is meant to

denote a Boolean formula φ (~q) such that if ~q = [C] describes a circuitC , then φ (~q) describes

the circuit 1 −C (with one subtraction gate more than C).

(3) Intuitively, the third axiom states that PIT circuits respect certain substitutions. More

speci�cally, if the polynomial computed by circuit G is 0, then G can be substituted for the

constant 0.

K ([G (~x )]) ∧ K ([C (~x , 0)]) → K ([C (~x ,G (~x ))])

Here the notations [C (~x , 0)] and [C (~x ,G (~x ))] are similar abuses of notation to above; we use

these and similar shorthands without further mention. (In particular, just as all instances

of [C] across the statement are encoded using the same variables, so are all instances of

[G]: In “K ([C (~x ,G (~x ))])”, where the circuit G (~x ) is being plugged into an input for C , the

variables used to encode G (~x ) are the same as the variables used to encode G (~x ) in the

antecedent “K ([G (~x )]).”)

(4) Intuitively, the last axiom states that PIT is closed under permutations of the (algebraic)

variables. More speci�cally if C (~x ) is identically 0, then so is C (π (~x )) for all permutations

π .

K ([C (~x )]) → K ([C (π (~x ))])

5.2 Extended Frege is p-equivalent to IPS if PIT is EF-provably easy
Theorem 1.4. If there is a family K of polynomial-size Boolean circuits computing PIT, such that

the PIT axioms for K have polynomial-size EF proofs, then EF is polynomially equivalent to IPS.

Note that the issue is not the existence of small circuits for PIT since we would be happy with

nonuniform polynomial-size PIT circuits, which do exist. Unfortunately the known constructions

are highly nonuniform—they involve picking random points—and we do not see how to prove
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axiom 1 for these constructions. Nonetheless, it seems very plausible to us that there exists a

polynomial-size family of PIT circuits where the above axioms are e�ciently provable in EF,

especially in light of Remark 1.5.

To prove the theorem, we will �rst show that EF is p-equivalent to IPS if a family of propositional

formulas expressing soundness of IPS are e�ciently EF provable. �en we will show that e�cient

EF proofs of SoundnessIPS follows from e�cient EF proofs for our PIT axioms.

Remark 5.2. It is standard for two proof systems P1 and P2 that if P2 can prove the soundness

of P1, then P2 can p-simulate P1. What’s more interesting here is that we show (Lemma 5.4) that

a natural set of axioms for PIT (De�nition 5.1) imply SoundnessIPS. �is allows us to draw on

intuitions (and, hopefully, results) about PIT to get a be�er sense of the plausibility of e�cient EF

proofs of SoundnessIPS. �e power of this connection to PIT has already led to new results building

on ours: Li, Tzameret, and Wang [65] showed that noncommutative formula IPS is qp-equivalent

to Frege by showing that a noncommutative formula PIT algorithm [84] could be proved correct in

Frege (see Section 8 for details).

Soundness of IPS. It is well-known that for standard Cook–Reckhow proof systems, a proof system

P can p-simulate another proof system P ′ if and only if P can prove soundness of P ′. Our proof

system is not standard because verifying a proof requires probabilistic, rather than deterministic,

polynomial-time. Still we will show how to formalize soundness of IPS propositionally, and we

will show that if EF can e�ciently prove soundness of IPS then EF is p-equivalent to IPS.

Let φ = κ1 ∧ . . . ∧ κm be an unsatis�able propositional 3CNF formula over variables p1, . . . ,pn ,

and let Q
φ
1
, . . . ,Q

φ
m be the corresponding polynomial equations (each of degree at most 3) such

that κi (α ) = 1 if and only if Q
φ
i (α ) = 0 for α ∈ {0, 1}n . An IPS-refutation of φ is an algebraic

circuit, C , which demonstrates that 1 is in the ideal generated by the polynomial equations ~Qφ
.

(�is demonstrates that the polynomial equations ~Qφ = 0 are unsolvable, which is equivalent

to proving that φ is unsatis�able.) In particular, recall that C has two types of inputs: x1, . . . ,xn
(corresponding to the propositional variables p1, . . . ,pn ) and the placeholder variables y1, . . . ,ym
(corresponding to the equations Q

φ
1
, . . . ,Q

φ
m ), and satis�es the following two properties:

(1) C (~x ,~0) = 0. �is property essentially states that the polynomial computed by C (~x , ~Q (~x )) is

in the ideal generated by Q
φ
1
, . . . ,Q

φ
m .

(2) C (~x , ~Qφ (~x )) = 1. �is property states that the polynomial computed by C , when we

substitute the Q
φ
i ’s for the yi ’s, is the identically 1 polynomial.

Encoding IPS Proofs. Let K be a family of polynomial-size circuits for PIT. Using Km,n , we can

create a polynomial-size Boolean circuit, Proo fIPS ([C], [φ]) that is true if and only if C is an IPS-

proof of the unsatis�ability of ~Qφ = 0. �e polynomial-sized Boolean circuit Proo fIPS ([C], [φ]) �rst

takes the encoding of the algebraic circuit C (which has x-variables and placeholder variables),

and creates the encoding of a new algebraic circuit, [C ′], where C ′ is like C but with each yi
variable replaced by 0. Secondly, it takes the encoding of C and [φ] and creates the encoding

of a new circuit C ′′, where C ′′ is like C but now with each yi variable replaced by Q
φ
i . (Note

that whereas C has n +m underlying algebraic variables, both C ′ and C ′′ have only n underlying

variables.) Proo fIPS ([C], [φ]) is true if and only if K ([C ′])—that is, C ′(~x ) = C (~x ,~0) computes the 0

polynomial—and K ([1 −C ′′]) = 0—that is, C ′′(~x ) = C (~x , ~Qφ (~x )) computes the 1 polynomial.

De�nition 5.3. Let formulaTruthbool (~p, ~q) state that the truth assignment ~q satis�es the Boolean

formula coded by ~p. �e soundness of IPS says that if φ has a refutation in IPS, then φ is un-

satis�able. �at is, SoundnessIPS,m,n ([C], [φ], ~p) has variables that encode a size m IPS-proof C ,
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variables that encode a 3CNF formula φ over n variables, and n additional Boolean variables, ~p.

SoundnessIPS,m,n ([C], [φ], ~p) states:

Proo fIPS ([C], [φ]) → ¬Truthbool ([φ], ~p).

Lemma 5.4. If EF can e�ciently prove SoundnessIPS for some polynomial-size Boolean circuit family
K computing PIT, then EF is p-equivalent to IPS.

Proof. Because IPS can p-simulate EF, it su�ces to show that if EF can prove Soundness of IPS,

then EF can p-simulate IPS. Assume that we have a polynomial-size EF proof of SoundnessIPS. Now

suppose thatC is an IPS-refutation of an unsatis�able 3CNF formula φ on variables ~p. We will show

that EF can also prove ¬φ with a proof of size polynomial in |C |.
First, we claim that it follows from a natural encoding (see Section 5.4) that EF can e�ciently

prove:

φ → Truthbool ([φ], ~p).

(Variables of this statement just the p variables, because φ is a �xed 3CNF formula, so the encoding

[φ] is a variable-free Boolean string.)

Second, if C is an IPS-refutation of φ, then EF can prove Proo fIPS ([C], [φ]).5 �is holds because

both C and φ are �xed, so this formula is variable-free. �us, EF can just verify that it is true.

�ird, by soundness of IPS, which we are assuming is EF-provable, and the fact that EF can prove

Proo fIPS ([C], [φ]) (step 2), it follows by modus ponens that EF can prove ¬Truthbool ([φ], ~p). (�e

statement SoundnessIPS ([C], [φ], ~p) for this instance will only involve variables ~p: the other two

sets of inputs to the SoundnessIPS statement, [C] and [φ], are constants here since both C and φ are

�xed.)

Finally, by modus ponens and the contrapositive of φ → Truthbool ([φ], ~p), we conclude in EF

¬φ, as desired. �

�eorem 1.4 follows from Lemma 5.4 and the following lemma.

Lemma 5.5. If EF can e�ciently prove the PIT axioms for some polynomial-size Boolean circuit
family K computing PIT, then EF can e�ciently prove SoundnessIPS (for that same K).

Proof. Starting with Truthbool ([φ], ~p), K ([C (~x ,~0)]), K ([1 −C (~x , ~Q (~x ))]), we will derive a con-

tradiction.

(1) First show for every i ∈ [m], Truthbool ([φ], ~p) → K ([Q
φ
i (~p)]), where Q

φ
i is the low degree

polynomial corresponding to the clause, κi , of φ. Note that, as φ is not a �xed formula but

is determined by the propositional variables encoding [φ], the encoding [Q
φ
i ] depends on a

subset of these variables.

Truthbool ([φ], ~p) states that each clauseκi inφ evaluates to true under ~p. It is a tautology

that if κi evaluates to true under ~p, then Q
φ
i evaluates to 0 at ~p. Since K correctly computes

PIT,

Truthbool ([κi ], ~p) → K ([Q
φ
i (~p)]) (*)

is a tautology. Furthermore, although both the encoding [κi ] and [Q
φ
i ] depend on the

propositional variables encoding [φ], since we assume that φ is a 3CNF, these only depend

on constantly many of the variables encoding [φ]. �us the tautology (*) can be proven in

5
�e fact that ProofIPS ([C], [φ]) is even true, given that C is an IPS-refutation of φ , follows from the completeness of the

circuit K computing PIT—that is, if C ≡ 0, then K ([C]) accepts. �is is one of only two places in the proof of �eorem 1.4

that we actually need the assumption that K correctly computes PIT, rather than merely assuming that K satis�es our PIT

axioms. However, it is clear that this usage of this assumption is crucial. �e other usage is in Step 1 of Lemma 5.5.
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EF by brute force. Pu�ing these together we can derive Truthbool ([φ], ~p) → K ([Q
φ
i (~p)]),

as desired.

(2) Using the assumption Truthbool ([φ], ~p) together with (1) we derive K ([Q
φ
i (~p)]) for all

i ∈ [m].

(3) Using Axiom 1 we can prove K ([C (~x ,~0)]) → K ([C (~p,~0)]). Using modus ponens with the

assumption K ([C (~x ,~0)]), we derive K ([C (~p,~0)]).

(4) Repeatedly using Axiom 3 and Axiom 4 we can prove

K ([Q
φ
1
(~p)]),K ([Q

φ
2
(~p)]), . . . ,K ([Q

φ
m (~p)]),K ([C (~p,~0)]) → K ([C (~p, ~Q (~p))]).

(5) Applying modus ponens repeatedly with (4), (2) and (3) we can prove K ([C (~p, ~Q (~p))]).

(6) Applying Axiom 2 to (5) we get ¬K ([1 −C (~p, ~Q (~p))]).

(7) Using Axiom 1 we can prove K ([1 −C (~x , ~Q (~x ))]) → K ([1 −C (~p, ~Q (~p))]). Using our as-

sumption K ([1 −C (~x , ~Q (~x ))]) and modus ponens, we conclude K ([1 −C (~p, ~Q (~p))]).

Finally, (6) and (7) give a contradiction. �

5.3 AC0
[p]-Frege lower bounds, PIT, and circuit lower bounds

Theorem 1.6. Let C be any class of circuits closed under AC0 circuit reductions. If there is a family
K of polynomial-size Boolean circuits for PIT such that the PIT axioms for K have polynomial-size C-
Frege proofs, then C-Frege is polynomially equivalent to IPS, and consequently polynomially equivalent
to Extended Frege.

Note that here we do not need to restrict the circuit K to be in the class C. �is requires one

more technical device compared to the proofs in the previous section. �e proof of �eorem 1.6

follows the proof of �eorem 1.4 very closely. �e main new ingredient is a folklore technical

device that allows even very weak systems such as AC0
-Frege to make statements about arbitrary

circuits K—such as those needed to reason about the PIT axioms—together with a careful analysis

of what was needed in the proof of �eorem 1.4. Before proving �eorem 1.6, we discuss some of

its more interesting consequences.

As AC0
-Frege is known unconditionally to be strictly weaker than Extended Frege [3], we

immediately get that AC0
-Frege cannot e�ciently prove the PIT axioms for any Boolean circuit

family K correctly computing PIT.

Using essentially the same proof as �eorem 1.6, we also get the following result. By “depth-d
PIT axioms” we mean a variant where the algebraic circuits C (encoded as [C] in the statement

of the axioms) have depth at most d . Note that, even over �nite �elds, super-polynomial lower

bounds on depth-d algebraic circuits are notoriously open problems even for d as small as 4 or 5.
6

Corollary 1.7. For any d , if there is a family of tautologies with no polynomial-size AC0
[p]-Frege

proof, and AC0
[p]-Frege has polynomial-size proofs of the [depth-d] PIT axioms for some K , then

VNPFp does not have polynomial-size [depth-d] algebraic circuits.

�is corollary makes the following question of central importance in ge�ing lower bounds on

AC0
[p]-Frege:

6
Lower bounds of 2

Ω(
√
n logn )

on homogeneous depth four circuits are known [52, 63]—and furthermore any asymptotic

improvement to these lower bounds implies VP , VNP [99]—but for unrestricted depth four algebraic circuits nothing

be�er than Strassen’s degree bound of Ω(n logn) [97] is known. Some lower bounds are also known for depth �ve circuits,

but again, only homogeneous circuits [53, 62]. Even if we restrict a�ention to homogeneous circuits, depth six is completely

open.
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Open �estion 5.6. For some d ≥ 4, is there some K computing depth-d PIT, for which the

depth-d PIT axioms have AC0
[p]-Frege proofs of polynomial size?

�is question has the virtue that answering it either way is highly interesting:

• If AC0
[p]-Frege does not have polynomial-size proofs of the [depth-d] PIT axioms for anyK ,

then we have super-polynomial size lower bounds on AC0
[p]-Frege, answering a question

that has been open for nearly thirty years.

• Otherwise, super-polynomial size lower bounds on AC0
[p]-Frege imply that the perma-

nent does not have polynomial-size algebraic circuits [of depth d] over any �nite �eld of

characteristic p. �is would then explain why ge�ing superpolynomial lower bounds on

AC0
[p]-Frege has been so di�cult.

�is dichotomy is in some sense like a “completeness result for AC0
[p]-Frege, modulo proving

strong algebraic circuit lower bounds on VNP”: if one hopes to prove AC0
[p]-Frege lower bounds

without proving strong lower bounds on VNP, then one must prove AC0
[p]-Frege lower bounds on

the PIT axioms. For example, if you believe that proving VP , VNP [or that proving VNP does

not have bounded-depth polynomial-size circuits] is very di�cult, and that proving AC0
[p]-Frege

lower bounds is comparatively easy, then to be consistent you must also believe that proving

AC0
[p]-Frege lower bounds on the [bounded-depth] PIT axioms is easy.

Similarly, by combining �eorems 1.6 and 3.5, we get the following corollary.

Corollary 5.7. If for every constant d , there is a constant d ′ such that the depth-d PIT axioms
have polynomial-size depth-d ′ AC0

d ′[p]-Frege proofs , then AC0
[p]-Frege is polynomially equivalent to

constant-depth IPSFp .

Using the chasms at depth 3 and 4 for algebraic circuits [2, 55, 99] (see Observation 3.3 on p. 15),

we can also help explain why su�ciently strong exponential lower bounds for AC0
-Frege—that

is, lower bounds that do not depend on the depth, or do not depend so badly on the depth (the

current best bounds are of the form exp(Ω(nexp(−d+O (1) )) [15, 60, 83]), which have also been open

for nearly thirty years—have been di�cult to obtain:

Corollary 5.8. Let F be any �eld, and let c be a su�ciently large constant. If there is a family of
tautologies (φn ) such that any AC0-Frege proof of φn has size at least 2

c
√
n logn , and AC0-Frege has

polynomial-size proofs of the depth 4 PITF axioms for some K , then VP0

F , VNP0

F.
If F has characteristic zero, we may replace “depth 4” above with “depth 3.”

Proof. Suppose that AC0
-Frege can e�ciently prove the depth-4 PITF axioms for some Boolean

circuit K . Let (φn ) be a family of tautologies. If VNP0

F = VP0

F, then there is a polynomial-size IPS

proof of φn . By Observation 3.3, the same certi�cate is computed by a depth 4 F-algebraic circuit

of size 2
O (
√
n logn)

. By assumption, AC0
-Frege can e�ciently prove the depth 4 PITF axioms for K ,

and therefore AC0
-Frege p-simulates depth 4 IPS. �us there are AC0

-Frege proofs of φn of size

2
O (
√
n logn)

.

If F has characteristic zero, we may instead use the best-known chasm at depth 3, for which we

only need depth-3 PIT and depth-3 IPS, and yields the same bounds. �

As with Corollary 1.7, we conclude a similar dichotomy: either AC0
-Frege can e�ciently prove

the depth-4 PIT axioms (depth 3 in characteristic zero), or proving 2
ω (
√
n logn)

lower bounds on

AC0
-Frege implies VP0 , VNP0

.

Encoding K into weak proof systems. Extended Frege can easily reason about arbitrary circuits

K : for each gate д of K (or even each gate of each instance of K in a statement, if so desired),

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2016.



1:34 Joshua A. Grochow and Toniann Pitassi

with children д`,дr , EF can introduce a new variable kд together with the requirement that kд ↔
kд` opд kдr , where opд is the corresponding operation д = д` opд дr (e. g., ∧, ∨, etc.). But weaker

proof systems such as Frege (=NC1
-Frege), AC0

[p]-Frege, or AC0
-Frege do not have this capability.

We thus need to help them out by introducing these new variables and formulae ahead of time.

For each gate д, the statement kд ↔ kд` opд kдr only involves 3 variables, and thus can be

converted into a 3CNF of constant size. We refer to these clauses as the “K-clauses.” Note that

the K-clauses do not set the inputs of K to any particular values nor require its output to be any

particular value. We denote the variables corresponding to K ’s inputs as kin,i and the variable

corresponding to K ’s output as kout .
�e modi�ed statement Proo fIPS ([C], [φ]) now takes the following form. Recall that Proo fIPS

involves two uses of K : K ([C (~x ,~0)]) and K ([1 −C (~x , ~Qφ (~x ))]). Each of these instances of K needs

to get its own set of variables, which we denote k (1)
д for gate д in the �rst instance, and k (2)

д for

gate д in the second instance, together with their own copies of the K-clauses. For an encoding

[C] or [φ], let [C]i denote its i-th bit, which may be a constant, a propositional variable, or even a

propositional formula. �en Proo fIPS ([C], [φ]) is∧
д

(
k (1)
д ↔ k (1)

д` opд k
(1)
дr

)
∧

∧
i

(
k (1)
in,i ↔ [C (~x ,~0)]

i

)
∧

∧
д

(
k (2)
д ↔ k (2)

д` opд k
(2)
дr

)
∧

∧
i

(
k (2)
in,i ↔ [1 −C (~x , ~Qφ (~x ))]

i

)
→k (1)

out ∧ k
(2)
out

�roughout, we use the same notation Proo fIPS ([C], [φ]) as before to mean this modi�ed statement

(we will no longer be referring to the original, EF-style statement). �e modi�ed statement

SoundnessIPS ([C], [φ], ~p) will now take the form(
(dummy statements) ∧ Proo fIPS ([C], [φ])

)
→ ¬Truthbool ([φ], ~p),

using the new version of Proo fIPS. Here “dummy statements” refers to certain statements that

we will explain in Lemma 5.10. �ese dummy statements will only involve variables that do not

appear in the rest of SoundnessIPS, and therefore will be immediately seen not to a�ect its truth or

provability.

�e proofs. Lemmata 5.10 and 5.11 are the AC0
-analogs of Lemmata 5.4 and 5.5, respectively. �e

proof of Lemma 5.10 will cause no trouble, and the proof of Lemma 5.11 will need one additional

technical device (the “dummy statements” above).

Before ge�ing to their proofs, we state the main additional lemma that we use to handle the

new K variables. We say that a variable k (i )
in, j corresponding to an input gate of K is set toψ by a

propositional statement if k (i )
in, j ↔ ψ occurs in the statement.

Lemma 5.9. Let (φn ) be a sequence of tautologies on poly(n) variables, including any number of
copies of the K variables, of the form φ = ((

∧
i αi ) → ω). Let ~p denote the other (non-K) variables.

Suppose that 1) there are at mostO (logn) non-K variables in φ, 2) for each copy ofK , the corresponding
K-clauses appear amongst the αi , 3) the only K variables that appear in ω are output variables k (i )

out ,
and 4) if k (i )

out appears in ω, then all the inputs to K (i ) are set to formulas that syntactically depend on
at most ~p.

�en there is a poly(n)-size AC0-Frege proof of φ.
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Proof sketch. �e basic idea is that AC0
-Frege can brute force over all poly(n)-many assign-

ments to the O (logn) non-K variables, and for each such assignment can then just evaluate each

copy of K gate by gate to verify the tautology. Any copy K (i )
of K all of whose input variables are

unset must not a�ect the truth of φ, since none of the k (i )
variables can appear in the consequent ω

of φ. In fact, for such copies of K , the K-clauses merely appear as disjuncts of φ, since it then takes

the form φ =
∨

i (¬αi ) ∨ ω =
(∨

д ¬(k
(i )
д ↔ k (i )

д` opд k
(i )
дr )

)
∨

(∨
remaining clauses i ¬αi

)
∨ ω. �us, if

AC0
-Frege can prove that the rest of φ, namely

(∨
remaining clauses i ¬αi

)
∨ ω is a tautology, then it

can prove that φ is a tautology. �

Now we state the analogs of Lemmata 5.4 and 5.5 for C-Frege. Because of the similarity of the

proofs to the previous case, we merely indicate how their proofs di�er from the Extended Frege

case.

Lemma 5.10 (AC0
analog of Lemma 5.4). Let C be a class of circuits closed under AC0 circuit

reductions. If there is a family K of polynomial-size Boolean circuits computing PIT, such that the PIT
axioms for K have polynomial-size C-Frege proofs, then C-Frege is polynomially equivalent to IPS.

Proof. Mimic the proof of Lemma 5.4. �e third and fourth steps of that proof are just modus

ponens, so we need only check the �rst two steps.

�e �rst step is to show that C-Frege can prove φ → Truthbool ([φ], ~p). �is follows directly

from the details of the encoding of [φ] and the full de�nition of Truthbool ; see Lemma 5.12.

�e second step is to show that C-Frege can prove Proo fIPS ([C], [φ]) for a �xedC,φ. In Lemma 5.4,

this followed because this statement was variable-free. Now this statement is no longer variable-

free, since it involve two copies of K and the corresponding variables and K-clauses. However,

Proo fIPS ([C], [φ]) satis�es the requirements of Lemma 5.9, and applying that lemma we are done. �

Lemma 5.11 (AC0
analog of Lemma 5.5). Let C be a class of circuits closed under AC0 circuit

reductions. If C-Frege can e�ciently prove the PIT axioms for some polynomial-sized family of circuits
K computing PIT, then C-Frege can e�ciently prove SoundnessIPS (for that same K).

Proof. We mimic the proof of Lemma 5.5. In steps (1), (2), and (4) of that proof we used m
additional copies of K , wherem is the number of clauses in the CNF φ encoded by [φ], and thus

m ≤ poly(n). In order to talk about these copies of K in C-Frege, however, the K variables must

already be present in the statement we wish to prove in C-Frege. �e “dummy statements” in the

new version of soundness are the K-clauses—with inputs and outputs not set to anything—for

each ofm new copies of K , which we denote K (3), . . . ,K (m+2)
(recall that the �rst two copies K (1)

and K (2)
are already used in the statement of Proo fIPS). We will not actually need these clauses

anywhere in the proof, we just need their variables to be present from the beginning.

Starting with Truthbool ([φ], ~p), K (1) ([C (~x ,~0)]), K (2) ([1 −C (~x , ~Q (~x ))]) we derive a contradiction.

�e only step of the proof of Lemma 5.5 that was not either the use of an axiom or modus ponens

was step (1), so it su�ces to verify that this can be carried out in AC0
-Frege with the K-clauses.

Step (1) was to show for every i ∈ [m], Truthbool ([φ], ~p) → K ([Q
φ
i (~p)]), where Q

φ
i is the low

degree polynomial corresponding to the clause, κi , of φ. Note that, as φ is not a �xed formula but is

determined by the propositional variables encoding [φ], the encoding [Q
φ
i ] depends on a subset of

these variables.

Truthbool ([φ], ~p) states that each clause κi in φ evaluates to true under ~p. It is a tautology that if

κi evaluates to true under ~p, then Q
φ
i evaluates to 0 at ~p. Since K correctly computes PIT,

Truthbool ([κi ], ~p) → K (i+2) ([Q
φ
i (~p)]) (**)
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is a tautology. Furthermore, although both the encoding [κi ] and [Q
φ
i ] depend on the propositional

variables encoding [φ], since we assume that φ is a 3CNF, these only depend on constantly many of

the variables encoding [φ]. Writing out (**) it has the form

Truthbool →
(
(K (i+2)

-clauses ) ∧ ( se�ing inputs of K (i+2)
to [Q

φ
i (~p)]) → k (i+2)

out

)
,

which is equivalent to

Truthbool ∧ (K (i+2)
-clauses) ∧

(
se�ing inputs of K (i+2)

to [Q
φ
i (~p)]

)
→ k (i+2)

out .

�us (**) satis�es the conditions of Lemma 5.9 and has a shortAC0
-Frege proof. SinceTruthbool ([φ], ~p)

is de�ned as

∧
i Truthbool ([κi ], ~p) (see Section 5.4), we can then derive

Truthbool ([φ], ~p) → K (i+2) ([Q
φ
i (~p)]),

as desired. �

5.4 Some details of the encodings
For an ≤ m-clause, ≤ n-variable 3CNF φ = κ1 ∧ · · · ∧ κm , its encoding is a Boolean string of length

3m(dlog
2
(n)e + 1). Each literal xi or ¬xi is encoded as the binary encoding of i (dlog

2
(n)e bits) plus

a single other bit indicating whether the literal is positive (1) or negative (0). �e encoding of a

single clause is just the concatenation of the encodings of the three literals, and the encoding of φ
is the concatenation of these encodings.

We de�ne

Truthbool,n,m ([φ], ~p)
def
=

m∧
i=1

Truthbool,n ([κi ], ~p).

For a single 3-literal clause κ, we de�ne Truthbool,n ([κ], ~p) as follows. For an integer i , let [i]

denote the standard binary encoding of i − 1 (so that the numbers 1, . . . , 2k are put into bijective

correspondence with {0, 1}k ). Let [κ] = ~q1s1 ~q2s2 ~q3s3 where each si is the sign bit (positive/negative)

and each ~qi is a length-dlog
2
ne string of variables corresponding to the encoding of the index of

a variable. We write ~q = [k] as shorthand for

∧ dlog
2
n e

i=1
(qi ↔ [k]i ), where x ↔ y is shorthand for

(x ∧ y) ∨ (¬x ∧ ¬y). Finally, we de�ne:

Truthbool,n ([κ], ~p)
def
=

3∨
j=1

n∨
i=1

(~qj = [i] ∧ (pi ↔ sj )).

(Herea�er we drop the subscripts n,m; they should be clear from context.)

Lemma 5.12. For any 3CNF φ on n variables, there are poly(n)-size AC0-Frege proofs of φ (~p) →
Truthbool ([φ], ~p).

Proof. In fact, we will see that for a �xed clause κ, a�er simplifying constants—that is, φ ∧ 1

and φ ∨ 0 both simplify to φ, φ ∧ 0 simpli�es to 0, and φ ∨ 1 simpli�es to 1—that Truthbool ([κ], ~p)
in fact becomes syntactically identical to κ (~p). By the de�nition of Truthbool ([φ], ~p), we get the

same conclusion for any �xed CNF φ. Simplifying constants can easily be carried out in AC0
-Frege.

For a �xed κ, ~qj and sj become �xed to constants for j = 1, 2, 3. Denote the indices of the three

variables in κ by i1, i2, i3. �e only variables le� in the statement Truthbool ([κ], ~p) are ~p. Since the

~qj and [i] are all �xed, every term in

∨
i (~qj = [i] ∧ (pi ↔ sj )) except for the i j term simpli�es to 0,

so this entire disjunction simpli�es to (pi j ↔ sj ). Since the sj are also �xed, if sj = 1 then (pi j ↔ sj )
simpli�es to pi j , and if sj = 0 then it simpli�es to ¬pi j . With this understanding, we write ±pi j for
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the corresponding literal. �en Truthbool ([κ], ~p) simpli�es to (±pi1 ∨ ±pi2 ∨ ±pi3 ) (with signs as

described previously). �is is exactly κ (~p). �

6 ON LOWER BOUNDS FOR IPS
�eorem 1.2 shows that proving lower bounds on (even Hilbert-like) IPS, or on the number of lines

in Polynomial Calculus proofs (equivalent to Hilbert-like det-IPS), is at least as hard as proving

algebraic circuit lower bounds. In this section we begin to make the di�erence between proving

proof complexity lower bounds and proving circuit lower bounds precise.

�e key di�erence, which any technique must grapple with, is that while an algebraic circuit

complexity lower bound is a lower bound on a single function family ( fn )n=1,2,3, ... , one for each

n, an IPS lower bound is instead a lower bound on (Cn )n=1,2,3, ... , where Cn is the set of all IPS

certi�cates for the n-th system of equations Fn . Even over �nite �elds, Cn will be in�nite for each n
(when it is not empty). However, we observe that Cn is �nitely generated, and we use this to suggest

a direction for proving new proof complexity lower bounds, aimed at proving the long-sought

length-of-proof lower bounds on an algebraic proof system.

6.1 The di�erence between proof complexity and circuit complexity lower bounds
�e key fact we use is embodied in Lemma 6.1, which says that the set of (Hilbert-like) certi�cates

for a given unsatis�able system of equations is, in a precise sense, “�nitely generated.” �e basic

idea is then to leverage this �nite generation to extend lower bound techniques from individual

polynomials to entire “�nitely generated” sets of polynomials.

Because Hilbert-like certi�cates are somewhat simpler to deal with, we begin with those and then

proceed to general certi�cates. But keep in mind that all our key conclusions about Hilbert-like

certi�cates will also apply to general certi�cates. For this section we will need the notion of a

module over a ring (the ring-analogue of a vector space over a �eld) and a few basic results about

such modules (see Section 2.3).

Recall that a Hilbert-like IPS-certi�cate C (~x , ~y) is one that is linear in the y-variables, that is, it

has the form

∑m
i=1

Gi (~x )yi . Each function of the form

∑
i Gi (~x )yi is completely determined by the

tuple (G1 (~x ), · · · ,Gm (~x )), and the set of all such tuples is exactly the R[~x]-module R[~x]
m

.

�e algebraic circuit size of a Hilbert-like certi�cate C =
∑

i Gi (~x )yi is equivalent (up to a small

constant factor and an additive O (n)) to the algebraic circuit size of computing the entire tuple

(G1 (~x ), . . . ,Gm (~x )). A circuit computing the tuple can easily be converted to a circuit computing

C by addingm times gates and a single plus gate. Conversely, for each i we can recover Gi (~x ) from

C (~x , ~y) by plugging in 0 for all yj with j , i and 1 for yi . So from the point of view of lower bounds

on Hilbert-like certi�cates, we may consider their representation as tuples essentially without loss

of generality. �is holds even in the se�ing of Hilbert-like depth 3 IPS-proofs.

Using the representation of Hilbert-like certi�cates as tuples, we �nd that Hilbert-like IPS-

certi�cates are in bijective correspondence with R[~x] solutions (in the new variables дi ) to the

following R[~x]-linear equation:

(
F1 (~x ) · · · Fm (~x )

) *...
,

д1

...
дm

+///
-

= 1
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Just as in linear algebra over a �eld, the set of such solutions can be described by taking one solution

and adding to it all solutions to the associated homogeneous equation:

(
F1 (~x ) · · · Fm (~x )

) *...
,

д1

...
дm

+///
-

= 0 (7)

(To see why this is so, mimic the usual linear algebra proof: given two solutions of the inhomoge-

neous equation, consider their di�erence.) Solutions to the la�er equation are commonly called

“syzygies” amongst the Fi . Syzygies and their properties are well-studied—though not always

well-understood—in commutative algebra and algebraic geometry, so lower and upper bounds on

Hilbert-like IPS-proofs may bene�t from known results in algebra and geometry.

We now come to the key lemma for Hilbert-like certi�cates.

Lemma 6.1. For a given set of unsatis�able polynomial equations F1 (~x ) = · · · = Fm (~x ) = 0 over a
Noetherian ring R (such as a �eld or Z), the set of Hilbert-like IPS-certi�cates is a coset of a �nitely
generated submodule of R[~x]

m .

Proof. �e discussion above shows that the set of Hilbert-like certi�cates is a coset of a R[~x]-

submodule of R[~x]
m

, namely the solutions to (7). As R is a Noetherian ring, so is R[~x] (by Hilbert’s

Basis �eorem). �us R[~x]
m

is a Noetherian R[~x]-module, and hence every submodule of it is

�nitely generated. �

Lemma 6.1 seems so conceptually important that it is worth re-stating:

�e set of all Hilbert-like IPS-certi�cates for a given system of equations
can be described by a single Hilbert-like IPS-certi�cate, together with a
�nite generating set for the syzygies.

Its importance may be underscored by contrasting the preceding statement with the structure (if

any?) of the set of all proofs in other proof systems, particularly non-algebraic ones.

Note that a �nite generating set for the syzygies (indeed, even a Gröbner basis) can be found

in the process of computing a Gröbner basis for the R[~x]-ideal 〈F1 (~x ), . . . , Fm (~x )〉. �is process

is to Buchberger’s Gröbner basis algorithm as the extended Euclidean algorithm is to the usual

Euclidean algorithm; an excellent exposition can be found in the book by Ene and Herzog [32] (see

also [31, Section 15.5]).

6.2 Towards lower bounds
Lemma 6.1 suggests that one might be able to prove size lower bounds on Hilbert-like-IPS along the

following lines: 1) �nd a single family of Hilbert-like IPS-certi�cates (Gn )
∞
n=1

,Gn =
∑poly(n)

i=1
yiGi (~x )

(one for each input size n), 2) use your favorite algebraic circuit lower bound technique to prove a

lower bound on the polynomial family G, 3) �nd a (hopefully nice) generating set for the syzygies,

and 4) show that when adding to G any R[~x]-linear combinations of the generators of the syzygies,

whatever useful property was used in the lower bound onG still holds. Although this indeed seems

signi�cantly more di�cult than proving a single algebraic circuit complexity lower bound, it at

least suggests a recipe for proving lower bounds on Hilbert-like IPS (and its subsystems such as

homogeneous depth 3, depth 4, multilinear, etc.), which should be contrasted with the amorphous

di�culty of transferring lower bounds for a circuit class to lower bounds on previous related proof

systems, e. g. transferring AC0
[p] lower bounds [86, 94] to AC0

[p]-Frege.

�is entire discussion also applies to general IPS-certi�cates, with the following modi�cations.

We leave a certi�cate C (~x , ~y) as is, and instead of a module of syzygies we get an ideal (still �nitely
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generated) of what we call zero-certi�cates. �e di�erence between any two IPS-certi�cates is a

zero-certi�cate; equivalently, a zero-certi�cate is a polynomial C (~x , ~y) such that C (~x ,~0) = 0 and

C (~x , ~F (~x )) = 0 as well (contrast with the de�nition of IPS certi�cate, which has C (~x , ~F (~x )) = 1).

�e set of IPS-certi�cates is then the coset intersection

〈y1, . . . ,ym〉 ∩ (1 + 〈y1 − F1 (~x ), . . . ,ym − Fm (~x )〉)

which is either empty or a coset of the ideal of zero-certi�cates: 〈y1, . . . ,ym〉∩ 〈y1−F1 (~x ), . . . ,ym −
Fm (~x )〉. �e intersection ideal 〈y1, . . . ,ym〉 ∩ 〈y1 − F1 (~x ), . . . ,ym − Fm (~x )〉 plays the role here that

the set of syzygies played for Hilbert-like IPS-certi�cates.
7

A �nite generating set for the ideal of zero-certi�cates can be computed using Gröbner bases

(see, e. g., [32, Section 3.2.1]).

Just as for Hilbert-like certi�cates, we get:

�e set of all IPS-certi�cates for a given system of equations can be de-
scribed by a single IPS-certi�cate, together with a �nite generating set
for the ideal of zero-certi�cates.

Our suggestions above for lower bounds on Hilbert-like IPS apply mutatis mutandis to general IPS-

certi�cates, suggesting a route to proving true size lower bounds on IPS using known techniques

from algebraic complexity theory.

�e discussion here raises many basic and interesting questions about the complexity of sets of

(families of) functions in an ideal or module, which we propose in Section 7.

7 SUMMARY AND OPEN QUESTIONS
We introduced the Ideal Proof System IPS (De�nition 1.1) and showed that it is a very close

algebraic analog of Extended Frege—the most powerful, natural system currently studied for

proving propositional tautologies. We showed that lower bounds on IPS imply (algebraic) circuit

lower bounds, which to our knowledge is the �rst time that lower bounds on a proof system have

been shown to imply any sort of complexity class lower bounds. Using the same techniques, we

were also able to show that lower bounds on the number of lines (rather than the usual measure

of number of monomials) in Polynomial Calculus proofs also imply strong algebraic circuit lower

bounds. Because proofs in IPS are just algebraic circuits satisfying certain polynomial identity tests,

many results from algebraic circuit complexity apply immediately to IPS. In particular, the chasms

at depth 3 and 4 in algebraic circuit complexity imply that lower bounds on even depth 3 or 4 IPS

proofs would be very interesting.

We introduced natural propositional axioms for polynomial identity testing (PIT), and showed

that these axioms play a key role in understanding the thirty-year open question of AC0
[p]-Frege

lower bounds: Either there are AC0
[p]-Frege lower bounds on the PIT axioms, or any AC0

[p]-Frege

lower bounds are as hard as showing VP , VNP over a �eld of characteristic p. We expect PIT to

be in P (given the connection to circuit lower bounds [50]); if this is the case, then IPS becomes a

deterministic Cook–Reckhow system. Furthermore, in this case there should be some proof that

PIT is in P, which we expect to be in ZFC; if the full ZFC proof translates into a ZFC propositional
proof of the PIT axioms for some speci�c Boolean circuit family K , then we would have that ZFC

(used as a propositional proof system) p-simulates IPS.

7
Note that the ideal of zero-certi�cates is not merely the set of all functions in the ideal 〈y1 − F1 (~x ), . . . , ym − Fm (~x )〉

that only involve the yi , since the ideal 〈y1, . . . , ym 〉 ⊆ R[~x, ~y] consists of all polynomials in the yi with coe�cients in

R[~x ]. Certi�cates only involving the yi do have a potentially useful geometric meaning, however, which we consider in

Appendix B.
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In appendices, we discuss a variant of the Ideal Proof System that allows divisions, and its utility

and limitations, as well as a geometric variant of the Ideal Proof System which suggests further

geometric properties that might be of interest for computational and proof complexity. And �nally,

through an analysis of the set of all IPS proofs of a given unsatis�able system of equations, we

suggest how one might transfer techniques from algebraic circuit complexity to prove lower bounds

on IPS (and thus on Extended Frege).

�e Ideal Proof System raises many new questions, not only about itself, but also about PIT, new

examples of VNP functions coming from propositional tautologies, and the complexity of ideals or

modules of polynomials.

In Proposition 3.7 we show that if a general IPS-certi�cate C has only polynomially many ~y-

monomials (with coe�cients in F[~x]), and the maximum degree of each yi is polynomially bounded,

thenC can be converted to a polynomial-size Hilbert-like certi�cate. However, without this sparsity

assumption general IPS appears to be stronger than Hilbert-like IPS.

Open �estion 7.1. What, if any, is the di�erence in size between the smallest Hilbert-like and

general IPS certi�cates for a given unsatis�able system of equations? What about for systems of

equations coming from propositional tautologies?

For general IPS, the preceding question was essentially answered [34] a�er an initial version of

our paper appeared (see Section 8 below); however, for C-IPS for various C, the question remains

interesting.

Open �estion 7.2 (Degree versus size). Is there a super-polynomial size separation—or indeed

any nontrivial size separation—between IPS certi�cates of degree ≤ dsmall (n) and IPS certi�cates

of degree ≥ dlarдe (n) for some bounds dsmall < dlarдe?

�is question is particularly interesting in the following cases: a) certi�cates for systems of

equations coming from propositional tautologies, where dsmall (n) = n and dlarдe (n) ≥ ω (n), since

we know that every such system of equations has some (not necessarily small) certi�cate of degree

≤ n, and b) certi�cates for unsatis�able systems of equations taking dsmall to be the bound given

by the best-known e�ective Nullstellensätze, which are all exponential [20, 56, 96].

Open �estion 7.3. Are there tautologies for which the certi�cate family constructed in �eo-

rem 1.2 is the one of minimum complexity (under p-projections or c-reductions
8
)?

If there is any family φ = (φn ) of tautologies for which �estion 7.3 has a positive answer and

for which the certi�cates constructed in �eorem 1.2 are VNP-complete (�estion 7.8 below), then

super-polynomial size lower bounds on IPS-proofs of φ would be equivalent to VP , VNP. �is

highlights the potential importance of understanding the structure of the set of certi�cates under

computational reducibilities.

Since the set of all [Hilbert-like] IPS-certi�cates is a coset of a �nitely generated ideal [respectively,

module], the preceding question is a special case of considering, for a given family of cosets of

ideals or modules ( f (0)n + In ) (In ⊆ R[x1, . . . ,xpoly(n)]), the relationships under various reductions

between all families of functions ( fn ) with fn ∈ f (0)n + In for each n. �is next question is of a more

general nature than the others we ask; we think it deserves further study.

8
A c-reduction is the analogue of Turing reductions for algebraic circuits [22]. Explicitly: An oracle computation of f from

д is an algebraic circuit C with “oracle gates” such that when д is plugged in for each oracle gate, the resulting circuit

computes f . We say that a family (fn ) is a c-reduction of (дn ) if there is a function t (n) = nΘ(1)
such that there is a

polynomial-size oracle reduction from fn to дt (n ) for all su�ciently large n. We de�ne c-degrees by analogy with p-degrees,

and denote them by ≡c .
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General �estion 7.4. Given a family of cosets of ideals f (0)n + In (or more generally modules)

of polynomials, with In ⊆ R[x1, . . . ,xpoly(n)], consider the function families ( fn ) ∈ ( f (0)n + In )

(meaning that fn ∈ f (0)n + In for all n) under any computational reducibility ≤ such as p-projections.

What can the ≤ structure look like? When, if ever, is there such a unique ≤-minimum (even a

single nontrivial example would be interesting, as in �estion 7.3)? Can there be in�nitely many

incomparable ≤-minima?

Say a ≤-degree d is “saturated” in ( f (0)n + In ) if every ≤-degree d′ ≥ d has some representative

in f (0) + I . Must saturated degrees always exist? We suspect yes, given that one may multiply any

element of I by arbitrarily complex polynomials. What can the set of saturated degrees look like

for a given ( f (0)n + In )? Must every ≤-degree in f (0) + I be below some saturated degree? What can

the ≤-structure of f (0) + I look like below a saturated degree?

�estion 7.4 is of interest even when f (0) = 0, that is, for ideals and modules of functions rather

than their nontrivial cosets.

Open �estion 7.5. Can we leverage the fact that the set of IPS certi�cates is not only a �nitely

generated coset intersection, but also closed under multiplication?

We note that it is not di�cult to show that a coset c + I of an ideal is closed under multiplication

if and only if c2 − c ∈ I . Equivalently, this means that c is idempotent (c2 = c) in the quotient ring

R/I . For example, if I is a prime ideal, then R/I has no zero-divisors, and thus the only choices for

c + I are I and 1 + I . We note that the ideal generated by the n2
equations XY − I = 0 in the se�ing

of the Hard Matrix Identities is prime (see Appendix A). It seems unlikely that all ideals coming

from propositional tautologies are prime, however.

Remark 7.6. An IPS certi�cate C (~x , ~y) for a system of equations F1 (~x ) = · · · = Fm (~x ) = 0 can

be viewed as an A1
-homotopy [73, 107] as follows. Let V ⊆ An × Am be the graph of the map

F : An → Am de�ned by ~x 7→ (F1 (~x ), . . . , Fm (~x )). Let t be a new variable, and consider the function

C ′(~x , ~f , t )
def
= C (~x , t~y). �en C ′ is an A1

-homotopy from a function on An × Am that vanishes on

An × {0} (namely,C (~x , 0)) to a function that is identically 1 onV (namely,C (~x , ~F (~x ))). We have not

yet found any use of this fact, but hope it might inspire some of our readers.

�e complexity of Gröbner basis computations obviously depends on the degrees and the number

of polynomials that one starts with. From this point of view, Mayr and Meyer [71] showed that

the doubly-exponential upper bound on the degree of a Gröbner basis [43] (see also [68, 91]) could

not be improved in general. However, in practice many Gröbner basis computations seem to work

much more e�ciently, and even theoretically many classes of instances—such as proving that 1 is

in a given ideal—can be shown to have only a singly-exponential degree upper bound [20, 56, 96].

�ese points of view are reconciled by the more re�ned measure of the (Castelnuovo–Mumford)

regularity of an ideal or module. For the de�nition of regularity and a discussion of its close

connection with the complexity of Gröbner basis and syzygy computations, we refer the reader to

the original papers [11–13] or the survey [10].

Given that the syzygy module or ideal of zero-certi�cates are so crucial to the complexity of

IPS-certi�cates, and the tight connection between these modules/ideals and the computation of the

Gröbner basis of the ideal one started with, we ask:

General �estion 7.7. Is there a formal connection between the proof complexity of individual

instances of TAUT (in, say, the Ideal Proof System), and the Castelnuovo–Mumford regularity of

the corresponding syzygy module or ideal of zero-certi�cates?
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�e certi�cates constructed in the proof of �eorem 1.2 provide many new examples of polyno-

mial families in VNP. �ere are many natural questions one can ask about these polynomials. For

example, the construction itself depends on the order of the clauses; does the complexity of the

resulting polynomial family depend on this order? As another example, we suspect that, for any

≡p or ≡c -degree within VNP (see Section 2.1), there is some family of tautologies for which the

above polynomials are of that degree. However, we do not yet know this for even a single degree.

Open �estion 7.8. Are there tautologies for which the certi�cates constructed in �eorem 1.2 are

VNP-complete? More generally, for any given ≡p or ≡c -degree within VNP, are there tautologies

for which this certi�cate is of that degree?

Finally, we wish to highlight an important and very basic question:

Open �estion 7.9 (Hrubeš [45]). Find a function f that vanishes on {0, 1}n such that any IPS

certi�cate showing that f ∈ 〈x2

i − xi |x ∈ [n]〉 requires super-polynomial algebraic circuit size.

If NP * coAM, then such an f must exist, but even if we assume just VP , VNP the existence of

such an f is currently unknown.

8 SUBSEQUENT DEVELOPMENTS
A�er the appearance of the preliminary version of this paper [37], there were two signi�cant

follow-up works [34, 65], whose main results we brie�y mention in the next two sections.

8.1 Noncommutative formula IPS is equivalent to Frege
Li, Tzameret, and Wang [65] considered a noncommutative version of the Ideal Proof System. �ey

consider precisely what one would imagine from the name “noncommutative formula IPS,” with

the one caveat that—because it is designed to consider systems of polynomial equations coming

from Boolean formulas—they always include the equations xix j − x jxi among the initial equations

Fi . �eir main result is:

Theorem (Li, Tzameret, and Wang [65]). Noncommutative formula IPS p-simulates Frege, and
Frege quasi-polynomially simulates noncommutative formula IPS. In particular, noncommutative
formula IPS is quasi-polynomially equivalent to Frege.

�eir proof follows the conditional proof in this paper; they get an unconditional result by giving

a quasi-polynomial-size Frege proof for (the PIT axioms for) the deterministic polynomial-time

algorithm for noncommutative formula PIT [84].

�ey go on to suggest that proving lower bounds on noncommutative formula IPS is potentially

a more promising avenue for ge�ing Frege lower bounds than by considering commutative formula

IPS (which is p-equivalent to Frege if the formula PIT axioms have short Frege proofs). �eir

reasoning is that (a) noncommutative formula IPS is unconditionally quasi-polynomially equivalent

to Frege, and (b) exponential lower bounds on computing functions by noncommutative formulas

have been known for decades [80]. Despite these facts, there are a few issues making this approach

more di�cult than it might appear in light of known noncommutative formula lower bounds [80].

In particular, although it remains the case that the set of noncommutative IPS certi�cates for a

given tautology is a coset of an ideal—using essentially the same proof as in Section 6—it is now

a coset of an ideal in a noncommutative polynomial ring. �e issue here is that the remaining

discussion in Section 6 does not go through a priori, because noncommutative polynomial rings are

not Noetherian: for example, the ideal 〈yxy,yx2y,yx3y, . . . , 〉 in two noncommuting variables is

not �nitely generated. �is raises a potentially important question about noncommutative IPS:
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Open �estion 8.1. Are the noncommutative analogs of the ideals from Section 6 �nitely gener-

ated, when the initial system of equations comes from a CNF tautology, and includes both x2

i − xi
and xix j − x jxi for all i, j?

On the other hand, Nisan’s original noncommutative circuit lower bound applied to the per-

manent and determinant regardless of the ordering of variables within a monomial [80]. �is gives

some hope that even if the answer to the preceding question is negative, one might be able to

prove lower bounds on noncommutative IPS by proving noncommutative circuit lower bounds by

considering [the noncommutative versions of] a �nite generating set of the commutative version

of the relevant coset of an ideal.

8.2 Improved simulations and lower bounds from circuit complexity
Forbes, Shpilka, Tzameret, and Wigderson [34] improved some of our foundational simulations,

and used circuit complexity lower bounds (some of which they developed in their paper) to prove

lower bounds on simple systems of equations (o�en the Boolean axioms plus a single equation) in

restricted forms of IPS.

First, they show that Hilbert-like IPS is essentially equivalent to IPS:

Theorem (Forbes, Shpilka, Tzameret, and Wigderson [34, Theorem 4.1]). Let F1, . . . , Fm ∈
F[x1, . . . ,xn] be an unsatis�able system of equations of degree at most d , over a su�ciently large �eld
F (|F| ≥ poly(d )). Let s be such that each Fi can be computed by an algebraic circuit of size s , and such
that there is an IPS certi�cate of the unsatis�ability of F1 = · · · = Fm = 0 computable by a circuit of
size s . �en a Hilbert-like IPS certi�cate for this system can be computed by a circuit of size poly(d, s ).

As with our simulation result Proposition 3.7, in their result it is also di�cult to get a good

handle on the depth, so the result seems to only hold for IPS of unrestricted depth.

In their paper [34], they prove many results; here we just highlight the main IPS lower bounds

that they get and some open questions that are underscored by their results. �ough we do not

discuss their techniques, they surely deserve further investigation.

For de�nitions of the circuit classes considered, we refer to their paper [34]. For some of their

results, they introduce a new variant of IPS, which we call “weakly Hilbert-like:” this is IPS where

the initial equations include the Boolean axioms x2

i − xi , but the certi�cate is only required to be

linear in the placeholder variables for the initial equations other than the Boolean axioms.

Theorem (Forbes, Shpilka, Tzameret, and Wigderson [34]). • (�eorem 4.6, subset-sum)
Let F be a �eld of characteristic ≥ poly(n) and β < {0, . . . ,n}. �en

∑
i ∈[n]

xiyi − β , {x
2

i −

xi }, {y
2

i − yi } is unsatis�able, and any Hilbert-like Σ
∧

Σ-IPS certi�cate requires size ≥
exp(Ω(n)).

• (�eorem 4.7, subset-sum) Let F be a �eld of characteristic ≥ poly(n) and β < {0, . . . ,
(

2n
2

)
}.

�en
∑

i<j zi, jxix j − β, {x
2

i − xi }, {z
2

i, j − zi, j } is unsatis�able and any Hilbert-like roABP-IPS
certi�cate (in any variable order) requires size exp(Ω(n)). Any weakly Hilbert-like multilinear-
formula-IPS certi�cate requires size exp(Ω(log

2 n)), and any depth (2d+1) weakly Hilbert-like
multilinear-formula-IPS certi�cate requires size exp(logn(n/ logn)1/d/d2).

• (�eorem 4.11, AND vs OR) Let F be of characteristic zero, m , n. �en x1x2 · · · xn − 1 =

x1 + · · · + xn −m = x2

i − xi = 0 (all i) is unsatis�able, and any Σ
∧

Σ-IPS certi�cate requires
size exp(Ω(n)).

• (�eorem 4.11) 1 +
∏

i, j ∈[n]
(zi, j (xi + x j − xix j ) + (1 − zi, j ) = x2

i − xi = z2

i, j − zi, j = 0 is
unsatis�able, and any roABP-IPS refutation (in any variable order) requires width exp(Ω(n)).
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As they point out in their paper, all of these lower bounds have the form of the Boolean axioms

plus a single polynomial involving all of the variables. In particular, this allowed them to use

techniques treating these formal polynomials as functions on the Boolean cube, implicitly handling

the syzygies between the Boolean axioms and the one other function. But their techniques seem

ill-suited to handle situations with more complicated syzygies. Even the following question would

be an interesting extension of their results:

Open �estion 8.2. Let β < {0, . . . , 2n}, and let F be a �eld of characteristic at least 2n + 1. Prove

lower bounds on restricted versions of IPS certi�cates for the unsatis�able system of equations

x1 + · · · + xn − x = xn+1 + · · · + x2n − x
′ = x + x ′ − β = x2

1
− x1 = · · · = x2

n − xn = 0.
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A DIVISIONS: THE RATIONAL IDEAL PROOF SYSTEM
We begin with an example where it is advantageous to include divisions in an IPS-certi�cate. Note

that this is di�erent than merely computing a polynomial IPS-certi�cate using divisions. In the

la�er case, divisions can be eliminated [98]. In the case we discuss here, the certi�cate itself is no

longer a polynomial but is a rational function.

Example A.1. �e inversion principle, one of the so-called “Hard Matrix Identities” [95], states

that

XY = I ⇒ YX = I .

�ey are called “Hard” because they were proposed as possible examples—over F2 or Z—of proposi-

tional tautologies separating Extended Frege from Frege. Indeed, it was only in the last 15 years

that they were shown to have e�cient Extended Frege proofs [95], and it was quite nontrivial to

show that they have e�cient NC2
-Frege proofs [47], despite the fact that the determinant can be

computed in NC2
. It is still open whether the Hard Matrix Identities have (NC1

)-Frege proofs, and

believed not to be the case, essentially because it is believed that DET * NC1
.

In terms of ideals, the inversion principle says that the n2
polynomials (YX − I )i, j (the entries

of the matrix YX − I ) are in the ideal generated by the n2
polynomials (XY − I )i, j . �e simplest

rational proof of the inversion principle that we are aware of is as follows:

X−1 (XY − I )X = YX − I

Note that X−1
here involves dividing by the determinant. When converted into a certi�cate, if

we write Q for a matrix of placeholder variables qi, j corresponding to the entries of the matrix

XY − I , then the n2
entries of X−1QX are the certi�cates that the entries of YX − I are in the ideal

generated by the entries of XY − I . Note that each of these certi�cates is a rational function that

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Circuit complexity, proof complexity, and PIT: The ideal proof system 1:45

has det(X ) in its denominator. Turning this into a proof that does not use divisions is one of the

main foci of the paper [47]; thus, if we had a proof system that allowed divisions in this manner, it

would potentially allow for signi�cantly simpler proofs. In this particular case, we assure ourselves

that this is a valid proof because if XY − I = 0, then X is invertible, so X−1
exists (or equivalently,

det(X ) , 0).

In order to introduce an IPS-like proof system that allows rational certi�cates, we generalize the

preceding reasoning. We must be careful what we allow ourselves to divide by. If we are allowed to

divide by arbitrary polynomials, this would yield an unsound proof system, because then from any

polynomials F1 (~x ), . . . , Fm (~x ) we could derive any other polynomial G (~x ) via the false “certi�cate”

G (x )
F1 (x )

y1.

Unfortunately, although we try to eschew as many de�nitions as possible, our de�nition of

the Rational Ideal Proof System and our results about it are made much cleaner by using some

additional standard terminology from commutative algebra, which we now review for the reader’s

convenience, such as prime ideals, irreducible components of algebraic sets, and localization of

rings.

A.1 Background from commutative algebra
�e following preliminaries from commutative algebra are only needed in this appendix. We refer

to the standard textbooks [6, 31, 69, 88] for proofs and further details.

�e radical of an ideal I ⊆ R is the ideal

√
I consisting of all r ∈ R such that rk ∈ I for some

k > 0. An ideal I is prime if whenever rs ∈ P , at least one of r or s is in P . For any ideal I , its radical

is equal to the intersection of the prime ideals containing I :
√
I =

⋂
prime P ⊇I P . We refer to prime

ideals that are minimal under inclusion, subject to containing I , as “minimal over I ;” there are only

�nitely many such prime ideals. �e radical

√
I is thus also equal to the intersections of the primes

minimal over I .
An algebraic set in Fn is any set of the form {~x ∈ Fn : F1 (~x ) = · · · = Fm (~x ) = 0}, which we

denoteV (F1, . . . , Fm ) (“V ” for “variety”). �e algebraic setV (F1, . . . , Fm ) depends only on the ideal

〈F1, . . . , Fm〉, and even its radical, in the sense that V (F1, . . . , Fm ) = V (
√
〈F1, . . . , Fm〉). Conversely,

the set of all polynomials vanishing on a given algebraic set V is a radical ideal, denoted I (V ). An

algebraic set is irreducible if it cannot be wri�en as a union of two algebraic proper subsets. V is

irreducible if and only if I (V ) is prime. �e irreducible components of an algebraic set V = V (I ) are

the maximal irreducible algebraic subsets of V , which are exactly the algebraic sets corresponding

to the prime ideals minimal over I .
If U is any subset of a ring R that is closed under multiplication—a,b ∈ U implies ab ∈ U—we

may de�ne the localization of R at U to be the ring in which we formally adjoin multiplicative

inverses to the elements of U . Equivalently, we may think of the localization of R at U as the ring

of fractions over R where the denominators are all in U . If P is a prime ideal, its complement is a

multiplicatively closed subset (this is an easy and instructive exercise in the de�nition of prime

ideal). In this case, rather than speak of the localization of R at the complement R\P , it is common

usage to refer to the localization of R at P , denoted RP . Similar statements hold for the union

of �nitely many prime ideals. We will use the fact that the localization of a Noetherian ring is

again Noetherian (however, if R is merely �nitely generated, its localizations need not be, e. g., the

localization of Z at P = 〈2〉 consists of all rationals with odd denominators; this is one of the ways

in which the condition of being Noetherian is nicer than that of merely being �nitely generated).
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A.2 The Rational Ideal Proof System
De�nition A.2 (Rational Ideal Proof System). A rational IPS certi�cate or RIPS-certi�cate that a

polynomialG (~x ) ∈ F[~x] is in the radical of the F[~x]-ideal generated by F1 (~x ), . . . , Fm (~x ) is a rational

function C (~x , ~y) such that

(0) WriteC = C ′/D withC ′,D relatively prime polynomials. �en 1/D (~x , ~F (~x )) must be in the

localization of F[~x] at the union of the prime ideals that are minimal subject to containing

the ideal 〈F1 (~x ), . . . , Fm (~x )〉 (We give a more elementary explanation of this condition

below),

(1) C (x1, . . . ,xn ,~0) = 0, and

(2) C (x1, . . . ,xn , F1 (~x ), . . . , Fm (~x )) = G (~x ).

A RIPS proof thatG (~x ) is in the radical of the ideal 〈F1 (~x ), . . . , Fm (~x )〉 is an F-algebraic circuit with

divisions on inputs x1, . . . ,xn ,y1, . . . ,ym computing some RIPS certi�cate.

Condition (0) is equivalent to: if G (~x ) is an invertible constant, then D (~x , ~y) is also an invert-

ible constant and thus C is a polynomial; otherwise, a�er substituting the Fi (~x ) for the yi , the

denominator D (~x , ~F (~x )) does not vanish identically on any of the irreducible components (over

the algebraic closure F) of the algebraic set V (F1 (~x ), . . . , Fm (~x )) ⊆ F
n

. In particular, for proofs of

unsatis�ability of systems of equations, the Rational Ideal Proof System reduces by de�nition to the

Ideal Proof System. For derivations of one polynomial from a set of polynomials, this need not be

the case, however; indeed, there are examples for which every RIPS-certi�cate has a nonconstant

denominator, that is, there is a RIPS-certi�ate but there are no IPS-certi�cates (see Example A.4).

Grigoriev and Hirsch [35, Section 2.5] introduced a related system, denoted (F-)PC
√

, for proving

that a polynomial is in the radical of an ideal. Beyond the di�erences between IPS and F-PC

(discussed just a�er De�nition 1.8), RIPS also allows potentially more general divisions than

(F-)PC
√

.

Proposition A.3. �e Rational Ideal Proof System is sound. �at is, if there is a RIPS-certi�cate that
G (~x ) is in the radical of 〈F1 (~x ), . . . , Fm (~x )〉, then G (~x ) is in fact in the radical of 〈F1 (~x ), . . . , Fm (~x )〉.

Proof. Let C (~x , ~y) = 1

D (~x,~y )C
′(~x , ~y) be a RIPS certi�cate that G is in

√
〈F1, . . . , Fm〉, where D

and C ′ are relatively prime polynomials. �en C ′(~x , ~y) is an IPS-certi�cate that G (~x )D (~x , ~F (~x )) is

in the ideal 〈F1 (~x ), . . . , Fm (~x )〉 (recall De�nition 1.8). Let DF (~x ) = D (~x , ~F (~x )).
Geometric proof: since G (~x )DF (~x ) ∈ 〈F1 (~x ), . . . , Fm (~x )〉, GDF must vanish identically on every

irreducible component of the algebraic set V (F1, . . . , Fm ). On each irreducible component Vi , since

DF (~x ) does not vanish identically onVi ,G (~x ) must vanish everywhere except for the proper subset

V (DF (~x ))∩Vi . Since DF does not vanish identically onVi , we have dimV (DF )∩Vi ≤ dimVi − 1 (in

fact this is an equality). In particular, this means that G must vanish on a dense subset of Vi . Since

G is a polynomial, by (Zariski-)continuity, G must vanish on all of Vi . Finally, since G vanishes

on every irreducible component of V (F1, . . . , Fm ), it vanishes on V (F1, . . . , Fm ) itself, and by the

Nullstellensatz, G ∈
√
〈F1, . . . , Fm〉.

Algebraic proof: for each prime ideal Pi ⊆ F[~x] that is minimal subject to containing 〈F1, . . . , Fm〉,
DF is not in Pi , by the de�nition ofRIPS-certi�cate. SinceGDF ∈ 〈F1, . . . , Fm〉 ⊆ Pi , by the de�nition

of prime ideal G must be in Pi . Hence G is in the intersection

⋂
i Pi over all minimal prime ideals

Pi ⊇ 〈F1, . . . , Fm〉. �is intersection is exactly the radical

√
〈F1, . . . , Fm〉. �

Any derivation of a polynomial G that is in the radical of an ideal I but not in I itself will require

divisions. Although it is not a priori clear that RIPS could derive even one suchG , the next example
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shows that this is the case. In other words, the next example shows that certain derivations require
rational functions.

Example A.4. Let G (x1,x2) = x1, F1 (~x ) = x2

1
, F2 (~x ) = x1x2. �en C (~x , ~y) = 1

x1−x2

(y1 − y2)

is a RIPS-certi�cate that G ∈
√
〈F1, F2〉: by plugging in one can verify that C (~x , ~F (~x )) = G (~x ).

For Condition (0), we see that V (F1, F2) is the entire x2-axis, on which x1 − x2 only vanishes

at the origin. However, there is no IPS-certi�cate that G ∈ 〈F1, F2〉, since G is not in 〈F1, F2〉:

〈F1, F2〉 = {x1 (H1 (~x )x1 + H2 (~x )x2)} where H1,H2 may be arbitrary polynomials. Since the only

constant of the form H1 (~x )x1 + H2 (~x )x2 is zero, G (x ) = x < 〈F1, F2〉.

In the following circumstances a RIPS-certi�cate can be converted into an IPS-certi�cate.

Notational convention. �roughout, we continue to use the notation that if D is a function of

the placeholder variables yi (and possibly other variables), then DF denotes D a�er substituting in

Fi (~x ) for the placeholder variable yi .

Proposition A.5. If C = C ′/D is a RIPS proof that G (~x ) ∈
√
〈F1 (~x ), . . . , Fm (~x )〉, such that DF (~x )

does not vanish anywhere on the algebraic set V (F1 (~x ), . . . , Fm (~x )), then G (~x ) is in fact in the
ideal 〈F1 (~x ), . . . , Fm (~x )〉. Furthermore, there is an IPS proof that G (~x ) ∈ 〈F1 (~x ), . . . , Fm (~x )〉 of size
poly( |C |, |E |) where E is an IPS proof of the unsolvability of DF (~x ) = F1 (~x ) = · · · = Fm (~x ) = 0.

Proof. Since DF (~x ) does not vanish anywhere on V (F1, . . . , Fm ), the system of equations

DF (~x ) = F1 (~x ) = · · · = Fm (~x ) = 0 is unsovlable.

Geometric proof idea: �e preceding means that when restricted to the algebraic setV (F1, . . . , Fm ),
DF has a multiplicative inverse ∆. Rather than dividing by D, we then multiply by ∆, which, for

points on V (F1, . . . , Fm ), amounts to the same thing.

Algebraic proof: Let E (~x , ~y,d ) be an IPS-certi�cate for the unsolvability of this system, where d is

a new placeholder variable corresponding to the polynomial DF (~x ) = D (~x , ~F (~x )). By separating out

all of the terms involvingd , we may write E (~x , ~y,d ) asd∆(~x , ~y,d )+E ′(~x , ~y). As E (~x , ~F (~x ),DF (~x )) = 1

(by the de�nition of IPS), we get:

DF (~x )∆(~x , ~F (~x ),DF (~x )) = 1 − E ′(~x , ~F (~x )).

Since E ′(~x , ~y) ∈ 〈y1, . . . ,ym〉, this tells us that ∆(~x , ~F (~x ),DF (~x )) is a multiplicative inverse of DF (~x )
modulo the ideal 〈F1, . . . , Fm〉. �e idea is then to multiply by ∆ instead of dividing by D. More

precisely, the following is an IPS-proof that G ∈ 〈F1, . . . , Fm〉:

C∆ (~x , ~y)
def
= C ′(~x , ~y)∆(~x , ~y,D (~x , ~y)) +G (~x )E ′(~x , ~y). (8)

Since C ′ and E ′ must individually be in 〈y1, . . . ,ym〉, the entirety of C∆ is as well. To see that we

get G (~x ) a�er plugging in the Fi (~x ) for the yi , we compute:

C∆ (~x , ~F (~x )) = C ′(~x , ~F (~x ))∆(~x , ~F (~x ),D (~x , ~F (~x ))) +G (~x )E ′(~x , ~F (~x ))

= C ′(~x , ~F (~x )) *
,

1 − E ′(~x , ~F (~x ))

DF (~x )
+
-
+G (~x )E ′(~x , ~F (~x ))

= G (~x )
(
1 − E ′(~x , ~F (~x ))

)
+G (~x )E ′(~x , ~F (~x ))

= G (~x ).

Finally, we give an upper bound on the size of a circuit for C∆. �e numerator and denominator

of a rational function computed by a circuit of size s can be computed individually by circuits of

size O (s ). �e basic idea, going back to Strassen [98], is to replace each wire by a pair of wires
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explicitly encoding the numerator and denominator, to replace a multiplication gate by a pair of

multiplication gates—since (A/B) × (C/D) = (A ×C )/(B × D)—and to replace an addition gate by

the appropriate gadget encoding the expression (A/B) + (C/D) = (AD + BC )/BD. In particular,

we may assume that a circuit computing C ′/D has the following form: it �rst computes C ′ and D
separately, and then has a single division gate computing C ′/D. �us from a circuit for C we can

get circuits of essentially the same size for both C ′ and D. Given a circuit for E = d ′∆ + E ′, we get

a circuit for E ′ by se�ing d ′ = 0. We can then get a circuit for d ′∆ as E − E ′. From a circuit for d ′∆
we can get a circuit for ∆ alone by �rst dividing d ′∆ by d ′, and then eliminating that division using

Strassen [98]. Combining these, we then easily construct a circuit for the IPS-certi�cate C∆ of size

poly( |C |, |E |). �

Example A.6. Returning to the inversion principle, we �nd that the certi�cate from Example A.1

only divided by det(X ), which we already remarked does not vanish anywhere that XY − I van-

ishes. By the preceding proposition, there is thus an IPS-certi�cate for the inversion principle of

polynomial size, if there is an IPS-certi�cate for the unsatis�ability of det(X ) = 0 ∧ XY − I = 0

of polynomial size. In this case we can guess the multiplicative inverse of det(X ) modulo XY − I ,
namely det(Y ), since we know that det(X ) det(Y ) = 1 if XY = I . Hence, we can try to �nd a

certi�cate for the unsatis�ability of det(X ) = 0 ∧ XY − I = 0 of the form

det(X ) det(Y ) + (something in the ideal of 〈(XY − I )i, j ∈[n]〉) = 1.

In other words, we want a refutation-style IPS-proof of the implicationXY = I ⇒ det(X ) det(Y ) = 1,

which is another one of the Hard Matrix Identities. Such a refutation is exactly what Hrubeš and

Tzameret provide [47].

In fact, for this particular example we could have anticipated that a rational certi�cate was

unnecessary, because the ideal generated by XY − I is prime and hence radical. (Indeed, the ring

F[X ,Y ]/〈XY − I 〉 is the coordinate ring of the algebraic group GLn (F), which is an irreducible

variety.)

Unfortunately, the Rational Ideal Proof System is not complete, as the next example shows.

Example A.7. Let F1 (x ) = x2
and G (x ) = x . �en G (x ) ∈

√
〈F1 (~x )〉, but any RIPS certi�cate

would show G (x )D (x ) = F1 (x )H (x ) for some D,H . Plugging in, we get xD (x ) = x2H (x ), and by

unique factorization we must have that D (x ) = xD ′(x ) for some D ′. But then D vanishes identically

on V (F1), contrary to the de�nition of RIPS-certi�cate.

To get a more complete proof system, we could generalize the de�nition of RIPS to allow dividing

by any polynomial that does not vanish to appropriate multiplicity on each irreducible component

(see, e. g., [31, Section 3.6] for the de�nition of multiplicity). For example, this would allow dividing

by x to show that x ∈
√
〈x2〉, but would disallow dividing by x2

or any higher power of x . However,

the proof of soundness of this generalized system is more involved, and the results of the next

section seem not to hold for such a proof system. As of this writing we do not know of any be�er

characterization of when RIPS certi�cates exist other than the de�nition itself.

De�nition A.8. A RIPS certi�cate is Hilbert-like if the denominator does not involve the place-

holder variables yi and the numerator is ~y-linear. In other words, a Hilbert-like RIPS certi�cate has

the form
1

D (~x )
∑

i yiGi (~x ).

Lemma A.9. If there is a RIPS certi�cate that G ∈
√
〈F1, . . . , Fm〉, then there is a Hilbert-like RIPS

certi�cate proving the same.
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Proof. LetC = C ′(~x , ~y)/D (~x , ~y) be a RIPS certi�cate. First, replace the denominator by DF (~x ) =

D (~x , ~F (~x )). Next, for each monomial appearing inC ′, replace all but one of the yi in that monomial

with the corresponding Fi (~x ), reducing the monomial to one that is ~y-linear. �

As in the case of IPS, we only know how to guarantee a size-e�cient reduction under a sparsity

condition. �e following is the RIPS-analogue of Proposition 3.7.

Corollary A.10. If C = C ′/D is a RIPS proof that G ∈
√
〈F1, . . . , Fm〉, where the numerator C ′

satis�es the same sparsity condition as in Proposition 3.7, then there is a Hilbert-like RIPS proof that
G ∈
√
〈F1, . . . , Fm〉, of size poly( |C |).

Proof. We follow the proof of Lemma A.9, making each step e�ective. As in the last paragraph

of the proof of Proposition A.5, any circuit with divisions computing a rational function C ′/D,

where C ′,D are relatively prime polynomials can be converted into a circuit without divisions

computing the pair (C ′,D). By at most doubling the size of the circuit, we can assume that the

subcircuits computingC ′ and D are disjoint. Now replace each yi input to the subcircuit computing

D with a small circuit computing Fi (~x ). Next, we apply sparse multivariate interpolation to the

numerator C ′ exactly as in Proposition 3.7. �e resulting circuit now computes a Hilbert-like RIPS

certi�cate. �

A.3 Towards lower bounds
We begin by noting that, since the numerator and denominator can be computed separately

(originally due to Strassen [98], see the proof of Proposition A.5 above for the idea), it su�ces to

prove a lower bound on, for each RIPS-certi�cate, either the denominator or the numerator.

As in the case of Hilbert-like IPS and general IPS (recall Section 6), the set of RIPS certi�cates

showing that G ∈
√
〈F1, . . . , Fm〉 is a coset of a �nitely generated ideal.

Lemma A.11. �e set of RIPS-certi�cates showing that G ∈
√
〈F1, . . . , Fm〉 is a coset of a �nitely

generated ideal in R, where R is the localization of F[~x , ~y] at
⋃

i Pi , where the union is over the prime
ideals minimal over 〈F1, . . . , Fm〉.

Similarly, the set of Hilbert-like RIPS certi�cates is a coset of a �nitely generated submodule of R′m ,
where R′ = R ∩ F[~x] is the localization of F[~x] at

⋃
i (Pi ∩ F[~x]).

Proof. �e proof is essentially the same as that of Lemma 6.1, but with one more ingredient.

Namely, we need to know that the rings R and R′ are Noetherian. �is follows from the fact that

polynomial rings over �elds are Noetherian, together with the general fact that any localization of

a Noetherian ring is again Noetherian. �

Exactly analogous to the the case of IPS certi�cates, we de�ne general and Hilbert-like RIPS

zero-certi�cates to be those for which, a�er plugging in the Fi for yi , the resulting function is

identically zero. In the case of Hilbert-like RIPS, these are again syzygies of the Fi , but now syzygies

with coe�cients in the localization R′ = F[~x]P1∪···∪Pk .

However, somewhat surprisingly, we seem to be able to go further in the case of RIPS than IPS,

as follows. In general, the ring F[~x , ~y]P1∪···∪Pk is a Noetherian semi-local ring, that is, in addition to

being Noetherian, it has �nitely many maximal ideals, namely P1, . . . , Pk . Modules over semi-local

rings, including ideals, enjoy properties not shared by ideals and modules over arbitrary rings.

In the special case when there is just a single prime ideal P1, the localization is a local ring (just

one maximal ideal). We note that this is the case in the se�ing of the Inversion Principle, as the

ideal generated by the n2
polynomials XY − I is prime. Local rings are in some ways very close

to �elds—if R is a local ring with unique maximal ideal P , then R/P is a �eld—and modules over
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local rings are much closer to vector spaces than are modules over more general rings. �is follows

from the fact that M/P is then in fact a vector space over the �eld R/P , together with Nakayama’s

Lemma (see, e. g., [31, Corollary 4.8] or [88, Section 2.8]). One nice feature is that, if M is a module

over a local ring, then every minimal generating set has the same size, which is the dimension of

M/P as an R/P-vector space. We also get that for every minimal generating set b1, . . . ,bk of M
(“b” for “basis,” even though the word basis is reserved for free modules), for eachm ∈ M , any two

representationsm =
∑k

i=1
ribi with ri ∈ R di�er by an element in PM . �is near-uniqueness could

be very helpful in proving lower bounds, as normal forms have proved useful in proving many

circuit lower bounds.

Open �estion A.12. Does every RIPS proof of the n × n Inversion Principle XY = I ⇒ YX = I
require computing a determinant? �at is, is it the case that for every RIPS certi�cate C = C ′/D,

some determinant of size nΩ(1)
reduces to one of C,C ′,D by a O (logn)-depth circuit reduction?

A positive answer to this question would imply that the Hard Matrix Identities do not have

O (logn)-depth RIPS proofs unless the determinant can be computed by a polynomial-size algebraic

formula. Since IPS (and hence RIPS) simulates Frege-style systems in a depth-preserving way

(�eorem 3.5), a positive answer would also imply that there are not (NC1
-)Frege proofs of the

Boolean Hard Matrix Identities unless the determinant has polynomial-size algebraic formulas.

Although answering this question may be di�cult, the fact that we can even state such a precise

question on this ma�er should be contrasted with the preceding state of a�airs regarding Frege

proofs of the Boolean Hard Matrix Identities (which was essentially just a strong intuition that

they should not exist unless the determinant is in NC1
).

B GEOMETRIC IPS-CERTIFICATES
B.1 Background from commutative algebra
Let R be a ring. A function (F1, . . . , Fm ) = F : Rn → Rm is called a polynomial map if each

coordinate Fi (~x ) is a polynomial. Given a polynomial map F : Rn → Rm , de�ne F∗ : R[y1, . . . ,ym]→

R[x1, . . . ,xn] to be the map of R-algebras—i. e., F∗ (1) = 1 and F∗ (r f ) = rF∗ ( f ) for all r ∈ R and

all f ∈ R[y1, . . . ,ym]—such that F∗ (yi ) = Fi (~x ). For convenience, let A = R[y1, . . . ,ym] and

B = R[x1, . . . ,xn]. �en the map F∗ : A → B makes B into an A-module by a · b
def
= F∗ (a)b. �e

following is a standard de�nition in commutative algebra and algebraic geometry:

De�nition B.1. �e map F : Rn → Rm is �nite if the corresponding map F∗ makes R[x1, . . . ,xn]

into a �nitely generated module over R[y1, . . . ,ym].

�e key fact that we will need about �nite maps is:

Proposition B.2 (See, e. g., [31, Corollary 9.3]). Suppose F : Rn → Rm is a �nite map. �en the
image of F is Zariski-closed—equivalently, an algebraic set—in Rm .

B.2 The Geometric Ideal Proof System
We may consider F1 (x1, . . . ,xn ), . . . , Fm (x1, . . . ,xn ) as a polynomial map F = (F1, . . . , Fm ) : Fn →

Fm . �en this system of polynomials has a common zero if and only if ~0 is the image of F . In

fact, we show that for any system of equations coming from a Boolean tautology, the system of

polynomials has a common zero if and only if ~0 is in the closure of the image of F (this is true

regardless of whether the equations include x2

i − xi = 0, x2

i − 1 = 0, or neither of these).

�e preceding is the geometric picture we pursue in this section; now we describe the correspond-

ing algebra. �e set of IPS certi�cates is the intersection of the ideal 〈y1, . . . ,ym〉 with the coset
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1+〈y1−F1 (~x ), . . . ,ym−Fm (~x )〉. �e map a 7→ 1−a is a bijection between this coset intersection and

the coset intersection (1 + 〈y1, . . . ,ym〉) ∩ 〈y1 − F1 (~x ), . . . ,ym − Fm (~x )〉. In particular, the system of

equations F1 = · · · = Fm = 0 is unsatis�able if and only if the la�er coset intersection is nonempty.

We show below that if the la�er coset intersection contains a polynomial involving only the

yi ’s—that is, its intersection with the subring F[~y] (rather than the much larger ideal 〈~y〉 ⊆ F[~x , ~y])

is nonempty—then ~0 is not even in the closure of the image of F . Hence we call such polynomials

“geometric certi�cates:”

De�nition B.3 (�e Geometric Ideal Proof System). A geometric IPS certi�cate that a system of

F-polynomial equations F1 (~x ) = · · · = Fm (~x ) = 0 is unsatis�able over F is a polynomial C ∈
F[y1, . . . ,ym] such that

(1) C (0, 0, . . . , 0) = 1, and

(2) C (F1 (~x ), . . . , Fm (~x )) = 0. In other words, C is a polynomial relation amongst the Fi .

A geometric IPS proof of the unsatis�ability of F1 = · · · = Fm = 0, or a geometric IPS refutation
of F1 = · · · = Fm = 0, is an F-algebraic circuit on inputs y1, . . . ,ym computing some geometric

certi�cate of unsatis�ability.

IfC is a geometric certi�cate, then 1−C is an IPS certi�cate that involves only the yi ’s, somewhat

the “opposite” of a Hilbert-like certi�cate. Hence the smallest circuit size of any geometric certi�cate

is at least the smallest circuit size of any algebraic certi�cate. We do not know, however, if these

complexity measures are polynomially related, as highlighted in the next question.

We call a system of equations “standard Boolean” if it includes x2

i = xi for all i , and “multiplicative

Boolean” if it includes x2

i = 1 for all i; by “Boolean system of equations” we mean either of these.

Open �estion B.4. For Boolean systems of equations, is Geometric IPS polynomially equivalent

to IPS? �at is, is there always a geometric certi�cate whose circuit size is at most a polynomial in

the circuit size of the smallest algebraic certi�cate?

Although the Nullstellensatz does not guarantee the existence of geometric certi�cates for

arbitrary unsatis�able systems of equations—and indeed, geometric certi�cates need not always

exist—for Boolean systems of equations geometric certi�cates always exist. In fact, this holds for

any system of equations which contains at least one polynomial containing only the variable xi ,
for each variable xi :

Proposition B.5. Let R be any ring. A Boolean system of equations over R—or more generally any
system of equations containing, for each variable xi , at least one non-constant equation involving only
xi—has a common root if and only if it does not have a geometric certi�cate.

Proof. Let F1, . . . , Fm be an unsatis�able system of equations over R satisfying the conditions

of Proposition B.5, and let F = (F1, . . . , Fm ) : Rn → Rm be the corresponding polynomial map.

First, suppose that F1 = · · · = Fm = 0 has a solution. �en ~0 ∈ Im(F ), so any C (y1, . . . ,ym ) that

vanishes everywhere on Im(F ), as required by condition (2) of De�nition B.3, must vanish at ~0. In

other words, C (0, . . . , 0) = 0, contradicting condition (1). So there are no geometric certi�cates.

Conversely, suppose C (y1, . . . ,ym ) is a geometric certi�cate. �en C vanishes at every point of

the image Im(F ) and hence at every point of its closure Im(F ), by (Zariski-)continuity. By condition

(1) of De�nition B.3, C (0, . . . , 0) = 1. Since C does not vanish at the origin, ~0 < Im(F ). But we will

now show that in fact the image of F is already closed, so Im(F ) = Im(F ), and thus ~0 is not in the

image of F .

Since F contains, for each variablexi , one equation involving onlyxi , F is �nite (see De�nition B.1).

To see this, let di be the smallest degree of any of the Fj that depend only on xi ; by assumption
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each di is �nite and at least one. �en R[x1, . . . ,xm] is generated, as a module over R[F1, . . . , Fm],

by the �nite set {xdi |1 ≤ i ≤ n, 0 ≤ d ≤ di }. By Proposition B.2, the image of F is thus closed, hence

is equal to its closure. By the preceding paragraph, this completes the proof. �

As we see, the preceding proposition followed almost immediately from standard facts in algebraic

geometry, without concern for the nature of the equations coming from a Boolean tautology.

However, we also show that even without the equations x2

i = xi (nor x2

i = 1), if φ is an unsatis�able

CNF, then the corresponding set of polynomial equations has a geometric IPS certi�cate:

Proposition B.6. Let F be either (1) any algebraically closed �eld or (2) a dense sub�eld of C (in
the Euclidean topology). For a Boolean CNF formula φ (x1, . . . ,xn ) withm clauses, let Fφ : Fn → Fm

denote the corresponding polynomial map. Note here that we did not add x2

i − xi (nor x2

i − 1, nor any
similar) to F .

A Boolean CNF formula φ is unsatis�able if and only if Fφ has a geometric IPSF certi�cate.

�e �eld of algebraic numbers, and even the �eld Q(i ) (the smallest sub�eld of C containing

both the rationals and i) are potentially interesting examples of �elds satisfying (2).

Note that in this case we cannot merely apply the idea of Proposition B.5, since the polynomial

map F corresponding to φ need not be �nite nor have closed image, as the following example

shows.

Example B.7 (Unsatis�able CNF with non-closed image). Let φ be the unsatis�able CNF ¬IND2

(for “induction”), namely φ = x ∧ (x → y) ∧ (y → z) ∧ (¬z) = x ∧ (¬x ∨y) ∧ (¬y ∨ z) ∧ (¬z). �is

translates into the polynomials

F1 = 1 − x

F2 = x (1 − y)

F3 = y (1 − z)

F4 = z

In this case, we can compute the image exactly to see that it is not closed. (We could also do this

for IND1, but in that case the image is in fact closed.) Namely, suppose (a,b, c,d ) is in the image.

�en we have a = 1 − x and d = z, and consequently

b = x (1 − y) = (1 − a) (1 − y) and c = y (1 − z) = y (1 − d ).

When a = 1, b must be 0; similarly, when d = 1, c must be 0. When both a , 1 and d , 1, we can

solve both of the equations above fory and equate the results, to get (1−d ) (1−a−b) = c (1−a). Note

that the only point in the image with a = d = 1 is the point (1, 0, 0, 1), which satis�es the preceding

equation. �us, the image isV ((1−d ) (1−a−b)−c (1−a))\[(V (a− 1)∪V (d − 1))]∪ {(1, 0, c,d ) |d ,
1} ∪ {(a,b, 0, 1) |a , 1} ∪ {(1, 0, 0, 1)}. To see that this is not a closed set, note that its intersection

with the closed set {(1, 0, c,d )} = V (a − 1,b) consists of a non-closed set: the union of the point

(1, 0, 0, 1) and the set {(1, 0, c,d ) |d , 1}, which is the complement of a line. C

(�is example can easily be modi�ed to give an example of a satis�able CNF with non-closed

image; namely, un-negate z and consider φ = x ∧ (¬x ∨ y) ∧ (¬y ∨ z) ∧ z. �e intersection of the

image of the corresponding F with the (1, 0, c,d )-plane is the union of the point (1, 0, 0, 0) and the

non-closed set {(1, 0, c,d ) |d , 0}.)

Proof of Proposition B.6. Let F : Fn → Fm be the polynomial map corresponding to φ as

above. As with Proposition B.5, the key to the proof is that ~0 is in the closure Im(F ) if and only if ~0

is in fact in the image of F . �e rest of the reasoning is the same as in Proposition B.5. Because

Journal of the ACM, Vol. 1, No. 1, Article 1. Publication date: January 2016.



Circuit complexity, proof complexity, and PIT: The ideal proof system 1:53

φ is in CNF, each polynomial Fi is a product of terms, each of which is either xi or (1 − xi ). For

such maps F , we will show that ~0 ∈ Im(F ) if and only if ~0 ∈ Im(F ). Only the “only if” direction is

nontrivial.

So suppose ~0 is in the closure of the image of F . We �rst prove case (2) (the characteristic zero

case) using very li�le beyond arguments about convergence of Cauchy sequences, then we prove

case (1), the case of an arbitrary algebraically closed �eld.

In both cases, the basic idea is that a clause gets mapped to a product like x1x2 · · · xk (1 −
xk+1) · · · (1 − x` ), and for such a polynomial to approach zero in the limit, one of its factors must

approach zero. For each such factor, rather than considering a limit, we simply set its value to

zero. (Se�ing 1 − xk to zero amounts to se�ing xk = 1.) In both cases (1) and (2), making this idea

rigorous requires some technicalities. We do (2) �rst only because the technicalities in that case

may be more familiar to more readers.

(2) (Dense sub�elds of C.) First, we note that the closure of the image of F in the Zariski topology

agrees with its closure in the standard Euclidean topology on Fn , induced by the Euclidean topology

on Cn . For F = C, see, e. g., [79, �eorem 2.33]. For other dense F ( C, suppose ~y is in the F-Zariski

closure of F (Fn ), that is, every F-polynomial that vanishes everywhere on F (Fn ) also vanishes at ~y.

By the density of F in C, every C-polynomial that vanishes on F (Fn ) also vanishes at ~y, so ~y is in

the C-Zariski closure of F (Fn ), and therefore also in the closure of F (Cn ). By the aforementioned

result for C, there is a Cauchy sequence of points ~v (1), ~v (2), . . . ∈ Cn such that each ~v (i )
is in F (Cn )

and ~y = limk→∞ ~v (k )
. As F is dense in C in the Euclidean topology, F (Fn ) is dense in F (Cn ) in the

Euclidean topology. �us there is a Cauchy sequence of points ~v ′(1), ~v ′(2), . . . ∈ F (Fn ) such that

|~v (k ) − ~v ′(k ) | ≤ 1/k for all k . Hence limk→∞ ~v ′(k ) = limk→∞ ~v (k ) = ~y.

In particular, ~0 is in the (Zariski-)closure of the image of F if and only if there is a Cauchy

sequence of points ~v (1), ~v (2), ~v (3), . . . in F (Fn ) such that limk→∞ ~v (k ) = 0. As each ~v (k )
is in the

image of F , there is some point ~ν (k ) ∈ Fn such that ~v (k ) = F (~ν (k ) ). As the ~v (k )
approach the origin,

each Fi (~ν
(k ) ) approaches 0, since it is the i-th coordinate of ~v (k )

(~v (k )
i = Fi (~ν

(k ) )).

We will show how to construct a ~µ ∈ Fn such that ~F (~µ ) = ~0. Without loss of generality, by

renumbering if necessary, suppose that F1 (~x ) is x1x2 · · · xk (1 − xk+1) (1 − xk+2) · · · (1 − x` ). As

F1 (~ν
(k ) ) approaches 0, at least one of its factors must get arbitrarily close to zero in�nitely o�en,

say x1. (�e case of 1 − xi approaching zero, for k + 1 ≤ i ≤ `, is handled similarly.) �en there

is an in�nite subsequence (~ν (ki ) )i=1,2,3, ... of (~ν (k ) )k=1,2,3, ... such that the �rst coordinates of this

subsequence form a Cauchy sequence in F whose limit is 0. Since ~F (~ν (k ) ) is a Cauchy sequence

whose limit is ~0, and ~ν (ki ) is an in�nite subsequence of ~ν (k ) , we have that ~F (~νki ) is also a Cauchy

sequence whose limit is ~0. Replace ~ν (k ) by its subsequence ~ν (ki ) and renumber.

We now have a Cauchy sequence ~F (~ν (k ) ) whose limit is zero, and such that at least one of the

factors of F1 corresponds to a coordinate of ~ν (k ) that is itself a Cauchy sequence approaching 0 or 1.

We now repeat this argument with the new sequence ~ν (k ) for F2, then for F3, and so on. �e result

is a sequence ~ν (k ) ∈ Fn such that ~F (~ν (k ) ) is a Cauchy sequence with limit ~0, and such that each

Fi has at least one of its factors corresponding to a coordinate i ∈ [n] such that ν (k )i is a Cauchy

sequence in F approaching 0 or 1. For each such coordinate, replace ν (k )i with 0 (respectively, 1)

for all k . �en each Fj (~ν
(k ) ) is identically zero as a function of k . �us, any coordinates of ~ν (k )

which were not just set are irrelevant, so we may set them to 0 or 1 arbitrarily. �e result is that

~ν (k ) = ~µ ∈ {0, 1}n is constant, and we have that ~F (~µ ) = ~0.

(1) (F any algebraically closed �eld.) Here we cannot use an argument based on the Euclidean

topology, but there is a suitable purely algebraic analogue, encapsulated in the following lemma:
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Lemma (See, e. g., [24, Lemma 20.28]). If p is a point in the Zariski closure of the image of a
polynomial map F : Fn → Fm , then there are formal Laurent series9 χ1 (ε ), . . . , χn (ε ) in a new variable
ε such that Fi (χ1 (ε ), . . . , χn (ε )) is in fact a power series—that is, involves no negative powers of ε—for
each i = 1, . . . ,m, and such that evaluating the power series (F1 (~χ (ε )), . . . , Fm (~χ (ε ))) at ε = 0 yields
the point p.

Note that the evaluation at ε = 0 must occur a�er applying Fi , since each individual χi may

involve negative powers of ε .
For a Laurent series χ , let deg χ (ε ) denote the lowest degree of ε that appears in χ with nonzero

coe�cient. Note that in a product of several Laurent series, the product of the lowest-degree terms

is the lowest-degree term of the product, as this term cannot be cancelled by any other term. So for

any Laurent series χ1, . . . , χk , we have that deg

∏
i ∈[k]

χi =
∑

i ∈[k]
deg χi . By a natural convention

that is consistent with the preceding facts, we de�ne deg 0 = ∞.

Now, assume that F1 (~x ) = x1 · · · xk (1 − xk+1) · · · (1 − x` ). �e fact that F1 (~χ (ε )) |ε=0 = 0 means

that F1 (~χ (ε )) is a power series in ε whose constant term is 0, or equivalently that deg F1 (~χ (ε )) > 0.

But this is equivalent to

k∑
i=1

deg χi +
∑̀
i=k+1

deg(1 − χi ) > 0. (9)

�us at least one of the Laurent series χ1 (ε ), χ2 (ε ), . . . , χk (ε ), 1 − χk+1 (ε ), . . . , 1 − χ` (ε ) is in fact a

power series with zero constant term, that is, has strictly positive degree. For each χi (1 ≤ i ≤ k)

with strictly positive degree, set µi = 0, and for each χj (k + 1 ≤ k ≤ `) such that 1 − χj has strictly

positive degree, set µ j = 1. If we replace those χi with µi and χj with µ j (perhaps leaving some of

the χ ’s untouched), it has the e�ect of replacing some of the summands in (9) by∞, maintaining

the truth of (9). In fact, once at least one of the χi appearing in (9) is zero (equivalently, has in�nite

degree), the rest of the summands are irrelevant to the truth of (9). (�is corresponds to the fact

that it only takes one literal to satisfy a clause in CNF.)

All that remains to check is that when we make these assignments across all the Fi we do not run

into a contradiction. For this, note that if deg χi > 0, then deg(1− χi ) = 0, since 1− χi has constant

term 1; similarly, if deg(1 − χi ) > 0, then deg χi = 0. �us, these two possibilities are mutually

exclusive, so we arrive at a consistent se�ing of the µi . As argued above, any index i for which µi
has not been set is irrelevant, so we may set them arbitrarily. Finally, we arrive at ~F (~µ ) = ~0. �

Finally, as with IPS certi�cates and Hilbert-like IPS certi�cates (see Section 6), a geometric zero-
certi�cate for a system of equations F1 (~x ), . . . , Fm (~x ) is a polynomialC (y1, . . . ,ym ) ∈ 〈y1, . . . ,ym〉—
that is, such thatC (0, . . . , 0) = 0—and such thatC (F1 (~x ), . . . , Fm (~x )) = 0 identically as a polynomial

in ~x . �e same arguments as in the case of algebraic certi�cates show that any two geometric

certi�cates di�er by a geometric zero-certi�cate, and that the geometric certi�cates are closed

under multiplication. Furthermore, the set of geometric zero-certi�cates is the intersection of the

ideal of (algebraic) zero-certi�cates 〈y1, . . . ,ym〉 ∩ 〈y1 − F1 (~x ), . . . ,ym − Fm (~x )〉 with the subring

F[~y] ⊂ F[~x , ~y]. As such, it is an ideal of F[~y] and so is �nitely generated. �us, as in the case of

IPS certi�cates, the set of all geometric certi�cates can be speci�ed by giving a single geometric

certi�cate and a �nite generating set for the ideal of geometric zero-certi�cates, suggesting an

approach to lower bounds on the Geometric Ideal Proof System.

9
A formal Laurent series is a formal sum of the form

∑∞
k=−k0

ak εk . By “formal” we mean that we are paying no a�ention

to issues of convergence (which need not even make sense over various �elds), but are just using the degree of ε as an

indexing scheme.
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We note that geometric zero-certi�cates are also called syzygies amongst the Fi—sometimes

“geometric syzygies” or “polynomial syzygies” to distinguish them from the “module-type syzygies”

or “linear syzygyies” we discussed above in relation to Hilbert-like IPS. As in all the other cases we

have discussed, a generating set of the geometric syzygies can be computed using Gröbner bases, this

time using elimination theory: compute a Gröbner basis for the ideal 〈y1 − F1 (~x ), . . . ,ym − Fm (~x )〉
using an order that eliminates the x-variables, and then take the subset of the Gröbner basis that

consists of polynomials only involving the y-variables. �e ideal of geometric syzygies is exactly

the ideal of the closure of the image of the map F , and for this reason this kind of syzygy is also

well-studied. �is suggests that geometric properties of the image of the map F (or its closure) may

be useful in understanding the complexity of individual instances of coNP-complete problems.
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[58] Jan Krajı́ček. 1994. Lower bounds to the size of constant-depth propositional proofs. J. Symbolic Logic 59, 1 (1994),

73–86. DOI:h�p://dx.doi.org/10.2307/2275250
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