
Toward a Model for Backtracking and Dynamic Programming

Michael Alekhnovich� Allan Borodin� Joshua Buresh-Oppenheim� Russell Impagliazzo���

Avner Magen� Toniann Pitassi��

Abstract

We consider a model (BT) for backtracking algorithms.
Our model generalizes both the priority model of Borodin,
Nielson and Rackoff, as well as a simple dynamic program-
ming model due to Woeginger, and hence spans a wide
spectrum of algorithms. After witnessing the strength of
the model, we then show its limitations by providing lower
bounds for algorithms in this model for several classical
problems such as interval scheduling, knapsack and satisfi-
ability.

1. Introduction

Proving unconditional lower bounds for computing ex-
plicit functions remains one of the most challenging prob-
lems in computational complexity. Since 1949, when Shan-
non showed that a random function has large circuit com-
plexity [29], little progress has been made toward proving
lower bounds for the size of unrestricted Boolean circuits
that compute explicit functions. One explanation for this
phenomenon was given by the Natural Proofs approach of
Razborov and Rudich [27] who showed that most of the
existing lower bound techniques are incapable of proving
such lower bounds. One way to investigate the complexity
of explicit functions in spite of these difficulties is to study
reductions between problems, e.g. to identify a canonical
problem (like an NP-complete problem) and show that a
given computational task is “not easier” than solving this
problem. Another approach would be to restrict the model
to avoid the inherent Natural Proof limitations, while pre-
serving a model strong enough to incorporate many “natu-
ral” algorithms.

�Institute for Advanced Study, Princeton, US. Supported by CCR grant
�CCR-0324906.

�Department of Computer Science, University of Toronto,
bor,avner,toni@cs.toronto.edu

�CSE Department, University of California San Diego, bureshop, rus-
sell@cs.ucsd.edu.

�Research partially supported by NSF Award CCR-0098197.
�Some of this research was performed at the Institute for Advanced

Study in Princeton, NJ supported by the State of New Jersey.

This second direction has recently attracted the attention
of many researchers. Khanna, Motwani, Sudan and Vazi-
rani [25] formalize various types of local search paradigms,
and in doing so, provide a more precise understanding of
local search algorithms. Woeginger [30] defines a class
of simple dynamic programming algorithms and provides
conditions for when a dynamic programming solution can
be used to derive a FPTAS for an optimization problem.
Borodin, Nielsen and Rackoff [11] introduce priority algo-
rithms as a model of greedy-like algorithms. Arora, Bol-
lobás and Lovász [8] study wide classes of LP formula-
tions, and prove integrality gaps for vertex cover within
these classes. The most popular methods for solving SAT
are DPLL algorithms—a family of backtracking algorithms
whose complexity has been characterized in terms of reso-
lution proof complexity (see for example [16, 17, 14, 21]).
Finally, Chvátal [13] proves a lower bound for Knapsack in
an algorithmic model that involves elements of branch-and-
bound and dynamic programming.

We continue in this direction by presenting a hierarchy
of models for backtracking algorithms for general search
and optimization problems. Many well-known algorithms
and algorithmic techniques can be simulated within these
models, both those that are usually considered backtrack-
ing and some that would normally be classified as greedy or
dynamic programming. We prove several upper and lower
bounds on the capabilities of algorithms in this model, in
some cases proving that the known algorithms are essen-
tially the best possible within the model.

The starting point for the BT model is the priority algo-
rithm model [11]. We assume that the input is represented
as a set of data items, where each data item is a small piece
of information about the problem; it may be a time interval
representing a job to be scheduled, a vertex with its list of
the neighbours in a graph, a propositional variable with all
clauses containing it in a CNF. Priority algorithms consider
one item at a time and maintain a single partial solution
(based on the items considered thus far) that it continues to
extend. What is the order in which items are considered? A
fixed order algorithm orders the items up front according to
some criterion (e.g., in the case of knapsack, sort the items
by their weight-to-value ratio). A more general (adaptive

1

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

order) approach would be to change the ordering accord-
ing to the items seen so far. For example, in the greedy set
cover algorithm, in every iteration we order the sets accord-
ing to the number of yet uncovered elements they contain
(the distinction between fixed and adaptive orderings has
also been recently studied in [19]). Rather than imposing
complexity constraints on the allowable orders, we simply
require them to be oblivious to the actual content of those
input items not yet considered. By introducing branching,
a backtracking algorithm (BT) can pursue a number of dif-
ferent partial solutions. Given a specific input, a BT al-
gorithm then induces a computation tree. Of course, it is
possible to solve any properly formulated search or opti-
mization problem in this manner: simply branch on every
possible decision for every input item. In other words, there
is a tradeoff between the quality of a solution and the com-
plexity of the BT-algorithm. We view the maximum width
of a BT program as the number of partial solutions that need
to be maintained in parallel in the worst case. As we will
see, this extension allows us to model the simple dynamic
programming framework of Woeginger [30]. This branch-
ing extension can be applied to either the fixed or adaptive
order (fixed BT and adaptive BT) and in either case each
branch (corresponding to a partial solution) considers the
items in the same order. For example, various DP-based op-
timal and approximate algorithms for the knapsack problem
can be seen as fixed or adaptive BT algorithms. In order to
model the power of backtracking programs (say as in DPLL
algorithms for SAT)1 we need to extend the model further.
In fully adaptive BT we allow each branch to choose its own
ordering of input items. Furthermore, we need to allow al-
gorithms to prioritize (using a depth first traversal of the
induced computation tree) the order in which the different
partial solutions are pursued. In this setting, we can con-
sider the number of nodes traversed in the computation tree
before a solution is found (which may be smaller than the
tree’s width).

Our results The problems we consider are all well-
studied; namely, interval scheduling, knapsack, and satisfi-
ability. For �-machine interval scheduling we show a tight
�����-width lower bound (for optimality) in the adap-
tive BT model, an inapproximability result in the fixed BT
model, and an approximability separation between width-
1 BT and width-2 BT in the adaptive model. For knapsack,
we show an exponential lower bound (for optimality) on the
width of adaptive BT algorithms, and for achieving an FP-
TAS in the adaptive model we show upper and lower bounds
polynomial in ���. For SAT, we show that 2-SAT is solved
by a linear-width adaptive BT, but needs exponential width
for any fixed order BT, and also that MAX2SAT cannot be

1The BT model encompasses DPLL in many situations where access to
the input is limited. If access is unlimited, then proving superpolynomial
lower bounds for DPLL amounts to proving � �� �� .

efficiently approximated by any fixed BT algorithm. We
then show that 3-SAT requires exponential width and expo-
nential depth first size in the fully adaptive BT model. This
lower bound in turn gives us an exponential bound on the
width of fully adaptive BT algorithms for knapsack by “BT
reduction” (but gives no inapproximation result).

Wherever proofs are omitted, please see the full version of
the paper: [3].

2. The Backtracking Model and its Relatives

Let � be an arbitrary data domain that contains objects
�� called data items. Let � be a set, representing the set
of allowable decisions for a data item. For example, for the
knapsack problem, a natural choice for � would be the set
of all pairs ��� �� where � is a weight and � is a profit; the
natural choice for � is ��� �� where 0 is the decision to
reject an item and 1 is the decision to accept an item.

A Backtracking search/optimization problem 	 is
specified by a pair ��� �
� � where �� is the underlying
data domain, and
� is a family of objective functions,
�

�
�

���� � � � � ��� ��� � � � � ��� �� �, where ��� ���� �� is a set of
variables that range over� , and ��� � � � � �� is a set of vari-
ables that range over �. On input � ��� � � � � �� � �,
the goal is to assign each �� a value in � so as to maximize
(or minimize)
�

�
. A search problem is a special case where

�
�

outputs either � or �.
For any domain � we write ���� for the set of all or-

derings of elements of �. We are now ready to define a
backtracking algorithm for a backtracking problem.

Definition 1. A backtracking algorithm� for problem 	 �
��� �
��� consists of the ordering functions

��� � �� ��� �� ����

and the choice functions

��� � ���� ��� �� ��� 	 �
���

where � � � � � � �� �. 2

We separate the following three classes of BT algorithms

� Fixed algorithms: ��
�

does not depend upon any of its
arguments.

� Adaptive algorithms: ��� depends on ��� ��� ���� ��

but not on ��� ���� ��.

� Fully adaptive algorithms: ��
�

depends on both
��� ��� ���� �� and ��� ���� ��.

2All of our lower bound results will apply to non-uniform BT algo-
rithms that know �, the number of input items, and hence more formally,
the ordering and choice functions should be denoted as ����

�
and ����

�
. A

discussion regarding “precomputed” information can be found in [11].

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

The idea of the above specification of � is as follows.
Initially, at the root, the set of actual data items is some
unknown set � of items from �. At each node of the tree,
a subset of actual data items, ��� � � � � �� � � has been
revealed, and decisions ��� � � � � �� have been made about
each of these items in turn. At the next step, the backtrack
algorithm (possibly) re-orders the set of all possible data
items (not just �) using ��

�
. Then as long as there are still

items from � left to be discovered, the next item (according
to this ordering) is revealed. When this new item, ���� �
� , has been revealed, a set of possibilities are explored on
this item, as specified by ��

�
. Namely, the algorithm can

try any subset of choices from � on this new data item,
including the choice to abort (�). This is described more
formally by the notion of a computation tree of program �
on input � , as defined below. We say that a rooted tree is
oriented if it has an ordering on its leaves from the left to
the right.

Definition 2. Assume that � is a BT problem and � is a
BT algorithm for � . For any instance � � ���� ���� ���,
�� � �� we define the computation tree 	���� as an
oriented rooted tree in the following recursive way.

� Each node
 of depth � in the tree is labelled by a tuple
� ��

� � ����
�
�� �

�
� � ����

�
� .

� The root node has the empty label.

� For every node
 of depth � � � with a label
� ��� ���� , let ��

��� be the data item in � �

���
� � ���� �

�
�� that goes first in the list ��

�
� ��� �����.

Assume that the output ����
���� ��

������
�� has the

form ���� ���� ����� ����� � � � �, where �� � � . If
� � � then
 has no children. Otherwise it
has � child nodes
�� ����
� that go from left to
right and have labels ����

� � ���� �
��
���� �

��
� � ���� �

��
���� �

���
� � ���� �

�
� � �

�
���� �

�
� � ���� �

�
�� ��� resp.

Each leaf node � of depth � contains a permuted se-
quence of the data items � (permuted by the ordering func-
tions ��

�
used on the path ending at �) with the correspond-

ing decisions in � (determined by the choice functions on
this path). For a search problem we say that a leaf is a solu-
tion for � � ���� ���� ��� iff �� ���

�� ���� �
�
�� �

�
�� ���� �

�
�� �

� where ��� is the decision for ��
�. For an optimization

problem every leaf determines a solution and a value for
the objective function on the instance � . (We can define the
semantics so that the value of the objective function is 0 for
a maximization problem and 	 for a minimization problem
if the solution is not feasible.)

Definition 3. We say that � is a correct algorithm for a
BT search problem � iff for any YES instance � , 	���� con-
tains at least one solution. For an optimization problem, the
value of ���� is the value of the leaf that optimally or best

approximates the value of the objective function on the in-
stance � .

� For an algorithm� we define the width of the compu-
tation ����� as the maximum of the number of nodes
over all depth levels of 	�����

� We define the depth first search size �
��
�
��� as the

number of tree nodes that lie to the left of the leftmost
solution of 	����.

Proposition 4. For any � and � ���
�
���
 ������.

Definition 5. For any � and any �, define �����, the
width of � on instances of size � as ��������� � �� � �

��. Define ���
�
��� analogously.

The size ���
�
��� corresponds to the running time of the

depth first search algorithm on 	����. We will be mainly
interested in the width of 	���� for two reasons. First, it
has a natural combinatorial meaning: the maximum number
of partial solutions that we maintain in parallel during the
execution. Second, it gives a universal upper bound on the
running time of any search style.

While the Fixed and Adaptive classes are ostensibly less
powerful than Fully Adaptive algorithms, they remain quite
powerful. For example, the width 1 algorithms in these
classes are precisely the fixed and adaptive priority algo-
rithms, respectively, that capture many well known greedy
algorithms. In addition, we will see that they can simulate
large classes of dynamic programming algorithms; for ex-
ample, Fixed BT algorithms can simulate Woeginger’s DP-
simple algorithms ([30]).

The reader may notice some similarities between the BT
model and the online setting. Like online algorithms, the in-
put is not known to the algorithm in advance, but is viewed
as an input stream. However, there are two notable differ-
ences: first, the ordering is given here by the algorithm and
not by the adversary, and second, BT algorithms are allowed
to branch, or try more than one possibility.3

A note on computational complexity: We do not im-
pose any computational restrictions on the functions ��

�

and ��
�

, such as computability in polynomial time. This
is because all lower bounds in this model come from in-
formation theoretic constraints and hold for any (even non-
computable) ��

�
and ��

�
. However, if these functions are

polytime computable then there exists an efficient algorithm
� that solves the problem in time ���

�
��� �����. In partic-

ular, all upper bounds presented in this paper correspond to
algorithms which are efficiently computable. Another curi-
ous aspect of the model is that one has to choose the input
representation carefully in order to limit the information in

3Recently, a version of the online model in which many partial solu-
tions may be constructed was studied by Halldorsson, et al [22]. Their
online model is a special case of a fixed order BT algorithm.

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

each data item, because once a BT algorithm has seen all
of the input (or can infer it), it can immediately solve the
problem. Hence, we should emphasize that there are unrea-
sonable input models that will render the model useless; for
example if each item is a node in a graph together with a
list of its neighbours and their neighbours, then it contains
enough information that the ordering function can summon
the largest clique as its first items, making an NP-hard prob-
lem solvable by a width-1 BT algorithm. In our discussion,
we use input representations which seem to us the most nat-
ural.

2.1. BT as an Extension of Dynamic Programming
and other Algorithm Models

How does our model compare to other models? As noted
above, the width 1 BT algorithms are exactly the priority
algorithms, so many greedy algorithms fit within the frame-
work. Examples include Kruskal or Prim’s algorithms for
spanning tree, Dijkstra’s shortest path algorithm, and John-
son’s greedy 2-approximation for vertex cover.

Secondly, which is also one of the main motivations of
this work, the fixed-order model captures an important class
of dynamic programming algorithms defined by Woeginger
[30] as simple dynamic-programming or DP-simple. Many
algorithms we call “DP algorithms” follow the schema for-
malized by Woeginger: Given an ordering of the input
items, in the �-th phase the algorithm considers the �-th
input item ��, and produces a set �� of solutions to the
problem with input ���� � � � � ���. Every solution in ��
must extend a solution in ����. Knapsack (with small inte-
ger input parameters), and interval scheduling with � ma-
chines, are two well studied problems which have efficient
DP-simple algorithms.

In the simulation of these algorithms by a fixed-BT al-
gorithm, �� corresponds to the �-th level of the BT tree.
Indeed, each node in level � is a partial solution involv-
ing the first � items and, clearly, every node in level � � �
represents a partial solution that extends one from level �.
The only subtle point is that DP-simple algorithms get to
look at all of �� and decide which partial solutions to ex-
tend, whereas, when a branch of the BT tree decides how to
extend itself, it sees only its own history and does not com-
municate with the other branches. However, since all paral-
lel branches of a fixed (or adaptive) BT algorithm view the
same input, and the computational power of the function � is
unlimited, each branch can simulate all other branches. For
concreteness, we consider the simulation of the DP algo-
rithm to solve interval scheduling on one machine. Recall,
this algorithm orders intervals by their ending time (earli-
est first). It then calculates � ��� � the intervals among the
first � which give maximal profit and which schedule the
�’th interval; of course � ��� extends � ��� for some � 	 �.
We can now think of a BT algorithm which in the �-th level

has partial-solutions corresponding to � ���� � ���� � � � � � ���.
To calculate the partial solutions for the first � � � intervals
we take � �� � �� extending one of the � ����
 and also take
� ���� � ���� � � � � � ��� so as to extend the corresponding par-
tial solutions with a ’reject’ decision on the ����� interval.

Note that for most dynamic programming algorithms,
the size of the number of solutions maintained is determined
by an array where each axis has length at most �. Thus, the
size of �� typically grows as some polynomial ��. In this
case, we call � the dimension of the algorithm. Note that
we have � � ���	�
� ����, so a lower bound on width
yields a lower bound on this dimension.

While powerful, there are also some restrictions of the
model that seem to indicate that we cannot simulate all (in-
tuitively understood as) back-tracking or branch-and-bound
algorithms. That is, our decision to abort a run can de-
pend only on the partial instance, whereas many branch-
and-bound methods use a global prunning criterion such as
the value of an LP relaxation. These types of algorithms are
incomparable with our model. Since locality is the only re-
striction we put on computation, it seems difficult to come
up with a meaningful extension to the model that would in-
clude branch-and-bound and not become trivially powerful.

2.2. General Lower bound strategy

Since most of our lower bounds are for the fixed and
adaptive models, we present a general framework for
achieving these lower bounds. The fully adaptive lower
bound for SAT is more specialized.

Below is a 2-player game for proving these lower bounds
for adaptive BT. This is similar to the lower bound tech-
niques for priority algorithms from [11, 18]. The main dif-
ference is that there is a set of partial solutions rather than a
single partial solution.

The game is between the Solver and the Adversary. Ini-
tially, the Adversary presents to the algorithm some finite
set of possible input items, ��. Initially, partial instance
��� is empty, and �� is the set consisting of the null partial
solution. The game consists of a series of phases. At any
phase �, there is a set of possible data items �� , a partial
instance ��� and a set �� of partial solutions for ���. In
phase �, � � �, the Solver picks any data item � � ����,
adds � to obtain ��� � ����� � ���, and chooses a set ��
of partial solutions, each of which must extend a solution
in ����. The Adversary then removes � and some further
items to obtain ��.

This continues until �� is empty. The Solver wins if
��� is not a valid instance, or if ���� � 	��� �
 for all
� � � � �, and �� contains a valid solution, optimal so-
lution, or approximately optimal solution for �� (if we are
trying for a search algorithm, exact optimization algorithm,
or approximation algorithm, respectively). Otherwise, the
Adversary wins.

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

Any BT algorithm of width ���� gives a strategy for the
Solver in the above game. Thus, a strategy for the Adver-
sary gives a lower bound on BT algorithms.

Our Adversary strategies will usually have the follow-
ing form. The number of rounds, � will be fixed in ad-
vance. The Adversary will choose some � � � such that,
for more many partial solutions �� � ���, there is an ex-
tension of ��� to an instance � � ��� � �� so that all
valid/optimal/ approximately optimal solutions to � are ex-
tensions of ��. We’ll call such a partial solution indispens-
able, since if �� �� ��, the Adversary can set �� to �����,
ensuring victory. Since all partial solutions are indispens-
able, either the above strategy works, or the Solver keeps
many partial solutions in ��.

For the fixed BT game, the Solver must be committed,
throughout the entire game, to an order that is chosen up-
front. This sometimes (see also [10], Theorem 3) calls for
the following lower bound approach. The Adversary sup-
plies an initial input set and claims that regardless of the
ordering of elements in that set, some combinatorial proper-
ties must hold for a subset (that depends on the ordering) of
the initial set. This is analogous to the Ramsey phenomenon
in graphs; i.e. in every colouring we can say something (e.g.
the existence of a clique/anticlique of a certain size) about
one of the colour classes. Restricted to such a (now or-
dered) subset, the game proceeds with the guarantee of that
property. Such an approach is obviously not applicable to
adaptive or fully-adaptive algorithms.

3. Interval scheduling

Interval selection is the classical problem of selecting,
among a set of intervals associated with profits, a subset
of pairwise disjoint intervals so as to maximize their total
profits. This can be thought of as scheduling a set of jobs
with time-intervals on one machine. When there is more
than one machine the task is to schedule jobs to machines
so that the jobs scheduled on any particular machine are
disjoint; here too, the goal is to maximize the overall profit
of the scheduled jobs.

When all the profits are the same, a straight-forward
greedy algorithm (in the sense of [11]) solves the problem.
For arbitrary profits the problem is solvable by a simple dy-
namic programming algorithm of dimension �, and hence
runtime 	����. The way to do this is to order intervals in
increasing order of their finishing points, and then compute
an �-dimensional table � where � ���
 ��
 ��
 � � �
 ��� is the
maximum profit possible when no intervals later (in the or-
dering) than �� are scheduled to machine �; it is not hard to
see that entries in this table can be computed by a simple
function of the previous entries.

As mentioned earlier, such an algorithm gives rise to an
	����-width, fixed-order BT algorithm. A completely dif-
ferent approach that uses flows achieves a running time of

	����� � �� ����� ([7]). An obvious question, then, is
whether Dynamic Programming, which might seem like the
natural approach, is really inferior to other approaches. Per-
haps it is the case that there is a more sophisticated way to
get a Dynamic Programming algorithm that achieves a run-
ning time which is at least as good as the flow algorithm. In
this section we prove that there is no better simple Dynamic
Programming algorithm than the obvious one, and, however
elegant, the DP approach is inferior here (for � �).

It has been shown in [11] that there is no constant ap-
proximation ratio using priority algorithms. Our main re-
sult in this section is to show that any adaptive BT, even for
the special case of proportional profit interval scheduling,
requires width �����; thus in particular any simple-DP al-
gorithm requires at least � dimensions.

We first prove an inapproximability result for the more
limited variant of BT, i.e. the fixed model.

Theorem 6. A width � �
����

�

�

�
fixed-ordering BT for in-

terval scheduling with proportional profit on � machines
and � intervals cannot achieve a better approximation ratio
than 	
 Æ � �

�����������
, for any Æ �.

Proof. We begin with the special case of � � 	. The
set of possible inputs are intervals in ��
 	� of the form
����
 ��� � where �
 � are integers and � is a function of
� which will be fixed later. We start with some definitions.

A set of three intervals of the form ��
 ��
 ��
 ��
 ��
 	�, � �
� � � � 	, is called a complete triplet. An interval of the
form ��
 �� is called a zero interval, and an interval of the
form ��
 	� is called a one interval. Let � be the set of zero-
intervals whose right endpoint is at most �

� , and let � be the
set of one-intervals whose left endpoint is at least �

� . We
say that a set of complete triplets is unsettled with respect
to an ordering of all of the underlying intervals if either all
zero-intervals are before all one-intervals, or vice versa.

We notice that for any ordering of the above intervals
and for every � such that � � ��� 	�, there is a set of �
complete triplets which is unsettled. Let � be the sequence
induced by the ordering on � � �. Each of � and � has
size � � 	. If we look at the first � � 	 elements of �,
the majority of them are (wlog) from �. Select � of these
�-intervals and select � �-intervals from the last �� 	 el-
ements of � and match the two sets in any way such that if
��
 �� � and � ��
 	� are both selected, then they are matched to
each other. This matching, along with the � distinct middle
intervals (one of which may be empty) needed to connect
each pair of the matching, constitutes a set of � unsettled
complete triplets.

Now, consider a BT program of width � � ���	�� and
let � � ��
	� so as to guarantee there are �
	 unset-
tled complete triplets. Throw out all intervals not involved
in these triplets. Assume wlog that all of the zero-intervals
come before the one-intervals. Since no two intervals can be
accepted simultaneously, and since the width is �, there is

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

a zero-interval that is not accepted on any path. The adver-
sary will remove all one intervals except the one belonging
to the same triplet as the missing zero interval. With this in-
put it is easy to get a solution with profit � by simply picking
the complete triplet. But with the decisions made thus far
it is obviously impossible to get such a profit, and since the
next best solution has profit at most ����� , we can bound
the approximation ratio. This is not quite enough, however,
since here we have only ��� � �� � �, rather than �, input
items. To handle this we include in the set of input items
� � ���� � �� � �� “dummy” intervals of length Æ�� for
arbitrarily small Æ. These dummy intervals can contribute
at most Æ to the non optimal solution, which gives an inap-
proximation bound of � � Æ � ��� � ��Æ����������
for any Æ � �.

The same approach as above works for� � � machines.
That is, if � is large enough so that we have � unsettled
triplets, then � must be at least

�
�
�

�
in order to get opti-

mality. Therefore, given width �, let � be minimal such
that � �

�
�
�

�
. Then we achieve profit at most � � ���

(or � � Æ � ��� if we add � � ��� � �� dummy inter-
vals) and our approximation ratio is at most ��Æ����

� �

� � Æ � ��������� ��� � � � Æ � �������
�

� � ��.

Remark 1. Certain known algorithms (see [20, 23]), which
should intuitively be called greedy, allow semi-revocable
decisions. We can consider this additional strength in the
context of BT algorithms. This means that at any point we
can revoke previous accept decisions. We only insist that
any partial solution is feasible (eg for the Interval schedul-
ing problem, we never allow a solution with overlapping in-
tervals). This extension only applies to packing problems;
that is, where changing accept decisions to rejections does
not make a feasible solution infeasible. It is not hard to see
that the proof of Theorem 6 also applies to the case where
we allow revocable acceptances. Setting � � � and � � �
in Theorem 6 slightly improves an inapproximation bound
of [23] although the bound in [23] applies to adaptive or-
derings.

3.1. Interval Scheduling in the Adaptive Model

The following theorem shows that adaptivity still does
not allow a BT algorithm to get a substantial reduction in
width compared to the Simple DP setting. Specifically we
show that for a constant number of machines �, �����
width is required to solve the problem exactly. However, it
is quite clear that the way to achieve a lower bound must
change dramatically. We cannot hope, for example, to get a
superconstant lower bound if the adversary offers an input
which contains a set of three intervals covering ��� �	, as
is the case with the lower bound of the Theorem 6. This
intuitively leads to a setting in which the intervals are small,

so as to necessitate a large set of intervals in any optimal
solution.

Before we turn to the lower bound we remark (without
proof) that an adaptive BT algorithm of width 2 supplies
a better approximation than priority algorithms (width 1);
namely we get an approximation ratio of 1/2, which beats
the tight approximation result for priority algorithms of 1/3.

Theorem 7. The width of an optimal adaptive BT for inter-
val scheduling with proportional profits on� machines and
� intervals is

�
������

�

�
.

Proof. The set of data items are the intervals of size at most
��� in ��� �	 with endpoints of the form 	�� for any � �
���. We will associate a graph with the set of revealed
intervals, where the endpoints of the intervals are vertices
in the graph, and the intervals themselves are the edges. We
also define a point
 to be zero connected (one connected)
if
 is connected to 0 (respectively, 1) in the graph by edges
going left (right). An interval is zero (one) connected if
both its endpoints are zero (one) connected; it is generic if
neither of its endpoints are.

The adversary applies the following two rules for elimi-
nating intervals for �� � phases (until �� � intervals have
been revealed). Initially, we have a set of points� � ��� ��.
Throughout the algorithm’s progress, we will add to � the
endpoints of the revealed intervals. At each stage,

1. Cancel all unseen intervals both of whose endpoints
are in � .

2. Cancel all intervals ending (starting) in
 if
 is zero
connected (one connected) and we have already seen �
intervals ending (starting) in
.

We denote by �� the set of revealed intervals after 	
phases of the game. Clearly ���� � 	. We are interested
in � � ����, the set of � � � revealed intervals at the
end of the game. The union of all intervals in � is strictly
contained in ��� �	 as all intervals are of length at most ���.
Notice that the graph associated with � is acyclic because
each interval contributes at least one endpoint not previ-
ously seen. Further, when an interval is revealed, it is either
generic and stays that way, or it is zero (one) connected.

Let � be the set of zero connected intervals in � and let
� be the set of all one connected intervals in � and let �
be the remaining intervals in � . Note that since � does not
cover the entire interval, no point/interval can be both zero
and one connected, and thus every interval in � lies in at
most one of the sets �, �, �.

We will now define three types of indispensable partial
solutions, those that involve only generic intervals, those
that involve only zero connected intervals, and those that
involve only one connected intervals. We will argue that
there must be a large number of indispensable solutions of
at least one of the three types.

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

A set of � generic intervals � � ���� ��� � � � � ��� � �
is indispensable (with respect to �) if there is a valid set of
future inputs �� that extends � to a complete solution, but
does not extend any other �� � � to a complete solution.

Claim 8. All choices of � � ���� ��� � � � � ��� � � of
generic intervals are indispensable. Moreover, ��� � �
���	�.

We will now discuss the zero connected case. The one
connected case is analogous. A partial solution of intervals
to machines is projected to a multiset of � points by taking
the rightmost points covered by each machine. For exam-
ple, if intervals ����� ���� ���� ���� are scheduled on machine
1, and interval ��	� ����� is scheduled on machine 2, then
this solution projects to
 � ���� ���� A multiset
 of zero
connected points/intervals is indispensable if for some par-
tial solution � defined on � that projects to
, there is a
set of future inputs, ��, that extends � to an optimal solu-
tion, but does not extend any solution that does not project
to
. We think of the projection operation as defining an
equivalence relation over all partial solutions, and we will
show that each equivalence class induced by this relation is
indispensable. This implies that at least one partial solution
from each class must be maintained by the algorithm, and
thus we will show a lower bound equal to the number of
equivalence classes.

Claim 9. Every independent set
 � ���� ��� ��� ��� � �

of zero connected points/intervals is indispensable. More-
over ���� � ���	�. Similarly, every independent set � �
���� ��� � � � � ��� � � of one connected points/intervals is
indispensable, and ���� � ���	�.

We can now complete the proof of our theorem. Let
��� � �, ��� � �� and ��� � ��. We will first argue
that one of �, �� or �� is at least �	 �
���. Whenever an
interval ��� �� in � is revealed, it must be in �, � or �

unless one of the following two cases occurs: (i) � is zero
connected but � is not, or (ii) � is one connected, but � is
not. Case (i) can occur only once for each revealed mem-
ber of � (since each zero connected point can have at most
two intervals going left due to the elimination rules), and
case (ii) can occur only once for each revealed member of
�. Hence, � � ��� � ��� � 	, so one of them is at least
�	 �
���. If � � �	 �
���, then from Claim 8, we need�
�
�

�
�
�
����
�

�
active solutions after the first 	 �
 rounds.

Otherwise, if �� � �	 �
���, then since we are dealing
with acyclic graphs, we can extract an independent set from
� of size at least ����� � �	�
��
�. Thus by Claim 9,
we need to maintain all the possible projections of this set
onto the � machines. There are

�
����
�

�
of these. Again the

one connected case is analogous. Since the number of input
intervals altogether is � � ���	�, we get a lower bound
of
�
������

�

�
, expressed in terms of the input size � .

4. The Knapsack problem

The knapsack problem takes as input 	 non-negative
integer pairs denoting the weight and profit of 	 items,
����� ���� � � � � ���� ���� and another number � , and re-
turns a subset � � �	� that maximizes

�
��� �� subject to�

��� �� � � .
There are well-known simple-DP algorithms solving the

knapsack problem in time polynomial in 	 and � , or in
time polynomial in 	 and � ������� ��. In this section,
we prove that it is not possible to solve the problem with an
adaptive BT algorithm that is subexponential in 	 (and does
not depend on � or). Further, we provide an almost tight
bound for the width needed for an adaptive BT that approx-
imates the optimum to within
 � �. We present an upper
bound (due to Marchetti-Spaccamela) of �
���� based on a
modification of the algorithms of Ibarra and Kim [24] and
Lawler [26]. The lower bound of �
���

�

���� uses the expo-
nential lower bound for the exact problem. We note that
both our lower bounds in this section hold for the simple
knapsack problem, where for each item the profit is equal
to the weight.

Theorem 10. The width of an optimal adaptive BT for the
simple knapsack problem is at least

����
���

�
� �������

�
	�.

Proof. We are tempted to try to argue that having seen only
part of the input, all possible subsets of the current input
must be maintained as partial solutions or else an adversary
has the power to present a set of remaining input items that
will lead to an optimal solution with a solution the algorithm
failed to maintain. For an online algorithm, when the order
is adversarial, such a simple argument can be easily made
to work. However, the ordering (and more so the adaptive
ordering) power of the algorithm requires a more subtle ap-
proach.

Let � be some large number which will be fixed later.
(Since a simple-DP of size poly(n,N) exists, it is clear that
� must be exponential in 	.) Our initial set of items are
integers in � � �	� �	 	 ��	�. Take the first 	�� items, and
following each one, apply the following “general-position”
rule to remove certain items from future consideration: re-
move all items that are the difference of the sums of two
subsets already seen; also remove all items that complete
any subset to exactly� (ie all items with value������ ��
where ��� ��� � � � are the numbers considered so far, and �
is any subset). These rules guarantee that at any point, no
two subsets will generate the same sum, and that no subset
will sum to � . Also notice that this eliminates at most ����

numbers so we never exhaust the range from which we can
pick the next input provided that ���� �� � .

Call the set of numbers seen so far � and consider any
subset � contained in � of size 	��. Our goal is to show
that � is indispensable; that is, we want to construct a set

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

� � �� of size ��� consisting of numbers in the feasible
input with the following properties.

1. � �� does not contain two subsets that have the same
sum.

2.
�

��� �� �
�

��� �� � �

The above properties indeed imply that � is indispens-
able since obviously there is a unique solution with optimal
value � and, in order to get it, � is the subset that must
be chosen among the elements of � . We thus get a lower
bound on the width which is the number of subsets of size
��� in � ; namely

����
���

�
� �������

�
��.

How do we construct the set �? We need it to sum to
� ��

�, while preserving property 1. The elements in �
must be among the numbers in � that were not eliminated
thus far. If � is to sum to � ��

�, then the average of
the numbers in � should be � � �

� � �� ��
��. Since

� � �
� � ���������	�� � ���	, we get �

���� �
� � ����. This is good news since the average is not
close to the extreme values of � , owing to the fact that the
cardinality of � is bigger than that of �. We now need to
worry about avoiding all the points that were eliminated in
the past and the ones that must be eliminated from now on
to maintain property 1. The total number of such points,
� , is at most the number of ways of choosing two disjoint
subsets out of a set of � elements, namely � � 	�.

Let 	 �
� � �
 � � � �. We later make sure that 	 �
� . We first pick ��� � � elements in 	 that (i) avoid all
points that need to be eliminated, and (ii) sum to a number
� so that �� � ����� � ��� � � . This can be done by
iteratively picking numbers bigger/smaller than � according
to whether they average to below/above �. To complete we
need to pick two points ��
 �� � � that sum to � �

� �� �
and so that ��
 ��
 �� � �� are not the difference of sums
of two subsets of the � � � items picked so far. Assume
for simplicity that �� is an integer. Of the �� � � pairs
��� � �
 �� � ��, where � � � � � � �� � �, at least one
pair ��
 �� will have all the above conditions. All that is left
to check is that we never violated the range condition, ie
we always chose items in
�
 �� �����. We can see that the
smallest number we could possibly pick is �� � � ��� �
�� � �

���� � 	� � �. Similarly the biggest number we
might take is ��	��� � �����	���. These numbers
are in the valid range as long as �

���� � 	� � �. Since
� � 	� we get that � � �	� suffices.

A more careful analysis of the preceding proof yields the
following width-approximability tradeoff.

Theorem 11. Knapsack can be (� � �)-approximated by
a width ������ adaptive-BT. At least width ����������� is
needed for such an approximation, even for the simple
knapsack problem.

Proof. We only show the inapproximability result here. We
take the existing lower bound for the exact problem and
convert it to a width lower bound for getting a ��� approxi-
mation. Recall that the resolution parameter� in that proof
had to be �	� for getting a width lower bound of �����

�
�.

For a given width �, we might hope to lower the necessary
resolution in order to achieve an inapproximability result.
We consider a Knapsack instance with � items that require
exponential width (as is implied by Theorem 10), and set
� , the parameter for the range of the numbers to �	�. If
� is such that � � �����

�
� then this problem cannot be

solved optimally by a width-� BT algorithm. Recall, the
optimum is � , and the next best is � � �, and so the best
possible approximation we can get is

�� � ���� 	 �� ����	�� 	 �� ������ ���
�
���

Therefore�������������� width is required to get a ��� ap-
proximation. To make the lower bound work for any num-
ber of items, we simply add ��� �-items to the adversarial
input.

Remark 2. The proof of theorems 10 and 11 can be ex-
tended so as to allow revocable acceptances with slightly
worse parameters. Recall that in Theorem 10 we look at
��� elements of the range
�
 ���� and then show that all
��� subsets are indispensable. We can modify the proof
so that this range is
����
 ����� for suitable constants
�
 � � �; we look at the first ��� items and similar to
the arguments in Theorem 10, show that all subsets of size
������ are indispensable. In the semi-revocable model it is
no longer the case that this supplies a width lower bound of�

���
��	��

�
, but instead we should look for a family of feasible

sets
 such that any of the indespensible sets of size ������
is contained in some � �
 . But, and this is the crucial
point, feasible sets must be of size � ���, and so every � �

 contains at most

� ���
��	��

�
sets, and a counting argument

immediately shows that �
� � � ���
��	��

�
�
� ���
��	��

�
� �		�
.

5. Satisfiability

The search problem associated with SAT is as fol-
lows: given a boolean conjunctive-normal-form formula,
����
 � � �
 ���, output a satisfying assignment if one ex-
ists. There are several ways to represent data items for
the SAT problems, differing on the amount of information
contained in data items. The simplest weak data item con-
tains a variable name together with the names of the clauses
in which it appears, and whether the variable occurs pos-
itively or negatively in the clause. For example, the data
item � ��
 ��
��
 ��
�� � means that �� occurs positively
in clause �
 , and negatively in clause ��, and these are
the only occurrences of �� in the formula. The decision is
whether to set �� to 0 or to 1. We also define a strong model

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

in which a data item fully specifies all clauses that contain
a given variable. Thus �� �� ��� ��� ��� ���� �� �� where
the ��� ���� �� are a complete description of the the clauses
containing ��.

In general we would like to prove upper bounds for the
weak data type, and lower bounds for the strong data type.
We will show that 2SAT (for the strong data type) requires
exponential time in the fixed BT model, but has a simple lin-
ear time algorithm in the adaptive BT model (for the weak
data type). Thus, we obtain an exponential separation be-
tween the fixed and adaptive BT models. Next, we give
exponential lower bounds in the fully adaptive model for
3SAT (strong data type).

5.1. 2-Satisfiability in the Fixed Model

The optimization problem associated with SAT is called
MAXSAT and is the following: find an assignment to the
variables of a CNF that maximizes the number of satisfied
clauses.

In this section we show that the fixed BT model cannot
approximate MAX2SAT (and hence solve SAT) efficiently.

Theorem 12. For any � � �, there exists a Æ � � such that
for all sufficiently large �, any fixed BT algorithm for solv-
ing MAX2SAT on � variables requires width �Æ� to achieve
a ��

�� � � approximation. This lower bound holds for the
strong data type for SAT.

A similar idea to the 2SAT inapproximation can be used
to show that Vertex Cover (where the items are nodes with
their adjacency lists) requires exponential width to obtain
an ��

�� � � approximation, for any �.

5.2. 2-Satisfiability in the Adaptive Model

In this section, we show that allowing adaptive variable
ordering avoids the exponential blow up in the number of
possible assignments that need to be maintained. That is, we
give a linear width BT algorithm for 2SAT in the adaptive
model.

Theorem 13. There is a width-	��� adaptive BT algorithm
for 2SAT on � variables. Further, this upper bound holds
for the weak data type for SAT.

Proof. (sketch) Consider the standard digraph associated
with a 2SAT instance. Recall that the standard algorithm for
the problem goes via finding the strongly connected compo-
nents of this graph. This does not fit immediately into the
BT model, since here, whenever we observe a variable we
must extend partial solutions by determining its value. The
algorithm we present uses the simple observation that a path
in the graph, such as
� �
� �
� � � � � �
� has only
linearly many satisfying assignments; namely the variables

along the path must be set to � up to a certain point, and to
� from that point on, which means at most � � � possible
valid assignments to the literals involved.

Using an adaptive ordering we can “grow” such a path
as follows. Suppose we start with ��. The algorithm then
chooses a new variable �� that appears in a clause ��� ���
if there is one (that is, look at an edge �� � ��). Then,
it continue to look for a path �� � �� � �� and so on.
As long as this is possible we only need to maintain a linear
number of solutions. When the path is not extendable in this
fashion, few different cases are possible. We sketch two. If
we get a path �� � �� � �� � ��� we can safely set
�� to �, ’prune’ it from the path and continue. If the path
is �� � �� � �� � �� then we know that �� � ��
and we introduce a new variable ��� that must be set to this
common value, and continue with the path �� � ���.

6. 3-Satisfiability in the Fully Adaptive Model

In this section we prove the following theorem:

Theorem 14. Any fully adaptive BT algorithm for 3SAT on
� variables requires width ����� and depth-first size �����.
This lower bound holds for the strong data type for SAT.

Consider the framework we’ve been using so far to prove
lower bounds for adaptive BT algorithms. We generally
start with a rich universe of items and then the adversary
prunes this universe at each level of the algorithm’s tree. In
other words, the items that the algorithm has seen so far tell
us which of the remaining items to prune. In the fully adap-
tive model, each path in the algorithm’s tree sees the items
in a different order. One possible lower bound strategy is
to have a separate adversary for each path in the tree, but
then we could never be sure that these adversaries prune the
universe consistently: maybe one would prune an item that
has already been seen on a different path. The other imme-
diate possibility is to look at the union of all items seen on
all paths up until the current level of the tree and use those
to prune the remaining items. The trouble with this is that
after depth 	���	��, the algorithm could potentially have
seen every input item, so we cannot continue this game for
very long.

Instead of using an adversary argument, then, we fix
a distribution of inputs and argue that with non-negligible
probability the algorithm needs an exponentially large tree
to solve a random input. More specifically, we don’t look
at the algorithm as a whole, but at the individual potential
paths. If the algorithm never terminated any of its paths,
there would be �� of them. If we could show that a typi-
cal such potential path cannot afford to terminate before a
certain depth, because it might be the algorithm’s only hope
for finding a solution, then we would have a lower bound.
The keys to proving this are
(1) using instances with unique solutions, so no currently

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

viable path can count on another path to find the solution,
and
(2) bounding what a path can know about the instance at
a certain depth and arguing that, for many instances, many
paths’ partial solutions look like they can be extended to a
full solution.
The second part is accomplished by stating a nice, suc-
cinct condition that implies that a particular partial solution
“looks like” it can be extended to a total solution.

The inputs we use are (CNFs that encode) full rank lin-
ear systems �� � � over���, where � is an ��� matrix,
� is an � � � vector and � is an � � � vector of variables.
More specifically, we fix a matrix � with appropriate prop-
erties (as outlined below) and use the uniform distribution
over �’s. The full-rank property of � will guarantee that the
system has a unique solution. One of the other properties of
� will be that each row has at most 3 ones. Therefore, each
row of �� � is a contraint on � that can be represented by
4 3-clauses. Since the algorithm knows � in advance, the
strong data type for variable, say, �� boils down to revealing
those entries of � that correspond to rows of � containing
a one in column �. Note that these formulas are efficiently
solvable by Gaussian elimination, thus they separate back-
tracking and dynamic programming from more global alge-
braic methods4.

6.1. Linear systems over expanders

Below we present the machinery developed in [4] and
[2]. These concepts provide a convenient way to analyze
a linear system when the underlying matrix is a good ex-
pander; that is, when the bipartite graph encoded by the
matrix is a good expander.

Definition 15. Let � be an ��� 0/1-matrix. We denote the
�-th row of � by �� and identify it with the set �� � ��� �
��. The cardinality of this set is denoted by ����. We extend
the notation �� to �� �

�
��� �� for a set of rows � � ���.

There are two notions of expanders: expanders and
boundary expanders. The latter notion is stronger as it re-
quires the existence of unique neighbors. However, every
strong expander is also a good boundary expander.

Definition 16. For a set of rows � � ��� of an ��� matrix
�, we define its boundary 	�� (or just 	�) as the set of all
� � ��� (called boundary elements) such that there exists
exactly one row � � � that contains �. We say that � is an
�
� �� ��-boundary expander if

1. ���� � � for all � � ���, and
4We would like to note that if one adds a little bit of random noise into

the linear mapping (and the goal would be to find a solution that satisfies
almost all equations) then there is no efficient algorithm known for this
task. It was conjectured by the first author [1] that the resulting mapping
may be a pseudorandom generator against P.

2. �� � ��� ��� � �
 � �	� � 	 �
 �� ��.

Matrix � is an �
� �� ��-expander if condition 2 is replaced
by

2�. �� � ��� ��� � �
 � ��� � 	 �
 �� ��

It is easy to check that any �
� �� ��-expander is an �
� �� ���
��-boundary expander.

Definition 17 ([5]). Let � � ��� �����. For a set of
columns � � ��� define the following inference relation ��
on sets of rows of �:

� �� �� ���� �
�� � 	����� � �� � � (1)

Let the closure �	��� of � be the union of all sets which
can be inferred via �� transitively from the empty set.

Notice that �	��� is a set of rows, not necessarily
bounded by
��, whose boundary is contained in � . It’s
not hard to imagine that, in general, it could be the whole
set ���. If � is small and we are dealing with a boundary ex-
pander, however, it never gets the opportunity to grow very
much:

Lemma 18 ([5]). Let � be �
�
� ���-boundary expander.
For any set � with �� � � ���
���� ��	���� � �� ����

As we proceed down a path in the BT tree, we discover
bits of � and we set values for variables in �. We will use
this idea of closure as an indication of the extendability of
the current partial assignment to the variables. This is be-
cause, if � is the set of variables for which we have assigned
values, then the most difficult subsystem to satisfy is the set
of rows in �	���. Intuitively, think of the opposite case: if
a set of rows has an unset boundary variable for each row,
then it is certainly possible to satisfy that set of rows by set-
ting those boundary variables appropriately after setting all
the other variables involved. More formally,

Lemma 19. Let � � ��� ����� be an �
�
� ��-boundary
expander and let � � ��� ���. Let � be a partial restric-
tion on � and denote � � �	�� �
�����, where � �
����
denotes the set of variables given values by �. Assume that
there exists a solution for the system ����� � �� that ex-
tends �. Then, for any set of rows � � of size �
�� there
exists a solution of the system ������ � ��� that extends �.

In addition, we will need the fact that there are many
ways to satisfy moderate-sized subsystems of the instance:

Lemma 20 ([4]). Assume that an � � � matrix � is an
�
�
� ��-expander, � � ���� � ��� is a set of variables,
�� � � , � � ��� ���, and � � ���� � ��� is a tuple of

linear equations from the system �� � �, where � �
.
Denote by � the set of assignments to the variables in ��
that can be extended on � to satisfy �. If � is not empty
then it is an affine subspace of ��� �� �� of dimension greater

than � �� �
�
�
� �

����	
���	���

�
.

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

From now on, we fix � to be the matrix guaranteed by
the following theorem, with � equal to, say, ����. This con-
struction is an improvement upon that in [4].

Theorem 21. For any constant � � � there exist a constant
� � � and � � � and a family �� of �� � matrices s.t.

� �� has full rank.

� �� is an ���� �� ��-expander.

� Every column of �� contains at most � ones.

Let �� � �� � � and 	 � ��, so � is an �	��� ���-boundary
expander.

6.2. The lower bound

In what follows the behavior of BT algorithms will be
analyzed with pairs of restrictions �
��
��. Intuitively
�
corresponds to the current assignment on � and
� corre-
sponds to the known partial information about �. We regard
a set of assigned variables �	��
�� as a set of columns
� � ���
����� � ��� ��� and �	��
�� as a set of rows
� � ���
����� � ��� ���.

Definition 22. We call a pair of partial assignments
�
��
�� consistent w.r.t. � if
� can be extended to a
global assignment � � ��� ��� and
� can be extended to
� � ��� ��� such that �� � �.

We begin by viewing a BT algorithm for this problem
as playing a game with the object of finding a solution to
�� � � for unknown �. While there are good strategies to
win this game quickly, we show that any BT algorithm is a
very bad player.

Definition 23 (backtrack game on a linear system). A
strategy � is a function that maps a pair of partial as-
signments to a decision to reveal a bit �� or to guess bit
�� (� � 	�
). For a given strategy � and a linear system
�� � � we define a backtrack game tree ����� � �� in
the following recursive way.

� Every node of ����� � �� contains a pair of partial
assignments �
���

�
��. The assignment
�� is always

consistent with the value of �. The assignment �
���

�
��

is always consistent w.r.t. �.

� The root node contains the empty partial assignments.

� (Revealing move). If � is a node containing the pair
�
���

�
�� and ��
���

�
�� �reveal � then � has the

unique child �� with
�
�

� �
���

��

� �
�� � ��� � ���.

� (Guessing move). If � is a node containing pair
�
���

�
�� and ��
���

�
�� � guess � then denote

�����	�
� �
������ � ��,
��
���	�� �
������ � ��.

� will have 0,1 or 2 successors in accordance with the
number of consistent pairs.

Assume that � is a uniformly chosen random vector.
Then ����� � �� is a random tree the size of which we
need to estimate.

Given a backtrack algorithm 	 we construct a strategy
�� for the BT game and then proceed to prove a lower
bound on the size of ��������, which will imply a lower
bound on ����� � ��. While it is difficult to estimate ex-
actly what the algorithm knows about � at any point (mainly
because it may have inferred that some items are not part of
the input), the corresponding strategy will stay ahead of the
algorithm in terms of knowledge of � and it will be very
easy to track its knowledge of �. Nodes of 	 are trans-
lated into sequences of steps of ��; we start with the root
node of ����� � �� that is mapped to the root node of
������ � ���

Now, let � be a node in ����� � �� s.t. the ordering at
this point 	� ����
�� � � is a sequence of items ���

� � �
�
� � �����

Assume that we have defined a mapping of � into a node �
in ������ � ��� Possibly ��

� is already contradictory with
�
���

�
�� in that it contradicts
�� or it represents a variable

already set in
��; in this case we know that ��
� is not in

the input. We therefore assume wlog that ��
� is not con-

tradictory. Now, let � be the set of bits associated with the
clauses of ��

� . Notice that the bits ������� are the ones that
determine whether ��

� is one of the input items associated
with �� � �. Also, since every variable may participate in
at most � linear equations, �� �
 �. The BT game now
reveals all the currently unrevealed bits ������� . Let �� be a
new node with
�

�

� �
�� and
�
�

� extends
�� on � . At this
point we make a data-check that can have the following two
possible outcomes.

� A negative item-check ��
� contradicts
�

�

� and hence
��

� is not in the input. In this case the next data item
in the list is considered using the above set of rules.

� A positive item-check ��
� does not contradict
�

�

� ,
in which case it might be one of the input items.
The strategy will proceed regardless. Suppose ��

� �
��� � ��� ���� �	�� and denote � � � ��� �	��
�

�

� � �
����. If ��� contains yet unknown bits that are not set in

�

�

� then the corresponding revealing steps take place
so that � � is exposed in the vertex ���.

After that a guessing move takes place w.r.t. the vari-
able �� . This results in a splitting of the vertex ��� into
two vertices ����	 and �
���	 according to the value of
�� . The translation of one step of 	 in the node � is
finished and ����	, �
���	 are growing according to the
two children of � in ����� � �� except that if either
����	 or �
���	 contains an inconsistent pair �
��
��
then the corresponding branch(es) are terminated.

Think of �� as defining a subtree of ����� � �� which
keeps only those paths which are “highly extendible:” that
is, they maintain not only the invariant that
�� is consistent

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

with what the algorithm might know about �, but also that
��� is consistent with the equations in its closure.

Lemma 24. �� is a well-defined BT game strategy and
there exists an injective function� that maps guessing nodes
of ��������� to nodes of ����� � ��.

Proof. The map � is defined recursively in the natural way
w.r.t. the execution of �. Further, one can inductively show
the following semantics : at any node � the amount of in-
formation known about � is no more than ��� , where � is the
corresponding node in the game. This immediately shows
that whenever � aborts one or two possible extensions of
the node �, the corresponding node � in ��� contains an
inconsistent pair ���� 	 �

�
� �, since otherwise any consistent

extension of ��� 	 �
�
� could be the unique solution and this

will lead to a failure of � to solve the problem.

Lemma 24 says that it is enough to bound the size or
width of the tree resulting from the strategy �� in order to
get a simiar bound to the size/width of �.

Lemma 25. For the strategy ��, all leaf nodes in
������ � �� have depth at least
��.

Proof. Assume for the sake of contradiction that there ex-
ists a path of length less than
��, let � be the last node
on this path. By the definition of BT game strategy �
contains a pair of restrictions ����	 �

�
�� that are consistent

w.r.t. �. The only possibility of a path being terminated
is when a new bit �� is revealed and the new pair of re-
strictions ���	 �

�
� � ��� � ��� is inconsistent with �. Let

 � ���� �
�������� By the construction of ��, ��� gives
values to the bits �� . This implies that ��� may be extended
to satisfy ����� � �� � By Lemma 19 ��� may be extended
to satisfy ������ � ��� for � � � �
����� � � ���� We have
a contradiction.

Definition 26. Assume that � is a tree. A random path
��� � goes from the root to one of the leaves of � in the
following way. The first node of � is the root of � . At every
step the next node in the path is chosen uniformly at random
from the set of all children of the current node.

We now consider a random path in the random tree
������ � ��. Our plan is to prove that w.h.p. this path
has a lot of branching nodes (i.e. nodes that have more than
one child).

Lemma 27. With probability � � ������ (over random
choices of � and �), a random path �������� � ��� con-
tains ��
� guessing nodes with both children present.

Proof. Consider a random path � in ������ � ��. By
Lemma 25 it has at least
�� edges. We first prove that
there are ��
� guessing nodes along this path with high
probability. Assume that there are at most
��, otherwise

we’re done. Let � be the node of � at depth
��, and let
	� be the number of item-checks. Our first goal is to show
	� � ��
�. It is enough to show that on average there are at
most a constant number of revealing nodes per item-check
(since at least half the nodes are revealing nodes). There are
two types of bits that are revealed. The ones that are asso-
ciated to the � � equations associated with the data items,
and the ones that are in the closure of the current partial
assignment. Notice that all the revealed bits of the second
type are a subset of ���� �
�������, as ����� is monotone.
Notice also that �� �
�������� � 	�. These two observa-
tions, together with Lemma 18, show that for 	� � ��
��,
����� �
�������� � �� �
���������

� � 	����. Putting it all
together, there are (amortized) at most �
 ���� revealed
bits per each item-check node (unless 	� 	 ��
�� in which
case 	� � ��
� anyway), and so 	� � ��
�. Next, we
need to bound the number of guessing-nodes; those are ex-
actly the nodes associated with positve item-checks. De-
note by �	 the number of items that have been identified as
present in the formulas after � item checks. Notice that since
an item-check is positive with probability at least ���
 ,
the sequence �	 � ��
� is a submartingale. Applying
Azuma’s inequality gives that ��	 	

�
� � �

�
	� with prob-
ability �� ����	�. This implies that w.h.p. the random path
contains ��
	��� guessing points. Now we need to show
that the number of forced choices (i.e. guessing nodes with
one child) is not too big.

Denote 	� � � �
����� � and by
 the set of lin-
ear equations in the system ����� ������ � � �� ������ ��
By Lemma 20 the space of those partial assignments on
	� that are consistent with ��� has dimension ��� 	� �� �
��	 	 ��
	��� � ��
�	 this implies that there are at least
that many guessing points with both children present in
��� .

For a strategy �� denote by �
���
��

��� � �� a subtree of
������ � �� that consists of all nodes of depth less than
or equal
��.

Lemma 28. With probability � � ������, � ���
��

contains

����� nodes.

Proof. By Lemma 27 with probability � � ��Æ� a random
path in �

���
��

contains at least �
 branching points. By aver-
aging, this implies that

����������� ��� � ��� contains at most
�
 branching points� � ��Æ���� � ��Æ����

However a simple counting argument shows that if a ran-
dom path in tree � has �
 branching points with probability
��� then � has size at least ����� nodes. Indeed, let us
give each node � in � an identifier which is �� � string of
length �
 that contains the direction on the first �
 branching
point on the way from the root to �. An identifier is good iff

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

the correponding path that it defines has at least �� branch-
ing nodes. There is an injective map from the set of good
identifiers to the set of nodes in � and a randomly chosen
identifier is good with probability ���.

Lemma 28 along with Lemma 24 imply the following
theorem:

Theorem 29. Let � �� ��� ���. For any BT algorithm �
with probability �� ����

����	 � �� � �����

We do not need much additional work to estimate the
depth first size. Consider the first branching point of
����	 � ��; it corresponds to the choice of the value of
the first variable 	� . Assume that � recommends consider-
ing the assignment 	� � � first. However with probability
���, 	� � �, but the proof of Theorem 29 implies that the
subtree corresponding to 	� � � has exponential size. Thus
with probability ���� ����, ���

�
� �����

6.3. Free Branching

Here we state a result showing that the 3SAT lower
bound extends to an even stronger model than fully adaptive
BT. We will need this stronger lower bound below where
we prove a lower bound for knapsack in the fully adaptive
model by a reduction from 3SAT.

For any BT problem � over domain , augment
by including an infinite number of dummy data items
���� ���

� ���

� and let these dummy items be implic-
itly included in every instance � . Decisions about these
items do not affect the semantics of a solution (they are ig-
nored by ��). They do, however, allow any fully-adaptive
algorithm � for � to branch without making a decision
about the real data items so that it can, in particular, con-
sider multiple orderings on the remainder of the items (this
ability is not useful in fixed or adaptive BT). One can mod-
ify and get the following strengthening of Theorem 29.

Theorem 30. For any fully adaptive BT algorithm with
free-branching, �, there exists at least one � for which
����	 � �� � �����.

6.4. BT Reductions

Given the 3SAT lower bounds in Theorem 30 and uti-
lizing an appropriate reduction from 3SAT to the SUBSET-
SUM search problem, we obtain the same exponential lower
bounds for SUBSET-SUM and hence for the simple knap-
sack problem.

Theorem 31. Any fully adaptive BT algorithm for simple
knapsack on � items requires width �����.

While this theorem extends Theorem 10, it does not seem
to offer any inapproximation ratio as in Theorem 11, nor
does it apply to the semi-revocable model.

Proof. The theorem follows from the standard polytime re-
duction (see, for example, [15]) from 3SAT to SUBSET-
SUM which turns out to be a “BT-reduction”. Let
�	�� ���

 � ��� be a variable item in the weak or strong
data type. Given � 3-clauses on � variables, the reduc-
tion creates a set of �� � �� � �� base-6 numbers each
with ��� digits. Namely, for each propositional variable,
the reduction creates two knapack items (one correspnd-
ing to positive occurences and one to negative occurences
of the variable) and two knapsack items corresponding to
each clause. (These clause items will correspond to dummy
variables in the SAT domain.) Any BT algorithm (with
or without free choices) for solving the knapsack problem
will induce a BT algorithm (with free choices) for solving
3SAT. Namely, any decision on either of the literal knap-
sack items for a particular variable gives us a decision for
that variable because an optimal solution to knapsack is one
in which exactly one of the items corresponding to positive
and negative literals must be taken. For a node in a path of
a BT tree that represents the first time an item of that vari-
able appears, we convert the decision to a corresponding
truth value for that variable. For the second occurrence in
a branch of an item corresponding to a certain variable, we
extend the branch (if possible) only where the decision is
consistent. Decisions for the clause items will correspond
to free decisions. We emphasize that the ordering for the
3SAT instance is well defined and any optimal solution to
knapsack (ie one that achieves the target) is a branch that is
converted to a branch representing a solution for the 3SAT
formula.

Given the specific example above, it is not difficult to de-
fine the concept of a BT-reduction between problems which
will preserve the property of being efficienlty computable
by a BT algorithm. Intuitively, the main criterion of such
a reduction is that it establish a correspondence between
items in an instance of the first problem and items in the
induced instance of the second problem. In other words, it
should be very local. We then need a way to map the deci-
sions of the second problem back to decisions for the first
problem. One could formalize this notion at various levels
of generality. In order to avoid unnecessary details, we sim-
ply say that a problem �� reduces to problem �� if there is
a mapping � from the items of �� to sets of items in ��, and
a mapping � from decisions on an item in �� to decisions
in ��. We can order �� given an ordering on �� provided
that the ��-subsets corresponding to different items for ��
are disjoint. Then, given any decision on the first item in
one of these subsets, we use � to decide about the corre-
sponding �� item. Given a tree in ��, the above setting
allows us to define an associated tree in ��. Finally, for the

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

reduction to work, we have to require that those branches
of the tree of �� that represent a solution (optimal solution
in the case of optimization problem) can be associated with
solution branches in the corresponding tree in ��. The one
additional point is that, if the induced instance of �� con-
tains items that don’t correspond to any particular ��-item
(as is the case with the clause items above), then we need to
introduce dummy items into ��’s computation. We omit the
formal proof that if �� reduces to �� in the above manner,
then the required width/size for �� is at most that of ��.

7. Open Questions

There are many open questions regarding our BT mod-
els. Could we show, for example, that the known greedy
�� ���� approximation algorithms for vertex cover are the
best we can do using a polynomial-width BT algorithm?
We show a ������ ���� inapproximation in the fixed BT
model. [18, 9] show a ��� inapproximation result for prior-
ity algorithms and [18] proves a � � ���� inapproximation
result for weighted vertex cover in priority algorithms. Such
a lower bound would be analogous to the work of �8	 in that
it would focus on a broad model of computation that con-
tains a 2-approximation and show that the model cannot go
much beyond that.

For interval scheduling, can the adaptive BT lower bound
be extended to the fully adaptive model? For proportional
profit on one machine, we are able to show that a width-2
adaptive BT can achieve a better approximation ratio than
a priority algorithm. While we know that for one machine,
an optimal solution requires width
���, the tradeoff be-
tween width and the approximation ratio is not at all under-
stood. For example, what is the best approximation ratio
for a width-3 BT? We also do not know if a ����-width
adaptive BT can achieve an ����-approximation ratio for
interval scheduling with arbitrary profits. Also for any of
the problems already studied in the priority framework (eg
[11, 18, 6, 28]) it would be interesting to consider constant-
or (in some cases) poly-width BT algorithms.

Will the BT framework lead us to new algorithms (or
at least modified interpretations of old algorithms)? Small
examples in this direction are the width-2 approximation for
interval selection, the linear-width algorithm for 2SAT and
the FPTAS for knapsack presented in this paper.

Finally, while we have shown that the BT model has
strong connections to dynamic programming and back-
tracking, can it be extended to capture other common types
of algorithms? For example, we show that BT captures
simple dynamic programming (where we consider the input
items one-by-one), but what about other dynamic program-
ming algorithms, such as the longest-common-subsequence
or string alignment algorithm? Also, it seems natural to
augment BT with randomness: each decision would be
taken with a certain probability and one would study trade-

offs between the expected width and the probability of ob-
taining a solution. Finally, [12] recently defined a model
that enhances BT by making use of memoizing. How much
can this improve on the complexity of BT algorithms?

8. Acknowledgments

We thank Spyros Angelopoulos, Paul Beame, Sashka
Davis, Jeff Edmonds, and Charles Rackoff for their very
helpful comments. A special thanks goes to Alberto
Marchetti-Spaccamela for contibuting the upper bound of
theorem 11.

References

[1] M. Alekhnovich. More on average case vs approximation
complexity. In Proc. 44th Ann. Symp. on Foundations of
Computer Science, 2003.

[2] M. Alekhnovich. Lower bounds for k-DNF resolution on
random 3CNF. Manuscript, 2004.

[3] M. Alekhnovich, A. Borodin, J. Buresh-Oppenheim,
R. Impagliazzo, A. Magen, and T. Pitassi. To-
ward a Model for Backtracking and Dynamic Program-
ming. http://www.cs.toronto.edu/�avner/papers/model-
bt.pdf, 2004.

[4] M. Alekhnovich, E. Hirsch, and D. Itsykson. Exponential
lower bounds for the running time of DPLL algorithms on
satisfiable formulas. In Automata, Languages and Program-
ming: 31st International Colloquium, ICALP04, 2004.

[5] M. Alekhnovich and A. Razborov. Lower bounds for the
polynomial calculus: non-binomial case. In Proc. 42nd Ann.
Symp. on Foundations of Computer Science. IEEE Com-
puter Society, 2001.

[6] S. Angelopoulos and A. Borodin. On the power of priority
algorithms for facility location and set cover. In Proceed-
ings of the 5th International Workshop on Approximation
Algorithms for Combinatorial Optimization, volume 2462 of
Lecture Notes in Computer Science, pages 26–39. Springer-
Verlag, 2002.

[7] E. M. Arkin and E. L. Silverberg. Scheduling jobs with fixed
start and end times. Disc. Appl. Math, 18:1–8, 1987.

[8] S. Arora, B. Bollobás, and L. Lovász. Proving integrality
gaps without knowing the linear program. In Proceedings of
the 43rd Annual IEEE Conference on Foundations of Com-
puter Science, pages 313–322, 2002.

[9] A. Borodin, J. Boyar, and K. S. Larsen. Priority Algorithms
for Graph Optimization Problems. In Second Workshop on
Approximation and Online Algorithms, volume 3351 of Lec-
ture Notes in Computer Science, pages 126–139. Springer-
Verlag, 2005.

[10] A. Borodin, D. Cashman, and A. Magen. How
well can primal-dual and local-ratio algorithms perform?
Manuscript, 2005.

[11] A. Borodin, M. Nielsen, and C. Rackoff. (Incremental) pri-
ority algorithms. Algorithmica, 37:295–326, 2003.

[12] J. Buresh-0ppenheim, S. Davis, and R. Impagliazzo.
A formal model of dynamic programming algorithms.
Manuscript in preparation, 2004.

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

[13] V. Chvátal. Hard knapsack problems. Operations Research,
28(6):1402–1441, 1985.

[14] S. Cook and D. Mitchell. Finding hard instances of the sat-
isfiability problem: A survey. In DIMACS Series in Theo-
retical Computer Science, 1997.

[15] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduc-
tion to Algorithms, Second Edition (Page 1015). MIT Press,
Cambridge, Mass., 2001.

[16] M. Davis, G. Logemann, and D. Loveland. A machine
program for theorem proving. Commun. ACM, 5:394–397,
1962.

[17] M. Davis and H. Putnam. A computing procedure for quan-
tification theory. Commun. ACM, 7:201–215, 1960.

[18] S. Davis and R. Impagliazzo. Models of greedy algorithms
for graph problems. In Proceedings of the 15th Annual
ACM-SIAM Symposium on Discrete Algorithms, 2004.

[19] B. Dean, M. Goemans, and J. Vondrák. Approximating the
stochastic knapsack problem: The benefit of adaptivity. In
Proc. 44th Ann. Symp. on Foundations of Computer Science,
2004.

[20] T. Erlebach and F. Spieksma. Interval selection: Ap-
plications, algorithms, and lower bounds. Technical Re-
port 152, Computer Engineering and Networks Laboratory,
ETH, Oct. 2002.

[21] J. Gu, P. W. Purdom, J. Franco, and B. J. Wah. Algorithms
for the Satisfiability (SAT) Problem: A Survey. In Satisfi-
ability (SAT) Problem, DIMACS, pages 19–151. American
Mathematical Society, 1997.

[22] M. Halldorsson, K. Iwama, S. Miyazaki, and S. Taketomi.
Online independent sets. Theoretical Computer Science,
pages 953–962, 2002.

[23] S. Horn. One-pass algorithms with revocable acceptances
for job interval selection. MSc Thesis, University of Toronto,
2004.

[24] O. Ibarra and C. Kim. Fast approximation algorithms for the
knapsack and sum of subset problems. JACM, 1975.

[25] S. Khanna, R. Motwani, M. Sudan, and U. Vazirani. On syn-
tactic versus computational views of approximability. SIAM
Journal on Computing, 28:164–a91, 1998.

[26] E. L. Lawler. Fast approximation algorithms for knapsack
problems. In Proc. 18th Ann. Symp. on Foundations of Com-
puter Science, Long Beach, CA, 1977. IEEE Computer So-
ciety.

[27] A. Razborov and S. Rudich. Natural proofs. J. Comput. Syst.
Sci., 55(1):24–35, 1997.

[28] O. Regev. Priority algorithms for makespan minimiza-
tion in the subset model. Information Processing Letters,
84(3):153–157, Septmeber 2002.

[29] C. E. Shannon. The synthesis of two-terminal switching cir-
cuits. Bell Systems Tech. J., 28:59–98, 1949.

[30] G. Woeginger. When does a dynamic programming formu-
lation guarantee the existence of a fully polynomial time ap-
proximation scheme (FPTAS)? INFORMS Journal on Com-
puting, 12:57–75, 2000.

Proceedings of the Twentieth Annual IEEE Conference on Computational Complexity (CCC’05)
1093-0159/05 $20.00 © 2005 IEEE

