
Fairness Through Awareness

Cynthia Dwork
Microsoft Research S.V.
Mountain View, CA, USA

dwork@microsoft.com

Moritz Hardt
∗

IBM Research Almaden
San Jose, CA, USA

mhardt@us.ibm.com

Toniann Pitassi
†

University of Toronto
Dept. of Computer Science

Toronto, ON, CANADA
toni@cs.toronto.edu

Omer Reingold
Microsoft Research S. V.
Mountain View, CA, USA

omer.reingold@microsoft.com

Richard Zemel
‡

University of Toronto
Dept. of Computer Science

Toronto, ON, CANADA
zemel@cs.toronto.edu

ABSTRACT
We study fairness in classification, where individuals are
classified, e.g., admitted to a university, and the goal is to
prevent discrimination against individuals based on their
membership in some group, while maintaining utility for the
classifier (the university). The main conceptual contribution
of this paper is a framework for fair classification comprising
(1) a (hypothetical) task-specific metric for determining the
degree to which individuals are similar with respect to the
classification task at hand; (2) an algorithm for maximiz-
ing utility subject to the fairness constraint, that similar
individuals are treated similarly. We also present an adapta-
tion of our approach to achieve the complementary goal of
“fair affirmative action,” which guarantees statistical parity
(i.e., the demographics of the set of individuals receiving
any classification are the same as the demographics of the
underlying population), while treating similar individuals as
similarly as possible. Finally, we discuss the relationship of
fairness to privacy: when fairness implies privacy, and how
tools developed in the context of differential privacy may be
applied to fairness.

1. INTRODUCTION
In this work, we study fairness in classification. Nearly

all classification tasks face the challenge of achieving utility
in classification for some purpose, while at the same time
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preventing discrimination against protected population sub-
groups. A motivating example is membership in a racial
minority in the context of banking. An article in The Wall
Street Journal (8/4/2010) describes the practices of a credit
card company and its use of a tracking network to learn
detailed demographic information about each visitor to the
site, such as approximate income, where she shops, the fact
that she rents children’s videos, and so on. According to
the article, this information is used to “decide which credit
cards to show first-time visitors” to the web site, raising the
concern of steering, namely the (illegal) practice of guiding
members of minority groups into less advantageous credit
offerings [SA10].

We provide a normative approach to fairness in classi-
fication and a framework for achieving it. Our framework
permits us to formulate the question as an optimization prob-
lem that can be solved by a linear program. In keeping with
the motivation of fairness in online advertising, our approach
will permit the entity that needs to classify individuals, which
we call the vendor, as much freedom as possible, without
knowledge of or trust in this party. This allows the vendor to
benefit from investment in data mining and market research
in designing its classifier, while our absolute guarantee of
fairness frees the vendor from regulatory concerns.

Our approach is centered around the notion of a task-
specific similarity metric describing the extent to which pairs
of individuals should be regarded as similar for the classifica-
tion task at hand.1 The similarity metric expresses ground
truth. When ground truth is unavailable, the metric may
reflect the “best” available approximation as agreed upon by
society. Following established tradition [Raw01], the metric
is assumed to be public and open to discussion and con-
tinual refinement. Indeed, we envision that, typically, the
distance metric would be externally imposed, for example, by
a regulatory body, or externally proposed, by a civil rights
organization.

The choice of a metric need not determine (or even suggest)
a particular classification scheme. There can be many clas-
sifiers consistent with a single metric. Which classification
scheme is chosen in the end is a matter of the vendor’s utility

1Strictly speaking, we only require a function d : V ×V → R
where V is the set of individuals, d(x, y) ≥ 0, d(x, y) = d(y, x)
and d(x, x) = 0.
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function which we take into account. To give a concrete
example, consider a metric that expresses which individuals
have similar credit worthiness. One advertiser may wish to
target a specific product to individuals with low credit, while
another advertiser may seek individuals with good credit.

1.1 Key Elements of Our Framework

Treating similar individuals similarly.
We capture fairness by the principle that any two individ-

uals who are similar with respect to a particular task should
be classified similarly. In order to accomplish this individual-
based fairness, we assume a distance metric that defines
the similarity between the individuals. This is the source
of “awareness” in the title of this paper. We formalize this
guiding principle as a Lipschitz condition on the classifier.
In our approach a classifier is a randomized mapping from
individuals to outcomes, or equivalently, a mapping from
individuals to distributions over outcomes. The Lipschitz
condition requires that any two individuals x, y that are at
distance d(x, y) ∈ [0, 1] map to distributions M(x) and M(y),
respectively, such that the statistical distance between M(x)
and M(y) is at most d(x, y). In other words, the distributions
over outcomes observed by x and y are indistinguishable up
to their distance d(x, y).

Formulation as an optimization problem.
We consider the natural optimization problem of construct-

ing fair (i.e., Lipschitz) classifiers that minimize the expected
utility loss of the vendor. We observe that this optimization
problem can be expressed as a linear program and hence
solved efficiently. Moreover, this linear program and its dual
interpretation will be used heavily throughout our work.

Connection between individual fairness and group fair-
ness.

Statistical parity is the property that the demographics
of those receiving positive (or negative) classifications are
identical to the demographics of the population as a whole.
Statistical parity speaks to group fairness rather than individ-
ual fairness, and appears desirable, as it equalizes outcomes
across protected and non-protected groups. However, we
demonstrate its inadequacy as a notion of fairness through
several examples in which statistical parity is maintained,
but from the point of view of an individual, the outcome
is blatantly unfair. While statistical parity (or group fair-
ness) is insufficient by itself, we investigate conditions under
which our notion of fairness implies statistical parity. In
Section 3, we give conditions on the similarity metric, via
an Earthmover distance, such that fairness for individuals
(the Lipschitz condition) yields group fairness (statistical
parity). More precisely, we show that the Lipschitz condition
implies statistical parity between two groups if and only if
the Earthmover distance between the two groups is small.
This characterization is an important tool in understanding
the consequences of imposing the Lipschitz condition.

Fair affirmative action.
In Section 4, we give techniques for forcing statistical parity

when it is not implied by the Lipschitz condition (the case
of preferential treatment), while preserving as much fairness
for individuals as possible. We interpret these results as
providing a way of achieving fair affirmative action.

A close relationship to privacy.
We observe that our definition of fairness is a generaliza-

tion of the notion of differential privacy [Dwo06, DMNS06].
We draw an analogy between individuals in the setting of
fairness and databases in the setting of differential privacy.
In Section 5 we build on this analogy and exploit techniques
from differential privacy to develop a more efficient variation
of our fairness mechanism. We prove that our solution has
small error when the metric space of individuals has small
doubling dimension, a natural condition arising in machine
learning applications. We also prove a lower bound showing
that any mapping satisfying the Lipschitz condition has er-
ror that scales with the doubling dimension. Interestingly,
these results also demonstrate a quantiative trade-off be-
tween fairness and utility. Finally, we touch on the extent to
which fairness can hide information from the advertiser in
the context of online advertising.

Prevention of certain evils.
We remark that our notion of fairness interdicts a cat-

alogue of discriminatory practices including the following,
described in Appendix A: redlining; reverse redlining; dis-
crimination based on redundant encodings of membership
in the protected set; cutting off business with a segment of
the population in which membership in the protected set
is disproportionately high; doing business with the “wrong”
subset of the protected set (possibly in order to prove a
point); and “reverse tokenism.”

1.2 Discussion: The Metric
As noted above, the metric should (ideally) capture ground

truth. Justifying the availability of or access to the distance
metric in various settings is one of the most challenging
aspects of our framework, and in reality the metric used
will most likely only be society’s current best approximation
to the truth. Of course, metrics are employed, implicitly
or explicitly, in many classification settings, such as college
admissions procedures, advertising (“people who buy X and
live in zipcode Y are similar to people who live in zipcode
Z and buy W”), and loan applications (credit scores). Our
work advocates for making these metrics public.

An intriguing example of an existing metric designed for
the health care setting is part of the AALIM project [AAL],
whose goal is to provide a decision support system for cardiol-
ogy that helps a physician in finding a suitable diagnosis for
a patient based on the consensus opinions of other physicians
who have looked at similar patients in the past. Thus the
system requires an accurate understanding of which patients
are similar based on information from multiple domains such
as cardiac echo videos, heart sounds, ECGs and physicians’
reports. AALIM seeks to ensure that individuals with sim-
ilar health characteristics receive similar treatments from
physicians. This work could serve as a starting point in
the fairness setting, although it does not (yet?) provide the
distance metric that our approach requires. We discuss this
further in Section 6.1.

Finally, we can envision classification situations in which
it is desirable to “adjust” or otherwise “make up” a metric,
and use this synthesized metric as a basis for determining
which pairs of individuals should be classified similarly.2 Our

2This is consistent with the practice, in some college admis-
sions offices, of adding a certain number of points to SAT
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machinery is agnostic as to the “correctness” of the metric,
and so can be employed in these settings as well.

1.3 Related Work
There is a broad literature on fairness, notably in social

choice theory, game theory, economics, and law. Among
the most relevant are theories of fairness and algorithmic
approaches to apportionment; see, for example, the following
books: H. Peyton Young’s Equity, John Roemer’s Equality
of Opportunity and Theories of Distributive Justice, as well
as John Rawls’ A Theory of Justice and Justice as Fairness:
A Restatement. Calsamiglia [Cal05] explains,

“Equality of opportunity defines an important wel-
fare criterion in political philosophy and policy
analysis. Philosophers define equality of opportu-
nity as the requirement that an individual’s well
being be independent of his or her irrelevant char-
acteristics. The difference among philosophers
is mainly about which characteristics should be
considered irrelevant. Policymakers, however, are
often called upon to address more specific ques-
tions: How should admissions policies be designed
so as to provide equal opportunities for college?
Or how should tax schemes be designed so as
to equalize opportunities for income? These are
called local distributive justice problems, because
each policymaker is in charge of achieving equality
of opportunity to a specific issue.”

In general, local solutions do not, taken together, solve the
global problem: “There is no mechanism comparable to
the invisible hand of the market for coordinating distribu-
tive justice at the micro into just outcomes at the macro
level” [You95], (although Calsamiglia’s work treats exactly
this problem [Cal05]). Nonetheless, our work is decidedly “lo-
cal,” both in the aforementioned sense and in our definition of
fairness. To our knowledge, our approach differs from much
of the literature in our fundamental skepticism regarding the
vendor; we address this by separating the vendor from the
data owner, leaving classification to the latter.

Concerns for “fairness” also arise in many contexts in com-
puter science, game theory, and economics. For example, in
the distributed computing literature, one meaning of fair-
ness is that a process that attempts infinitely often to make
progress eventually makes progress. One quantitative mean-
ing of unfairness in scheduling theory is the maximum, taken
over all members of a set of long-lived processes, of the differ-
ence between the actual load on the process and the so-called
desired load (the desired load is a function of the tasks in
which the process participates) [AAN+98]; other notions of
fairness appear in [BS06, Fei08, FT11], to name a few. For
an example of work incorporating fairness into game theory
and economics see the eponymous paper [Rab93].

2. FORMULATION OF THE PROBLEM
In this section we describe our setup in its most basic form.

We shall later see generalizations of this basic formulation.
Individuals are the objects to be classified; we denote the
set of individuals by V . In this paper we consider classifiers
that map individuals to outcomes. We denote the set of
outcomes by A. In the simplest non-trivial case A = {0, 1} .
scores of students in disadvantaged groups.

To ensure fairness, we will consider randomized classifiers
mapping individuals to distributions over outcomes. To
introduce our notion of fairness we assume the existence of
a metric on individuals d : V × V → R. We will consider
randomized mappings M : V → ∆(A) from individuals to
probability distributions over outcomes. Such a mapping
naturally describes a randomized classification procedure:
to classify x ∈ V choose an outcome a according to the
distribution M(x). We interpret the goal of “mapping similar
people similarly” to mean that the distributions assigned
to similar people are similar. Later we will discuss two
specific measures of similarity of distributions, D∞ and Dtv,
of interest in this work.

Definition 2.1 (Lipschitz mapping). A mapping
M : V → ∆(A) satisfies the (D, d)-Lipschitz property if for
every x, y ∈ V, we have

D(Mx,My) ≤ d(x, y) . (1)

When D and d are clear from the context we will refer to
this simply as the Lipschitz property.

We note that there always exists a Lipschitz classifier, for
example, by mapping all individuals to the same distribution
over A. Which classifier we shall choose thus depends on
a notion of utility. We capture utility using a loss func-
tion L : V × A → R. This setup naturally leads to the
optimization problem:

Find a mapping from individuals to distributions
over outcomes that minimizes expected loss sub-
ject to the Lipschitz condition.

2.1 Achieving Fairness
Our fairness definition leads to an optimization problem in

which we minimize an arbitrary loss function L : V ×A→ R
while achieving the (D, d)-Lipschitz property for a given
metric d : V × V → R. We denote by I an instance of our
problem consisting of a metric d : V × V → R, and a loss
function L : V × A → R. We denote the optimal value of
the minimization problem by opt(I), as formally defined in
Figure 1. We will also write the mapping M : V → ∆(A) as
M = {µx}x∈V where µx = M(x) ∈ ∆(A).

opt(I)
def
= min

{µx}x∈V

E
x∼V

E
a∼µx

L(x, a) (2)

subject to ∀x, y ∈ V, : D(µx, µy) ≤ d(x, y)
(3)

∀x ∈ V : µx ∈ ∆(A) (4)

Figure 1: The Fairness LP: Loss minimization sub-
ject to fairness constraint

216



Probability Metrics.
The first choice for D that may come to mind is the

statistical distance: Let P,Q denote probability measures on
a finite domain A. The statistical distance or total variation
norm between P and Q is denoted by

Dtv(P,Q) =
1

2

∑
a∈A

|P (a)−Q(a)| . (5)

The following lemma is easily derived from the definitions
of opt(I) and Dtv.

Lemma 2.1. Let D = Dtv. Given an instance I we can
compute opt(I) with a linear program of size poly(|V |, |A|).

Remark 2.1. When dealing with the set V , we have as-
sumed that V is the set of real individuals (rather than the
potentially huge set of all possible encodings of individuals).
More generally, we may only have access to a subsample from
the set of interest. In such a case, there is the additional
challenge of extrapolating a classifier over the entire set.

A weakness of using Dtv as the distance measure on dis-
tributions, it that we should then assume that the distance
metric (measuring distance between individuals) is scaled
such that for similar individuals d(x, y) is very close to zero,
while for very dissimilar individuals d(x, y) is close to one. A
potentially better choice for D in this respect is sometimes
called relative `∞ metric:

D∞(P,Q) = sup
a∈A

log

(
max

{
P (a)

Q(a)
,
Q(a)

P (a)

})
. (6)

With this choice we think of two individuals x, y as similar if
d(x, y)� 1. In this case, the Lipschitz condition in Equation 1
ensures that x and y map to similar distributions over A. On
the other hand, when x, y are very dissimilar, i.e., d(x, y)� 1,
the condition imposes only a weak constraint on the two
corresponding distributions over outcomes.

Lemma 2.2. Let D = D∞. Given an instance I we can
compute opt(I) with a linear program of size poly(|V |, |A|).

Proof. We note that the objective function and the first
constraint are indeed linear in the variables µx(a), as the first
constraint boils down to requirements of the form µx(a) ≤
ed(x,y)µy(a). The second constraint µx ∈ ∆(A) can easily be
rewritten as a set of linear constraints.

Notation.
Recall that we often write the mapping M : V → ∆(A) as

M = {µx}x∈V where µx = M(x) ∈ ∆(A). In this case, when
S is a distribution over V we denote by µS the distribution
over A defined as µS(a) = Ex∼S µx(a) where a ∈ A .

Useful Facts.
It is not hard to check that both Dtv and D∞ are metrics

with the following properties.

Lemma 2.3. Dtv(P,Q) ≤ 1−exp(−D∞(P,Q)) ≤ D∞(P,Q)

Fact 2.1. For any three distributions P,Q,R and non-
negative numbers α, β ≥ 0 such that α + β = 1, we have
Dtv(αP + βQ,R) ≤ αDtv(P,R) + βDtv(Q,R).

Post-Processing.
An important feature of our definition is that it behaves

well with respect to post-processing. Specifically, if M : V →
∆(A) is (D, d)-Lipschitz for D ∈ {Dtv, D∞} and f : A→ B
is any possibly randomized function from A to another set B,
then the composition f ◦M : V → ∆(B) is a (D, d)-Lipschitz
mapping. This would in particular be useful in the setting
of the example in Section 2.2.

2.2 Example: Ad network
Here we expand on the example of an advertising net-

work mentioned in the Introduction. We explain how the
Fairness LP provides a fair solution protecting against the
evils described in Appendix A. The Wall Street Journal
article [SA10] describes how the [x+1] tracking network col-
lects demographic information about individuals, such as
their browsing history, geographical location, and shopping
behavior, and utilizes this to assign a person to one of 66
groups. For example, one of these groups is “White Picket
Fences,” a market segment with median household income
of just over $50,000, aged 25 to 44 with kids, with some
college education, etc. Based on this assignment to a group,
CapitalOne decides which credit card, with particular terms
of credit, to show the individual. In general we view a classi-
fication task as involving two distinct parties: the data owner
is a trusted party holding the data of individuals, and the
vendor is the party that wishes to classify individuals. The
loss function may be defined solely by either party or by both
parties in collaboration. In this example, the data owner is
the ad network [x+1], and the vendor is CapitalOne.

The ad network ([x+1]) maintains a mapping from indi-
viduals into categories. We can think of these categories as
outcomes, as they determine which ads will be shown to an
individual. In order to comply with our fairness requirement,
the mapping from individuals into categories (or outcomes)
will have to be randomized and satisfy the Lipschitz property
introduced above. Subject to the Lipschitz constraint, the
vendor can still express its own belief as to how individu-
als should be assigned to categories using the loss function.
However, since the Lipschitz condition is a hard constraint
there is no possibility of discriminating between individuals
that are deemed similar by the metric. In particular, this will
disallow arbitrary distinctions between protected individuals,
thus preventing both reverse tokenism and the self-fulfilling
prophecy (see Appendix A). In addition, the metric can
eliminate the existence of redundant encodings of certain
attributes thus also preventing redlining of those attributes.
In Section 3 we will see a characterization of which attributes
are protected by the metric in this way.

2.3 Connection to Differential Privacy
Our notion of fairness may be viewed as a generalization

of differential privacy [Dwo06, DMNS06]. As it turns out
our notion can be seen as a generalization of differential
privacy. To see this, consider a simple setting of differential
privacy where a database curator maintains a database x
(thought of as a subset of some universe U) and a data
analyst is allowed to ask a query F : V → A on the database.
Here we denote the set of databases by V = 2U and the
range of the query by A. A mapping M : V → ∆(A) satisfies
ε-differential privacy if and only if M satisfies the (D∞, d)-
Lipschitz property, where, letting x4y denote the symmetric

difference between x and y, we define d(x, y)
def
= ε|x4y|.
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The utility loss of the analyst for getting an answer a ∈ A
from the mechanism is defined as L(x, a) = dA(Fx, a), that is
distance of the true answer from the given answer. Here dis-
tance refers to some distance measure in A that we described
using the notation dA. For example, when A = R, this could
simply be dA(a, b) = |a− b|. The optimization problem (2)

in Figure 1 (i.e., opt(I)
def
= minEx∼V Ea∼µx L(x, a)) now

defines the optimal differentially private mechanism in this
setting. We can draw a conceptual analogy between the
utility model in differential privacy and that in fairness. If
we think of outcomes as representing information about an
individual, then the vendor wishes to receive what she be-
lieves is the most “accurate” representation of an individual.
This is quite similar to the goal of the analyst in differential
privacy.

In the current work we deal with more general metric
spaces than in differential privacy. Nevertheless, we later see
(specifically in Section 5) that some of the techniques used
in differential privacy carry over to the fairness setting.

3. RELATIONSHIP BETWEEN LIPSCHITZ
PROPERTY AND STATISTICAL PARITY

In this section we discuss the relationship between the
Lipschitz property articulated in Definition 2.1 and statistical
parity. As we discussed earlier, statistical parity is insufficient
as a general notion of fairness. Nevertheless statistical parity
can have several desirable features, e.g., as described in
Proposition 3.1 below. In this section we demonstrate that
the Lipschitz condition naturally implies statistical parity
between certain subsets of the population.

Formally, statistical parity is the following property.

Definition 3.1 (Statistical parity). We say that a
mapping M : V → ∆(A) satisfies statistical parity between
distributions S and T up to bias ε if

Dtv(µS , µT ) ≤ ε . (7)

Proposition 3.1. Let M : V → ∆(A) be a mapping that
satisfies statistical parity between two sets S and T up to
bias ε. Then, for every set of outcomes O ⊆ A, we have the
following two properties.

1. |Pr {M(x) ∈ O | x ∈ S} −Pr {M(x) ∈ O | x ∈ T}| ≤ ε,

2. |Pr {x ∈ S |M(x) ∈ O} −Pr {x ∈ T |M(x) ∈ O})| ≤
ε .

Intuitively, this proposition says that if M satisfies statistical
parity, then members of S are equally likely to observe a
set of outcomes as are members of T. Furthermore, the fact
that an individual observed a particular outcome provides no
information as to whether the individual is a member of S
or a member of T. We can always choose T = Sc in which
case we compare S to the general population.

3.1 Why is statistical parity insufficient?
Although in some cases statistical parity appears to be

desirable – in particular, it neutralizes redundant encodings –
we now argue its inadequacy as a notion of fairness, presenting
three examples in which statistical parity is maintained, but
from the point of view of an individual, the outcome is
blatantly unfair. In describing these examples, we let S
denote the protected set and Sc its complement.

Example 1: Reduced Utility. Consider the following sce-
nario. Suppose in the culture of S the most talented
students are steered toward science and engineering
and the less talented are steered toward finance, while
in the culture of Sc the situation is reversed: the most
talented are steered toward finance and those with less
talent are steered toward engineering. An organiza-
tion ignorant of the culture of S and seeking the most
talented people may select for “economics,” arguably
choosing the wrong subset of S, even while maintaining
parity. Note that this poor outcome can occur in a
“fairness through blindness” approach – the errors come
from ignoring membership in S.

Example 2: Self-fulfilling prophecy. This is when unqual-
ified members of S are chosen, in order to “justify”
future discrimination against S (building a case that
there is no point in“wasting” resources on S). Although
senseless, this is an example of something pernicious
that is not ruled out by statistical parity, showing the
weakness of this notion. A variant of this apparently
occurs in selecting candidates for interviews: the hiring
practices of certain firms are audited to ensure suffi-
ciently many interviews of minority candidates, but
less care is taken to ensure that the best minorities –
those that might actually compete well with the better
non-minority candidates – are invited [Zar11].

Example 3: Subset Targeting. Statistical parity for S does
not imply statistical parity for subsets of S. This can
be maliciously exploited in many ways. For example,
consider an advertisement for a product X which is
targeted to members of S that are likely to be inter-
ested in X and to members of Sc that are very unlikely
to be interested in X. Clicking on such an ad may
be strongly correlated with membership in S (even if
exposure to the ad obeys statistical parity).

3.2 Earthmover distance: Lipschitz versus sta-
tistical parity

A fundamental question that arises in our approach is:
When does the Lipschitz condition imply statistical parity
between two distributions S and T on V ? We will see that the
answer to this question is closely related to the Earthmover
distance between S and T , which we will define shortly.

The next definition formally introduces the quantity that
we will study, that is, the extent to which any Lipschitz
mapping can violate statistical parity. In other words, we
answer the question, “How biased with respect to S and T
might the solution of the fairness LP be, in the worst case?”

Definition 3.2 (Bias). We define

biasD,d(S, T )
def
= maxµS(0)− µT (0) , (8)

where the maximum is taken over all (D, d)-Lipschitz map-
pings M = {µx}x∈V mapping V into ∆({0, 1}).

Note that biasD,d(S, T ) ∈ [0, 1]. Even though in the defini-
tion we restricted ourselves to mappings into distributions
over {0, 1}, it turns out that this is without loss of generality,
as we show next.

Lemma 3.1. Let D ∈ {Dtv,D∞} and let M : V → ∆(A)
be any (D, d)-Lipschitz mapping. Then, M satisfies statistical
parity between S and T up to biasD,d(S, T ).

218



Proof. Let M = {µx}x∈V be any (D, d)-Lipschitz map-
ping into A. We will construct a (D, d)-Lipschitz mapping
M ′ : V → ∆({0, 1}) which has the same bias between S and
T as M.

Indeed, let AS = {a ∈ A : µS(a) > µT (a)} and let AT =
AcS . Put µ′x(0) = µx(AS) and µ′x(1) = µx(AT ). We claim
that M ′ = {µ′x}x∈V is a (D, d)-Lipschitz mapping. In both
cases D ∈ {Dtv, D∞} this follows directly from the definition.
On the other hand, it is easy to see that

Dtv(µS , µT ) = Dtv(µ′S , µ
′
T ) = µ′S(0)−µ′T (0) ≤ biasD,d(S, T ) .

Earthmover Distance.
We will presently relate biasD,d(S, T ) for D ∈ {Dtv, D∞}

to certain Earthmover distances between S and T , which we
define next.

Definition 3.3 (Earthmover distance). Let σ : V×
V → R be a nonnegative distance function. The σ-Earthmover
distance between two distributions S and T , denoted σEM(S, T ),
is defined as the value of the so-called Earthmover LP:

σEM(S, T )
def
= min

∑
x,y∈V

h(x, y)σ(x, y)

subject to
∑
y∈V

h(x, y) = S(x)

∑
y∈V

h(y, x) = T (x)

h(x, y) ≥ 0

We will need the following standard lemma, which sim-
plifies the definition of the Earthmover distance in the case
where σ is a metric.

Lemma 3.2. Let d : V × V → R be a metric. Then,

dEM(S, T ) = min
∑
x,y∈V

h(x, y)d(x, y)

subject to
∑
y∈V

h(x, y) =
∑
y∈V

h(y, x) + S(x)− T (x)

h(x, y) ≥ 0

Theorem 3.3. Let d be a metric. Then,

biasDtv, d(S, T ) ≤ dEM(S, T ) . (9)

If furthermore d(x, y) ≤ 1 for all x, y, then we have

biasDtv, d(S, T ) ≥ dEM(S, T ) . (10)

Proof. The proof is by linear programming duality. We
can express biasDtv, d(S, T ) as the following linear program:

bias(S, T ) = max
∑
x∈V

S(x)µx(0)−
∑
x∈V

T (x)µx(0)

subject to µx(0)− µy(0) ≤ d(x, y)

µx(0) + µx(1) = 1

µx(a) ≥ 0

Here, we used the fact that

Dtv(µx, µy) ≤ d(x, y) ⇐⇒ |µx(0)− µy(0)| ≤ d(x, y) .

The constraint on the RHS is enforced in the linear program
above by the two constraints µx(0) − µy(0) ≤ d(x, y) and
µy(0)− µx(0) ≤ d(x, y).

We can now prove (9). Since d is a metric, we can apply
Lemma 3.2. Let {f(x, y)}x,y∈V be a solution to the LP
defined in Lemma 3.2. By putting εx = 0 for all x ∈ V,
we can extend this to a feasible solution to the LP defining
bias(S, T ) achieving the same objective value. Hence, we
have bias(S, T ) ≤ dEM(S, T ).

Let us now prove (10), using the assumption that d(x, y) ≤
1. To do so, consider dropping the constraint that µx(0) +
µx(1) = 1 and denote by β(S, T ) the resulting LP:

β(S, T )
def
= max

∑
x∈V

S(x)µx(0)−
∑
x∈V

T (x)µx(0)

subject to µx(0)− µy(0) ≤ d(x, y)

µx(0) ≥ 0

It is clear that β(S, T ) ≥ bias(S, T ) and we claim that in
fact bias(S, T ) ≥ β(S, T ). To see this, consider any solution
{µx(0)}x∈V to β(S, T ). Without changing the objective value
we may assume that minx∈V µx(0) = 0. By our assumption
that d(x, y) ≤ 1 this means that maxx∈V µx(0) ≤ 1. Now put
µx(1) = 1− µx(0) ∈ [0, 1]. This gives a solution to bias(S, T )
achieving the same objective value. We therefore have,

bias(S, T ) = β(S, T ) .

On the other hand, by strong LP duality, we have

β(S, T ) = min
∑
x,y∈V

h(x, y)d(x, y)

subject to
∑
y∈V

h(x, y) ≥
∑
y∈V

h(y, x) + S(x)− T (x)

h(x, y) ≥ 0

It is clear that in the first constraint we must have equality
in any optimal solution. Otherwise we can improve the
objective value by decreasing some variable h(x, y) without
violating any constraints.

Since d is a metric we can now apply Lemma 3.2 to
conclude that β(S, T ) = dEM(S, T ) and thus bias(S, T ) =
dEM(S, T ).

Remark 3.1. Here we point out a different proof of the
fact that biasDtv, d(S, T ) ≤ dEM(S, T ) which does not involve
LP duality. Indeed dEM(S, T ) can be interpreted as giving the
cost of the best coupling between the two distributions S and
T subject to the penalty function d(x, y). Recall, a coupling
is a distribution (X,Y ) over V × V such that the marginal
distributions are S and T, respectively. The cost of the
coupling is E d(X,Y ). It is not difficult to argue directly that
any such coupling gives an upper bound on biasDtv, d(S, T ).
We chose the linear programming proof since it leads to
additional insight into the tightness of the theorem.

The situation for biasD∞, d is somewhat more complicated
and we do not get a tight characterization in terms of an
Earthmover distance. We do however have the following
upper bound.

Lemma 3.4.

biasD∞, d(S, T ) ≤ biasDtv, d(S, T ) (11)
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Proof. By Lemma 2.3, we haveDtv(µx, µy) ≤ D∞(µx, µy)
for any two distributions µx, µy. Hence, every (D∞, d)-Lipschitz
mapping is also (Dtv, d)-Lipschitz. Therefore, biasDtv, d(S, T )
is a relaxation of biasD∞, d(S, T ).

Corollary 3.5.

biasD∞, d(S, T ) ≤ dEM(S, T ) (12)

For completeness we note the dual linear program obtained
from the definition of biasD∞, d(S, T ) :

biasD∞, d(S, T ) = (13)

min
∑
x∈V

εx

subject to
∑
y∈V

f(x, y) + εx

≥
∑
y∈V

f(y, x)ed(x,y) + S(x)− T (x) (14)

∑
y∈V

g(x, y) + εx ≥
∑
y∈V

g(y, x)ed(x,y)

(15)

f(x, y), g(x, y) ≥ 0

Similar to the proof of Theorem 3.3, we may interpret this
program as a flow problem. The variables f(x, y), g(x, y)
represent a nonnegative flow from x to y and εx are slack
variables. Note that the variables εx are unrestricted as they
correspond to an equality constraint. The first constraint
requires that x has at least S(x) − T (x) outgoing units of
flow in f. The RHS of the constraints states that the penalty
for receiving a unit of flow from y is ed(x,y). However, it is no
longer clear that we can get rid of the variables εx, g(x, y).

Open Question 3.1. Can we achieve a tight characteri-
zation of when (D∞, d)-Lipschitz implies statistical parity?

4. FAIR AFFIRMATIVE ACTION
In this section, we explore how to implement what may

be called fair affirmative action. Indeed, a typical question
when we discuss fairness is, “What if we want to ensure sta-
tistical parity between two groups S and T, but members of
S are less likely to be “qualified”? In Section 3, we have seen
that when S and T are “similar” then the Lipschitz condition
implies statistical parity. Here we consider the complemen-
tary case where S and T are very different and imposing
statistical parity corresponds to preferential treatment. This
is a cardinal question, which we examine with a concrete
example illustrated in Figure 2.

For simplicity, let T = Sc. Assume |S|/|T ∪ S| = 1/10,
so S is only 10% of the population. Suppose that our task-
specific metric partitions S∪T into two groups, call them G0

and G1, where members of Gi are very close to one another
and very far from all members of G1−i. Let Si, respectively
Ti, denote the intersection S ∩Gi, respectively T ∩Gi, for
i = 0, 1. Finally, assume |S0| = |T0| = 9|S|/10. Thus, G0

contains less than 20% of the total population, and is equally
divided between S and T .

The Lipschitz condition requires that members of each Gi
be treated similarly to one another, but there is no require-
ment that members of G0 be treated similarly to members
of G1. The treatment of members of S, on average, may

G0

G1

S0 T0

S1 T1

Figure 2: S0 = G0 ∩ S, T0 = G0 ∩ T

therefore be very different from the treatment, on average, of
members of T , since members of S are over-represented in G0

and under-represented in G1. Thus the Lipschitz condition
says nothing about statistical parity in this case.

Suppose the members of Gi are to be shown an adver-
tisement adi for a loan offering, where the terms in ad1 are
superior to those in ad0. Suppose further that the distance
metric has partitioned the population according to (some-
thing correlated with) credit score, with those in G1 having
higher scores than those in G0.

On the one hand, this seems fair: people with better ability
to repay are being shown a more attractive product. Now we
ask two questions: “What is the effect of imposing statistical
parity?” and“What is the effect of failing to impose statistical
parity?”

Imposing Statistical Parity.
Essentially all of S is in G0, so for simplicity let us sup-

pose that indeed S0 = S ⊂ G0. In this case, to ensure
that members of S have comparable chance of seeing ad1 as
do members of T , members of S must be treated, for the
most part, like those in T1. In addition, by the Lipschitz
condition, members of T0 must be treated like members of
S0 = S, so these, also, are treated like T1, and the space
essentially collapses, leaving only trivial solutions such as as-
signing a fixed probability distribution on the advertisements
(ad0, ad1) and showing ads according to this distribution
to each individual, or showing all individuals adi for some
fixed i. However, while fair (all individuals are treated iden-
tically), these solutions fail to take the vendor’s loss function
into account.

Failing to Impose Statistical Parity.
The demographics of the groups Gi differ from the de-

mographics of the general population. Even though half
the individuals shown ad0 are members of S and half are
members of T , this in turn can cause a problem with fairness:
an “anti-S” vendor can effectively eliminate most members
of S by replacing the “reasonable” advertisement ad0 offering
less good terms, with a blatantly hostile message designed to
drive away customers. This eliminates essentially all business
with members of S, while keeping intact most business with
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members of T . Thus, if members of S are relatively far from
the members of T according to the distance metric, then
satisfying the Lipschitz condition may fail to prevent some
of the unfair practices.

4.1 An alternative optimization problem
With the above discussion in mind, we now suggest a

different approach, in which we insist on statistical parity,
but we relax the Lipschitz condition between elements of
S and elements of Sc. This is consistent with the essence
of preferential treatment, which implies that elements in S
are treated differently than elements in T . The approach
is inspired by the use of the Earthmover relaxation in the
context of metric labeling and 0-extension [KT02, CKNZ04].
Relaxing the S × T Lipschitz constraints also makes sense if
the information about the distances between members of S
and members of T is of lower quality, or less reliable, than
the internal distance information within these two sets.

We proceed in two steps:

1. (a) First we compute a mapping from elements in S to
distributions over T which transports the uniform
distribution over S to the uniform distribution over
T , while minimizing the total distance traveled.
Additionally the mapping preserves the Lipschitz
condition between elements within S.

(b) This mapping gives us the following new loss func-
tion for elements of T : For y ∈ T and a ∈ A we
define a new loss, L′(y, a), as

L′(y, a) =
∑
x∈S

µx(y)L(x, a) + L(y, a) ,

where {µx}x∈S denotes the mapping computed in
step (a). L′ can be viewed as a reweighting of the
loss function L, taking into account the loss on S
(indirectly through its mapping to T ).

2. Run the Fairness LP only on T , using the new loss
function L′.

Composing these two steps yields a a mapping from V = S∪T
into A.

Formally, we can express the first step of this alternative
approach as a restricted Earthmover problem defined as

dEM+L(S, T )
def
= min E

x∈S
E

y∼µx

d(x, y) (16)

subject to D(µx, µx′) ≤ d(x, x′)

for all x, x′ ∈ S
Dtv(µS , UT ) ≤ ε
µx ∈ ∆(T ) for all x ∈ S

Here, UT denotes the uniform distribution over T. Given
{µx}x∈S which minimizes (16) and {νx}x∈T which minimizes
the original fairness LP (2) restricted to T, we define the
mapping M : V → ∆(A) by putting

M(x) =

{
νx x ∈ T
Ey∼µx νy x ∈ S

. (17)

Before stating properties of the mapping M we make some
remarks.

1. Fundamentally, this new approach shifts from mini-
mizing loss, subject to the Lipschitz constraints, to
minimizing loss and disruption of S × T Lipschitz re-
quirement, subject to the parity and S × S and T × T
Lipschitz constraints. This gives us a bicriteria opti-
mization problem, with a wide range of options.

2. We also have some flexibility even in the current version.
For example, we can eliminate the re-weighting, pro-
hibiting the vendor from expressing any opinion about
the fate of elements in S. This makes sense in several
settings. For example, the vendor may request this due
to ignorance (e.g., lack of market research) about S, or
the vendor may have some (hypothetical) special legal
status based on past discrimination against S.

3. It is instructive to compare the alternative approach to
a modification of the Fairness LP in which we enforce
statistical parity and eliminate the Lipschitz require-
ment on S × T . The alternative approach is more
faithful to the S × T distances, providing protection
against the self-fulfilling prophecy discussed in the In-
troduction, in which the vendor deliberately selects the
“wrong” subset of S while still maintaining statistical
parity.

4. A related approach to addressing preferential treatment
involves adjusting the metric in such a way that the
Lipschitz condition will imply statistical parity. This co-
incides with at least one philosophy behind affirmative
action: that the metric does not fully reflect potential
that may be undeveloped because of unequal access
to resources. Therefore, when we consider one of the
strongest individuals in S, affirmative action suggests
it is more appropriate to consider this individual as
similar to one of the strongest individuals of T (rather
than to an individual of T which is close according to
the original distance metric). In this case, it is natural
to adjust the distances between elements in S and T
rather than inside each one of the populations (other
than possibly re-scaling). This gives rise to a family of
optimization problems:

Find a new distance metric d′ which “best
approximates” d under the condition that S
and T have small Earthmover distance under
d′,

where we have the flexibility of choosing the measure
of quality to how well d′ approximates d.

Let M be the mapping of Equation 17. The following prop-
erties of M are easy to verify.

Proposition 4.1. The mapping M defined in (17) satis-
fies

1. statistical parity between S and T up to bias ε,

2. the Lipschitz condition for every pair (x, y) ∈ (S×S)∪
(T × T ).

Proof. The first property follows since

Dtv(M(S),M(T )) = Dtv

(
E
x∈S

E
y∼µx

νy, E
x∈T

νx

)
≤ Dtv(µS , UT ) ≤ ε.
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The second claim is trivial for (x, y) ∈ T × T. So, let (x, y) ∈
S × S. Then,

D(M(x),M(y)) ≤ D(µx, µy) ≤ d(x, y) .

We have given up the Lipschitz condition between S and T ,
instead relying on the terms d(x, y) in the objective function
to discourage mapping x to distant y’s. It turns out that
the Lipschitz condition between elements x ∈ S and y ∈ T is
still maintained on average and that the expected violation
is given by dEM+L(S, T ) as shown next.

Proposition 4.2. Suppose D = Dtv in (16). Then, the
resulting mapping M satisfies

E
x∈S

max
y∈T

[
Dtv(M(x),M(y))− d(x, y)

]
≤ dEM+L(S, T ) .

Proof. For every x ∈ S and y ∈ T we have

Dtv(M(x),M(y)) = Dtv

(
E

z∼µx

M(z),M(y)

)
≤ E
z∼µx

Dtv (M(z),M(y)) (by Fact 2.1)

≤ E
z∼µx

d(z, y)

(Proposition 4.1 since z, y ∈ T )

≤ d(x, y) + E
z∼µx

d(x, z)

(by triangle inequalities)

The proof is completed by taking the expectation over x ∈
S.

An interesting challenge for future work is handling pref-
erential treatment of multiple protected subsets that are not
mutually disjoint. The case of disjoint subsets seems easier
and in particular amenable to our approach.

5. SMALL LOSS IN BOUNDED DOUBLING
DIMENSION

The general LP shows that given an instance I, it is possi-
ble to find an “optimally fair” mapping in polynomial time.
The result however does not give a concrete quantitative
bound on the resulting loss. Further, when the instance
is very large, it is desirable to come up with more efficient
methods to define the mapping.

We now give a fairness mechanism for which we can prove
a bound on the loss that it achieves in a natural setting.
Moreover, the mechanism is significantly more efficient than
the general linear program. Our mechanism is based on
the exponential mechanism [MT07], first considered in the
context of differential privacy.

We will describe the method in the natural setting where
the mapping M maps elements of V to distributions over V
itself. The method could be generalized to a different set A
as long as we also have a distance function defined over A and
some distance preserving embedding of V into A. A natural
loss function to minimize in the setting where V is mapped
into distributions over V is given by the metric d itself. In
this setting we will give an explicit Lipschitz mapping and
show that under natural assumptions on the metric space
(V, d) the mapping achieves small loss.

Definition 5.1. Given a metric d : V × V → R the expo-
nential mechanism E: V → ∆(V ) is defined by putting

E(x)
def
= [Z−1

x e−d(x,y)]y∈V ,

where Zx =
∑
y∈V e

−d(x,y) .

Lemma 5.1 ([MT07]). The exponential mechanism is
(D∞, d)-Lipschitz.

One cannot in general expect the exponential mechanism
to achieve small loss. However, this turns out to be true
in the case where (V, d) has small doubling dimension. It
is important to note that in differential privacy, the space
of databases does not have small doubling dimension. The
situation in fairness is quite different. Many metric spaces
arising in machine learning applications do have bounded
doubling dimension. Hence the theorem that we are about
to prove applies in many natural settings.

Definition 5.2. The doubling dimension of a metric space
(V, d) is the smallest number k such that for every x ∈ V
and every R ≥ 0 the ball of radius R around x, denoted
B(x,R) = {y ∈ V : d(x, y) ≤ R} can be covered by 2k balls
of radius R/2.

We will also need that points in the metric space are not
too close together.

Definition 5.3. We call a metric space (V, d) well sepa-
rated if there is a positive constant ε > 0 such that |B(x, ε)| =
1 for all x ∈ V.

Theorem 5.2. Let d be a well separated metric space of
bounded doubling dimension. Then the exponential mecha-
nism satisfies

E
x∈V

E
y∼E(x)

d(x, y) = O(1) .

Proof. Suppose d has doubling dimension k. It was shown
in [CG08] that doubling dimension k implies for every R ≥ 0
that

E
x∈V
|B(x, 2R)| ≤ 2k

′
E
x∈V
|B(x,R)| , (18)

where k′ = O(k). It follows from this condition and the
assumption on (V, d) that for some positive ε > 0,

E
x∈V
|B(x, 1)| ≤

(
1

ε

)k′
E
x∈V
|B(x, ε)| = 2O(k) . (19)

Then,

E
x∈V

E
y∼E(x)

d(x, y) ≤ 1 + E
x∈V

∫ ∞
1

re−r

Zx
|B(x, r)|dr

≤ 1 + E
x∈V

∫ ∞
1

re−r|B(x, r)|dr

(since Zx ≥ e−d(x,x) = 1)

= 1 +

∫ ∞
1

re−r E
x∈V
|B(x, r)|dr

≤ 1 +

∫ ∞
1

re−rrk
′
E
x∈V
|B(x, 1)|dr

(using (19))

≤ 1 + 2O(k)

∫ ∞
0

rk
′+1e−rdr

≤ 1 + 2O(k)(k′ + 2)! .
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As we assumed that k = O(1), we conclude

E
x∈V

E
y∼E(x)

d(x, y) ≤ 2O(k)(k′ + 2)! ≤ O(1) .

Remark 5.1. If (V, d) is not well-separated, then for ev-
ery constant ε > 0, it must contain a well-separated subset
V ′ ⊆ V such that every point x ∈ V has a neighbor x′ ∈ V ′
such that d(x, x′) ≤ ε. A Lipschitz mapping M ′ defined on
V ′ naturally extends to all of V by putting M(x) = M ′(x′)
where x′ is the nearest neighbor of x in V ′. It is easy to see
that the expected loss of M is only an additive ε worse than
that of M ′. Similarly, the Lipschitz condition deteriorates by
an additive 2ε, i.e., D∞(M(x),M(y)) ≤ d(x, y) + 2ε . Indeed,
denoting the nearest neighbors in V ′ of x, y by x′, y′ respec-
tively, we have D∞(M(x),M(y)) = D∞(M ′(x′),M ′(y′)) ≤
d(x′, y′) ≤ d(x, y) + d(x, x′) + d(y, y′) ≤ d(x, y) + 2ε. Here,
we used the triangle inequality.

The proof of Theorem 5.2 shows an exponential dependence
on the doubling dimension k of the underlying space in
the error of the exponential mechanism. The next theorem
shows that the loss of any Lipschitz mapping has to scale
at least linearly with k. The proof follows from a packing
argument similar to that in [HT10]. The argument is slightly
complicated by the fact that we need to give a lower bound
on the average error (over x ∈ V ) of any mechanism.

Definition 5.4. A set B ⊆ V is called an R-packing if
d(x, y) > R for all x, y ∈ B.

Here we give a lower bound using a metric space that may
not be well-separated. However, following Remark 5.1, this
also shows that any mapping defined on a well-separated
subset of the metric space must have large error up to a
small additive loss.

Theorem 5.3. For every k ≥ 2 and every large enough
n ≥ n0(k) there exists an n-point metric space of dou-
bling dimension O(k) such that any (D∞, d)-Lipschitz map-
ping M : V → ∆(V ) must satisfy

E
x∈V

E
y∼M(x)

d(x, y) ≥ Ω(k) .

Proof. Construct V by randomly picking n points from
a r-dimensional sphere of radius 100k. We will choose n
sufficiently large and r = O(k). Endow V with the Euclidean
distance d. Since V ⊆ Rr and r = O(k) it follows from
a well-known fact that the doubling dimension of (V, d) is
bounded by O(k).

Claim 5.4. Let X be the distribution obtained by choosing
a random x ∈ V and outputting a random y ∈ B(x, k). Then,
for sufficiently large n, the distribution X has statistical
distance at most 1/100 from the uniform distribution over V.

Proof. The claim follows from standard arguments show-
ing that for large enough n every point y ∈ V is contained
in approximately equally many balls of radius k.

Let M denote any (D∞, d)-Lipschitz mapping and denote
its error on a point x ∈ V by

R(x) = E
y∼M(x)

d(x, y) .

and put R = Ex∈V R(x). Let G = {x ∈ V : R(x) ≤ 2R}. By
Markov’s inequality |G| ≥ n/2.

Now, pick x ∈ V uniformly at random and choose a set
Px of 22k random points (with replacement) from B(x, k).
For sufficiently large dimension r = O(k), it follows from
concentration of measure on the sphere that Px forms a
k/2-packing with probability, say, 1/10.

Moreover, by Claim 5.4, for random x ∈ V and random
y ∈ B(x, k), the probability that y ∈ G is at least |G|/|V | −
1/100 ≥ 1/3. Hence, with high probability,

|Px ∩G| ≥ 22k/10 . (20)

Now, suppose M satisfies R ≤ k/100. We will lead this to
a contradiction thus showing that M has average error at
least k/100. Indeed, under the assumption that R ≤ k/100,
we have that for every y ∈ G,

Pr {M(y) ∈ B(y, k/50)} ≥ 1

2
, (21)

and therefore

1 ≥ Pr {M(x) ∈ ∪y∈Px∩GB(y, k/2)}

=
∑

y∈Px∩G

Pr {M(x) ∈ B(y, k/2)}

(since Px is a k/2-packing)

≥
∑

y∈Px∩G

exp(−k)Pr(M(y) ∈ B(y, k/2))

(by the Lipschitz condition)

=
22k

10
· exp(−k)

2
> 1 .

This is a contradiction which shows that R > k/100.

Open Question 5.1. Can we improve the exponential de-
pendence on the doubling dimension in our upper bound?

6. DISCUSSION AND FUTURE DIRECTIONS
In this paper we introduced a framework for characterizing

fairness in classification. The key element in this framework
is a requirement that similar people be treated similarly in
the classification. We developed an optimization approach
which balanced these similarity constraints with a vendor’s
loss function. and analyzed when this local fairness con-
dition implies statistical parity, a strong notion of equal
treatment. We also presented an alternative formulation
enforcing statistical parity, which is especially useful to allow
preferential treatment of individuals from some group. We
remark that although we have focused on using the metric
as a method of defining and enforcing fairness, one can also
use our approach to certify fairness (or to detect unfairness).
This permits us to evaluate classifiers even when fairness
is defined based on data that simply isn’t available to the
classification algorithm3.

Below we consider some open questions and directions for
future work.

6.1 On the Similarity Metric
As noted above, one of the most challenging aspects of our

work is justifying the availability of a distance metric. We
argue here that the notion of a metric already exists in many
classification problems, and we consider some approaches to
building such a metric.
3This observation is due to Boaz Barak.
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6.1.1 Defining a metric on individuals
The imposition of a metric already occurs in many classi-

fication processes. Examples include credit scores4 for loan
applications, and combinations of test scores and grades for
some college admissions. In some cases, for reasons of social
engineering, metrics may be adjusted based on membership
in various groups, for example, to increase geographic and
ethnic diversity.

The construction of a suitable metric can be partially au-
tomated using existing machine learning techniques. This
is true in particular for distances d(x, y) where x and y are
both in the same protected set or both in the general popu-
lation. When comparing individuals from different groups,
we may need human insight and domain information. This
is discussed further in Section 6.1.2.

Another direction, which intrigues us but which have not
yet pursued, is particularly relevant to the context of on-line
services (or advertising): allow users to specify attributes they
do or do not want to have taken into account in classifying
content of interest. The risk, as noted early on in this work,
is that attributes may have redundant encodings in other
attributes, including encodings of which the user, the ad
network, and the advertisers may all be unaware. Our notion
of fairness can potentially give a refinement of the “user
empowerment” approach by allowing a user to participate in
defining the metric that is used when providing services to
this user (one can imagine for example a menu of metrics each
one supposed to protect some subset of attributes). Further
research into the feasibility of this approach is needed, in
particular, our discussion throughout this paper has assumed
that a single metric is used across the board. Can we make
sense out of the idea of applying different metrics to different
users?

6.1.2 Building a metric via metric labeling
One approach to building the metric is to first build a

metric on Sc, say, using techniques from machine learning,
and then “inject” members of S into the metric by mapping
them to members of S in a fashion consistent with observed
information. In our case, this observed information would
come from the human insight and domain information men-
tioned above. Formally, this can be captured by the problem
of metric labeling [KT02]: we have a collection of |Sc| labels
for which a metric is defined, together with |S| objects, each
of which is to be assigned a label.

It may be expensive to access this extra information needed
for metric labeling. We may ask the question of how much
information do we need in order to approximate the result
we would get were we to have all this information. This is
related to our next question.

6.1.3 How much information is needed?
Suppose there is an unknown metric d∗ (the right metric)

that we are trying to find. We can ask an expert panel to
tell us d∗(x, y) given (x, y) ∈ V 2. The experts are costly and
we are trying to minimize the number of calls we need to
make. The question is: How many queries q do we need to
make to be able to compute a metric d : V × V → R such

4We remark that the credit score is a one-dimensional met-
ric that suggests an obvious interpretation as a measure of
quality rather than a measure of similarity. When the metric
is defined over multiple attributes such an interpretation is
no longer clear.

that the distortion between d and d∗ is at most C, i.e.,

sup
x,y∈V

max

{
d(x, y)

d∗(x, y)
,
d∗(x, y)

d(x, y)

}
≤ C . (22)

The problem can be seen as a variant of the well-studied
question of constructing spanners. A spanner is a small
implicit representation of a metric d∗. While this is not
exactly what we want, it seems that certain spanner con-
structions work in our setting as well, if we are willing to
relax the embedding problem by permitting a certain frac-
tion of the embedded edges to have arbitrary distortion,
as any finite metric can be embedded, with constant slack
and constant distortion, into constant-dimensional Euclidean
space [ABC+05].

6.2 Case Study on Applications in Health Care
An interesting direction for a case study is suggested by

another Wall Street Journal article (11/19/2010) that de-
scribes the (currently experimental) practice of insurance
risk assessment via online tracking. For example, food pur-
chases and exercise habits correlate with certain diseases.
This is a stimulating, albeit alarming, development. In the
most individual-friendly interpretation described in the arti-
cle, this provides a method for assessing risk that is faster
and less expensive than the current practice of testing blood
and urine samples. “Deloitte and the life insurers stress the
databases wouldn’t be used to make final decisions about
applicants. Rather, the process would simply speed up appli-
cations from people who look like good risks. Other people
would go through the traditional assessment process.” [SM10]
Nonetheless, there are risks to the insurers, and preventing
discrimination based on protected status should therefore be
of interest:

“The information sold by marketing-database firms
is lightly regulated. But using it in the life-
insurance application process would “raise ques-
tions” about whether the data would be subject
to the federal Fair Credit Reporting Act, says Re-
becca Kuehn of the Federal Trade Commission’s
division of privacy and identity protection. The
law’s provisions kick in when “adverse action” is
taken against a person, such as a decision to deny
insurance or increase rates.”

As mentioned in the introduction, the AALIM project [AAL]
provides similarity information suitable for the health care
setting. While their work is currently restricted to the area
of cardiology, future work may extend to other medical do-
mains. Such similarity information may be used to assemble
a metric that decides which individual have similar medical
conditions. Our framework could then employ this metric
to ensure that similar patients receive similar health care
policies. This would help to address the concerns articu-
lated above. We pose it as an interesting direction for future
work to investigate how a suitable fairness metric could be
extracted from the AALIM system.

6.3 Does Fairness Hide Information?
We have already discussed the need for hiding (non-)membership

in S in ensuring fairness. We now ask a converse question:
Does fairness in the context of advertising hide information
from the advertiser?
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Statistical parity has the interesting effect that it eliminates
redundant encodings of S in terms of A, in the sense that
after applying M, there is no f : A → {0, 1} that can be
biased against S in any way. This prevents certain attacks
that aim to determine membership in S.

Unfortunately, this property is not hereditary. Indeed, sup-
pose that the advertiser wishes to target HIV-positive people.
If the set of HIV-positive people is protected, then the adver-
tiser is stymied by the statistical parity constraint. However,
suppose it so happens that the advertiser’s utility function
is extremely high on people who are not only HIV-positive
but who also have AIDS. Consider a mapping that satisfies
statistical parity for “HIV-positive,” but also maximizes the
advertiser’s utility. We expect that the necessary error of
such a mapping will be on members of “HIV\AIDS,” that is,
people who are HIV-positive but who do not have AIDS. In
particular, we don’t expect the mapping to satisfy statistical
parity for “AIDS” – the fraction of people with AIDS seeing
the advertisement may be much higher than the fraction of
people with AIDS in the population as a whole. Hence, the
advertiser can in fact target “AIDS”.

Alternatively, suppose people with AIDS are mapped to
a region B ⊂ A, as is a |AIDS|/|HIV positive| fraction of
HIV-negative individuals. Thus, being mapped to B main-
tains statistical parity for the set of HIV-positive individuals,
meaning that the probability that a random HIV-positive
individual is mapped to B is the same as the probability that
a random member of the whole population is mapped to B.
Assume further that mappings to A\B also maintains parity.
Now the advertiser can refuse to do business with all people
with AIDS, sacrificing just a small amount of business in the
HIV-negative community.

These examples show that statistical parity is not a good
method of hiding sensitive information in targeted advertising.
A natural question, not yet pursued, is whether we can get
better protection using the Lipschitz property with a suitable
metric.
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APPENDIX
A. CATALOG OF EVILS

We briefly summarize here behaviors against which we
wish to protect. We make no attempt to be formal. Let S
be a protected set.

1. Blatant explicit discrimination. This is when member-
ship in S is explicitly tested for and a “worse” outcome
is given to members of S than to members of Sc.

2. Discrimination Based on Redundant Encoding. Here
the explicit test for membership in S is replaced by a
test that is, in practice, essentially equivalent. This is a
successful attack against “fairness through blindness,” in
which the idea is to simply ignore protected attributes
such as sex or race. However, when personalization
and advertising decisions are based on months or years
of on-line activity, there is a very real possibility that
membership in a given demographic group is embed-
ded holographically in the history. Simply deleting,
say, the Facebook “sex” and “Interested in men/women”
bits almost surely does not hide homosexuality. This
point was argued by the (somewhat informal) “Gay-
dar” study [JM09] in which a threshold was found for
predicting, based on the sexual preferences of his male
friends, whether or not a given male is interested in men.
Such redundant encodings of sexual preference and other
attributes need not be explicitly known or recognized
as such, and yet can still have a discriminatory effect.

3. Redlining. A well-known form of discrimination based
on redundant encoding. The following definition appears
in an article by [Hun05], which contains the history of
the term, the practice, and its consequences: “Redlining
is the practice of arbitrarily denying or limiting financial
services to specific neighborhoods, generally because its
residents are people of color or are poor.”

4. Cutting off business with a segment of the population
in which membership in the protected set is dispropor-
tionately high. A generalization of redlining, in which
members of S need not be a majority of the redlined
population; instead, the fraction of the redlined popula-
tion belonging to S may simply exceed the fraction of
S in the population as a whole.

5. Self-fulfilling prophecy. Here the vendor advertiser is
willing to cut off its nose to spite its face, deliberately
choosing the “wrong” members of S in order to build
a bad “track record” for S. A less malicious vendor
may simply select random members of S rather than
qualified members, thus inadvertently building a bad
track record for S.

6. Reverse tokenism. This concept arose in the context
of imagining what might be a convincing refutation to
the claim “The bank denied me a loan because I am a
member of S.” One possible refutation might be the
exhibition of an “obviously more qualified” member of
Sc who is also denied a loan. This might be compelling,
but by sacrificing one really good candidate c ∈ Sc the
bank could refute all charges of discrimination against
S. That is, c is a token rejectee; hence the term “re-
verse tokenism” (“tokenism” usually refers to accepting
a token member of S). We remark that the general
question of explaining decisions seems quite difficult, a

situation only made worse by the existence of redundant
encodings of attributes.
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