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Abstract

Proving superpolylogarithmic lower bounds for dynamic data structures has remained an
open problem despite years of research. Pǎtraşcu proposed an exciting approach for breaking
this barrier via a two player communication model in which one player gets private advice at
the beginning of the protocol. He gave reductions from the problem of solving an asymmetric
version of set-disjointness in his model to a diverse collection of natural dynamic data structure
problems in the cell probe model. He also conjectured that, for any hard problem in the standard
two-party communication model, the asymmetric version of the problem is hard in his model,
provided not too much advice is given.

In this paper, we prove several surprising results about his model. We show that there ex-
ist Boolean functions requiring linear randomized communication complexity in the two-party
model, for which the asymmetric versions in his model have deterministic protocols with expo-
nentially smaller complexity. For set-disjointness, which also requires linear randomized commu-
nication complexity in the two-party model, we give a deterministic protocol for the asymmetric
version in his model with a quadratic improvement in complexity. These results demonstrate
that Pǎtraşcu’s conjecture, as stated, is false. In addition, we show that the randomized and
deterministic communication complexities of problems in his model differ by no more than a
logarithmic multiplicative factor.

We also prove lower bounds in some restricted versions of this model for natural functions
such as set-disjointness and inner product. All of our upper bounds conform to these restrictions.
Moreover, a special case of one of these lower bounds implies a new proof of a strong lower
bound on the tradeoff between the query time and the amortized update time of dynamic data-
structures with non-adaptive query algorithms.

1 Introduction

In the cell probe model [25, 9, 34], the complexity of an algorithm is measured by the number of
(fixed size) memory cells it accesses. Lower bounds in the cell probe model have been obtained for
numerous static data structure problems, yielding lower bounds for these problems in the unit cost
random access machine.

Obtaining lower bounds for dynamic data structures in the cell probe model has been a chal-
lenge. In 1989, Fredman and Saks [10] introduced the chronogram method and used it to prove an
Ω(log n/ log logn) lower bound on the worst case time per operation for the partial sums problem.
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In 1998, Alstrup, Husfeldt and Rauhe [1] got the same bound for the dynamic marked ancestor
problem. Reductions from these problems to a variety of other dynamic data structure problems
have also been obtained [1, 12, 13, 14]. In 2004, Pǎtraşcu and Demaine [30] introduced a beau-
tiful information theoretic technique to prove Ω(log n) lower bounds for the partial sums problem
and dynamic connectivity in undirected graphs. Later, Pǎtraşcu [29] used a reduction from set-
disjointness in an asymmetric two-party communication model to prove an Ω(log n/(log log n)2)
lower bound for the dynamic marked ancestor problem. More recently, Larsen proved the first
Ω(log2 n) lower bounds, for the dynamic range counting problem [21] and dynamic polynomial
evaluation (over a large field) [22]. Despite these advances, it remains a longstanding open problem
to prove polynomial (or even super-polylogarithmic) lower bounds for any dynamic data structure
problem.

1.1 Pǎtraşcu’s Conjecture

Pǎtraşcu [28] listed a diverse collection of natural dynamic data structure problems that are con-
jectured to require superpolylogarithmic time per operation, including determining the existence
of paths in dynamic directed graphs and finding the length of shortest paths in dynamic undirected
graphs. He proposed an exciting new approach for obtaining polynomial lower bounds for all of

these problems using a new communication model that we call the A
B→ (B ↔ C) model. It

augments the standard two-party communication model between two players Bob and Charlie, by
providing advice (given by Alice) to one of the players (Bob).

For any Boolean function f : X ×Y → {0, 1}, Pǎtraşcu defined an asymmetric communication
problem SELk×1

f : {1, . . . , k} ×Xk × Y → {0, 1}, where SELk×1
f (i, x1, . . . , xk, y) = f(xi, y). In the

A
B→ (B ↔ C) model, there are two players, Bob and Charlie, who, with advice from Alice, compute

SELk×1
f (i, x1, . . . , xk, y) as follows: Alice receives x1, . . . , xk and y, Bob receives y and i, and Charlie

receives x1, . . . , xk and i. Alice first sends some advice privately to Bob and then remains silent.
Thereafter, Bob and Charlie can communicate back and forth, alternating arbitrarily, until they
have computed the output of the function. The last bit that is sent is the output of the protocol,
which is supposed to be the value of the function. This can also be viewed as a restricted version
of a three-player number-on-the-forehead problem, in which Alice has i on her forehead, Bob has
x1, . . . , xk on his forehead, and Charlie has y on his forehead.

Pǎtraşcu presented simple reductions from the problem of computing SELk×1
DISJ in the A

B→
(B ↔ C) model, where DISJ denotes the set-disjointness problem, to many dynamic problems in
the cell probe model. These reductions prove that, if SELk×1

DISJ cannot be solved by a protocol in
which Alice gives o(ntw) bits of advice and Bob and Charlie communicate a total of o(tw) bits,
then the worst case time per operation of the dynamic problems is Ω(t) in the cell probe model
with w bit words.

He conjectured that there exist positive constants δ < 1 and γ > 1+δ such that SELk×1
DISJ cannot

be solved for k ∈ Θ(nγ) if Alice gives o(n1+δ) bits of advice and Bob and Charlie communicate
a total of o(nδ) bits. If his conjecture is true, then all of the dynamic problems presented in [28]
require nΩ(1) time per operation in the cell probe model with O(log n) bit words. More generally,
he stated the following conjecture, which does not specify whether the communication protocols
involved are deterministic or randomized.

Conjecture 1 (Pǎtraşcu) Let f : {0, 1}n×{0, 1}n → {0, 1} be any function. Consider a protocol

2



π for computing SELk×1
f in the A

B→ (B ↔ C) model. If Alice sends o(k) bits, then the cost of
communication between Bob and Charlie is Ω(c), where c is the 2-party communication complexity
of f .

The intuition is that, if Alice sends o(k) bits of advice, then, for many of the instances
f(x1, y), . . . , f(xk, y), she is providing very little information. This suggests that, in the worst
case, solving one of the these instances should be essentially as hard as computing f in the stan-
dard two-party model. Furthermore, the generality of this conjecture, namely that it makes no
assumptions about the structure of f , invites the possibility of an information theoretic round
elimination argument.

1.2 Refutations

To our surprise, this intuition is not correct. While it is true that Alice cannot provide much
information about the xi’s, it turns out that she can provide a succinct message that will help
Charlie learn y. This is the main intuition behind all of our upper bounds.

For example, it is easy to disprove Pǎtraşcu’s conjecture for deterministic protocols by consid-
ering the equality function, EQ, where EQ(x, y) = 1 if and only if x = y. It has a very simple
deterministic protocol in which Alice sends Bob the minimum j ∈ {1, . . . , k} such that y = xj . If
there is no such j, she sends him 0. Bob forwards this message to Charlie, who can determine that
the output should be 1 if and only if he receives j 6= 0 and xj = xi. Here, Alice teaches y to Charlie
(via Bob) using a very short message.

We exploit this intuition to prove a much stronger result, using notions from learning theory
and recent results about sign matrices. Specifically, we show that, even if a Boolean function f
has large randomized complexity in the two-party model, SELk×1

f can have small deterministic

complexity in the A
B→ (B ↔ C) model.

Theorem 2 There exists a Boolean function f with two-party randomized communication com-

plexity Ω(n) such that SELk×1
f has a deterministic protocol in the A

B→ (B ↔ C) model in which

the total number of bits communicated is O(log2 k).

Note that when k ∈ nO(1), the total amount of communication is O(log2 n).
Interestingly, we prove the upper bound using the harder side of Yao’s min-max principle.

Although it is standard to use the min-max principle for proving lower bounds, we are not aware
of its application to prove upper bounds, especially for communication protocols.

A natural hope would be that Pǎtraşcu’s conjecture is still true for certain specific Boolean
functions with Ω(n) two-party randomized complexity, such as set-disjointness. Our next result
shows that this is not the case for set-disjointness. We directly design a protocol for set-disjointness,
in which Alice reveals a carefully chosen subset of y’s bits so that, on the remaining bits, determining
DISJ(xi, y) is easy, for each i ∈ {1, . . . , k}, because either xi has few 1’s or a large fraction of the
positions of 1’s in xi are also positions of 1’s in y.

Theorem 3 There is a deterministic protocol for SELk×1
DISJ in the A

B→ (B ↔ C) model, in which
Alice sends at most

√
n log k bits, Bob sends at most 1 +

√
n log k bits, and Charlie sends at most√

n log n bits.
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Note that when k ∈ nO(1), the total amount of communication is O
(√
n log n

)
.

It is worth remarking that Theorem 3 does not eliminate the possibility of proving strong lower

bounds for dynamic data structure problems via the A
B→ (B ↔ C) model. To obtain polynomial

lower bounds for the dynamic problems listed above, it suffices to prove that, for every protocol in
which Alice sends o(k) bits of advice, Bob and Charlie must communicate Ω(nδ) bits to compute
SELk×1

DISJ, for some constant 0 < δ ≤ 1/2. Theorem 2 and Theorem 3 show that such a lower bound
argument has to crucially use the structure of the set-disjointness function.

We also show that the randomized and deterministic communication complexities of computing

SELk×1
f in the A

B→ (B ↔ C) model do not differ by much. Furthermore, for any Boolean

function f with two-party randomized communication complexity R, we show that SELk×1
f has

deterministic communication complexity O((R + log n + log k) log k) in the A
B→ (B ↔ C) model.

This immediately shows that problems which, in the 2-party model, have efficient randomized

protocols, but are hard deterministically, give rise to easy asymmetric problems in the A
B→ (B ↔

C) model.

1.3 Restricted Lower Bounds

Finally, we provide lower bounds in the A
B→ (B ↔ C) model for some restricted classes of

protocols, which include those protocols used for our upper bounds in Theorem 2 and Theorem 3.
In those protocols, Alice sends far fewer bits of advice than she is allowed to. Moreover, after
Alice’s message is sent, Bob and Charlie engage in a very limited form of interaction. Our lower
bounds show that each of these restrictions, by itself, does not allow improvements in our upper
bounds. For analyzing protocols where Alice’s advice is less than

√
n bits, we convert the problem

into a direct product problem with
√
n instances. Then we obtain our lower bounds using recent

strong direct product theorems. For analyzing restricted interactions between Bob and Charlie, we
present an information theoretic argument. We show that, if there is a limited interaction protocol
in which Bob and Charlie communicate few bits, then x1, . . . , xk can be compressed to substantially
fewer than kn bits, which is impossible, in general.

While limited interaction protocols are a natural restriction of general ones, there is an additional
motivation to study them. In particular, they are very related to restricted dynamic data structure
algorithms. Consider Pǎtraşcu’s three phase dynamic problem [28]. In the first phase, data gets
inserted and the algorithm pre-processes this efficiently. The second phase consists of a series of
updates which are each processed in amortized time tu. The third phase gets a query and the
algorithm outputs the answer in time tq. Suppose that the third phase is non-adaptive in the sense
that, for each query, there is a fixed set of cells that are probed, which does not depend on the
results of the queries. All other phases have no restrictions. Can one prove lower bounds for such
algorithms? After the preliminary version of our work [7] appeared, Brody and Larsen [6] proved
strong lower bounds for such algorithms, which are independent of the pre-processing time allowed
in the first phase of the algorithm. We show that these lower bounds follow from our lower bounds
on restricted protocols. More precisely, we observe that every non-adaptive query algorithm yields a

very restrictive, non-interactive protocol in the A
B→ (B ↔ C) model: In these protocols, Bob sends

no messages at all. Our lower bounds for less restricted protocols then imply their non-adaptive
lower bounds.
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1.4 Organization

In Section 2, we introduce notation and define necessary concepts from two-party communication
complexity. In Section 3.1, we prove that randomization does not help for solving SELk×1

f in the

A
B→ (B ↔ C) model. Then, in Section 3.2, we present a function f with Ω(n) randomized two-

party complexity such that SELk×1
f can be computed deterministically with only logO(1) k bits of

communication. In Section 3.3, we prove our upper bound for set-disjointness. In Section 4, we
prove lower bounds in restricted settings and, in Section 5, we apply our lower bounds to prove
strong polynomial lower bounds for nonadaptive dynamic data structure problems. We conclude
in Section 6 with some open problems.

2 Preliminaries

Communication complexity was first studied for the two-party model in which the input is parti-
tioned between two players, who compute a Boolean function of their inputs [36]. At the end of
the computation, both players know the value of the function.

For any function f : X×Y → Z, we use D(f) to denote the deterministic complexity of f , which
is the minimum over all deterministic protocols π that compute f correctly on all inputs, of the
maximum number of bits communicated during any execution of the protocol. If µ : X×Y → [0, 1]
is a probability distribution and 0 < ε < 1, we use Dε

µ(f) to denote the ε-error distributional
complexity of f for distribution µ, which is the minimum over all deterministic protocols that
compute a function g differing from f on a set of inputs with probability at most ε, of the maximum
number of bits communicated during any execution of the protocol. Note thatDε

µ(f) ≤ D(f) ≤ n+1
for any f : X × Y → Z, µ : X × Y → [0, 1], and 0 < ε < 1, since one player can send its input to
the other player, who responds with the answer.

The computation of a randomized two-party protocol can be expressed as a function of the
players’ inputs, x and y, and a public (shared) sequence r of random bits that is provided to both
players. A protocol π for f has error probability ε if

max{Pr[π(x, y, r) does not compute f(x, y)] | x ∈ X, y ∈ Y } = ε,

where the probability is taken over all choices of r. The ε-randomized complexity of f , which we
denote by Rε(f), is the minimum over all randomized protocols for f with error probability at most
ε, of the maximum number of bits communicated during any execution of the protocol. Yao [35]
gave the following relationship between randomized and distributional communication complexities.
It is often called Yao’s min-max principle.

Theorem 4 For any function f and any 0 < ε < 1, Rε(f) = maxµ
{
Dε
µ(f)

}
.

In fact, the proof of Theorem 4 [20] applies to any reasonable non-uniform model of computation
with public coins.

There are simple Boolean functions that have very high deterministic complexity in the 2-party
model, but have efficient 2-party randomized protocols. For example, consider the equality function,
EQ : {0, 1}n × {0, 1}n → {0, 1}, where

EQ(x, y) =

{
1 if x = y
0 if x 6= y.
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D(EQ) ∈ Θ(n), but Rε(EQ) ∈ O(1) for any constant 0 < ε < 1
2 . Another example is the greater

than function, GT : {0, 1}n × {0, 1}n → {0, 1}, defined by

GT(x, y) =

{
1 if x > y
0 if x ≤ y,

where x and y are interpreted as n-bit integers. D(GT) ∈ Θ(n), but Rε(GT) ∈ O(log n) for
any constant 0 < ε < 1

2 . [27]. Thus, in the context of two-player games, randomization can be
substantially more powerful than determinism.

The set-disjointness problem on n-bit strings, denoted by DISJ : {0, 1}n × {0, 1}n → {0, 1}, is
defined by

DISJ(x, y) =
n∧
i=1

(x[i] ∨ y[i]).

In other words, if x and y are viewed as the characteristic vectors of two subsets of {1, . . . , n}, then
DISJ(x, y) = 1 if and only if the two subsets are disjoint, i.e., for all i ∈ {1, . . . , n}, either x[i] = 0
or y[i] = 0.

Babai, Frankl and Simon [2] were the first to prove a randomized lower bound of Ω(
√
n) for set-

disjointness. The lower bound was improved to Θ(n) by the celebrated result of Kalyanasundaram
and Schnitger [15] and later simplified by Razborov [31]. Subsequently, Bar-Yossef et.al. [3] gave
an elegant information theoretic proof of the bound, which has been very influential in the current
development of information complexity.

Newman [26] proved that any randomized two-party communication protocol (with public ran-
domness) in which each player has an input in {0, 1}n can be simulated by a two-party protocol that
uses O(log n) random bits. Implicit in Newman’s proof is a more general result, which holds for
any nonuniform model of computation, such as communication protocols, boolean circuits, decision
trees and non-uniform Turing machines:

Theorem 5 If there is a randomized computation for a function with domain U and error proba-
bility at most ε < 1/2, then there is a randomized computation for that function with the same cost
and error probability O(ε) that uses only O(log log |U |) random bits.

Proof: Let F (u, r) denote the randomized computation of a function f with input u from domain
U and the (infinite) public sequence r of random bits. Suppose F has error probability at most
ε, i.e. for all inputs u ∈ U , the probability that F (u, r) computes f(u) is at least 1 − ε, where the
probability is taken over the choices, r, for the public binary sequence.

We show that there exist δ ∈ O(ε) and t ∈ O(log |U |) binary sequences r1, . . . , rt such that, for
each input u, if we choose a sequence r at random from r1, . . . , rt, then F (u, r) computes f(u) with
probability at least 1 − δ. Suppose r1, . . . , rt are chosen independently at random from the space
of binary sequences. For any input u ∈ U and any i ∈ {1, . . . , t},

Pr [F (u, ri) computes f(u)] ≥ 1− ε,

so E
[
#
{
i ∈ {1, . . . , t} | F (u, ri) computes f(u)

}]
≥ (1 − ε)t. By the Chernoff bound [18], for all

0 < δ′ < 1,

Pr
[
#
{
i ∈ {1, . . . , t} | F (u, ri) computes f(u)

}
< (1− δ′)(1− ε)t

]
< e−(1−ε)t(δ′)2/2.
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Let δ′ = 1/2, let δ = (1 + ε)/2 ∈ O(ε), and let t = 8(1− ε)−1 ln |U | ∈ O(log |U |) since ε < 1
2 . Then

(1− δ′)(1− ε) = 1− δ and (1− ε)t(δ′)2/2 = ln |U |, so

Pr
[
#
{
i ∈ {1, . . . , t} | F (u, ri) computes f(u)

}
< (1− δ)t

]
< 1/|U |.

The union bound implies that

Pr
[

exists u ∈ U such that #
{
i ∈ {1, . . . , t} | F (u, ri) computes f(u)

}
< (1− δ)t

]
< 1.

Hence, there exist choices of r1, . . . , rt such that, for every input u ∈ U ,

#
{
i ∈ {1, . . . , t} | F (u, ri) computes f(u)

}
≥ (1− δ)t.

On any input u ∈ U , the computation F ′ chooses i ∈ {1, . . . , t} uniformly at random and
performs the computation F (u, ri). Then

Pr[F ′(u, i) computes f(u)] ≥ 1− δ,

so F ′(u, i) computes f with error probability δ ∈ O(ε).

3 Upper Bounds in the A
B→ (B ↔ C) model

For any protocol π in the A
B→ (B ↔ C) model, we define CCA→B(π) to be the worst case number

of bits sent by Alice and CCB↔C(π) to be the worst case number of bits communicated between
Bob and Charlie.

3.1 Alice can Derandomize

We begin by showing that every randomized protocol for SELk×1
f in the A

B→ (B ↔ C) model can
be efficiently derandomized.

Theorem 6 Consider any Boolean function f : {0, 1}n × {0, 1}n → {0, 1}. Let π be a random-

ized protocol for SELk×1
f in the A

B→ (B ↔ C) model with CCA→B
(
π
)

= m, CCB→C
(
π
)

= `,

CCC→B
(
π
)

= q, and error probability at most 1
2 − ε, for some constant 0 < ε < 1

2 . Then, there ex-

ists a deterministic protocol π′ for SELk×1
f such that CCA→B

(
π′
)
∈ O((m+log k+log n)(log k)/ε2),

CCB→C
(
π′
)
∈ O((`+ log k + log n)(log k)/ε2), and CCC→B

(
π′
)
∈ O(q(log k)/ε2).

Proof: By Theorem 5, we may assume that π uses only h ∈ O(log k + log n) random bits. Let
t ≥ (1 + 2ε)(ln k)/ε2 be an odd integer. Choose t strings r1, . . . , rt independently at random
from {0, 1}h. Let x ∈ {0, 1}nk, y ∈ {0, 1}n, and i ∈ {1, . . . , k}. Then, for each j ∈ {1, . . . , t},
Pr[π(x, y, i, rj) outputs f(xi, y)] ≥ 1

2 + ε. Let δ = 1 − 1/(2ε + 1). Then (1 − δ)(1
2 + ε) = 1

2 , so by
the Chernoff bound,

Pr
[
#
{
j ∈ {1, . . . , t} | π(x, y, i, rj) does not output f(xi, y)

}
< t/2

]
< e−( 1

2
+ε)tδ2/2 ≤ e− ln k = 1/k.

Hence, there is a nonzero probability that, for all i ∈ {1, . . . , k}, π(x, y, i, rj) outputs f(xi, y) for
the majority of j ∈ {1, . . . , t}. Thus, given x and y, Alice can find a sequence of t ∈ Θ((log k)/ε2)
strings r1, . . . , rt ∈ {0, 1}h for which this is true. She sends these strings to Bob, together with
the messages a1, . . . , at she sends in π(x, y, i, rj) for all j ∈ {1, . . . , t}. Bob forwards the strings
r1, . . . , rt to Charlie. Then, for all j ∈ {1, . . . , t}, Bob and Charlie run π(x, y, i, rj) with Alice’s
message aj and take the output that is produced most often.
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Any two-party protocol for computing a Boolean function f : {0, 1}n × {0, 1}n → {0, 1} is a

protocol for computing SELk×1
f in the A

B→ (B ↔ C) model in which Alice sends nothing. Thus,
we immediately get the following corollary:

Corollary 7 Let f : {0, 1}n × {0, 1}n → {0, 1} be any Boolean function such that Rε(f) ∈
(log n)O(1), for some constant 0 < ε < 1/2. If k ∈ nO(1), then there exists a deterministic protocol

for SELk×1
f in the A

B→ (B ↔ C) model where Alice sends O
(

log2 n
)

bits to Bob and Bob and

Charlie communicate (log n)O(1) bits.

It follows from Corollary 7 that both SELk×1
EQ and SELk×1

GT have efficient deterministic proto-

cols in the A
B→ (B ↔ C) model. These functions refute Pǎtraşcu’s conjecture for deterministic

protocols.

3.2 Alice as a Teacher

Next, we show that there exists a Boolean function f with very large randomized complexity in

the two-party model, for which SELk×1
f has efficient deterministic protocols in the A

B→ (B ↔ C)
model.

We need some definitions from computational learning theory. For any set S of Boolean func-
tions over {0, 1}n, we associate a Boolean matrix MS , whose rows are indexed by {0, 1}n and whose
columns are indexed by S, such that MS [x, f ] = f(x). A randomized algorithm L is said to learn S
with confidence δ and accuracy ε from m random examples drawn from a distribution µ on {0, 1}n
if, for each f ∈ S and for x1, . . . , xm ∈ {0, 1}n chosen independently from the distribution µ, given
(x1, f(x1)), . . . , (xm, f(xm)), L outputs a Boolean hypothesis function h : {0, 1}n → {0, 1} that,
with probability at least 1− δ, is ε-close to f , i.e. if x is chosen from µ, then Pr

[
h(x) 6= f(x)

]
≤ ε.

The Vapnik-Chervonenkis (VC) dimension, vc(M), of a matrix M is the largest number d such
that M has a d×2d sub-matrix all of whose columns are distinct, i.e., each vector in {0, 1}d appears
exactly once as a column in the sub-matrix. The following result, known as the VC Theorem [16],
shows the relevance of VC dimension to learning.

Theorem 8 Let S be a set of Boolean functions over {0, 1}n and let µ be an arbitrary distribution
on {0, 1}n. Then there exists a randomized algorithm L that learns S with confidence δ and accuracy
ε from m random examples drawn from µ, where

m ∈ O
(

1

ε
log

1

δ
+

vc
(
MS
)

ε
log

1

ε

)
.

For any Boolean function f : {0, 1}n × {0, 1}n → {0, 1}, let Mf denote the matrix, whose
rows and columns are indexed by {0, 1}n, such that Mf [x, y] = f(x, y). If, for each y ∈ {0, 1}n,
we define the Boolean function fy : {0, 1}n → {0, 1} such that fy(x) = f(x, y) and we let S =
{fy | y ∈ {0, 1}n}, then MS = Mf . Using an elegant argument, Kremer, Nisan and Ron [19] showed
that, if Mf has small VC-dimension, then f has small distributional communication complexity
under product distributions (i.e. under distributions that can be expressed as the product of two
distributions over {0, 1}n). We exploit this connection to learning theory to prove the following
result.
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Theorem 9 Let f : {0, 1}n × {0, 1}n → {0, 1} be a Boolean function and let 0 < ε < 1
2 be a

constant. Then, there exists a randomized protocol π for SELk×1
f in the A

B→ (B ↔ C) model with
error probability at most ε such that

CCA→B
(
π
)
,CCB↔C

(
π
)
∈ O

(
1

ε
vc
(
Mf

)
log

1

ε
log k

)
.

Proof: Using Yao’s min-max principle (Theorem 4) in the A
B→ (B ↔ C) model, our task

reduces to showing that, for every distribution µ on {1, . . . , k}×
(
{0, 1}n

)k×{0, 1}n, there exists a

deterministic protocol πµ for SELk×1
f with error probability at most ε and CCA→B

(
πµ
)
,CCB↔C

(
πµ
)

having the desired bound. We do this by first constructing a randomized protocol that has the
required error probability over its internal coin tosses and over µ. A standard averaging argument
then yields the desired deterministic protocol.

Let S denote the set of functions {fy | y ∈ {0, 1}n}. For any inputs x = (x1, . . . , xk) ∈ {0, 1}nk
and y ∈ {0, 1}n, Alice can determine the conditional distribution µx,y induced on {1, . . . , k}. By
Theorem 8, there is a randomized algorithm L that learns the function fy ∈ S with confidence and
accuracy ε/2 from m random examples drawn from µx,y, where

m ∈ O
(

2

ε
log

2

ε
+

2vc(MS)

ε
log

2

ε

)
.

Alice draws m samples i1, . . . , im from µx,y and sends Bob a message containing(
i1, f(xi1 , y)

)
, . . . ,

(
im, f(xim , y)

)
.

This requires communicating at most m(1 + log k) bits. Bob transmits this message to Charlie. In
learning theoretic terms, Alice, the teacher, is trying to teach fy to the learning algorithm Charlie.
Charlie uses the randomized algorithm L to compute a hypothesis h consistent with Alice’s m
examples such that the probability h(xi) 6= f(xi, y) is at most ε. Note that this probability is over
the random coin tosses used by Alice to sample points and over the distribution µx,y for i. Finally,
Charlie completes the protocol by sending h(xi) to Bob.

By a standard averaging argument, Alice’s coin tosses can be fixed such that the resulting
deterministic protocol has error probability at most ε for distribution µ.

The above theorem shows that if Mf has at most polylogarithmic VC-dimension, then SELk×1
f

has very efficient protocols in the A
B→ (B ↔ C) model. Using earlier results of Ben-David et.al.

[5] and Linial and Shraibman [24], Sherstov [33] showed (implicitly in the proof of Theorem 3.5)
that there exists a function f with high randomized communication complexity in the two-party
model such that Mf has low VC-dimension.

Theorem 10 For any constant 0 < ε < 1, there are functions f such that Mf has VC-dimension
O(1) and Rε(f) ∈ Ω(n).

Now, we have everything in place to prove our first main result.

Theorem 2. There exists a Boolean function f with two-party randomized communication com-
plexity Ω(n) such that, for n ≤ k ∈ 2(logn)O(1)

, SELk×1
f has a deterministic protocol in the

A
B→ (B ↔ C) model, in which Alice sends Bob O

(
log2 k

)
bits and then Bob and Charlie commu-

nicate a total of O
(

log2 k
)

bits.

9



Proof: By Theorem 10, there is a function f such that Rε(f) ∈ Ω(n) and vc
(
Mf

)
= O(1). It

follows from Theorem 9 that SELk×1
f has a randomized protocol π in the A

B→ (B ↔ C) model
in which Alice sends O(log k) bits of advice and Bob and Charlie communicate O(log k) bits.
Finally, applying Theorem 6, we derandomize π to obtain a deterministic protocol π′ such that
CCA→B

(
π′
)

= O
(

log2 k
)

and CCB↔C
(
π′
)

= O
(

log2 k
)
.

This disproves Conjecture 1, even for randomized protocols.

3.3 An Upper Bound for Set-Disjointness

We construct a protocol for SELk×1
DISJ with o(n) communication complexity in the A

B→ (B ↔ C)
model. Throughout the construction, it is helpful to view the inputs x1, . . . , xk, and y as subsets
of {1, . . . , n}.
Theorem 3 There is a deterministic protocol for SELk×1

DISJ in the A
B→ (B ↔ C) model, in which

Alice sends at most
√
n log k bits, Bob sends at most 1 +

√
n log k bits, and Charlie sends at most√

n log n bits.

Proof: Given x1, . . . , xk, and y, Alice repeatedly picks a set from among x1, . . . , xk that is:

• disjoint from y and

• contains a least
√
n elements that are not in the union of the sets she has already picked.

Then Alice send the indices of these sets to Bob. Note that each time Alice picks a set, the number
of elements in the union of the sets she has picked increases by at least

√
n. Since these sets are

all subsets of {1, . . . , n}, Alice picks at most
√
n sets. A set index can be represented using log k

bits, so Alice sends at most
√
n log k bits to Bob.

Bob forwards the information he receives from Alice to Charlie. Charlie computes the union
of these sets and removes them from xi, since none of them are in y. Let x′ denote the resulting
set, so x′ ∩ y = xi ∩ y. If x′ contains at least

√
n elements, then x is not disjoint from y, since,

otherwise, Alice would have picked more sets and sent more indices. In this case, Charlie sends 0
to Bob and the protocol terminates.

If x′ contains fewer than
√
n elements, then, Charlies send 1 to Bob, followed by each of the

elements in x′. Since each element can be represented using log n bits, Charlie sends at most√
n log n bits to Bob. In this case, Bob computes x′ ∩ y = xi ∩ y and sends the answer to Charlie.

Thus Bob sends at most 1 +
√
n log k bits.

4 Lower Bounds in Restricted Models

An interesting fact is that our upper bounds do not use the full power of the A
B→ (B ↔ C) model.

First, Alice sends far fewer bits than she is allowed to. Second, Bob, the receiver of Alice’s advice, is
merely forwarding it to Charlie without processing it in any way. Third, the algorithms in Sections
3.2 and 3.3 have limited interaction between Bob and Charlie. We now discuss the limitations that
these restrictions place on the power of the A

B→ (B ↔ C) model. In Section 4.1, we prove our
upper bound for set-disjointness cannot be substantially improved, unless we allow Alice to send
more than

√
n bits of advice, even if players interact arbitrarily. In Section 4.2, we complement

this by showing the upper bound for set-disjointness cannot be improved if Bob and Charlie have
limited interaction.

10



4.1 Lower Bounds via Strong Direct Product Theorems

For any Boolean function f : {0, 1}n × {0, 1}n → {0, 1}, let f (k) : {0, 1}nk × {0, 1}nk → {0, 1}k
denote the function such that, for all x1, . . . , xk, y1, . . . , yk ∈ {0, 1}n, f (k)(x1, . . . , xk, y1, . . . , yk) =
(f(x1, y1), . . . , f(xk, yk)). Suppose that every c-bit communication protocol for f has probability
of success σ < 1. Then a strong direct product theorem for f states that any ck-bit protocol for f (k)

has success probability that is exponentially small in k.
There is a rich history of both positive and negative results for strong direct product theorems

in complexity theory, including Yao’s famous XOR Lemma (see for example [11]). Shaltiel [32]
initiated the study of strong direct product theorems in communication complexity and proved
a strong direct product theorem for functions where we have lower bounds via the discrepancy
method over product distributions. This includes functions such as the inner product function.
Lee, Shraibman, and Spalek [23] strengthened Shaltiel’s result by proving a strong direct product
theorem for functions that have lower bounds via the discrepancy method over any distribution.
There is no known lower bound for set-disjointness via the discrepancy method, although a weaker
form of a strong direct product theorem (with suboptimal parameters) was obtained by Beame,
Pitassi, Segerlind and Wigderson [4]. Finally, Klauck [17] proved the following optimal strong direct
product theorem for set-disjointness.

Theorem 11 There exist constants 0 < β < 1 and α > 0 such that, for all k ≥ 1, every ran-
domized protocol which computes DISJ(k) : {0, 1}nk × {0, 1}nk → {0, 1}k using at most βkn bits of
communication has error probability greater than 1− 2−αk.

Using this theorem, we obtain the following lower bound for asymmetric set-disjointness in the

A
B→ (B ↔ C) model. A similar lower bound can also be obtained for any Boolean function that

has a strong direct product theorem.

Theorem 12 There exist constants 0 < β < 1 and α > 0 such that, in any deterministic protocol

for SEL
√
n×1

DISJ in the A
B→ (B ↔ C) model, if Alice sends at most α

√
n bits, then Bob and Charlie

must communicate at least β
√
n bits.

Proof: Let α and β be constants that satisfy Theorem 11 and let k =
√
n.

To obtain a contradiction, suppose that there is a deterministic protocol for SELk×1
DISJ, where

Alice sends αk bits of advice to Bob, and then Bob and Charlie communicate c < βk bits. Using
this protocol, for every distribution µ′ on {0, 1}k×k ×{0, 1}k×k, we construct a deterministic ck-bit
protocol for DISJ(k) : {0, 1}k×k × {0, 1}k×k → {0, 1}k with error probability at most ε = 1− 2−αk,
i.e., Dε

µ′(DISJ(k)) ≤ ck. Then Yao’s min-max principle (Theorem 4) implies that Rε(DISJ(k)) ≤ ck.
This contradicts Theorem 11, the direct product theorem for set-disjointness.

Consider any distribution µ′ : {0, 1}k×k×{0, 1}k×k → [0, 1]. Given inputs x′1, . . . , x
′
k, y
′
1, . . . , y

′
k ∈

{0, 1}k, we create inputs x1, . . . , xk, y ∈ {0, 1}n for SELk×1
DISJ as follows: y = y′1 · · · y′k and, for each

i ∈ {1, . . . , k}, xi = 0(i−1)kx′i0
(n−i)k. In particular, xi is all 0’s except for its i’th block of k bits,

which is x′i. Let µ be the resulting distribution on {0, 1}nk × {0, 1}n.
Alice’s αk-bit message partitions the space {0, 1}nk × {0, 1}n into 2αk equivalence classes. Let

C be an equivalence class with maximal weight under distribution µ. Then µ(C) ≥ 2−αk. Since the

A
B→ (B ↔ C) protocol is deterministic, it answers correctly for every input ((x1, . . . , xk), y) ∈ C

and i ∈ {1, . . . , k}.
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Consider the following two-party protocol for DISJ(k): Given x′1, . . . , x
′
k, y
′
1, . . . , y

′
k ∈ {0, 1}k,

Bob and Charlie compute the answers to SELk×1
DISJ(i, (x1, . . . , xk), y), for i = 1, . . . , k, pretending,

each time, that Alice sent the message for equivalence class C. They concatenate these k one-bit
answers to get a k-bit answer to DISJ(k)(x′1, . . . , x

′
k, y
′
1, . . . , y

′
k). Since Bob and Charlie communicate

at most c bits to compute each one-bit answer, they communicate at most ck < βk2 bits in total.
Let C ′ ⊆ {0, 1}k×k × {0, 1}k×k consist of all inputs (x′1, . . . , x

′
k, y
′
1, . . . , y

′
k) from which inputs

((x1, . . . , xk), y) in C are produced. Then the two-party protocol correctly computes DISJ(k) for
all inputs in C ′ and µ′(C ′) ≥ 2−αk. Thus Dε

µ′(DISJ(k)) ≤ ck.

This lower bound matches our upper bound to within factors of log n and log k.

4.2 Lower Bounds via Compression

In all our upper bounds, there is limited interaction between Bob and Charlie. We say that π
is a 1.5 round (m, `, q)-protocol if it proceeds in the following way: First, as usual, Alice sends
m bits A = A(X, y) to Bob. Then there are two rounds of communication between Bob and
Charlie. In the first round, Bob communicates ` bits B = B1(y,A) to Charlie that do not depend
on i. (For example, Bob could forward ` bits of Alice’s message to Charlie.) In the second round,
Charlie communicates q bits C(x1, . . . , xk, i, B) back to Bob. Finally, using his knowledge of i, Bob
computes the answer B2(y, i, A,C) = f(Xi, y). Note that there is no restriction on Alice’s advice.
The crucial restriction, beyond the fact that there are only two rounds of communication after the
advice, is that Bob’s communication to Charlie is independent of i. We say that this is only half a
round of communication.

Interestingly, 1.5 round protocols have non-trivial power. The proof of Theorem 2, which refutes
Pǎtraşcu’s conjecture, employs a 1.5 round (O((log n)2, O((log n)2, 1)-protocol. For set-disjointness,
Theorem 3 gives a 1.5 round

(√
n log k,

√
n log k,

√
n log n

)
-protocol. It is fun to verify that func-

tions like equality and greater-than can all be solved cheaply, without even using the 0.5 round
communication from Bob to Charlie, i.e. they both have deterministic (O(log n), 0, O(log n))-
protocols.

In this section, we show the following limitations of 1.5 round protocols.

Theorem 13 Let k/ log k ∈ ω(n) and m ≥ n. For 1 ≤ q and 1 ≤ ` ≤ n, every 1.5 round (m, `, q)-
protocol for computing SELk×1

DISJ has `
(

61nm
k + q

)
≥ 0.008n. If the protocol is randomized with error

probability at most 1
2 − ε, then it has

(
`+ log k

)
·
(

61nm
k + q

)
∈ Ω

(
ε4

log2 k
n
)
.

Note that `
(

61nm
k + q

)
≥ 0.008n implies that either m ≥ k/61n or ` · (q+1) ≥ 0.008n. Since

every 1.5 round (m, 0, q0)-protocol immediately gives a 1.5 round (m, 1, q0)-protocol, it follows
that every 1.5 round (m, 0, q0)-protocol for computing SELk×1

DISJ has 61nm
k + q ≥ 0.008n, so either

m ∈ Ω(k) or q ∈ Ω(n). If the protocol is randomized with error probability at most 1
2 − ε, then

either m ∈ Ω
(

ε4

log2 k
k
)

or q ∈ Ω
(

ε4

log2 k
n
)
. The upper bound in Theorem 3 shows that Theorem 13

is tight to within logarithmic factors, when k = n2+δ for any constant δ > 0. The lower bound in
Theorem 12 is incomparable, since it restricts the amount of advice Alice can send.

Our next lower bound is for the well known inner-product function, IP(x, y) =
∑n

i=1 xiyi mod 2.
The inner product function is one of the hardest functions in the standard two-party communication
model. For example, Chor and Goldreich [8, 20] showed that, even for protocols with an inverse-
subexponential advantage over random guessing, inner product requires Ω(n) bits of communication
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in the two party model. It is thus also a natural target for proving lower bounds on the cost of 1.5

round protocols in the A
B→ (B ↔ C) model.

Theorem 14 Let k ∈ [ω(n), 2o(
√
n)]. Consider any 1.5 round (m, `, q)-protocol for computing

SELk×1
IP . If Alice communicates m ≤ (1− δ)k bits for some δ > 0, then q + ` ≥ (δ − o(1))n.

If the protocol is randomized with error probability at most 1
2 − ε, then either m ∈ Ω

(
ε2

log kk
)

or

q + ` ∈ Ω
(
ε2

log kn
)
.

Note that, if Alice communicates k bits, she can send the answer for each i ∈ {1, . . . , k}.
Our lower bound for inner-product, ` + q ∈ Ω(n), is stronger than our lower bound for set-

disjointness, `q ∈ Ω(n). Recall that ` and q are the number of bits communicated by Bob and
Charlie, respectively. The naive algorithm in which Bob sends y to Charlie has ` + q = n, which
matches our lower bound for inner product. The algorithm for set-disjointness in Section 3.3 has
`q ∈ O(n log k log n), which is only logarithmic factors more than our lower bound.

The main idea for proving both of these theorems is to find an encoding of x1, . . . , xk using 1.5
round protocols. If the cost of the protocol is small, our encoding compresses kn bits of information
to fewer bits. However, this is impossible, since x1, . . . , xk has entropy kn, We begin by proving
Theorem 14, since compression can be done cleanly for the inner-product function. Implementing
compression for set-disjointness is more involved.

Proof of Theorem 14: Assume that π is a deterministic 1.5 round (m, `, q)-protocol for comput-
ing SELk×1

IP , in which Alice communicates m ≤ (1 − δ)k bits. Our goal is to give a scheme for
encoding x1, . . . , xk, where each xi is chosen uniformly from {0, 1}n.

Fix x1, . . . , xk. Because Alice does not know i and Bob’s message B = B1(y,A(x1, . . . , xk, y))
to Charlie cannot depend on i, this message depends only on y. Hence, by averaging, there exists
a message Bfixed that Bob sends for at least 2n−` many y’s. Thus, there exists a set, Y, of n − `
many linearly independent vectors such that Bob sends Bfixed on each of them. Let Y ′ be a set of
` additional linearly independent vectors such that Y ∪Y ′ forms a basis of the vector space {0, 1}n.
For each partial basis Y, we choose Y ′ in some fixed way.

Our encoding of x1, . . . , xk contains the following:
(a) the set Y, which can be represented using (n− `) · n bits;
(b) Alice’s message A(x1, . . . , xk, y) for each y ∈ Y, which can be represented using (n− `) ·m bits;
(c) for each index i ∈ {1, . . . , k}, the q bit message C(x1, . . . , xk, Bfixed, i) sent from Charlie to Bob;
and
(d) extra information E consisting of the inner product of each xi with each y′ ∈ Y ′, which can be
represented using k · ` bits.
A key point is that Charlie’s message does not depend on y ∈ Y. This is because Charlie does not
see y and, for all y ∈ Y, Charlie receives the same message, Bfixed, from Bob.

Given any such encoding of x1, . . . , xk, decoding can be done as follows: First, simulate Bob
in protocol π, for each i ∈ {1, . . . , k} and each y ∈ Y. This is possible because y, i, Alice’s
message A(x1, . . . , xk, y), Bob’s message Bfixed, and Charlie’s message C(x1, . . . , xk, Bfixed, i) are
all known. Because π is a correct protocol for SELk×1

IP , the output of the protocol is IP(xi, y).
From {IP(xi, y) | i = 1, . . . , k} and the inner products in E, x1, . . . , xk can be obtained by solving a
system of linear equations of full rank. Because no encoding of x1, . . . , xk can use less than nk bits,
it follows that (n− `) ·n+ (n− `) ·m+ qk+ `k ≥ nk. Thus, q+ ` ≥ n− (n−`)(n+m)

k . By assumption,
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m ≤ (1−δ)k. Therefore q + ` ≥ n − (n − `)(nk + 1−δ) ≥ (δ − n
k )n, which is in (δ − o(1))n, since

k ∈ ω(n).
We now extend the result to handle randomized protocols. Theorem 6 converts a random-

ized (mr, `r, qr)-protocol into a deterministic (md, `d, qd)-protocol, with md ∈ O((mr + log k +
log n)(log k)/ε2), `d ∈ O((`r + log k + log n)(log k)/ε2), and qd ∈ O(qr(log k)/ε2). Setting δ = 0.5

gives that md ≥ 0.5k or qd + `d ≥ (0.5− o(1))n. In the first case, mr ∈ Ω
(
ε2

log kmd − log k − log n
)
,

which is Ω
(
ε2

log kk
)
, since k ∈ ω(n). In the second case, qr + `r ∈ Ω

(
ε2

log k (qd + `d) − log k − log n
)
,

which is Ω
(
ε2

log kn
)
, since k ∈ ω(n) and (log k)2 ∈ o(n).

This proof can be easily adapted to prove a similar lower bound for the indexing function,
IN : {0, 1}n × {1, . . . , n} → {0, 1}, where IN

(
x, y
)

= xy. This function outputs the y’th bit of
string x.

Theorem 15 Consider any (m, 0, q) protocol for computing SELk×1
IN . If m ≤ (1 − δ)k, for some

δ > 0, then q ≥ δn. If the protocol is randomized with error probability at most 1
2 − ε, then either

m ∈ Ω
(
ε2

log kk
)

or q ∈ Ω
(
ε2

log kn
)
.

Proof: The indexing function can be treated as a Boolean function with domain {0, 1}n×{0, 1}n,
with the promise that y is an n-bit string with Hamming weight 1. In this case, IN

(
x, y
)

is the
inner product of x and y. Then the proof is a simple specialization of the proof of Theorem 14.
Since ` = 0, Bob sends the same message (which consists of no bits) for every string y ∈ {0, 1}n
with Hamming weight 1. These n strings are linearly independent. Let Y denote this set of
strings. The encoding of x1, . . . , xk is the same, except for (a) and (e), which are not needed,
since Y is fixed and Y ′ is empty. It follows that nm + qk ≥ nk, so m ≤ (1 − δ)k implies that
q ≥ n − nm/k ≥ n − (1 − δ)n = δn. The remainder of the proof, including the extension to
randomized protocols, is the same as in the proof of Theorem 14.

The inner-product of xi with any known non-zero vector y provides 1 bit of information about
xi. However, the fact that DISJ(xi, y) = 0 does not provide much information about xi. This is
the main source of complication when trying to apply the same approach to prove a lower bound
for set-disjointness.

On the other hand, the fact that DISJ(xi, y) = 1 provides a lot of information about xi: all
indices at which y is 1 are indices at which xi is 0. Therefore, to encode x1, . . . , xk efficiently, we
would like to choose a convenient set Y of y’s such that DISJ(xi, y) = 1 for many i ∈ {1, . . . , k}.
Unfortunately, if we choose vectors x and y uniformly at random from {0, 1}n, then DISJ(x, y) = 0
with very high probability. Hence, we have to work with a restricted set of vectors. This makes it
delicate to find the set Y.

Let Γx consist of the vectors in {0, 1}n with Hamming weight σx and let Γy consist of the vectors
in {0, 1}n with Hamming weight σy. We will consider only x1, . . . , xk ∈ Γx and y ∈ Γy.

The following fact will be used in the proof of Claim 20 to show that, when σx·σy is appropriately
set, 85% of the vectors in Γy do not intersect with any given vector in Γx.

Fact 16 Suppose σx, σy ≤ n/4. For each x ∈ Γx, if y is chosen at random from Γy, then

Pry
[
DISJ(x, y) = 1

]
≥ exp

(
− 4σxσy

n

)
.
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Proof: Fix x ∈ Γx. If y is chosen at random from Γy, the probability that x and y are disjoint is(
n−σx
σy

)(
n
σy

) =
(

1− σx
n

)
·
(

1− σx
n− 1

)
· · ·
(

1− σx
n− σy + 1

)
≥
(

1− σx
n− σy + 1

)σy
>

(
1− 4σx

3n

)σy
,

since σy ≤ n/4. Now 1 − t ≥ exp
(
− 3t

)
for 0 ≤ t ≤ 1/3 and 4σx/3n ≤ 1/3, since σx ≤ n/4.

Therefore
(
1− 4σx

3n

)σy ≥ (exp(−4σx
n )σy = exp(−4σxσy

n ).

Let Cover(xi, y) ⊆ {1, . . . , n} denote the indices of xi that one learns are zero from learn-
ing DISJ(xi, y). If DISJ(xi, y) = 1, then Cover(xi, y) = {j | yj = 1} and, if DISJ(xi, y) = 0,
then Cover(xi, y) = ∅. For any Y ⊆ Γy, let Cover((x1, . . . , xk),Y) = {(i, j) | there exists y ∈
Y such that DISJ(xi, y) = 1 and yj = 1} = ∪i∈{1,...,k} ∪y∈Y {i} × Cover(xi, y).

Next, we present the main lemma that enables x1, . . . , xk to be encoded efficiently.

Lemma 17 Consider any deterministic 1.5 round (m, `, q)-protocol, where 1 ≤ ` ≤ n/20. Let
σy = 5`, let σx = 0.008n/`, and fix x1, . . . , xk ∈ Γx. Then there exists a message Bfixed and
a set Y ⊆ Γy of size at most 30n such that, for each y ∈ Y, Bob sends Bfixed to Charlie and
|Cover((x1, . . . , xk),Y)| ≥ 1

2nk.

Proving this lemma needs technical work. Before we do that, let us see how the lower bound for
disjointness follows from Lemma 17 via compression. We will need also the following simple fact:

Fact 18 Let v1, . . . , vk, σ be positive integers such that v1+· · ·+vk ≤ r and σ ≤ min {vi | 1 ≤ i ≤ k}.
Then,

k∏
i=1

(
vi
σ

)
≤
(
dr/ke
σ

)k
.

Proof: We will make use of the inequality of arithmetic and geometric means: If a1, . . . , ak are
non-negative real numbers, then

a1a2 · · · ak ≤
(
a1 + · · ·+ ak

k

)k
.

Let j be any integer such that 0 ≤ j < σ and let ai = vi − j for all i ∈ {1, . . . , k}. Then,

k∏
i=1

(vi − j) ≤
( r
k
− j
)k
≤ (dr/ke − j)k ,

so, by the definition of binomial coefficients,

k∏
i=1

(
vi
σ

)
=

1(
σ!
)k k∏

i=1

σ−1∏
j=0

(
vi − j

)
≤ 1(

σ!
)k
σ−1∏
j=0

(dr/ke − j)

k

=

(
dr/ke
σ

)k
.
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Proof of Theorem 13: Let σy = 5` and σx = 0.008n/`. Fix any 1.5 round deterministic (m, `, q)-
protocol π for SELk×1

DISJ and any x = x1, . . . , xk ∈ Γx
k. If ` > n/20, then `

(
61nm
k + q

)
≥ ` > 0.05n ≥

0.008n. Thus, we may assume that 1 ≤ ` ≤ n/20. Then it is easy to verify that σx, σy ≤ n/4. Let
Bfixed and Y be the message and subset of Γy guaranteed by Lemma 17.

Our encoding of x1, . . . , xk contains the following:
(a) the set Y, which can be represented using 30n · n bits;
(b) Bob’s fixed message Bfixed, which can be represented using ` = 0.2σy bits;
(c) Alice’s message A(x1, . . . , xk, y) for each y ∈ Y, which can be represented using 30n ·m bits;
(d) for each i ∈ {1, . . . , k}, the q bit message C(x1, . . . , xk, Bfixed, i) sent from Charlie to Bob; and
(e) the remaining information E about x1, . . . , xk that is not learned from Cover((x1, . . . , xk),Y).

For i ∈ {1, . . . , k}, let Si = {j : (i, j) 6∈ Cover((x1, . . . , xk),Y). Observe that the indices
for which xi has value one lie in Si. Let vi = |Si|. Thus, the number of possibilities for the
locations of the ones of x1, . . . , xk is

(
v1
σx

)
·
(
v2
σx

)
· · ·
(
vk
σx

)
. As |Cover((x1, . . . , xk),Y)| > 0.5nk, we

have v1+· · ·+vk < 0.5nk. Invoking Fact 18, information E can be transmitted in at most log
(

0.5n
σx

)k
bits.

Given any such encoding of x1, . . . , xk, decoding can be done as follows: First, simulate Bob
in protocol π, for each i ∈ {1, . . . , k} and each y ∈ Y. This is possible because y, i, Alice’s
message A(x1, . . . , xk, y), Bob’s message Bfixed, and Charlie’s message C(x1, . . . , xk, Bfixed, i) are
all known. Because π is a correct protocol for SELk×1

DISJ, the output of the protocol is DISJ(xi, y).
From this, compute the indices in Cover((x1, . . . , xk),Y) where x1, . . . , xk has zeroes. By definition,
E communicates the remaining information about x1, . . . , xk, so it is possible to decode correctly.

Because no encoding of x1, . . . , xk can use less than its entropy H(x1, . . . , xk), we have:

30n · n+ `+ 30n ·m+ qk +H(E) ≥ H(x1, . . . , xk).

Note that H(x1, . . . , xk) = k · log
(
n
σx

)
. Thus,

H(x1, . . . , xk)−H(E) ≥ log

( ( n
σx

)k(
0.5n
σx

)k).
Using the observation that

(
n
σx

)
/
(

0.5n
σx

)
≥ 2σx , we obtain H(x1, . . . , xk) − H(E) ≥ σxk. Thus we

have
30n · n+ `+ 30n ·m+ qk ≥ σxk.

Then, using the fact that ` ≤ n ≤ nm, we have

30n(n+m) + nm

k
+ q ≥ σx.

Since m ≥ n, ` = 0.2σy, and σxσy = 0.04n, it follows that

`
(61nm

k
+ q
)
≥ `
(30n(n+m) + nm

k
+ q
)
≥ `σx = 0.2σxσy = 0.008n.

As in the proof of Theorem 14, Theorem 6 can be used to extend the lower bound to randomized
protocols, giving (`+ log k+ log n)

(
61n
k (m+ log k + log n) + q

)
∈ Ω( ε4

log2 k
n). Since k/ log k ∈ ω(n),

it follows that log k + log n ∈ Θ(log k) and 61n
k (log k + log n) ∈ o(1). But q ≥ 1, so 61n

k (log k +

log n) + q ∈ Θ(q). Hence (`+ log k)
(

61nm
k + q

)
∈ Ω( ε4

log2 k
n).
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All that remains is to prove the existence of the set, Y(x1, . . . , xk), promised by Lemma 17, for
each x1, . . . , xk. We will do so in two stages, using the probabilistic method. First, we will construct
an intermediate set, Y0(x1, . . . , xk), with some nice properties. This will allow us to obtain our
final desired set by picking elements from Y0 at random.

Lemma 19 Consider any deterministic 1.5 round (m, `, q)-protocol, where 1 ≤ ` ≤ n/20. Let
σy = 5` and σx = 0.008n/`. Then, for each x1, . . . , xk, there exists a set Y0(x1, . . . , xk) such that:

• Bob sends the same message for each y ∈ Y0(x1, . . . , xk),

• |Y0(x1, . . . , xk)| ≥ 10 ·
(
0.8
)σy · |Γy|, and

• |{i ∈ {1, . . . , k} | Pry∈Y0
[
DISJ(xi, y) = 1] > 0.2}| > 0.7k.

Proof: Fix x1, . . . , xk. Choose Bfixed at random, where the probability of choosing each message
is proportional to the number of y’s for which Bob sends the message. Let Y0 denote the set of
messages y ∈ Γy for which Bob sends Bfixed. Bob sends at most 2` different messages. Hence,
PrBfixed

[
|Y0| < 1

42−`|Γy|
]
< 1/4. It follows that, for ` sufficiently large and, hence, for σy = 5`

sufficiently large, 1
42−`|Γy| > 1

4(0.87)σy |Γy| > 10 · (0.8)σy |Γy|. Therefore, PrBfixed

[
|Y0| < 10 ·

(0.8)σy |Γy|
]
< 1/4.

The following claim shows that, for a typical random message Bfixed, for most messages y ∈ Y0

and for most i ∈ {1, . . . , k}, the sets represented by y and xi are disjoint.

Claim 20 EBfixed

[∣∣{i ∈ {1, . . . , k} | Pry∈Y0 [DISJ(xi, y) = 1] ≤ 0.2}
∣∣] ≤ 0.2k.

To prove the claim, consider any i ∈ {1, . . . , k}. Let Di be the event that Pry∈Y0
[
DISJ(xi, y) =

1
]
≤ 0.2. Let a = Pr[Di]. We will bound a from above by computing Pry∈Γy

[
DISJ(xi, y) = 1

]
in

two ways. First, note that choosing y at random from Γy is the same as first choosing Bfixed at
random and then choosing y ∈ Y0 at random. Hence,

Pry∈Γy

[
DISJ(xi, y) = 1

]
= Pr[Di]× Pry∈Y0 [DISJ(xi, y) = 1 | Di] + Pr[¬Di]× Pry∈Y0 [DISJ(xi, y) = 1 | ¬Di]
≤ a× 0.2 + (1− a)× 1 = 1− 0.8a.

Since σx, σy ≤ n/4 and σx · σy = 0.04n, Fact 16 implies that Pry∈Γy

[
DISJ(xi, y) = 1] ≥ e−.16 >

0.85. Hence 1−0.8a ≥ 0.85, which implies that a < 0.1875 < 0.2. This is true for all i ∈ {1, . . . , k}.
The claim now follows from the linearity of expectation.

Applying Markov’s inequality to this claim gives PrBfixed

[∣∣{i ∈ {1, . . . , k} | Pry∈Y0 [DISJ(xi, y) =

1] ≤ 0.2}
∣∣ ≥ 0.3k

]
≤ 0.2k/0.3k ≤ 2/3.

As 1/4 + 2/3 < 1, there is a non-zero probability that both |Y0| ≥ 10 · (0.8)σy |Γy| and
|{i ∈ {1, . . . , k} | Pry∈Y0

[
DISJ(xi, y) = 1] > 0.2}| > 0.7k.

Let us now show why choosing Y0 using Lemma 19 helps us construct Y. We will need one
more fact that formalizes the following natural intuition: if we take a sufficiently large subset of
Γy, then the distribution of the ones in the vectors of this subset is fairly well spread out among
{1, . . . , n}. For any such set S ⊆ Γy, let C(S) =

{
i ∈ {1, . . . , n}| Pry∈S [yi = 1] ≤ 1

2n

}
.
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Lemma 21 Let |S| > 2 ·
(
0.8
)σy · |Γy|. Then,

∣∣C(S)
∣∣ ≤ 0.2n.

Proof: Suppose that 0.2n < |C(S)| ≤ n. Let S′ denote the set of y’s in S such that yj = 0 for
all j ∈ C(S). Choose a random y ∈ Γy. By definition, the probability that y has a one in some
index in C(S) is at most |C(S)| · 1

2n ≤
1
2 . Hence, |S′| ≥ 1

2 |S|. This leaves at most n−|C(S)| < 0.8n

locations for the σy ones that are in each such y. Hence, |S′| ≤
(

0.8n
σy

)
≤ (0.8)σy ·

(
n
σy

)
, giving the

contrapositive of the result.

We now prove Lemma 17 by showing that Lemma 19 and Lemma 21 can be combined to get
our desired set Y(x1, . . . , xk).

Proof of Lemma 17: Pick Y0(x1, . . . , xk) according to Lemma 19. Construct Y ⊆ Γy by inde-
pendently choosing 30n elements at random from Y0(x1, . . . , xk). By definition of Y0, Bob sends
the same message to Charlie for all y ∈ Y. It remains to show that

ExpY [|Cover((x1, . . . , xk),Y)|] ≥ 1

2
nk.

For any i ∈ {1, . . . , k}, let Y i be the set of y ∈ Y0 such that DISJ(xi, y) = 1. Suppose that
Pry∈Y0

[
DISJ(xi, y) = 1] > 0.2. Then, from Lemma 19, we have |Y i| > 0.2|Y0| ≥ 2 ·

(
0.8
)σy · |Γy|.

Hence, by Lemma 21,
∣∣C(Y i)

∣∣ ≤ 0.2n. Thus, for any j not in C(Y i),

Pr
y∈Y0

[
j ∈ Cover(xi, y)

]
= Pr

[
y ∈ Y i

]
· Pr

[
yj = 1 | y ∈ Y i

]
≥ 0.2 · 1

2n
=

0.1

n
.

But we independently choose 30n different y’s to be in Y. Hence,

Pr
Y

[j 6∈ Cover(xi, y) for all y ∈ Y] ≤
(
1− 0.1

n

)30n ≤ 1

e3
.

We conclude that

ExpY [|Cover((x1, . . . , xk),Y)|] ≥
∑

i∈I(X)

∑
j 6∈C(Yi)

Pr
Y

[j ∈ Cover(xi, y) for some y ∈ Y]

> (0.7)k · (1− 0.2)n ·
(
1− 1

e3

)
> 0.5nk.

This completes the proof of Theorem 13, the lower bound for set-disjointness.

5 Non-Adaptive Data Structures

We now show that our lower bounds on restricted protocols in the previous section can be used to
obtain lower bounds for restricted data-structures. In particular, let us recall the key three phase
data-structure problem originally considered by Pǎtraşcu. We state the problem slightly more
generally in the cell-probe model, with each cell containing w ∈ O(log n) bits. Let f be a function
that takes a pair (X,Y ) as input and produces a Boolean output. In Phase 1, the data structure
algorithm gets X1, . . . , Xk, with each Xi ∈ {0, 1}n. Thus, each Xi is specified by O(n/w) words.
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The algorithm pre-processes these items and stores them using s cells in total. In Phase 2, the data
structure algorithm gets Y , which is specified using n′ words. The update time, i.e., the number of
cells probed (read from or written to) by the algorithm in this phase, is expressed as n′tu, where
tu is the amortized update time. Finally, in Phase 3, the data structure algorithm receives a query
i ∈ {1, . . . , k} and the algorithm must output f(Xi, Y ). The query time, i.e., the number of cells
probed in this phase, is denoted by tq. For example, when f is the inner product or disjointness
function, then X,Y ∈ {0, 1}n and n′ ∈ O(n/ log n). For the indexing function, X ∈ {0, 1}n, but
Y ∈ {1, . . . , n}, which can be stored in one word. The indexing function can also be viewed a
special case of disjointness, where Y is restricted to contain exactly one 1.

A natural goal is to understand the relationship between s, tu, tq and w for the best algorithm for
f . Then, we would like to show that for a hard function f , unless s is very large (super-polynomial
in n), at least one of tu and tq is polynomially large, i.e. nΩ(1).

Pǎtraşcu’s reduction shows that proving such lower bounds for suitable functions f results in
polynomial lower bounds for various (dynamic) data-structure problems. In particular, he showed
that strong lower bounds for a host of natural dynamic problems follow from a strong lower bound
for set-disjointness. It is worth noting that such a lower bound for the inner product function,
which we believe will be easier to prove, implies breakthrough lower bounds for several dynamic
problems, for example, the problem of determining the parity of the length of the shortest path.

We can prove very strong lower bounds when the three phase algorithm has the following
restriction: the third phase of the algorithm is nonadaptive, i.e. for each i, there is a fixed subset
Si of cells that get probed. Just to be clear, every other phase is entirely unrestricted. In fact, our
bounds hold even when there are no restrictions on the pre-processing done in Phase 1, i.e., the
total number of cells, sm is unrestricted. Such bounds were first proved by [6]. Their arguments
worked directly on the three-phase data-structure problem.

Here we show that their lower bounds for nonadaptive query algorithms can also be obtained

by viewing them as restricted protocols in the A
B→ (B ↔ C) model. More precisely, nonadaptive

query algorithms are (m, 0, q)-protocols in the language of Section 4.2. Alice sends m = wn′tu
bits A = A(X,Y ) and Charlie sends q = wtq bits C = C(X, i) both to Bob. Bob answers with
B(Y, i, A,C). Thus, it is a further restriction of the 1.5 round protocols that we considered before.
The following lemma makes these connections precise.

Lemma 22 Let D be a dynamic (randomized) algorithm for the three phase problem corresponding
to function f(X,Y ), where Y is specified by n′ words. If D uses only non-adaptive queries, then

there exists a (randomized) (wn′tu, 0, wtq)-protocol for SELk×1
f in the A

B→ (B ↔ C) model, where
w is the word-size, and tu, tq are respectively the amortized update and query times of D. Specifically
when the problem is the indexing function (so n′ = 1), the reduction is to a (wtu, 0, wtq)-protocol.

Proof: Let UXY be the set of cells that were touched in the second phase of the run of D. Clearly
|U | ≤ n′tu. Further, let Q[i] be the set of cells that are read in the third phase by D when queried
with index i. Note that Q[i] is independent of X1, . . . , Xk and Y as D uses non-adaptive query
algorithm. Also, |Q[i]| ≤ tq because i fits into one cell word.

Now consider the A
B→ (B ↔ C) model. Alice, having access to all of X1, . . . , Xk and Y sends

just the contents (without addresses) of the cells in U before they were updated in Phase 2, to Bob.
This costs wn′tu bits of advice. Charlie, knows X1, ..., Xk and i. Knowing i, he knows Q[i]. He
sends only the un-updated contents (no addresses) of the cells in Q[i]. Now, we argue that Bob is
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in a good position to effectively simulate D. First he knows Y . So he runs the update algorithm.
For each of his reads, he can get the contents from the original data structure via Alice’s message.
The cells that he has to update/write, he can do so himself. Thus, using just Alice’s message and
Y , he is able to recover which addresses got updated (i.e. written) and what their new contents are.
Further, he knows i and hence the addresses of all cells in set Q[i]. The contents of the updated
cells in Q[i] he has recovered with the help of Y and Alice’s message already, as we argued. For the
contents of the unupdated, he gets them from Bob’s message. All in all he now can simulate the
query phase of D and give the answer. We remark that, if D is randomized, then the simulation

in the A
B→ (B ↔ C) model will also be randomized.

Combining Lemma 22 with Theorem 15 immediately gives the following result. Note that our
result matches the lower bounds in [6] up to logarithmic factors.

Theorem 23 Let D be a dynamic (randomized) algorithm for the three phase problem correspond-

ing to the indexing function. Either tu ∈ Ω
(

ε4

w log2 k
k
)

or tq ∈ Ω
(

ε4

w log2 k
n
)
.

6 Open Problems and Conclusions

The A
B→ (B ↔ C) model is a new variant of the communication complexity model that may be

useful for studying the complexity of many dynamic data structure problems. Pǎtraşcu conjectured

that for any hard two-player function f , the asymmetric version of f is hard in the A
B→ (B ↔ C)

model when the length of Alice’s advice is o(k). Suppose that k is polynomial in n.
In this paper, we have obtained surprising counterexamples to this conjecture: we have exhibited

a function with maximal two-player randomized complexity that is easy in the A
B→ (B ↔ C) model

using very little advice from Alice. We have also shown nontrivial upper bounds for set-disjointness

in the A
B→ (B ↔ C) model, when the length of Alice’s advice is O

(√
n log n

)
.

The most important unresolved question is the exact complexity of asymmetric set-disjointness

in the A
B→ (B ↔ C) model. It is still possible that SELk×1

DISJ requires polynomial complexity
(nε for some ε > 0), which would yield polynomial lower bounds for a large collection of dynamic
data structure problems. More generally, no superpolylogarithmic lower bounds for SELk×1

f in the

A
B→ (B ↔ C) model are presently known for any function, even via a non-constructive argument.
One intuition that we have relates the complexity of SELk×1

f to the two-party complexity of f
under product distributions. More specifically, if y is independent of each xi, then Bob and Charlie
can solve f(xi, y) on their own (without the help of Alice) using the best product distribution
algorithm. On the other hand, if y depends on some xi then Alice should be able to use xi to teach
Charlie a lot about y by telling him the differences and similarities between y and xi. This was
precisely the intuition used in our upper bound for SELk×1

DISJ .
Motivated by this intuition, we conjecture that for any function f , the worst-case instances of

SELk×1
f are obtained by some product distribution, where each xi is chosen independently of y,

to ensure that the xi’s do not contain information about y that can be exploited by Alice. We
conjecture, further, that any lower bound for the two-player game for f under product distributions

(xi and y are chosen independently) acts as a lower bound for SELk×1
f in the A

B→ (B ↔ C) game.

Thus, for asymmetric set-disjointness, we conjecture a
√
n lower bound in the A

B→ (B ↔ C)
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model, which matches the tight
√
n lower bound for set-disjointness over product distributions in

the 2-party model [2].
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