
CS 2429 - Approaches to the P versus NP Question Lecture #3: 29 January 2014

CS 2429 - Approaches to the P versus NP Question

Lecture #3: 29 January 2014

Lecturer: Toniann Pitassi

Scribe Notes by: Brent Mombourquette

1 Applications of AC0 lower bounds

In this lecture we will be examining some applications of AC0 lower bounds proofs.

1.1 Pseudo-random Generators

A big question that pseudo-random generators (PRGs) may be able to answer is whether BPP =?

P or RP =? P , that is can probabilistic algorithms be derandomized and made to run determinis-
tically in polynomial time.

First recall from a previous lecture the following theorem.

Theorem 1 (Hastad) For sufficiently large n, any family {Cn} of depth d circuits of size s ≤
2n

1/(d+1)
has:

|Pr[Cn(x) = Parity(x)]− 1/2| ≤ 2n
1/(d+1)

Additionally, we have the following theorem for PRGs for AC0 circuits, using the above results.

Theorem 2 (NW94) ∀d there exists a family of functions {gn : {0, 1}` → {0, 1}n} where ` =
O(log(n)2d+6) such that:

(1) {gn} is computed by log-space uniform circuits of polynomial size depth d+ 4
(2) ∀{Cn} of polynomial size depth d and ∀ poly p(n) for sufficiently large n:

|Pr[Cn(y) = 1]− Pr[Cn(gn(y)) = 1]| ≤ 1

p(n)

assuming y is uniform from {0, 1}n.

The generating function gn ”fools” the circuits. Here it is defined as:

gn(x) = Parity(x|s1)Parity(x|s2) . . . Parity(x|sn)

Where the seed s1 . . . sn ⊂ {0, 1}` is such that |si| = (logn)d+3 and |si ∩ sj | ≤ log(n) ∀i 6= j.
Essentially, the seed is divided into a number of almost disjoint subsets and and applied as a
restriction to the input of the hard functions.

Therefore, any probabilistic AC0 circuit C of depth d can be simulated with a deterministic
circuit of depth roughly 2d.

1



CS 2429 - Approaches to the P versus NP Question Lecture #3: 29 January 2014

1.2 Algorithms for AC0 − SAT and AC0 −#SAT

The AC0 − SAT problem is the satisfiability problem defined as follows.

Definition The AC0 − SAT problem is given some circuit Cn ∈ AC0
d of size s, accept Cn if

∃a ∈ {0, 1}n such that Cn(a) = 1.

The AC0 −#SAT is defined similarly except it outputs the number of such satisfying assign-
ments a. The trivial brute force approach for both problems is to try all possible assignments,
taking time poly(|Cn|) · 2n.

The general approach is to express the worst case runtime of algorithm solving these problems
in the for |Cn| · 2n(1−µ where µ is the savings over the brute force method.

The following theorem was proved concerning the existence of an algorithm for solving these
AC0 − SAT problems in better than brute force worst case runtime.

Theorem 3 (IMP12) There exists a Las Vegas algorithm (zero-error randomized algorithm) that
takes as input a depth d circuit Cn with cn gates and produces a set of restrictions {ρi}i partitioning
{0, 1}n such that ∀i Cn|ρi is 0 or 1. The expected runtime and number of restrictions is

poly(n) · |Cn| · 2n(1−µc,d)

where µc,d = 1
O(log(c)+dlog(d))d−1 .

The high level proof idea for this theorem begins with the a slightly modified version of Has-
tad’s Switching Lemma, which tells us that, with high probability, a restriction ρ on a circuit Cn
produces a small height decision tree. A restriction that extends ρ partitions the circuit space.
The restrictions that do not extend ρ are then partitioned such that they partition the Boolean
cube {0, 1}n into not too many disjoint regions such that the original circuit is constant over each
region.

The following corollary comes directly from the previous theorem.

Corollary 4 (AC0 − SAT and AC0 −#SAT Algorithm) There exists a Las Vegas algorithm
for AC0 − SAT and AC0 −#SAT for depth d circuits with cn gates with expected savings µc,d =

1
O(log(c)+dlog(d))d−1 .

The theorem also produces the following bounds on correlation between AC0 circuits and the
Parity function, improving Hastad’s lower bound.

Corollary 5 (AC0 correlation with Parity) Any depth d size cn AC0 circuit has correlation
with Parity at most 2n(1−µc,d).

1.3 Nontrivial Compression Algorithm for the Circuit Class C

The nontrivial compression algorithm problem is defined as follows.

Definition The compression algorithm problem for C is given the truth table of a boolean function
fn ∈ C, so the length of the input is 2n, output a circuit computing fn of size ≤ 2n/n (the trivial
achievable for any n-variate Boolean function) such that the runtime of the algorithm is polynomial
in the input size, 2O(n).

2



CS 2429 - Approaches to the P versus NP Question Lecture #3: 29 January 2014

Such a compression algorithm exists for small sized AC0 circuits as a result of the following
theorem.

Theorem 6 (CKK+13) Size s depth d AC0 circuits are compressible in time 2O(n) to circuits

of size ≤ 2
n(1− 1

O(logs)d−1 )
.

Proof Using the results of [IMP12], every depth d circuit with s gates and n inputs has an
equivalent DNF representation with at most poly(n) · s · 2n(1−µ) where µ ≥ 1

O(log(c)+dlog(d))d−1 . No

suppose some minimal DNF representation of a function f : {0, 1}n → {0, 1}, given by its truth
table, has ` terms. We can compute a DNF representation of f that is at most O(n) factor larger
than that of the minimal DNF for f through a greedy Set Cover approach.
First, compute all of the minimum terms of f , the truth table, by brute force. That is, try all
possible terms and check any assignment to it evaluates to 1 on f and removing any one variable
makes some input not evaluate to 1. Let this set of possible minimum terms be {t1, t2, . . .}. Note
that there are at most 22n such terms (one can use an n bits to describe the characteristic functions
of a subset of n variables, and another n bits to describe the signs of the chosen variables) so this
can be done in time 2O(n).
Let Si be the set of assignments that extend ti and let U be the set of all strings α ∈ {0, 1} such
that f(α) = 1. Note that each Si ⊂ U . The following greedy Set Cover algorithm is run.
Find a subset Si that covers at least 1

` fraction of the points in U that have not been covered
before. By an averaging argument, some such Si must exist. Repeat until all of U is covered.
Since ` subsets cover U , they also cover every subset of U . Therefore, in each iteration, there exists
a subset that covers at least 1

` fraction of points that were uncovered in the previous iteration.
After each iteration, the size of the set of points that are not covered reduces by the factor (1− 1

` ).

After t iterations, the number of points uncovered is at most |U | · (1 − 1
` )
t ≤ |U | · e−

t
` . Setting

t = O(`log|U |) makes this value less than 1 and since |U | = 2n t is size O(`n).
The whole algorithm is poly(2n) and returns a DNF representation of f with poly(n) · s · 2n(1−µ)

terms.

Note that the above algorithm gives nontrivial compression for depth d AC0 circuits of size at

most 2n
1

d−1
, the size of which we know lower bounds for AC0 circuits for explicit functions.

These types of nontrival compression algorithms can be used to determine circuit lower bounds
through their relation to natural properties. [IKW02] shows natural properties against P/poly
imply NEXP  P/poly, which extends to compression algorithms as they are natural properties.
This is summarized in the following theorem.

Theorem 7 Let C ⊆ P/poly. Suppose for all natural numbers c there exists a deterministic
polynomial time algorithm that compresses f ∈ C[nc] to a circuit of size less than 2n/n. Then
NEXP  C.

1.4 Compression Games - Computing Bounded Communication Complexity

Given a circuit class C and a language L ⊂ {0, 1}∗ the C-compression game for L between two
players, Alice and Bob, is as follows. Alice has some input bit string x and a sequence of circuits

3



CS 2429 - Approaches to the P versus NP Question Lecture #3: 29 January 2014

{Cn} ∈ C while Bob has a strategy, call it f . Alice first applies C|x| to x getting the result y1

which is sent then sent to Bob. Depending on how many rounds of communication are defined
in the message passing protocol Q, Bob may send message back to Alice. After receiving y1 Bob
calculates f(y1) = z1 and sends z1 to Alice. In turn, Alice applies a fixed circuit C|x| to 〈x, y1, z1〉
computing y2, continuing the processes until the last round in which the final bit sent is the answer
to whether x ∈ L. The cost of the compression game is sum of the lengths of all messages sent by
Alice - the cost does not include the aggregate length of messages sent by Bob.

For compression games, we have the following result.

Lemma 8 (CS12) Let c(n) ≤ n and C be a class of circuits closed under logical OR and negation
(i.e. C = AC0) of size s(n). If there is a C(s(n)) compression game for language L of cost ≤ c(n)
then L has correlation at least 1

O(2c(n))
with C(s(n)).

Proof The idea of the proof of this lemma involves first reformulating the existence of a C(s(n))
compression game for language L into the existence of a transcript Π that is accepting, Alice-
consistent, and Bob-consistent.
A transcript T = 〈y1, z1, y2 . . . yr〉 is a sequence of messages in the protocol - it may not be a valid
sequence of messages though. A transcript is Bob-consistent if ∀i, 1 ≤ i ≤ r − 1, zi = f(y1 . . . yr).
Therefore, it is Bob-consistent if the sequence of messages agree with Bob’s strategy f . It is
important to note that a transcript being Bob-consistent depends only on the transcript itself and
not on x. Similarly, a transcript is Alice-consistent on x if ∀i, 1 ≤ i ≤ r, yi = C|x|(x, y1, z1 . . . zr−1).
A transcript is accepting if the final message yr is 1, meaning x ∈ L.
Now assuming x ∈ L then clearly the accepting transcript following the given protocol for the
circuits {Cn} ∈ C used by Alice and the strategy f used by Bob is both Alice-consistent and Bob-
consistent by definition. In the other direction, assuming the protocol being used is correct for the
C(s(n)) compression game for L and that the given transcript T is consistent on x and accepting.
We can easily see by induction on the elements of T that it must be both Alice-consistent and
Bob-consistent and in the end the final message reflects the acceptance of x, implying x ∈ L.
Returning to the lemma at hand, notice that there are at most 2c(n) Bob-consistent accepting
transcripts bounded by size c(n). The idea is then to check each Bob-consistent accepting transcript
for whether it is also Alice-consistent. This can be done using a large OR over small circuits that
compute the Alice-consistency over all Bob-consistent accepting transcripts. The Alice checking is
done efficiently and in parallel by a circuit C′Π that consists of a top level AND gate fan-in r where
r is half of the size of the transcript Π (checking the consistency of all yi messages with x, y1 . . . zi−1

using O(|yi|) OR and negation gates). The size of C′Π is bounded by O(s(n)) and since C is closed
under OR and negation, C′Π ∈ C.
By the Discriminator Lemma, if L is computed by the OR of at most f(n) circuits from C then L
has correlation at least 1

O(f(n)) with C. Replacing f(n) with 2c(n) produces the lemma.

This connection between compression games and correlation produces the following lower bound
for AC0-compression for the Parity language.

Theorem 9 (IMP12) Parity has correlation at most 2−n/O((log(s))d−1) with for size s depth d
AC0-circuits.

4



CS 2429 - Approaches to the P versus NP Question Lecture #3: 29 January 2014

2 References

[CKK+13] Ruiwen Chen, Valentine Kabanets, Antonina Kolokolova, Ronen Shaltiel, and David
Zuckerman. Mining circuit lower bound proofs for meta-algorithms. Electronic Colloquium on
Computational Complexity (ECCC), 20:57, 2013.

[CS12] Arkadev Chattopadhyay and Rahul Santhanam. Lower bounds on interactive
compressibility by constant-depth circuits. In FOCS, pages 619628. IEEE Computer Society,
2012.

[IMP12] R. Impagliazzo, W. Matthews, and R. Paturi. A satis
ability algorithm for AC0. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 961-972, 2012.

[IKW02] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness:
Exponential time vs. porbabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672-694, 2002.

[NW94] N. Nisan and A. Wigderson. Hardness vs. randomness. Journal of Computer and System
Sciences, 49:149-167, 1994.

5


