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In this lecture we discuss the recent exciting result by Williams that NEXP 6⊂ ACC0. We give a sketch
of the main ideas of the proof, and defer the reader to one of [5, 6, 7] for further details.

1 Preliminaries
We assume familiarity with the usual concepts of complexity theory, and in this section we review some
of the more specific classes and problems that we will be studying. Recall that NEXP is the complexity
class defined as

NEXP =
⋃
c≥0

NTIME[2n
c

].

ACC0 is the class of all problems computable by constant depth, unbounded fan-in circuits with ∧,∨,¬
and MODm gates for any constant m. A related class to ACC0 is P/poly, which contains all problems
computable by polynomial-size circuits with ∧,∨, and ¬ gates.

IfC is a circuit with n inputs, then we use tt(C) to denote the string of length 2n obtained by evaluating
C on all 2n possible inputs in lexicographic order and concatenating all of the resulting strings (the tt
stands for truth table). Sometimes when we discuss circuits C that take multiple inputs, we will want to
hardwire some of the inputs of C and leave the rest of the inputs unset. If this is the case, then we will
write C(x, ·), which denotes the circuit obtained by hardwiring the first |x| inputs of C using the values in
x, and leaving the rest of the inputs unset.

The following is a canonical NEXP-Complete problem.

Definition 1. The Succinct 3-SAT problem is defined as follows:
Input: A circuit C with fan-in 2 over the standard basis with s gates and n inputs such that tt(C)

encodes an exponentially large 3-SAT instance FC .
Output: Is FC satisfiable?

Throughout this lecture, when referring to a circuit C we always use n to mean the number of inputs of C
and s to mean the number of gates of C.

Another important problem (or, rather, family of problems) is circuit satisfiability.

Definition 2. Let C be a class of circuits (in these notes we will take C = ACC0,P/poly). The C Circuit-
SAT problem is defined as follows:

Input: A circuit C ∈ C with n inputs and s gates.
Output: Is C satisfiable?
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2 Proof Overview and Outline
In this section we give a high-level overview of the proof (depicted in Figure 1). The first step is an
unconditional lower bound on the running time of any nondeterministic algorithm for Succinct 3-SAT,
which follows from the nondeterministic time hierarchy theorem and a very efficient 3-SAT reduction.

Theorem 1. Succinct 3-SAT cannot be solved in 2n−ω(logn) time.

Next, assuming NEXP ⊂ ACC0 we give an algorithm A for Succinct 3-SAT which uses a deterministic
algorithm for ACC0 Circuit-SAT as a subroutine. When given a circuit C with n inputs and s gates, the
algorithm A runs in nondeterministic time that is dominated by the best running time of the ACC0 Circuit-
SAT algorithm. Finally, we give a deterministic ACC0 Circuit-SAT algorithm running in 2n−n

ε time for
some fixed constant ε > 0, contradicting Theorem 1 assuming NEXP ⊂ ACC0.

We choose a language L ∈ NTIME[2m] which is not in NTIME[o(2m)], which exists by the
nondeterministic time hierarchy theorem [3]. The “very efficient” reduction named before Theorem 1
from L to Succinct 3-SAT follows by applying a padding argument to the next theorem:

Theorem 2 ([1, 2]). There is a fixed constant d such that for every L ∈ NTIME[n], L reduces to 3-SAT
in O(n(log n)d) time. In addition, there is an algorithm R with random access to its input that given
an instance of L and an integer i ∈ [cn(log n)d] in binary, outputs the ith clause of the resulting 3-SAT
formula in O((log n)d) time (where the constant c depends only on the language L).

In the above theorem the constant d depends on the the underlying machine model. For example, if
the machine model is a multitape Turing machine, then we can take d = 4 (cf. Theorem 1).

The rest of this lecture will be divided into two parts. The first part will be devoted to the construction
of the algorithm A. As a warmup, in Section 3 we show how to construct the algorithm A if we replace
“ACC0” with “P/poly”: this gives the essence of the algorithmAmodulo a number of complicating details
introduced when considering ACC0. In Section 4 we discuss some modifications to the construction in
Section 3 to build an algorithm A that works for ACC0.

Then, in the second part of the lecture we give a “fast” ACC0 Circuit-SAT algorithm (cf. Section 5).
We use a wonderful result due to Beigel and Tarui [4] which gives a nontrivial “standard form” for ACC0

circuits. This standard form suggests an easy divide-and-conquer algorithm (originally appearing in [5])
for ACC0 Circuit-SAT that runs in 2n−n

ε time for some fixed constant ε.

3 NEXP vs. P/poly
This section is devoted to the proof of the following theorem:

Theorem 3. If NEXP ⊂ P/poly then there exists a nondeterministic algorithm A computing Succinct
3-SAT in tP/poly(n, poly(n, s)) + poly(n, s) time, where tP/poly is the running time of any deterministic
P/poly Circuit-SAT algorithm.

In Section 4 we prove the same theorem when “P/poly” is replaced with “ACC0”, but the algorithm
A in both cases is identical modulo some complicating details when we have to consider ACC0 circuits1.
Before we discuss the construction, we have to briefly diverge from the path and discuss witness circuits.

1In fact, a similar theorem exists if we replace “P/poly” with any “well-behaved” circuit class between AC0 and P/poly,
where “well-behaved” includes all of the usually considered circuit classes like NCi,ACi, etc.

2



Figure 1: High Level Overview of Reductions
n

3.1 Witness Circuits for NEXP

Instances of Succinct 3-SAT are circuits C whose truth tables encode exponentially large 3-SAT instances.
Said another way, such 3-SAT instances are “highly regular” in some way that allows us to compress their
encoding as the truth table of some circuit. We can therefore rephrase the Succinct 3-SAT problem as
follows: given an “exponentially compressed” representation C of a 3-SAT instance FC , decide whether
or not FC has a satisfying assignment. This point of view suggests an interesting idea: if FC is a 3-SAT
formula encoded in the truth table of a circuitC, could it be that the satisfying assignments of FC also have
compressed representations? In other words, given a circuit C for which tt(C) encodes an exponentially
large 3-SAT instance FC , does there exist another polynomial-size circuit WC such that tt(WC) encodes a
satisfying assignment to FC? We define such a circuit WC to be a witness circuit for C and FC .

Definition 3. A language L ∈ NTIME[f(n)] has S(n)-size witness circuits if, for every polynomial
time verifier V for L there is an O(S(n))-size Boolean circuit family {WL,n}n≥0 where WL,n has n +
dlog2 f(n)e+ 1 inputs, such that

∀n ≥ 0,∀x ∈ {0, 1}n : x ∈ L ⇐⇒ V (x, tt(WL,n(x, ·))) = 1.

In fact, such circuits do exist for Succinct 3-SAT if NEXP ⊂ P/poly. The proof of Theorem 3 crucially
relies on this fact, which is due to Impagliazzo, Kabanets and Wigderson [8].

Theorem 4. If NEXP ⊂ P/poly then every language in NEXP has witness circuits of polynomial size.

The proof of this theorem is far beyond the scope of this lecture, but it is worth commenting that the
proof is an interesting mix of the “hardness-randomness” connection and diagonalization. Williams [6]
gives a self-contained treatment (Lemma 3.1 in that paper).

3.2 P/poly Circuit-SAT and NEXP

Using the witness circuits introduced in the previous section we will prove Theorem 3. The idea (at least)
is simple: assuming that NEXP ⊂ P/poly, we will use the polynomial size witness circuits for Succinct
3-SAT guaranteed by Theorem 4 to construct a circuit D which is unsatisfiable if and only if the original
Succinct 3-SAT instance is satisfiable. The algorithm A then works as follows: it takes as input a circuit
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C (an instance of Succinct 3-SAT), and nondeterministically guesses a polynomial size witness circuit
WC for C. Then, A constructs the circuit D by composing together two smaller gadgets G1 and G2. The
first gadget, G1, takes as input a clause number i in binary and uses copies of C to output an encoded
description d = bi,1zi,1, bi,2zi,2, bi,3zi,3 of the ith clause in FC . The variable names in the ith clause are
encoded in the strings zi,1, zi,2, zi,3, and the three bits bi,1, bi,2, bi,3 flag if the corresponding variable is
negated or not.

The second gadget, G2, takes as input the description d, and uses three copies of the witness circuit
WC to compute the values z∗1 , z

∗
2 , z
∗
3 of the literals z1, z2, z3 under the assignment encoded by WC . Finally,

G2 outputs the negated value of the ith clause under the assignment encoded by WC . In other words, the
circuit D, when given a clause number i, outputs 0 whenever the nondeterministically generated witness
circuit WC encodes a satisfying assignment to the ith clause. See Figure 2 for a graphical depiction.

Figure 2: The Circuit D

Assuming NEXP ⊂ P/poly, if C encodes a satisfiable 3-SAT formula FC then there exists a witness
circuit WC encoding a satisfying assignment to FC . Therefore, the circuit D constructed by the nondeter-
ministic algorithm A be unsatisfiable when using this particular witness circuit, as D will output 0 when
given any clause number i. Similarly, if the circuitD is unsatisfiable then the witness circuitWC generated
by the algorithm A must encode a satisfying assignment to the instance FC . If the instance C of Succinct
3-SAT has n inputs and s gates, then constructing the circuit D takes O(poly(n, s)) time, and we can use
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a deterministic (or even co-nondeterministic) P/poly Circuit-SAT algorithm to determine if the circuit D
is unsatisfiable. Thus the overall running time for the algorithm A is O(poly(n, s) + tP/poly(n, s)).

4 From P/poly to ACC0

Moving from P/poly to ACC0 requires quite a bit more work. Now, assuming NEXP ⊂ ACC0, the goal
is to modify the nondeterministic algorithm A given in the previous section to construct another “verifier”
circuit D which is in ACC0. The major hurdle is that both of the gadgets G1 and G2 constructed in the
previous section are unrestricted polynomial size circuits, and we somehow have to replace them with
equivalent ACC0 circuits.

We leap this hurdle by using the fact that if NEXP ⊂ ACC0, then P ⊂ ACC0 and so there must exist
an ACC0 circuit family which solves the Circuit Value Problem (CVP). In fact, this observation makes
replacing the gadget G2 quite easy! Notice that the only components of G2 that need to be replaced to
make it an ACC0 circuit are the witness circuits WC . We can modify the algorithm A to guess an ACC0

circuit V solving the CVP, and simply provide the description of the witness circuit WC as a hard-wired
input to V and use V to apply WC to the variable inputs zi,1, zi,2, zi,3.

Figure 3: V is an ACC0 circuit computing CVP

Now we simply replace each of the copies of WC in the component G2 (cf. Figure 2) with copies of
the equivalent ACC0 circuit shown in Figure 3, obtaining an equivalent circuit component G′2 which is in
ACC0.

Replacing the component G1 — which outputs a description of a clause in the formula FC — is a bit
more difficult. The trouble is that G1 has to use copies of the Succinct 3-SAT circuit C to produce the
clause descriptions and C is a completely unrestricted circuit. A natural first attempt to scoot around this
issue is to try and apply the same trick that we applied to the witness circuits WC : since the Circuit Value
Problem has an ACC0 circuit family, we could nondeterministically guess an ACC0 circuit C ′ equivalent
to C. But we would then have to verify that the circuits C and C ′ are equivalent, and it is not clear how to
do this!

We get around equivalence verification problem by nondeterministically guessing “more information”
than just an ACC0 circuit C ′ which is equivalent to C, and using this extra information to utilize the ACC0

Circuit-SAT algorithm to verify that C and C ′ are equivalent. In particular, we construct two circuits
H, I computing the following functions. The circuit I , when given a description of a circuit C and a gate
index j in C, outputs the indices of the two gates j1, j2 connected to the inputs of j, and a description
g ∈ {∧,∨,¬} of the gate type of gate j:

I(C, j) := 〈j, j1, j2, g〉
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It is well known (and not hard to show) that this function (the gate connection language) is computable in
uniform AC0.

The second circuit H takes as input a description of a circuit C, a gate index j of a gate in C, and an
input x to C, and outputs the value of the gate j in the circuit C on input x:

H(C, j, x) := value of gate j in C on input x.

The function H is computable in P, and so assuming that NEXP ⊂ ACC0 it follows that there is an ACC0

circuit computing H . Moreover, if o is the output gate of the circuit C, then H(C, o, ·) is an ACC0 circuit
that is equivalent to our original Succinct 3-SAT circuit C.

So, we construct the ACC0 circuit C ′ = H(C, o, ·) equivalent to C as follows. First we nondetermin-
istically guess an ACC0 circuit H , defined above. To verify that H is correct, we construct another ACC0

circuit E that is unsatisfiable if and only if the ACC0 circuit H is correct. The circuit E takes as input an
index of a gate j in C and a string x which is an input to the circuit C. Then, E consists of two composed
subcircuits. The first subcircuit is I , which is an AC0 circuit computing the gate connection language of
C. E then feeds the gate index j into the circuit I which outputs the description 〈j, j1, j2, g〉 of the gate j.
It then uses this information to check if H(C, j, x) = g(H(C, j1, x), H(C, j2, x)), and returns 0 if this is
true. The circuit E is depicted in Figure 4; it is unsatisfiable if and only if the circuit H is correct, and we
can check the unsatisfiability of E using the ACC0 Circuit-SAT algorithm in tACC(n + log s, poly(n, s))
time.

Now, some comments on how to modify the nondeterministic algorithm A discussed in Section 3.2.
We first nondeterministically generate the ACC0-equivalent witness circuit VC (presented in Figure 3).
Then, we nondeterministically generate the ACC0 circuit H described above, and construct the circuit E
and use an ACC0 Circuit-SAT algorithm to verify that H is correct. Finally, we follow the construction of
the circuitD in Section 3.2, using the ACC0 circuit VC to substitute forWC and the ACC0 circuitH(C, o, ·)
whenever we use C. The resulting modified circuit D′ will be an ACC0 circuit that is unsatisfiable if and
only if the 3-SAT instance FC encoded by the original circuit C is satisfiable, and running our ACC0

Circuit-SAT algorithm on D′ finishes the description. This finishes a (sketch) of the proof of the following
theorem:

Theorem 5. If NEXP ⊂ ACC0 then there exists a nondeterministic algorithm A running in

poly(n, s) + tACC(n+ log s, poly(n, s)) + tACC(n, poly(s))

time solving Succinct 3-SAT on circuits C with n inputs and s gates, where tACC is the running time of any
deterministic ACC0 Circuit-SAT algorithm.

5 ACC0 Circuit-SAT, Fast and Easy
In the last part of the lecture we give an ACC0 Circuit-SAT algorithm running inO(poly(n)2n−nε) time for
a fixed constant ε > 0. Combining this with Theorem 5 and Theorem 1 we conclude that NEXP 6⊂ ACC0.

The ACC0 Circuit-SAT algorithm relies on the following result of Beigel and Tarui [4]:

Theorem 6. There is an algorithm and a function f : N × N → N such that given an ACC0 circuit C
with MODm gates of n inputs, depth d, and size s, the algorithm outputs an equivalent depth 2 circuit
structured as follows:

1. The output gate is a symmetric gate (i.e. a gate that depends only on the number of 1s given).
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Figure 4: Verifying that H(C, o, ·) ≡ C
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2. The symmetric gate has fan-in 2log
f(m,d)(s), each connected to an ∧ gate.

3. The ∧ gates have logf(m,d) s fan-in, and are connected to input variables.

4. None of the input variables are negated.

The algorithm runs in 2O(logf(m,d)(s)) time, and the symmetric function can be evaluated in 2O(logf(m,d)(s))

time given the number of ANDs in the circuit which evaluate to 1.

The function f(m, d) ≤ mO(d), and so is a large constant depending only on the input circuit. Follow-
ing [5] we re-phrase this result slightly:

Theorem 7. There is an algorithm such that given an ACC0 circuitC withMODm gates of n inputs, depth
d, and size s, the algorithm outputs a symmetric function g : {0, 1, . . . , K} → {0, 1} and a multilinear
polynomial h(x1, x2, . . . , xn) with K monomials such that C ≡ g ◦ h, where K = 2O(logf(m,d)(s)). The
algorithm takes at most Õ(K) time, and the function g can be evaluated in O(K) time.

To get Theorem 7 from Theorem 6, we set g to be the symmetric function and h to be the multilinear
polynomial such that each monomial of h corresponds to the product of variables in an ∧ gate in the circuit.
Theorem 7 is useful thanks to the following lemma (we defer the proof until the end of the section):

Lemma 1. If h is a multilinear polynomial on n variables described by a table of the 2n coefficients of its
monomials, then we can evaluate h on all 2n inputs in O(poly(n)2n) time.

Using Theorem 7 and Lemma 1 we can give a simple algorithm Eval computing ACC0 Circuit-SAT.
Given an ACC0 circuit C with n inputs and s = nc gates, the first step of Eval is to arbitrarily choose k
input variables X = {x1, x2, . . . , xk} of C (we choose k later) and create a new circuit C ′ as follows. First
enumerate all 2k assignments to the variables in X , and let Ci represent the circuit obtained from C by
hardwiring the inputs from X with the values in the ith assignment lexicographically. Then take the ∨ of
C1, C2, . . . , C2k . The result is a new ACC0 circuit C ′ with s2k gates and n− k inputs. Set k = n1/2f(m,d),
and apply Theorem 7 to the circuit C ′ to obtain the symmetric function g : {0, 1, . . . , K} → {0, 1} and a
multilinear polynomial h with n− k variables and K monomials in Õ(K) time, where

K = 2O(logf(m,d)(s2k)) = 2O(n1/2 logf(m,d)(2s)) = 2O(n1/2 logf(m,d)(2s)).

Apply Lemma 1 to the polynomial h to obtain a table T of size at most 2n−k in time O(poly(n− k)2n−k)
time, and then linearly search through the table, evaluating g on every value. If g ever outputs 1, halt
and return 1. If s is polynomial in n then the running time of this algorithm is dominated by the running
time of Lemma 1, meaning that the entire algorithm runs in time O(2n−n1/2f(d,m)

) = O(2n−n
ε
) for a fixed

constant ε > 0 depending only on m and d.

Theorem 8. NEXP 6⊂ ACC0.

Proof. If NEXP ⊂ ACC0 then by Theorem 5 there is an algorithm for Succinct 3-SAT running in nonde-
terministic

poly(n, s) + tACC(n+ log s, poly(n, s)) + tACC(n, poly(s))

time. We have shown above that if s is polynomial in n, then tACC(n, s) = O(2n−n
ε
). This contradicts

Theorem 1.

Finally we prove Lemma 1.
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Proof of Lemma 1. Let h(x1, x2, . . . , xn) be our polynomial, and we give a straightforward divide-and-
conquer algorithm for evaluating h on all 2n inputs. If n = 1, return T = [h(0), h(1)]. Otherwise, since h
is multilinear we can write

h(x1, x2, . . . , xn) = x1p1(x2, x3, . . . , xn) + p2(x2, x3, . . . , xn),

for some multilinear polynomials p1, p2. Factoring h in this way takes 2n time. Then, recursively evaluat-
ing the polynomials p1, p2 we obtain two tables T1, T2, each of size at most 2n−1. Given these two tables,
we return

T = [T2[1], . . . , T2[2
n−1], T1[1] + T2[1], . . . , T1[2

n−1] + T2[2
n−1]].

Creating the table T takes time O(poly(n)2n), giving a recursive running time of

r(n) = 2 · r(n− 1) +O(poly(n)2n),

and it is an easy exercise to see that r(n) = O(poly(n)2n).
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