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This course -

is about Large classes of ( sound )

algorithms for solving NP . hard optimization problems

( & decision problems)

Marriage between complexity theory
(pnrfcmpkxilg )

and algorithms

which has emerged oh the last 10-15 years

VeryRo_ugh4: Proof system giles rise to a family
of

.

sound and feasible algorithms Extffrdmudatims

can be used to rideget major approaches
×

← automat .

can also be used to give New algorithms ! oesos

plus
proof upper bonds



Examplet May SAT 1 maxcsp

given f= C
,

^ Czn .  .
^ Cm over X , .  . Xn

011
find

assignment
to X. . .Xn that maximizes

the number of satisfied clauses

Easy to formulate as an integer program :

Say f=( x.ve#(xyX3)(x.vIo)Cxi )

Max C
, tcztstcy

st
. X. txzt (1×3)=9

X. t Xz Zcz

X
,

t (1^12)=5
( TX

, ) =cy
,

Xi .ge { 0,1}



What happens if we relax constraints to

0 Exit 1 Of 5<-1 ?

Then we had an LP so can she in pay time
(ellipsoid alg Khadijah

'7s)

How to solutions compare?

For unsat 3cnF f
,

integer OPT is Ygm

But LP has a fractional OPT of m

Our example : Set X. =Xz=X5k
, g=cz=g=q =/

satisfies all constraints & has fractional OPT = y



Note we could alternatively formulate Msxsst

as a decision problem
Constraints are as a bore plus

Gtcztcstcy 34

¥
integers this system 4 inequalities is

infeasible
,

but there are feasible

solutions whenever axis ,



Example nsx . cut

Let gs CYE ) Vs { Y .  . .vn } with
s

t.name?vendaFwmIhmYesmiuagiE#*sD

Easy to formulate as a quad Program : cut : edges
from 5 to S

Max k§g wij ( 1 ' YIY ;) value (5) =

Y ,
e {4,1 }

4+2+7*3=16



Relaxation of Quadratic Program to SDP :

Max k §, Wi ; ( l - UIU;)

Ui ER
"

,
lluilfl

Let X = gram matrix of 4 .  . Un

So × = UTU where U = [44 . . an]
Fact X= utu is equivalent to X being positive . semidlf PSD

Thus relaxation becomes ( Exz so at )

Max E §g wij ( l - Xij )
,

Xiao
← PSD



The relaxation -

is a SDP and can be

solved in polynomial time ( Ellipsoid Alg ,
Khachiyan ' ZE)

goeelamsmg.ae an amazing
approx alg for Max CUT :

( .
Sold a boil SDP

2. apply randomized rounding to

concert solution to 0/1 solution

They prove that the resulting ( rounded )
solution is dwayf 3.872 . OPT



This Course ;

we study systematic techniques to
'

improve

the relaxations In order to get
better algorithms

Improvements invoke :

adding Nevwariables + new constraints

to original set to cut away
feasible fractional ( non - integer )

-

solutions jgasibk
Need to keep all integer solutions

( this is soundness )



PafSystemsare systematic ,
sound ways to

do this

Ones we will study :

Resolution

Poly Calculus /Nu4satt
Sherali Adams

, Cutting Planes

SOS

Xiewing them as refutationsystems Corresponds
toanalyzing decision problems / feasibility

Viewing them as dudensystems corresponds
to analyzing optimization problems



New Algorithms via Proof Complexity UPPER Bands

-
�1�

we will study automatist ⇐ how hard it is

to find proofs In a particular pf system .

Nearly all proof systems we win study will be

( somewhat ) automata able

So if a proof of small size ( degree exists

there is an efficient algorithm to find one

�2� automata ability * small proofs of definabililq
⇒ efficient algorithm



LimitationsotAlgonth_MhodaPmf@tyy3unds1.DP

LL 1 Res LBS rule out large
family of SAT algs

2
. SA Loner bounds ⇒ LBS for a Large class of LPs

⇒ LBS for Large class of
extended formulations

3
.

Sos Lower bounds ⇒ LBS for Large class of SDP ,

+ esdp extended

formulations



Proofsystembasics

Input : a set of constraints on X
,

. . Xn

[ usually each Xie { 0,13
,

but we will also be

interested in other cases : Finite field ,
R ]

A proof system Pfy ) → F Polytime
g-

y ; proof in P F : what y Pal p as a

refutation

soundness : Range E unsat system

completeness : UNSST = Range

TP y )

→
( h '

F)
c- as a

derivationh : hypotheses .

y :P - proof from h system
y→ F what Is being proven

Soundness : Range E taut
,

COMPLETENESS ? TAUTE RANGE



pnrfleng.tn#tmatablty

Sp ( F ) = size of shortest P . refutation of F

s#
p is polingautomathabk if for all n suff large

and all F our in vans

A.
CF ) → y , y is a P . proof of F

Runtime of A '

is poly ( Spee ))

Can define gcnl - automata ability for other

runtime functions gcn )

efficient
& automatable means short proofs ⇒ algorithms



Rookies

Sos

/ |

*
kholz ]

S A C Ps PC

\ I 1
Resolution



Resolution ( as refutation system) on {qB

f  = ( x. vxzvxs )( X. vis ) (

I
,vXD( E)

Rule : ( xvc ) ( I v D) ⇒ a D

( kvxirxs ) ( x. v E) (

xiuxz
) ( E )

¥ xi:( /
g



Lets view Resolution a bit differently over [ 0,1 ]
f = ( X ,vXzv×3) ( x

,
# ( I,vXz) ( Iz )

X ,tXztX3H ,
×

,

+ (1×3)=1
,

( TX
, )tXz ? I

,
tk = I

, OEXEI
\ /

X.

they /
xp ,¥

rule preserves all oh feasible solutions



Lets view Resolution a bit differently
f = ( X. vxzvxs ) ( x

,
RID ( I,vXz) ( E )

X ,tXztX3H ,
×

,

+ a B) 31
,

( th ) tk ? I
,

tk = I
, OEXEI

\ /
X.

they /
xp ,¥

Original constraints e. had a fractional solution
Extended constraints ; No fractional solutions



• Resolution In the worst - case requires 2km length refutations
.

• Width - Sise relationship I for kcal

's
F)

width w proof ⇒ size20W '
Tree . Res

width w proof ⇒ site 2Fo5s⇐T Res
\ size of

shortest Res
. automat 't ability : ref of F

width w proofs ⇒ can be found in N' →
time

Tree Res is quasi - poly automata able

Res is automata able in time exp( Feet



Exampkwherekesowtmtghtnngheps
Paturi . Pudlak . Saks - Zane

( 1.364 )
"

algorithm for 3ssT ( Herth
' -4*308 )

n

)
( 1.308 )

"

alg for unique 3sAT

idea Start with f.

Run bounded - width Resolution to '
'

tighten
"

the constraintsApply
simple randqgnroedsearch repeatedly

. set umtilauses
,

ow pick random var & assignment

Intuition : unique sat ass ⇒ lots g unit clauses

after tightening by bded width Res ⇒ more

unit clauses



LP ( as a proof system )
.

Sound
, complete , pay automation bk proof

system for linear inequalities our 11230

LP : Max ( Tx ←
linear objective function

st
.

A×←b } iomnsmramts *
XZO

Decision version :

Is there a value 9 × satisfying * ) ?



Fairlea ( Completeness of LP
,

decision version )

A set { Axeb
,

× > o } of linear inequalities
Ts unsat ( our R ) iff Zy ? 0 st

. YTA so and yTb=y

Duality ( Implicational Completeness of [ p )

Consider any
non . Neg yt st

. YTA ± at

Then for any
feasible solution X to { Axeb

,
×3o} we have

ctx < ytAx = ytb
so y3o witnesses the upper bound bty
How tight is such an upper bound ?



Dudik

( P ) primal : (D) dual :

Max Ex min bty
st . Axeb

,
x >o

sit
. Aty 's C

, y=o

Duality( implied by Farkas
'

lemma )

Exactly one of the following holds

( i ) Neither CP ) Nor (D) hail a feces
.

Soln

( ii ) ( P ) has sons with arbitrarily Large values
,

alD) unsat

"
" small ' '

, ( P ) vnsat
( iii ) ( D ) has

"

( iv ) Both ( P ) and (B) had optimal sons
, x* and y*

Then cTx*=bTy*
%

there is a son to dual that witnesses tight bound



So an LP
'  '

refutation
"

of {

Axels
,

xso } is

a non .

Neg linear comb . of These inequalities that

equals . 1
.

soundness → easy
completeness

→ Farkas ' Lemmer

An LP
"

derivation
"

of {Axels,
to ) → Ex < (

o

is Nonneg y*st .
= C* Pb

°

( *yb=co )( since Ex e KPPAX = y

Soundness →

easy
completeness → Duality Thm



Polynomial automathoabilitg of LP

÷ttsfiabililg of linear inequalities : in NP

Farkas
' lemma 1 Duality Mm : In conp

so in NPNCONP

Ellipsoidg ikhackiyan
' 7s]

LP in P



LP-axat.mg#Prgram

As mentioned earlier
,

we can view LP as

a relaxation 9 an LP
.

Then he have Fractional OPT = Integral OPT

Interested In Ratio

Feet
.

µ tightened

-



Cuhingplanes [ LP tightening ]

Let { Ax 30 ) be a set q linear inequalities

A refutation of 4×303 ( our he {0,13 ) is a

sequence of inequalities st .
each is either

from { Ax > 03
,

or follows from previous lines by
a rule

,
and final line Is -130

Ruled : �1� can take positive Linear comb 's of
previously denied lnlq 's

�2� Dnydtffndiwintgh : Ecix
,

> b
,

each cilk
⇒ Ei÷* = that



on Automat CB

Not Known to be automata able

in any
sense

( So we won't say much more abort it )



sedan( LP tightening)

add new variables to represent all low degree ( Ed)

juntas ( junta : X ,IzX3 = X. ( I - XDX ,
)

This
"

lifts
" LP from n dimensions to end dimensions

projection
back to X, . . Xn presences all 011 sons

and will hopefully renal a 1A of factional sows



sher-damskdtght.nl ng

Original LP : Max Ex

st
.

Ax=b
OEXE ,

add new variables Js
,

FS ,T snT=$
Isltitled

Js
,

represents iftsxiftltx ,
)

New constraints : Js
,

30
,

1- Js
,

30

In
,

+ Is ,Tuv
= Js

,t

Jqt = In ,T
+ Is

,Tuv

Js
,

( Eaij Xj ) ZI
,

b
;



Sherali ( static)

Let 2 be a set 4 epoy equalities ( includes xi . Xio )

4 a set of pm inequalities

a SA derivation of f from ( 2,92 ) Is

( g ,
. . gm , Pi . . . P, ) st

.

e§9.fi t §
,

pehe =f

) Legatine
linear combinationarbitrary

of juntasMY 's

jeltax's '¥B" #

Degray = max degree of gifi, pehe



SAautoma_ti.by

By Farkas ' lemma
,

Duality degree d

SA refutations / dhuatims are automatable

in time nocd )
.



Sum . of - Squares SOS ( Static )

-
Let 2 be a set of epoy equalities ( includes xixio )

4 a set 9 pm inequalities

anSOS derivation of f from ( 2,4 ) Is

( g ,
. . gm , Pi . . . P, ) st

.

e§9.fi t §
,

pehe =f

/ £
sum of squares

arbitrary ie
. ftp.e.IT

poly 's

Degray = max degree of gifi, pehe



Ita ( static )



Nullst_naz
( Static)

start with polynomialsff=o , ... 3 including xihfso
a Nullstellensafz derivation off is (g, ... . ) st

.

{ gife .

= f

f= - 1 : refutation of I={f=o , ... ]

tdw.us( Dynamic )

Axioms : f=o tft2 ( including xp . Xi)

Rules : f=o⇒ xjf =o

f=0
, g=0 ⇒ agtbf  =O



Automatiaabilityyatpc

Proofs 9 degree d can be found on

time n°( d)

Nullsatz : sdk system 4 linear eqns
PC : bded - degree version of

gnibner basis alg


