
Scheduling via SOS Hierarchies

Jurgen Aliaj

March 23 2018

1 SOS hierarchy review

1.1 Linear algebra preliminaries

We say that a matrix, M ∈ Rn×n, is positive semidefinite (PSD) if for every x ∈ Rn, we have xTMx ≥ 0.

A k× k principle submatrix, N , of M is a submatrix obtained by choosing only the rows and columns of M

corresponding to some subset of indices, S ⊂ [n], of size k.

Fact 1. Every principle submatrix of a PSD matrix is PSD.

Proof. Let M be an n× n PSD matrix and let N be a principle submatrix of M indexed by some set S of

size k. For any x ∈ Rk, let y ∈ Rn be the vector such that yi = 0 for every i /∈ S and the remaining entries

in y match those of x. Then it’s not hard to see that xTNx = yTMy, and the latter is non-negative by

PSDness of M .

Fact 2. If M is a symmetric PSD matrix, every principal submatrix of M has non-negative determinant.

Proof. Let N be a principle submatrix of M , then by the previous fact we know N is PSD. Moreover, it’s

not hard to see that any principle submatrix of a symmetric matrix is also symmetric. Thus, we may use the

Cholesky decomposition to see that N = V TV for some appropriate matrix V , and we have |N | = |V |2 ≥ 0.

With these definitions and facts, we are ready to define the SOS hierarchy.

1.2 Definition of SOS

Let K = {x ∈ Rn | Ax ≥ b} be some polytope where A is an m× n matrix and b ∈ Rm. It will be useful to

think of K as being obtained from a linear relaxation of a binary optimization problem. Our ultimate (and

unreachable) goal is to have x ∈ conv(K ∩ {0, 1}n), the integral hull. To do this we add additional variables

and constraints to make the relaxation stronger. We add more and more variables and constraints at each

level of the hierarchy to tighten the polytope and remove bad solutions, hopefully getting closer and closer

to the integral hull the higher we go up in the hierarchy.

1



The tth level of the SOS hierarchy, denoted as SOSt(K), is defined as the set of vectors y ∈ R2[n]

satisfying

the following properties.

• Mt(y) := (yI∪J)|I|,|J|≤t � 0

• M `
t :=

(∑n
i=1A`iyI∪J∪{i} − b`yI∪J

)
|I|,|J|≤t

� 0 ∀` ∈ [m]

• y∅ = 1

Here the vectors y are indexed by subsets of [n] corresponding to subsets of the original variables x1, . . . , xn.

We would like to think of the vector y as a probability distribution. More precisely, for any X ∈ K ∩{0, 1}n

drawn from this distribution we would like the variable yI to represent the probability Pr[
∧

i∈I(Xi = 1)]. In

particular, we would like yi = xi and y∅ = 1. The matrix Mt(y) is known as the moment matrix of y and

here we impose that it is PSD. The matrix M `
t (y) is the moment matrix of slacks corresponding to constraint

` and we similarly impose PSDness for each `. Intuitively, the constraint Mt(y) � 0 forces the variables to be

consistent (for example, it guarantees y{1,2} ∈ [max(y{1} + y{2} − 1, 0),min(y{1}, y{2})]). Whereas PSDness

of the moment matrix of slacks guarantees that the solution y satisfies the original constraints. Also observe

that only variables indexed by subsets of size at most 2t+1 are mentioned by the tth level of SOS, so one can

optimize over SOSt(K) in time mO(1)nO(t) up to numerical errors that can be neglected for our purposes.

Finally, we define SOSproj
t (K) := {(y{1}, . . . , y{n}) | y ∈ SOSt(K)} as the projection onto the original

variables.

1.3 Some useful properties

Lemma 1. Let K = {x ∈ Rn | Ax ≥ b} and y ∈ SOSt(K) for t ≥ 0. Then the following holds:

a) K ∩ {0, 1}n ⊆ SOSproj
t (K)

b) 0 ≤ yI ≤ 1 for all |I| ≤ t

c) yJ ≤ yI for all I ⊆ J with |I|, |J | ≤ t

d) |yI∪J | ≤
√
yIyJ for |I|, |J | ≤ t

e) SOSproj
t (K) ⊆ K

f) SOS0(K) ⊇ SOS1(K) ⊇ · · · ⊇ SOSn(K)

Proof.

a) Let x ∈ K ∩ {0, 1}n and define yI :=
∏

i∈I xi. It suffices to show y ∈ SOSt(K) for every t ≥ 0.

First note that the moment matrix Mt(y) is a submatrix of the matrix yyT . This is because the entry

in yyT indexed by I, J is yIyJ =
(∏

i∈I xi

)
·
(∏

i∈J xi

)
=
(∏

i∈I∪J xi

)
. This last equality follows

from the fact that x2
i = xi for xi ∈ {0, 1}. Moreover, this term is precisely yI∪J which is the entry

2



in Mt(y) indexed by I, J . Now notice that yyT is a PSD matrix since for any a ∈ R2[n]

we have

aT yyTa = (aT y)2 ≥ 0. So by fact 1, we have that Mt(y) is PSD. We can do something similar for

M `
t (y). Consider the `th constraint A`·x ≥ b`, then I claim M `

t (y) is a submatrix of (A`·x−b`)yyT . This

matrix is also PSD since yyT is PSD and multiplying a matrix by a non-negative constant preserves

PSDness (the constant is non-negative using the fact that x is feasible). The entry of M `
t (y) indexed

by I, J is
∑n

i=1A`iyI∪J∪{i}− b`yI∪J = (A` ·x− b`)yIyJ . Here I am simply factoring yI∪J = yIyJ again

using the fact that the values of x are integral, and using the fact y{i} = xi.

b) Consider the principal submatrix of Mt(y) indexed by {∅, I}. This matrix is:

[
y∅ yI

yI yI

]

The determinant of this submatrix is yI(1− yI), and since Mt(y) is symmetric we can use fact 2 to see

that this value is non-negative. So 0 ≤ yI ≤ 1.

c) Consider the principal submatrix of Mt(y) indexed by {I, J}. This matrix is:

[
yI yI∪J

yI∪J yJ

]

Here we use the fact that I ∪ J = J hence the determinant of this submatrix is yJ(yI − yJ) ≥ 0. Now

by part b), yJ is non-negative so the result follows.

d) Once again consider the principal submatrix of Mt(y) indexed by {I, J}. This matrix is:

[
yI yI∪J

yI∪J yJ

]

The determinant of this submatrix is yIyJ − y2
I∪J ≥ 0. The result follows.

e) For each moment matrix of slacks, the entry indexed by ∅,∅ forces the vector (y1, . . . , yn) to satisfy

the appropriate constraints.

f) This follows from the fact that Mt(y) is a principal submatrix of Mt+1(y). The same holds true for

the slack matrices.

Finally we present a useful lemma which allows us to write a feasible solution in SOSt(K), y, as a convex

combination of vectors.

Lemma 2. For t ≥ 1, let y ∈ SOSt(K) and i ∈ [n] be a variable with 0 < yi < 1. If we define

z
(1)
I :=

yI∪{i}

yi
and z

(0)
I :=

yI − yI∪{i}
1− yi

(1)

then we have y = yi · z(1) + (1− yi) · z(0) with z(0), z(1) ∈ SOSt−1(K) and z
(0)
i = 0, z

(1)
i = 1.

3



Verifying that y can be written in this form is obvious. The second part of the statement (verifying that

z(0), z(1) ∈ SOSt(K)) is less obvious, but one can see the proof in the lecture notes by Thomas Rothvoss.

Moreover, notice that the vector z(1) preserves zeroes (that is, if yj = 0 then z
(1)
j = 0). This can be seen by

part d) of lemma 1. In fact, both vectors preserve all integral values.

2 Scheduling on two identical machines with precedence constraints

In the scheduling problem, we are given a set, J , of n jobs with unit processing time as well as m = 2

identical machines. We are also given a set S of precedence constraints of the form i ≺ j, which indicates

that job i must finish before job j can be started. The goal is to schedule the jobs on the machines so that

the makespan (the time of the last scheduled job) is minimized.

2.1 A simple algorithm based on SOS hierarchies

In this section we give a brief application of SOS hierarchies by presenting an algorithm that only uses

solutions from the first level of the hierarchy.

We can solve the scheduling problem with 2 machines with a straightforward integer program. We consider

T time slots of unit length and we would like to see if we can find a feasible schedule with makespan T . The

IP is given below:

n∑
t=1

xjt = 1 ∀j ∈ J

∑
j∈J

xjt ≤ 2 ∀t ∈ [T ]

∑
t′≤t

xit′ ≥
∑

t′≤t+1

xjt′ ∀i ≺ j,∀t ∈ [T ]

xjt ∈ {0, 1} ∀j ∈ J, ∀t ∈ [T ]

(2)

The variable xjt indicates whether or not job j will be scheduled in the interval [t−1, t]. The first constraint

takes care that each job is scheduled precisely once. The second constraint takes care of the fact that we

cannot schedule on more than 2 machines, and the third constraint takes care of the precedence constraints.

Now we relax the integrality constraints by letting xjt ≥ 0 and we let K(T ) represent the feasible solution

of the LP relaxation. We give an instance of the problem where the LP relaxation fails on the next page.

On the other hand, we claim that we can solve the problem optimally using only the first level of the SOS

hierarchy. More specifically, if there exists y ∈ SOS1(K(T )), then there is also a feasible schedule σ : J → [T ].

Conversely, if a feasible schedule exists then there is a feasible integral solution to (2), and by part a) of the

first lemma we will be able to find such a y. To find the optimal value of T , we can then do a binary search

for T in the range {dn/2e, . . . , n}.

4



Figure 1: The instance is represented in the first image, where an arrow (i, j) indicates i ≺ j. The second
image shows an optimal schedule with makespan 4. The third image shows a feasible fractional solution with
makespan 3, so the integrality gap is at least 4/3.

Consider the following procedure. Given y ∈ SOS1(K(T )), define the fractional completion time C∗j :=

max{t | yj,t > 0}. Sort the jobs so that C∗1 ≤ C∗2 ≤ · · · ≤ C∗n. Now go through the time slots from 1 to

T and for each one, choose the two lowest index jobs among the set of jobs that are unprocessed and have

all dependent jobs processed. It may be impossible to choose two jobs for a given time slot (for example if

every job depends on, say, the first job). In this case we simply schedule one job in the time slot. We prove

a final lemma which immediately implies correctness of our procedure.

Lemma 3. For any job j ∈ J we have σj ≤ C∗j .

Proof. Let j1 be the lowest index job that does not satisfy the claim. Let j0 ∈ {1, . . . , j1 − 1} be the last

job scheduled without any other job in {1, . . . , j1} in parallel. If such a job does not exist, we can introduce

a dummy job j∗ which every other job depends on. This job will then be scheduled alone in the first time

slot.

Let J0 := {j ∈ J | j ≤ j1 and σj > σj0} and notice that every job in J0 depends on j0. This is because if

j ∈ J0 does not depend on j0 then we could have scheduled it concurrently with j0 (j0 is scheduled with no

other job or with a job with index higher than j1). By the choice of j0, the interval [σj0 , σj1 −1] is fully busy

with jobs from J0. Suppose this interval has length k, then |J0| ≥ 2k. Moreover, j1 ∈ J0 hence |J0| > 2k is

a strict inequality.

Now we find a solution ỹ ∈ SOS0(K) such that ỹj0C∗j0
= 1. If yj0C∗j0

= 1 already we can simply let ỹ = y.

Otherwise we have yj0C∗j0
∈ (0, 1) and we can apply lemma 2 with the vector y and i = j0, C

∗
j0

. In particular,

we let ỹ = z(1) defined in (1). Now since this variable is 1, it forces the fractional schedule ỹ to schedule all

dependent jobs in J0 later than C∗j0 (by the 3rd set of constraints in (2)), and this value is at least σj0 (by

minimality of j1). Moreover, C∗j ≤ σj1 − 1 for all j ∈ J0 by assumption. So we must have yj,t = 0 for all

j ∈ J0 and t > σj1 − 1 ≥ C∗j (by definition of C∗j ). So therefore the same must hold true for the fractional

schedule ỹ, since it preserves zeroes.

So in summary, we have ỹj,t = 0 for all j ∈ J0 and t < σj0 or t > σj1 − 1. Thus the fractional schedule must

schedule the entire set of jobs J0 in the interval [σj0 , σj1 − 1]. But this is a contradiction since this interval

has only 2k slots and J0 has strictly more than 2k jobs.

5



2.2 A polynomial time algorithm from 50 years ago

I should now point out that this problem was already solved optimally in polynomial time nearly 50 years

ago by Coffman & Graham (1972). We suppose an instance of the problem is given as a directed graph (for

example, see the instance in figure 1). Given an ordered list L of vertices (representing jobs), we obtain a

schedule as follows. For each time step t, both machines try to schedule a job with the lowest index in L

such that all predecessors of the job have been processed. If both machines try to schedule the same job we

make the convention that the first machine schedules the job while the second machine will look for the job

with the second lowest index that satisfies this property (it may be the case that the second machine may

not be able to find such a job). Our algorithm in section 2.1 is essentially this procedure with a suitably

chosen L. Each ordered list L yields a schedule with makespan ω(L), and the goal is to find an order L∗

such that ω(L∗) ≤ ω(L) for every L. The interested reader is invited to see Coffman & Graham (1972, p.

203) for the details of how L is chosen.

2.3 Recent scheduling results via LP hierarchies

Fortunately, there are some state of the art results in scheduling using the method of LP hierarchies. These

results use similar lift and project methods, and they lift the same LP given in (2).

For example, for a fixed number of machines m and fixed ε, Levey & Rothvoss (2016) give a (1 + ε)-

approximation for the scheduling problem using r rounds of Sherali-Adams, thus yielding a running time of

nO(r). Here r = (log n)Θ(log log n).

More recently, the result above was improved to r = (log n)O(1) by Garg (2017), yielding a quasi-PTAS.

2.4 Open problems

For scheduling with m = 3 machines and precedence constraints, it is unknown if the problem is NP-hard.

Moreover, a PTAS is not known, but it is suspected that one exists based on LP or SDP hierarchies.

References

[1] Coffman, E. G., & Graham, R. L. (1972). Optimal scheduling for two-processor systems. Acta informatica,

1(3), 200-213.

[2] Garg, S. (2017). Quasi-PTAS for Scheduling with Precedences using LP Hierarchies. arXiv preprint

arXiv:1708.04369.

[3] Levey, E., & Rothvoss, T. (2016, June). A (1+ε)-approximation for makespan scheduling with precedence

constraints using LP hierarchies. In Proceedings of the forty-eighth annual ACM symposium on Theory

of Computing (pp. 168-177). ACM.

[4] Rothvoss, T. (2013). The Lasserre hierarchy in approximation algorithms. Lecture Notes for the MAPSP,

1-25.

6


