
CSC 2429 : Proof Complexity, Mathematical Programming and Algorithms

How to Round any CSP
Date: 28 March 2018 Scribe: Deeksha Adil, Noah MacAulay

1. Definition of CSP

Here we give our definition of a CSP. Our CSPs will be over a set of n variables V = {x1, ..., xn},
each variable ranging over q discrete values.

Each type, or family of CSPs is defined by a family of payoff functions Λ. The functions in Λ
are maps from [q]k to [−1, 1], for some fixed integer k, the arity of the payoff functions.

Given a payoff function λ : [q]k → [−1, 1] and a set of variables V = {x1, ..., xn}, an application
of λ to V is a function P (x1, ..., xn) → [−1, 1] such that P (x1, ..., xn) = λ(xi1 , ..., xik) for some
i1, ...ik ∈ [n]. An instance of a Λ-CSP consists of a set of applications of the payoff functions in Λ
to V . Our goal is to maximize the sum of each of the application of the payoff functions; that is,
we wish to find

argmax
x

∑
P∈P

P (x)

As an example, let’s cast MAX-3-SAT in this format. Here q = 2 and k = 3. The family Λ in
this case is the set of 8 possible ”or” functions on 3 boolean variables, λ000, λ001, ...λ111, e.g.

(1) λ000(x, y, z) =

{
−1 if x, y, z = 0

1 otherwise

(2) λ001(x, y, z) =

{
−1 if x, y = 0, z = 1

1 otherwise

A single application of one of these functions is a clause, and an instance is a formula. Maximizing
the sum of the payoff functions is equivalent to maximizing the number of satisfied clauses.

2. SDP Relaxation

Our SDP Relaxation will contain two sets of variables, {vi,a} and {µP,x}.
For each variable xi in the original CSP, we introduce q vector-valued variables vi,a. The vi,a have

dimension D that grows with n, say D = q|V |. The variable vi,a can be thought of as representing
the probability that xi = a.

For each application of a payoff function P , we introduce a ”local probability distribution” µP .
These are probability distributions over assignments to the variables xi1 , ..., xik that P is assigned
to. Each such local distribution has qk components.

Our goal is now to maximize the ”expected value” of the payoff functions under their local
distributions:

argmax
µP,x

∑
P∈P,x∈[q]k

µP,xP (x)

To enforce consistency between the different local distributions we introduce the following con-
straints:

1

〈vi,a, vj,b〉 = Pr(xi = a, xj = b) =
∑

xi=a,xj=b

µP,x

〈v0, vi,a〉 = Pr(xi = a) =
∑
xi=a

µP,x

Here v0 is an arbitrary fixed unit vector. The 2nd equality of each line holds for all P containing
xi and xj . We also have constraints enforcing that each µP is a probability distribution: for all P ,
x, µP,x ≥ 0, and

∑
x µP,x = 1.

We note some implications of the constraints. These constraints imply that the pairwise marginals
are the same between clauses. They also imply that

∑
a vi,a = v0 for all i. To see this, first note

that
∑

a vi,a is of unit length, because

〈
∑
a

vi,a,
∑
a

vi,a〉 =
∑
a,b

〈vi,a, vi,b〉 =
∑
a

Pr(xi = a) = 1

Additionally,

〈
∑
a

vi,a, v0〉 =
∑
a

〈vi,a, v0〉 =
∑
a

Pr(xi = a) = 1

This implies
∑

a vi,a = v0.
This optimization problem can be converted by standard techniques to a SDP of polynomial

size, and its optimal solution can be obtained in polynomial time.

3. Rounding by Variable Folding

We will present a rounding scheme for this SDP which is provably close to optimal.
To define the sense in which it is close to optimal, we consider the integrality gap curve SΛ for

this family of CSPs:
SΛ(c) = inf

sdp(P)=c
opt(P)

Here sdp(P) denotes the optimal value of the SDP relaxation of P and opt(P) denotes the optimal
value of the original instance. (Note that we divide this optimum by the number of payoff functions
in the instance)

The rounding scheme we present satisfies the following theorem:

Theorem 3.1. For every ε > 0 there exists an algorithm which, given a Λ-CSP instance P and
an optimal solution P to the SDP relaxation of P, returns a solution P of P with value at least
SΛ(sdp(P)− ε)− ε. The algorithm runs in time poly(n) + exp(exp(poly(kqε)))

The rounding scheme will use variable folding. Given a CSP instance Pwith variables V , we
can construct a folding of V by constructing a mapping φ : V → W for some set W . We obtain a
’folded’ CSP in which we identify variables xi, xj if φ(xi) = φ(xj). We refer to this folded instance
as P/φ. We note two properties of folding: the number of variables of P/φ is less than |W |, and
opt(P/φ) ≤ opt(P).

Our overall strategy for rounding will be as follows: We will compute an optimal solution to
the SDP relaxation of P. We will use this solution to, first, discard some of the constraints of the
original problem, then find a variable folding of this altered problem which approximately preserves
the SDP value. Solving this CSP by brute force gives us a solution which is approximately an
optimal rounding for our original CSP. In the next section we will show how to construct a variable
folding with the following properties:

Theorem 3.2. Given a Λ-CSP instance P, we can efficiently compute an instance P’ and a variable
folding φ such that

2

(1) P’ is obtained from Pby discarding a fraction ε of payoffs
(2) sdp(P ′/φ) ≥ sdp(P)− ε
(3) The variable set of P ′/φ has cardinality exp(kqε)

The above theorem implies Theorem 3.1.

Proof. By property 3, we can solve the CSP P ′/φ by brute force in time exp(exp(kqε)). Let y be
the optimal solution we obtain. The value of y on P ′/φ, valP ′φ(y), is greater than SΛ(sdp(P)− ε)
by property 2 and the definition of SΛ. By the definition of variable folding valP ′φ(y) = valP ′(y).
Finally by property 1, |valP(y)−valP ′(y)| ≤ ε. Therefore valP(y) ≥ SΛ(sdp(P)− ε)− ε, as desired.

�

4. Construction of the Variable Folding

In the previous section we see that it is enough to create a variable folding that satisfies the
conditions of Theorem 3.2. We are given an instance P over variable set V and the solution
{vi,a}, {µP } of the SDP relaxation. We want to construct an instance P ′ and a function φ : V →W ,
such that |W | is constant and P ′ is close to P. The following three steps gives an algorithm that
returns P ′ and φ.

(1) Dimension reduction: The vectors {vi,a} have a really high dimension, say D. We create
a vector ui,a corresponding to each vector vi,a of constant dimension, say d. Let M be a
matrix of dimension d × D such that each entry of M is independent and drawn from a
Gaussian distribution, N (0, 1/d). Now, define:

ui,a = Mvi,a

(2) Discarding bad CSP constraints: The new vectors, {ui,a} and distributions {µP } may
not satisfy the SDP constraints. For every payoff function P we have around O(k2q2) con-
straints in the SDP. Let Bε denote the set of payoff functions P for which at least one SDP
constraint is not satisfied up to an additive error of ε. We now define a new instance P ′
which does not contain the payoff functions in Bε, i.e., P ′ = P \Bε.

(3) Discretization: Every vector {ui,a} has a norm at most 1 + ε (follows from the SDP
constraints). Let us look at the unit ball in d dimensions and the position vectors of {ui,a}
in it. Let N denote a grid in this d dimensional space where each grid hyper-square has

length ε. Let |N | denote the number of grid points in N . Note that |N | ≤
(
c/ε
)d

for some
constant c. For every ui,a, let wi,a denote the closest point (standard euclidean distance)
on the grid to ui,a. Formally our function φ : V → N q is:

φ(i) = (wi,1, wi,2, ..., wi,q)

Return P ′/φ where P ′ is as described in (2) and φ is as described in (3). We need to prove that P ′
and φ satisfy 3.2. We first prove that not too many payoff functions are discarded in step 2.

Lemma 4.1. For any two vectors v1 and v2 in RD in the unit ball

Pr
M

[
|〈Mv1,Mv2〉 − 〈v1, v2〉| ≥ ε

]
≤ O(

1

ε2d
)

3

Proof.

E[〈Mv1,Mv2〉] = E[
d∑
i=1

∑
j

∑
k

MijMikv1jv2k]

= E[
d∑
i=1

(
∑
j

M2
ijv1jv2j +

∑
j 6=k

MijMikv1jv2k)]

=
∑
j

〈v1j , v2j〉
d∑
i=1

E[M2
ij] +

d∑
i=1

∑
j 6=k

E[Mij] E[Mik]v1jv2k

=
∑
j

〈v1j , v2j〉 · d · 1/d+ 0

= 〈v1, v2〉

Also, standard deviation of 〈Mv1,Mv2〉 can be shown to be O(1/
√
d). We now use Chebyshev’s

inequality which proves the lemma. �

Lemma 4.2. With high probability ||P − P ′||1 ≤ ε

Proof. While creating the instance P ′, we discard all payoff functions P from P for which even one
SDP constraint is not satisfied within an additive error of ε. For every P ∈ PP , we have O(k2q2)
SDP constraints. Probability that a particular constraint fails is O(1

ε2d
) from lemma 4.1. So the

probability that one of the SDP constraints corresponding to P fails is O(k
2q2

ε2d
). We thus have,

Pr
M

[P ∈ Bε] ≤ O(
k2q2

ε2d
)

Setting d = poly(kq/ε), we get, PrM [P ∈ Bε] ≤ ε. This means we have ||P −P ′||1 ≤ εP ≤ ε, since
P ≤ 1. �

The above lemma shows that we haven’t discarded too many pay off functions. Also the values
attained by the instances Pand P ′ on any assignment x differ by at most ε. We next show that
the instance we return, P ′/φ has constant number of variables.

Corollary 4.3. The variable set of P ′/φ has cardinality at most 2poly(kq/ε)

Proof. The number of variables in the instance P ′/φ is at most |N |q ≤
(
c/ε
)d

. Since we have

d = poly(kq/ε), we get, |N |q ≤
(
c/ε
)poly(kq/ε)

= 2poly(kq/ε). �

Now, we know that our solution {ui,a}, {µP } satisfies every SDP constraint of the instance P ′ up
to an additive error of ε. We still need to know how the solution {wi,a}, {µP } behaves with respect
to the SDP corresponding to P ′.

Lemma 4.4. For small enough ε > 0, suppose vectors {ui,a} satisfy all constraints corresponding
to some payoff function P ∈ P ′ up to an error ε. Then the vectors {wi,a} satisfy all constraints
corresponding to P up to an error of 4ε.

4

Proof. Every vector wi,a ≤ ui,a + εv̂ where v̂ is some unit vector. From the SDP constraints we
know that |ui,a|2 ≤ 1 + ε.

|〈wi,a, wj,b〉 − 〈ui,a, uj,b〉| ≤ |〈ui,a + εv̂1, uj,b + εv̂2〉 − 〈ui,a, uj,b〉|
= ε|ui,a + uj,b|+ ε2

≤ ε(|ui,a|+ |uj,b|) + ε

≤ 2ε
√

1 + ε+ ε

≤ (2
√

2 + 1)ε ≤ 4ε

�

We are only left with proving (2) of theorem 3.2 which follows from the following theorem (for
which we sketch out the proof later).

Theorem 4.5. Let P be a Λ-CSP instance on variable set V . Suppose {vi,a}, {µP } satisfy the SDP
constraints for P up to an additive constant ε and have a SDP value α, then

sdp(P) ≥ α−
√
ε · poly(kq)

Corollary 4.6.
sdp(P ′/φ) ≥ sdp(P)− ε

Proof. Solution {wi,a}, {µP } satisfies every SDP constraint for the instance P ′ up to an additive
error of 4ε. The value of the SDP solution for P ′ is at least sdp(P)− ||P −P ′|| ≥ sdp(P)− ε. Note
that this is also a solution for the instance P ′/φ with the same SDP value. Now using Theorem
4.5, we get that sdp(P ′/φ) ≥ sdp(P)− ε−

√
ε · poly(kq) ≥ sdp(P)−

√
ε · poly(kq). �

Proof of Theorem 4.5

Proof. We need to show that there exists at least one feasible solution to the SDP for P, that is
not far from the SDP value of P. Starting with the solution {vi,a}, {µP }, we construct a feasible
solution {wi,a}, {µ′P }. Notice the SDP constraints. There are two types of them,

〈vi,a, vi,b〉 = Pr[xi = a, xi = b] = 0

〈
∑
a

vi,a, v0〉 = 1

So we first create a new solution {ui,a} which at least satisfies these constraints. This new solution
is also infeasible but by a different amount. The following lemma does it.

Lemma 4.7. The vectors {vi,a} can be transformed to vectors {ui,a} such that for all a, b ∈ [q] and
all i ∈ V ,

〈ui,a, ui,b〉 = 0

, ∑
a

ui,a = v0

Furthermore, for i ∈ V and a ∈ [q],

||ui,a − vi,a|| ≤
√
ε · poly(q)

In particular, the SDP solution {ui,a}, {µP } is η-infeasible for η =
√
ε · poly(q)

Next we modify the local distributions by a small amount to satisfy a certain property given in the
lemma below.

5

Lemma 4.8. The local distributions {µP } can be transformed to distributions {µP } such that for
all P , i 6= j ∈ V (P), and a, b ∈ [q],

Pr
x∼µ′

[xi = a, xj = b] = (1− δ)〈ui,a, uj,b〉+ δ · 1

q2

where δ = q4k2η. Furthermore, for every P ,

||µP − µ′P || ≤ 3δ

The proof of the theorem follows from the above two lemmas. Construct {ui,a} as in lemma 4.7
and {µ′P } as in lemma 4.8. Define new vectors,

wi,a =
√

1− δui,a ⊕
√
δu′i,a

Here {u′i,a} corresponds to the centre of the convex hull of the feasible solutions. Basically we are

taking a suitable convex combination of the centre of the convex hull with vectors u′i,as to bring it

inside the convex hull. The vectors {wi,a} is this required convex combination. It can be seen that
these vectors with {µ′P } form a feasible solution. We now need to estimate the SDP value of this
solution.

E
P∼P

E
x∼µ′P

P (x) = α− E
P∼P

P (x)(µ(x)− µ′(x))

≥ α− E
P∼P
||(µ(x)− µ′(x)||1, since P (x) ≤ 1

≥ α− η · poly(kq), follows from lemma 4.8 and putting in the value of δ

This completes the proof of the theorem. �

5. References

(1) Prasad Raghavendra, David Steurer. How to Round any CSP. FOCS ’09 Proceedings of the
2009 50th Annual IEEE Symposium on Foundations of Computer Science. Pages 586-594

(2) Bernd Grtner, Jiri Matousek. Approximation Algorithms and Semidefinite Programming.

6

	1. Definition of CSP
	2. SDP Relaxation
	3. Rounding by Variable Folding
	4. Construction of the Variable Folding
	5. References

