# Approximate Constraint Satisfaction Requires Large LP Relaxations

# Noah Fleming

# April 19, 2018

Linear programming is a very powerful tool for attacking optimization problems. Techniques such as the ellipsoid method have shown that linear programs are solvable in polynomial time. Furthermore, it is known linear programming is P-complete. Therefore, if one was to show that some NP-hard problem admitted a polynomial-size linear program, then P = NP. In an attempt to rule out this approach, Yannakakis [4] gave a framework for proving lower bounds on a large class of linear programs known as *extended formulations*.

Consider the  $3XOR_n$  problem on n variables. It's not NP-hard, but it will serve as a good running example. An instance of  $\Pi \in 3XOR_n$  consists of m parity constraints  $\{P_1, \ldots, P_m\}$ ,  $P_{\ell} : \{\pm 1\}^n \to \{0, 1\}$  where

$$P_{\ell}(x) := x_i \oplus x_j \oplus x_k = a_{\ell}, \quad \text{for } i, j, k \in [n] \text{ and } a_{\ell} \in \{\pm 1\}^n;$$

the goal is to maximize the number of constraints satisfied. Note that  $\Pi$  can also be represented uniquely as a multilinear polynomial over  $\{\pm 1\}^n$  by taking the Fourier expansion. We can rewrite each  $P_{\ell}(x) = x_i \oplus x_j \oplus x_k = a_{\ell}$  as

$$P_{\ell}(x) := \frac{1}{2} + \frac{1}{2}(-1)^{\frac{1-a_{\ell}}{2}} x_i x_j x_k.$$

The value of  $\Pi$  on some assignment  $x \in \{-1, 1\}^n$  is given by

$$\Pi(x) = \frac{1}{m} \sum_{i \in [m]} P_i(x),$$

which is the fraction of constraints satisfied by assignment x. We will denote by

$$\mathsf{opt}(\Pi) = \max_{x \in \{-1,1\}^n} \Pi(x),$$

the largest fraction of constraints of  $\Pi$  satisfiable by any assignment  $x \in \{-1, 1\}^n$ .

If we want to express this as a linear program, then we need to linearize this function. To do this, we can associate some ordering to the  $2\binom{n}{3}$  possible  $3XOR_n$  constraints,  $P_1, \ldots, P_{2\binom{n}{3}}$ .

A natural way of linearizing such a function is to associate with each  $3XOR_n$  instance  $\Pi$  on m vertices, a vector  $\tilde{\Pi} \in \mathbb{R}^{2\binom{n}{3}}$ , where the *i*th entry is 1/m if  $\Pi$  contains constraint  $P_i$  and 0 otherwise. Similarly, we can associate with each assignment  $x \in \{-1, 1\}^n$  a vector  $\tilde{x} \in \mathbb{R}^{2\binom{n}{3}}$  in which  $\tilde{x}_i = 1$  if  $P_i(x) = 1$  and 0 otherwise. This satisfies, for every  $3XOR_n$  instance  $\Pi$  and assignment  $x \in \{-1, 1\}^n$ , that

$$\langle \tilde{\Pi}, \tilde{x} \rangle = \Pi(x).$$

This lends itself to a natural linear program: let  $\mathcal{P} \subseteq \mathbb{R}^{\binom{n}{3}}$  be the convex hull of all  $\tilde{x}$  for  $x \in \{-1, 1\}^n$ ; the linear program is given by

$$\mathcal{L}(\Pi) = \max_{y \in \mathcal{P}} \langle y, \tilde{\Pi} \rangle.$$

This polytope  $\mathcal{P}$  has vertices corresponding to the points  $\tilde{x}$  for  $x \in \{-1, 1\}^n$  and facets corresponding to the encodings  $\tilde{\Pi}$  of all  $3XOR_n$  instances  $\Pi$ . Therefore, the value returned by optimizing over  $\mathcal{P}$  will be  $opt(\Pi)$ .

Unfortunately, the polytope  $\mathcal{P}$  has an exponential number of facets and therefore cannot be optimized over efficiently. One possible way to overcome this issue is to find some new polytope  $\mathcal{P}'$  in a higher dimensional space  $\mathbb{R}^{d\geq n}$  with much fewer facets and such that there is a linear projection from  $\mathcal{P}'$  down to  $\mathcal{P}$ . We could then optimize over the new polytope  $\mathcal{P}'$ instead of optimizing over  $\mathcal{P}$ . Such a polytope  $\mathcal{P}'$  is known as an *extended formulation* of the polytope  $\mathcal{P}$ .

The size of an extended formulation is the number of facets of the polytope, while the extension complexity of the base polytope  $\mathcal{P}$ , denoted  $xc(\mathcal{P})$  is the smallest extended formulation of  $\mathcal{P}$ . We stress that an extended formulation  $\mathcal{P}'$  depends only on the input size and not the particular instance  $\Pi \in 3XOR_n$  that we want to compute; the instance  $\Pi$  is defined only in he objective function.

Yannakakis gave a beautiful characterization of the extension complexity of a polytope in terms of the non-negative rank of its slack matrix. Consider a linear program  $\mathcal{P}$  computing  $3XOR_n$ . The *slack matrix*  $M^S$  has rows corresponding to the instances  $\Pi \in 3XOR_n$ , and columns corresponding to the vertices  $\tilde{x}$  of  $\mathcal{P}$ . The entry at some row, column  $(\Pi, \tilde{x})$  is the slack between that vertex and that instance,

$$M^{S}_{\tilde{\Pi}.\tilde{x}} := \mathcal{L}(\Pi) - \langle \tilde{x}, \tilde{\Pi} \rangle,$$

where  $\mathcal{L}(\Pi) = \max_{y \in \mathcal{P}} \langle y, \tilde{\Pi} \rangle$ . The non-negative rank of a matrix M, denoted  $\mathsf{rk}^+(M)$  is the smallest dimension r such that M can be written as a product of two non-negative matrices F and V with inner-dimension r.

**Theorem 1.** (Yannakakis [4]) For any polytope  $\mathcal{P}$ ,  $xc(\mathcal{P}) + 1 = rk^+(\mathcal{P})$ 

The Proof relies on Farkas' Lemma.



Figure 1: Representation of Theorem 1, the decomposition of the slack matrix into two non-negative matrices with inner dimension r.

**Lemma 1.** (Farkas' Lemma) Let  $\mathcal{P}$  be a with facets defined by inequalities  $\{A_1x \leq b_1, \ldots, A_mx \leq b_r\}$  and let  $Cx \leq d$  be an inequality that is valid for  $\mathcal{P}$  (that is, every point  $\alpha \in \mathcal{P}$  satisfies  $C\alpha \leq d$ ) then there exists  $\lambda_0, \ldots, \lambda_r \in \mathbb{R}^{\geq 0}$  such that

$$d - Cx = \lambda_0 + \sum_{i=1}^r \lambda(b_i - A_i x)$$

We will only prove the forward direction, since it is all that we will need.

Proof. (of Theorem 1) Let  $\mathcal{P}'$  be an extended formulation of  $\mathcal{P}$  such that  $\mathcal{P}'$  has r facets, defined by inequalities  $A_1x \leq b_1, \ldots, A_rx \leq b_r$ . Observe that for every  $\Pi \in 3XOR_n$ , the inequality  $opt(\Pi) - \langle \Pi, y \rangle \geq 0$  is valid for the polytope  $\mathcal{P}$ , for every  $y \in \mathcal{P}$  and furthermore, that  $opt(\Pi) = \mathcal{L}(\Pi)$  because  $\mathcal{P}$  computes  $3XOR_n$  exactly. Applying Farkas' Lemma, we can write

$$\mathcal{L}(\Pi) - \langle \tilde{\Pi}, y \rangle = \lambda_0(\tilde{\Pi}) + \sum_{i=1}^r \lambda_i(\tilde{\Pi}) \cdot (b_i - \langle A_i, y \rangle), \tag{1}$$

for some  $\lambda_0(\tilde{\Pi}), \ldots, \lambda_r(\tilde{\Pi}) \in \mathbb{R}^{\geq 0}$ . Now, because there is a linear projection from  $\mathcal{P}$  to  $\mathcal{P}'$ , there is a vertex v of  $\mathcal{P}'$  that projects to each vertex  $\tilde{x}$  of  $\mathcal{P}$ . We will restrict to these vertices,

$$\mathcal{L}(\Pi) - \langle \tilde{\Pi}, \tilde{x} \rangle = \lambda_0(\tilde{\Pi}) + \sum_{i=1}^r \lambda_i(\tilde{\Pi}) \cdot (b_i - \langle A_i, v \rangle).$$
(2)

Furthermore, the  $\tilde{x}$  are in one-to-one correspondence with the  $x \in \{-1, 1\}^n$ , we can rewrite this as each  $b_i - \langle A_i, v \rangle$  as a non-negative function  $q_i : \{-1, 1\}^n \to \mathbb{R}^{\geq 0}$ , where

$$q_i(x) = b_i - \langle A_i, v \rangle.$$

Therefore, we can rewrite equation 2 as

$$\mathcal{L}(\Pi) - \langle \tilde{\Pi}, \tilde{x} \rangle = \lambda_0(\tilde{\Pi}) + \sum_{i=1}^r \lambda_i(\tilde{\Pi}) \cdot q_i(x);$$

this is the slack between vertex  $\tilde{x}$  and instance  $\Pi$ . We now construct the non-negative matrices V and F with inner dimension r + 1. Let the rows of V be indexed by the  $\Pi$  for  $\Pi \in 3 \text{XOR}_n$  and the columns of F be indexed by the  $\tilde{x}$  for  $x \in \{-1, 1\}^n$ . The  $\Pi$ th row of Vwill be the vector  $[\lambda_0(\Pi), \ldots, \lambda_r(\Pi)]$  corresponding to  $\Pi$ . The *i*th row of F is the truth table encoding of  $q_i$ , where the (i, j)th entry of F is the evaluation of  $q_i(x)$ . The (r + 1)st row of F is the all 1 vector. This can be seen in figure 1. Therefore, the inner product between  $V_{\Pi}$ and  $F_{\tilde{x}}$  is

$$\lambda_0(\tilde{\Pi}) + \sum_{i=1}' \lambda_i(\tilde{\Pi}) \cdot q_i(x) = \mathcal{L}(\Pi) - \langle \tilde{\Pi}, \tilde{x} \rangle.$$

Note: Because the extended formulation computes  $\Pi \in 3XOR_n$  exactly,  $\mathcal{L}(\Pi) = opt(\Pi)$ . Furthermore because the rows and columns of the slack matrix are in one-to-one correspondence between  $x \in \{-1, 1\}^n$  and  $\Pi \in 3XOR_n$ , the  $(\tilde{x}, \tilde{\Pi})$ th entry of the slack matrix is equivalent to

$$M_{\Pi,x}^S = \mathsf{opt}(\Pi) - \Pi(x),$$

because,  $\langle \tilde{x}, \tilde{\Pi} \rangle = \Pi(x)$ . Therefore, the slack matrix will be the same for *any* base polytope  $\mathcal{P}$ , the particular linearization is irrelevant. Therefore, more generally, we can define an extended formulation that exactly computes  $3XOR_n$  as a polytope  $\mathcal{P} \subseteq \mathbb{R}^{d \geq n}$  such that

1. for every assignment  $x \in \{-1,1\}^n$  there is a vector  $\tilde{x} \in \mathcal{P}$  and for every instance  $\Pi \in 3XOR_n$  there is a vector  $\tilde{\Pi} \in \mathbb{R}^d$  such that

$$\Pi(x) = \langle \tilde{x}, \tilde{\Pi} \rangle$$

2.  $opt(\Pi) = \max_{y \in \mathcal{P}} \langle y, \tilde{\Pi} \rangle$  for every  $\Pi \in 3XOR_n$ .

The extension complexity of  $3XOR_n$ ,  $xc(3XOR_n)$  is then the smallest extended formulation for  $3XOR_n$ .

The key fact from Theorem 1 that we will use is that if an extended formulation  $\mathcal{P}$  of size r computes  $3XOR_n$  then, for every instance  $\Pi$ , there exists a representation

$$\mathcal{L}(\Pi) - \Pi = \lambda_0(\Pi) + \sum_{i=1}^r \lambda_i q_i(\Pi),$$

where each  $q_i$  is a slack function of  $\mathcal{P}$ . We will call this representation an *extended formulation* witness, because it witnesses that  $\mathcal{P}$  computes  $\Pi$ . From now on, we will write  $\lambda_i(\Pi)$  as simply  $\lambda_i$ , where the dependence on  $\Pi$  is implicit. Recall that the degree-*d* Sherali-Adams hierarchy computes an instance  $\Pi \in 3XOR_n$  if  $opt(\Pi) - \Pi$  can be written as a non-negative linear combination of *d*-juntas,  $\tilde{q}_i$ ,

$$\mathsf{opt}(\Pi) - \Pi = \sum_{i \in I} \lambda_i \widetilde{q}_i.$$

This representations is superficially similar, and one might wonder if there is a way to approximate an extended formulation witness with a Sherali-Adams witness. Obviously, it would be too much to hope for that each of the non-negative functions in the extended formulation witness could be well approximated by a non-negative junta. Surprisingly, Chan, Lee, Raghavendra and Steurer [1] showed that after a specialized random restriction, the resulting  $q_i$  can be well approximated by non-negative d-juntas. Using this, they are able to lift Sherali-Adams lower bounds to extension lower complexity lower bounds. This transformation works for the class of constraint satisfaction problems (CSP), but we will prove it for the special case of  $3XOR_n$ .

**Theorem 2.** ([1]) Suppose that the d(n)-round Sherali-Adams relaxation cannot compute  $3XOR_n$ , then for all sufficiently large n, no extended formulation of size at most  $n^{d(n)^2}$  can compute  $3XOR_N$  for some  $N = n^{10d(n)}$ 

We begin with the family of  $3\text{XOR}_N$  instances over N variables, and some extended formulation  $\mathcal{P}$  of size r. By Yannakakis' Theorem above, each instance  $\Pi \in 3\text{XOR}_N$ , can be written as  $\mathcal{L}(\Pi) - \Pi = \sum_{i=1}^r \lambda_i q_i$ , where each  $q_i$  is a function  $\{-1, 1\}^N \to \mathbb{R}^{\geq 0}$ . Our goal is to write (a restriction of)  $\mathcal{L}(\Pi) - \Pi$  as a non-negative linear combination of d-juntas plus some small error term. The proof proceeds in three steps.

- 1. First, we show that we can restrict our attention to  $q_i$  that are sufficiently smooth (the infinity norm of these functions is bounded).
- 2. Then, we show that each of these  $q_i$  can be approximated by an  $N^{0.2}$ -junta  $q'_i$ , such that the error on the low degree Fourier coefficients of  $q_i q'_i$  is small. Here we crucially use the fact that degree-*d* Sherali-Adams can only reason about monomials of degree up to *d*. This step will incur some error, but we will show that this error goes to 0 as n goes to infinity.
- 3. Up until now, this proof has worked for any instance  $\Pi \in 3XOR_N$ . We will now fix a particular instance which will allow us to make the connection to Sherali-Adams lower bounds. Let  $\Pi_0 \in 3XOR_n$  be a hard instance for Sherali-Adams on n variables. To obtain the instance  $\Pi \in 3XOR_N$ , we plant  $\Pi_0$  at random inside a larger space of N variables by picking a subset of n of the variables and defining the constraints of  $\Pi_0$  on them; the remaining N n variables will remain unconstrained. Finally, we argue that with high probability, the set of significant coordinates of  $q'_i$  when restricted to the variables on which  $\Pi_0$  is define is at most d, and so the existence of this extended formulation implies that degree-d Sherali-Adams computes this instance exactly.

# Fourier Analysis

We will need several tools from Fourier analysis. We will define the inner product between two n-variable functions f and g as

$$\langle f, g \rangle := \mathbb{E}_{x \in \{-1,1\}^n} [f(x)g(x)],$$

where the expectation is taken over the uniform distribution on  $\{-1,1\}^n$ . The Fourier representation of a function  $f: \{-1,1\}^n \to \mathbb{R}$  is its unique representation over the basis of parity functions  $\chi_{\alpha} := \prod_{i \in \alpha} x_i$  for  $\alpha \subseteq [n]$ . We can represent f over this basis as

$$f = \sum_{\alpha \subseteq [n]} \hat{f}(\alpha) \chi_{\alpha},$$

where the fourier coefficient  $\hat{f}(\alpha)$  is defined as f in the  $\chi_{\alpha}$  direction,

$$\hat{f}(\alpha) := \langle f, \chi_{\alpha} \rangle$$

Intuitively,  $f(\alpha)$  measures the correlation of the variables  $\prod_{i \in \alpha} x_i$ . Throughout this, we will use the functions regular representation and its Fourier representation interchangeably. Furthermore, if f is non-negative and  $\mathbb{E}_{x \in \{-1,1\}^n}[f(x)] = 1$ , then we can treat the Fourier coefficients of f as a distribution over  $\{-1,1\}^n$ .

# Step 1: Smooth Slack Functions

We will now prove the main theorem by following the three steps laid out previously. Again, suppose that we have an extended formulation  $\mathcal{P}$  of size  $r \leq N^{d/2}$  which computes  $3XOR_N$  exactly. By Yannakakis' Theorem, for any  $\Pi \in 3XOR_N$ , we can write  $\Pi$  as a sum of non-negative slack functions,

$$\mathcal{L}(\Pi) - \Pi = \lambda_0 + \sum_{i=1}^r \lambda_i q_i,$$

where  $\lambda_i \geq 0$  and  $q_i : \{-1, 1\}^N \to \mathbb{R}^{\geq 0}$ . Furthermore, we can normalize each  $q_i$  and write it as  $q_i(x) = \gamma_i q_i(x)$  for some  $\gamma_i \in \mathbb{R}^{\geq 0}$  such that  $\mathbb{E}[q_i] = 1$ . That is,

$$\mathcal{L}(\Pi) - \Pi = \lambda_0 + \sum_{i=1}^r (\lambda_i \gamma_i) \cdot q_i.$$

Define the set

$$Q := \{i : \|q_i\|_{\infty} \le N^d\},\$$

of the  $q_i$  which are fairly smooth. Recall that d is the degree of the Sherali-Adams proof we are trying to obtain. We will show that restricting attention to the set of functions Q will only incur a small additive error. We can decompose the previous sum into

$$\mathcal{L}(\Pi) - \Pi = \lambda_0 + \sum_{i \in Q} (\lambda_i \gamma_i) \cdot q_i + \sum_{j \in [r] \setminus Q} (\lambda_j \gamma_j) \cdot q_j.$$

Because the value of  $\operatorname{opt}(\Pi) - \Pi(x) \in [0, 1]$  for every  $x \in \{-1, 1\}^N$  and  $\Pi \in 3XOR_N$  and because  $\lambda_j, \gamma_j \geq 0$  and  $q_j$  is non-negative and  $\mathbb{E}[q_j] = 1$ , we must have  $\lambda_j \gamma_j \leq N^{-d}$  for every instance  $\Pi \in 3XOR_N$ . Because of this,  $\sum_{j \in [r] \setminus Q} (\lambda_j \gamma_j) q_j$  cannot be very large and we will treat it as some small additive error term, which we will denote by  $\varepsilon(\Pi)$ . Later, we will bound its value,

$$\mathcal{L}(\Pi) - \Pi = \lambda_0 + \sum_{i \in Q} (\lambda_i \gamma_i) \cdot q_i + \varepsilon(\Pi).$$

#### Step 2: Approximate Functionals by High-Degree Juntas

The aim now is to show that the smooth slack functions  $q_i$  for  $i \in Q$  can be well approximated by high-degree juntas. For this, we will use a density version of Chang's Lemma. The proof follows from the entropic proof of Chang's Lemma in Impagliazzo, Moore and Russell [2].

**Lemma 2.** (Chang's Lemma) Let q be a density with entropy at least N - t for some  $t \ge 0$ , let  $\sigma > 0$  and define  $R = \{\alpha : |\hat{f}(\alpha)| \ge \sigma 2^{-t}\}$ . Then R spans a space of dimension less than  $2t/\sigma^2$ 

A consequence of Chang's Lemma is the following.

**Lemma 3.** If  $q_i$  has entropy at least  $N - d \log N$ , then for any  $\sigma > 0$ , there exists a set  $J(q_i) \subseteq [N]$  with

$$|J(q_i)| \le \frac{2d^2 \log N}{\sigma^2}$$

such that for every  $\alpha \not\subseteq J(q_i)$  with  $|\alpha| \leq d$ , we have  $|\hat{q}(\alpha)| \leq \sigma$ .

Proof. Consider  $S = \{ |\alpha| \leq d : |\hat{q}(\alpha)| \geq \sigma \}$  and let S' be the maximal set of linearly independent elements in S. The density version of Chang's Lemma states that, after setting  $t = d \log N$ , that  $|S'| \leq 2\sigma^{-2} d \log N$ . Let  $J(q_i) = \bigcup_{\alpha \in S'} \alpha$ , then  $|J(q_i)| \leq 2d^2 \log N/\sigma^2$ because each  $\alpha$  contains at most d elements (it follows by linear independence that for all  $\alpha \notin J(q_i)$  with  $|\alpha| \leq d$ , that  $\hat{q}_i(\alpha) \leq sigma$ .

This lemma says that we can decompose any high-entropy  $q_i$  into two parts  $q'_i$  and  $e_i$ , where

$$q'_i = \sum_{\alpha \subseteq J(q_i)} \hat{q}_i(\alpha) \chi_{\alpha}, \quad \text{and} \quad e_i = \sum_{\alpha \subseteq [N] \setminus J(q_i)} \hat{q}_i(\alpha) \chi_{\alpha}.$$

That is,  $q'_i$  depends only on the set of variables in  $J(q_i)$  and in  $e_i$ , the Fourier coefficients of correlations up to degree-d are very small.

Beyond degree-d we have no control over the magnitude of the Fourier coefficients in  $e_i$ . However, recall that the degree-d Sherali-Adams hierarchy can only *perceive* correlations of degree up to d. Therefore, because our end goal is to convert this into a Sherali-Adams proof, this is a non-issue for us.

Therefore, if we could ensure that each of the  $q'_i$  were d-junta – that is, that  $|J(q_i)| \leq d$ , and that the extra error  $e_i$  was small, then the proof would be finished. We would have

arrived at a representation of  $\mathcal{L}(\Pi) - \Pi$  consisting of *d*-juntas plus some small additive error. Unfortunately, because we need  $\sum_{i \in Q} e_i$  to tend to 0 as  $n \to \infty$ , it turns out that the largest that we will be able to set  $\sigma$ , and still achieve this is  $\sigma = \left(\frac{16nd^2 \log N}{\sqrt{N}}\right)^{1/2}$ . Under Lemma 3, this only guarantees that each  $q'_i$  is an  $(\sqrt{N}/8n)$ -junta, which is approximately  $N^{0.2}$  when the final numbers are plugged in.

Finally, we verify that each  $q_i$  with  $i \in Q$  indeed has high enough entropy to satisfy the hypothesis of Lemma 3:

$$H(q_i) = \sum_{x \in \{-1,1\}^N} \frac{q_i(x)}{2^N} \log\left(\frac{2^N}{q_i(x)}\right) \ge \left(\sum_{x \in \{-1,1\}^N} \frac{q_i(x)}{2^N}\right) \cdot \log\left(\frac{2^N}{\|q_i\|_{\infty}}\right)$$
$$\ge \left(\sum_{x \in \{-1,1\}^N} \frac{q_i(x)}{2^N}\right) \cdot \log\left(\frac{2^N}{N^d}\right) = N - d\log N,$$

where we used the fact that  $\mathbb{E}[q_i] = 1$ . So far we have achieved a representation of the form

$$\mathcal{L}(\Pi) - \Pi = \lambda_0 + \sum_{i \in Q} (\lambda_i \gamma_i) \cdot (q'_i + e_i) + \varepsilon(\Pi),$$

where  $e_i$  are error terms whose Fourier coefficients corresponding to degree-up-to-*d* correlations are bounded by  $\sigma$ , and  $q_i$  are  $\approx N^{0.2}$ -juntas.

# Step 3: Random Restriction to a Hard Instance for Sherali-Adams

The final step is to reduce the  $N^{0.2}$ -juntas to d-Juntas. To do this, we will employ a special random restriction which will restrict to an instance  $\Pi_0 \in 3XOR_n$  for which we have Sherali-Adams lower bounds. Note that until this point, the steps of the proof have not relied on the particular instance of  $3XOR_N$ . We will now restrict attention to a particular sub-family of instances. Consider an instance  $\Pi_0$  of  $3XOR_n$  on n variables, where n is much smaller than N ( $\Pi_0$  should be thought of as a hard instance for Sherali-Adams). To create our instance  $\Pi$ , we will randomly plant  $\Pi_0$  inside a larger space of N unconstrained variables by picking a subset S of n variables and defining the constraints of  $\Pi_0$  on them. The idea is that since the only constraints in  $\Pi$  are those corresponding to  $\Pi_0$ ,

$$\mathcal{L}(\Pi) = \mathsf{opt}(\Pi) = \mathsf{opt}(\Pi_0).$$

Now, because each of the junta  $q'_i$  depend on at most  $N^{0.2}$  variables, then if we restrict to the variables of  $\Pi_0$ , with high probability only a small fraction of the variables on which  $q_i$  depends will remain. This can be seen in figure 2. This will be done in the following lemma; recall that in step 2, using Chang's Lemma, we decomposed  $q_i = q'_i + e_i$ .



Figure 2: The intersection between the variable space of each  $N^{0.2}$ -junta  $q'_i$  and the restricted set S on which we will plant  $\Pi_0$ .

**Lemma 4.** There exists a set  $S \subseteq [N]$  of size n such that for each  $q_i$  with  $i \in Q$ , there is a set  $J(q) \subseteq S$  with  $|J(q)| \leq d$  such that

$$|\hat{q}(\alpha)| \le \left(\frac{16nd^2\log N}{\sqrt{N}}\right)^{1/2},$$

for all  $\alpha \subseteq S \setminus J(q)$  with  $|\alpha| \leq d$ .

For the proof, we will need the following inequality. Let  $X_1, \ldots, X_n$  be i.i.d.  $\{0, 1\}$ -random variables, with  $\mathbb{E}[X_i] = p$ . Then

$$\Pr\left[\sum_{i=1}^{n} X_i \ge t\right] \le (pn)^t \tag{3}$$

*Proof.* We will choose the set S as follows:

- 1. Uniformly at random, pick a partition of [N] into sets  $S_1, \ldots, S_n$ , each of size N/n.
- 2. For each variable  $i \in [n]$ , pick a variable  $v_i$  from  $S_i$  uniformly at random.
- 3. Let  $S = \{v_i : i \in [n]\}$

In step 2 we argued, using Lemma 3, that we could decompose  $q_i = q'_i + e_i$ , where each  $q'_i$  is an  $\sqrt{N}/8n$ -junta which depends on a set of coordinates  $J(q_i)$ , and for every  $\alpha \subseteq [N]$  with  $|\alpha| \leq d$ ,  $|e_i(\alpha)| \leq \left(\frac{16nd^2 \log N}{\sqrt{n}}\right)^{1/2}$ . We will show that with some positive probability, the intersection of each of the sets  $J(q_i)$  with the set S is at most d. For each variable  $\ell \in J(q_i)$ , let  $X_\ell$  be the event  $\ell \in S$ . Then,  $\mathbb{E}[q_i] = n/N$  because we are choosing each element of S uniformly at random, and so

$$\Pr[|J(q_i') \cap S| \ge d] = \Pr\left[\sum_{\ell \in J(q_i')} X_\ell \ge d\right] \le \left(\frac{n}{N} \cdot |J(q_i')|\right)^d \le \frac{1}{8^d N^{d/2}}$$

where the second inequality follows from inequality 3 above. Finally, because we have assumed that our original extended formulation is of size at most  $N^{d/2}$ , we have that  $|Q| \leq N^{d/2}$ , and so taking a union bound over all  $J(q_i)$  for  $i \in Q$  completes the proof.  $\Box$ 

Finally, we construct the instance  $\Pi \in 3XOR_N$  as follows: Let  $\Pi_0$  be an instance of  $3XOR_n$ on *n* variables. Apply Lemma 4 to obtain a subset  $S = \{v_1, \ldots, v_n\} \subseteq [N]$ . Define the constraints of  $\Pi$  as the constraints of  $\Pi_0$  defined on the variables  $\{v_1, \ldots, v_n\}$ ; the remaining N - n variables are left unconstrained.

Let  $\mathbb{E}^*$  be the degree-*d* Sherali-Adams pseudo-expectation which achieves the optimal value on the  $\Pi_0$ ,

$$\mathbb{E}^* = \mathsf{SA}_d[\Pi_0] = \max_{\tilde{\mathbb{E}} \sim d - PE} \tilde{\mathbb{E}}[\Pi_0],$$

where we think of  $\Pi(x)$  as its representation as a multilinear polynomial so that we can apply  $\mathbb{E}^*$  to it. Furthermore, we can represent each of the functions  $q_i$  as a multilinear polynomial by taking its Fourier transform. We will think of  $q_i$  as having that representation from now on so that we can apply  $\mathbb{E}^*$  to them. We now plant  $\mathbb{E}^*$  on the set of variables S, that is, we define  $\mathbb{E}^*$  on the variables in S and extend it to have Fourier coefficient 0 on all terms outside of S. To do this, we note that  $\Pi$  is unconstrained on variables outside of S and therefore, we define the underlying pseudo-distribution to be uniform on all variables on outside of S. Applying it to both sides of equation ?? we arrive at

$$\mathbb{E}^*[\mathcal{L}(\Pi) - \Pi(x)] = \lambda_0 + \sum_{i \in Q} \lambda_i \gamma_i \cdot (\mathbb{E}^*[q'_i] + \mathbb{E}^*[e_i]) + \mathbb{E}^*[\varepsilon(\Pi)]$$
$$\mathcal{L}(\Pi) - \mathsf{SA}_d[\Pi_0] = \lambda_0 + \sum_{i \in Q} \lambda_i \gamma_i \cdot (\mathbb{E}^*[q'_i] + \mathbb{E}^*[e_i]) + \mathbb{E}^*[\varepsilon(\Pi)],$$

Now, because  $\mathbb{E}^*$  gives non-zero value only on the variables of S, we have that

$$\mathbb{E}^*[q_i'] = \mathbb{E}^*[q_i' \upharpoonright_S],$$

and so, by Lemma 4, we know that  $q'_i$  depends only on at most d variables in S, so it is a non-negative d-junta. Therefore,  $\mathbb{E}^*[q'_i] \ge 0$ , and so

$$\mathcal{L}(\Pi) \ge \mathsf{SA}_d[\Pi_0] + \sum_{i \in Q} \lambda_i \gamma_i \cdot \mathbb{E}^*[e_i] + \mathbb{E}^*[\varepsilon(\Pi)].$$

Now, if we can show the error terms,  $\sum_{i \in Q} \lambda_i \gamma_i \cdot \mathbb{E}^*[e_i] + \mathbb{E}^*[\varepsilon(\Pi)]$  go to 0 as  $n \to \infty$ , then we will arrive at a representation of the form

$$\mathcal{L}(\Pi) \geq \mathsf{SA}_d[\Pi_0],$$

and so Sherali-Adams lower bounds will imply extension complexity lower bounds.

#### **Bounding Error Terms**

All that is left is to show that the error terms go to 0 as  $n \to \infty$ . We begin with bounding

$$\mathbb{E}^*\left[\varepsilon(\Pi)\right] = \sum_{j \in [r] \setminus Q} (\lambda_j \gamma_j) \cdot \mathbb{E}^*[q_j],\tag{4}$$

the error term that we obtained from Step 1. We will need a simple fact about pseudoexpectations

**Claim 1.** For any degree-d pseudo-expectation  $\mathbb{E}^*$  in its Fourier representation as a multilinear polynomial over  $\{-1,1\}^n$ , we have  $\|\mathbb{E}^*\|_{\infty}$ ,  $\sum_{\alpha \subset [n]} |\mathbb{E}^*[\chi_{\alpha}]| \leq \sum_{i=0}^d {n \choose i}$ .

*Proof.* The Fourier representation of  $\mathbb{E}^*$  is

$$\mathbb{E}^* = \sum_{\alpha \le d} \mathbb{E}^*[\chi_\alpha] \chi_\alpha,$$

where  $\chi_{\alpha} = \prod_{i \in \alpha} x_i$ . We know that because  $\mathbb{E}^*$  is a pseudo-expectation that  $\mathbb{E}^*[\chi_{\alpha}] \leq 1$  (this follows because a pseudo-expectation is the expectation over a pseudo-distribution). Because it is a degree-*d* pseudo-expectation, there can be at most  $\sum_{i=0}^{d} {n \choose d}$  non-zero Fourier coefficients, each having absolute value at most 1.

We can apply this claim as follows: Viewing  $q_j$  as its Fourier representation as a multilinear polynomial, and noting that  $\mathbb{E}^*$  assigns values to monomials of degree at most d we can write

$$\mathbb{E}^*[q_j] \le \|\mathbb{E}^*\|_{\infty} \le \sum_{i=0}^d \binom{n}{d},$$

the first inequality follows because the Fourier representation of  $\mathbb{E}^*$  is  $\mathbb{E}^* = \sum_{\alpha \leq d} \mathbb{E}^*[\chi_\alpha]$ and so the Fourier coefficient corresponding to the monomial  $\chi_\alpha$  is  $\mathbb{E}^*[\chi_\alpha]$ , the value that  $\mathbb{E}^*$  assigns to  $\chi_\alpha$ . Therefore, we can view  $\mathbb{E}^*$  as a vector whose  $\alpha$ th place is the Fourier coefficient  $\mathbb{E}^*[\chi_\alpha]$ . Similarly, we view  $q_j$  as a vector, where the  $\alpha$ th entry is the Fourier coefficient  $\hat{f}(\alpha)$ , which is the coefficient of  $\chi_\alpha$  in the representation of  $q_j$  as a multilinear polynomial. Therefore, taking the inner product between these two vectors  $\langle \mathbb{E}^*, q_j \rangle$  gives the evaluation  $\mathbb{E}^*[q_j]$ . Because  $q_i$  is a density, that is  $\mathbb{E}[q_j] = 1$  and  $q_j \geq 0$ , we can represent it as a distribution over assignments  $x \in \{-1, 1\}^n$ , and associate with each such assignment a set which contains element *i* if  $x_i = -1$ . Then,  $\langle \mathbb{E}^*, q_j \rangle = \mathbb{E}_{\alpha \sim q_i}[\mathbb{E}^*[\alpha] \leq ||\mathbb{E}^*||_{\infty}$ 

During step 1, we argued that because the  $q_j, \lambda_j, \gamma_j \geq 0$ , that  $||q_i||_{\infty} \geq N^d$  for every  $i \in [r] \setminus Q$ , and because  $\mathcal{L}(\Pi) - \Pi_0 \in [0, 1]$ , we must have  $(\lambda_j \gamma_j) < N^{-d}$  for each  $j \in [r] \setminus Q$ . Putting all of this together, we have

$$\mathbb{E}^*\left[\varepsilon(\Pi)\right] = \sum_{j \in [r] \setminus Q} (\lambda_j \gamma_j) \cdot \mathbb{E}^*[q_j] \ge -\sum_{i=1}^d \binom{n}{i} r N^{-d} \ge -\left(\frac{en}{d}\right)^d N^{-d/2},$$

where the second inequality follows because  $|[r] \setminus Q| \leq r$ , and the final inequality follows because r, the size of the extended formulation, is at most  $N^{d/2}$ .

Finally, we bound the error term  $\sum_{i \in Q} (\lambda_i \gamma_i) \cdot \mathbb{E}^*[e_i]$  in a similar way, by noting that

$$\begin{aligned} |\mathbb{E}^*[e_i]| &\leq \sum_{\alpha \subseteq S} |\mathbb{E}^*[\chi_\alpha]| \cdot |\hat{e}_i(\alpha)| = \sum_{\alpha \subseteq S: |\alpha| \leq d} |\mathbb{E}^*[\chi_\alpha]| \cdot |\hat{e}_i(\alpha)| \leq \sum_{\alpha \subseteq S: |\alpha| \leq d} |\mathbb{E}^*[\chi_\alpha]| \left(\frac{16nd^2 \log N}{\sqrt{N}}\right)^{1/2} \\ &\leq \sum_{i=0}^d \binom{n}{d} \left(\frac{16nd^2 \log N}{\sqrt{N}}\right)^{1/2} \leq \left(\frac{en}{d}\right)^d \left(\frac{16nd^2 \log N}{\sqrt{N}}\right)^{1/2}, \end{aligned}$$

where the equality follows because  $\mathbb{E}^*[\chi_\alpha] = 0$  for all  $|\alpha| > d$ , the third inequality follows from the bound we got on the size of the degree-up-to-*d* Fourier coefficients of  $e_i$  from Lemma 4, and the fourth inequality follows from Claim 1. Therefore, we have

$$\sum_{i \in Q} (\lambda_i \gamma_i) \cdot |\mathbb{E}^*[e_i]| \ge -\left(\frac{en}{d}\right)^d \left(\frac{16nd^2 \log N}{\sqrt{N}}\right)^{1/2} \sum_{i \in Q} (\lambda_i \gamma_i) \ge -\left(\frac{en}{d}\right)^d \left(\frac{16nd^2 \log N}{\sqrt{N}}\right)^{1/2},$$

where the final inequality follows from the observation that  $\sum_{i=1}^{r} (\lambda_i \gamma_i) \leq 1$ . To see this, note that  $\mathsf{opt}(\Pi) - \Pi \in [0, 1]$ , and  $\mathbb{E}[q_i] = 1$ , and apply an expectation over assignments in  $\{-1, 1\}^n$  to both sides of  $\mathsf{opt} - \Pi(x) = \lambda_0 + \sum_{i=1}^{r} (\lambda_i \gamma_i) \cdot q_i$ .

# Finishing Up

Finally, putting everything together, we have

$$\mathcal{L}(\Pi) - \mathsf{SA}_d[\Pi_0] = \lambda_0 + \sum_{i \in Q} \lambda_i \gamma_i \cdot (\mathbb{E}^*[q'_i] + \mathbb{E}^*[e_i]) + \mathbb{E}^*[\varepsilon(\Pi)]$$
  
$$\geq \lambda_0 + \sum_{i \in Q} (\lambda_i \gamma_i) \cdot \mathbb{E}^*[q'_i] - \left(\frac{en}{d}\right)^d \left(\frac{16nd^2 \log N}{\sqrt{N}}\right)^{1/2} - \left(\frac{en}{d}\right)^d N^{-d/2}.$$

Therefore, we arrive at an expression of the form

$$\mathcal{L}(\Pi) \geq \mathsf{SA}_d[\Pi_0] - \mathsf{err}_n.$$

We now show that  $\operatorname{err}_n := \left(\frac{en}{d}\right)^d \left(\frac{4d\sqrt{n\log N}}{N^{1/4}}\right) + \left(\frac{en}{d}\right)^d N^{-d/2}$  goes to 0 as  $n \to \infty$ . Plugging in our value for  $N = n^{10d}$  we have

$$\begin{split} \operatorname{err}_n &= \left(\frac{en}{d}\right)^d \left(\frac{4d\sqrt{10dn\log n}}{n^{5d/2}} + n^{-5d}\right), \\ &= \left(\frac{e^d 4d\sqrt{10dn\log n} + 1}{d^d n^{3d/2}}\right), \\ &= o(1). \end{split}$$

Therefore, this theorem lifts Sherali-Adams degree lower bounds of up to to extended formulation lower bounds. Unfortunately, because we set need to set  $N = n^{10d}$ , the best lower bound that we can achieve this way (lifting a Sherali-Adams lower bound of degree  $\Omega(n)$  is  $N^{o\left(\frac{\log N}{\log \log N}\right)}$ . The bottleneck, which limits Chan et al. to only obtaining quasi-polynomial size lower bounds is the application of Chang's Lemma in step 2. Later, Kothari, Meka and Raghavendra [3] overcame this barrier, obtaining truly exponential lower bounds.

# References

- [1] Siu On Chan, James R. Lee, Prasad Raghavendra, and David Steurer. Approximate constraint satisfaction requires large LP relaxations. J. ACM, 63(4):34:1–34:22, 2016.
- [2] Russell Impagliazzo, Cristopher Moore, and Alexander Russell. An entropic proof of chang's inequality. *SIAM J. Discrete Math.*, 28(1):173–176, 2014.
- [3] Adam R. Klivans, Pravesh K. Kothari, and Raghu Meka. Efficient algorithms for outlierrobust regression. CoRR, abs/1803.03241, 2018.
- [4] Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs (extended abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA, pages 223–228, 1988.