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Linear programming is a very powerful tool for attacking optimization problems. Tech-
niques such as the ellipsoid method have shown that linear programs are solvable in poly-
nomial time. Furthermore, it is known linear programming is P-complete. Therefore, if one
was to show that some NP-hard problem admitted a polynomial-size linear program, then
P = NP. In an attempt to rule out this approach, Yannakakis [4] gave a framework for
proving lower bounds on a large class of linear programs known as extended formulations.

Consider the 3XORn problem on n variables. It’s not NP-hard, but it will serve as a good
running example. An instance of Π ∈ 3XORn consists of m parity constraints {P1, . . . , Pm},
P` : {±1}n → {0, 1} where

P`(x) := xi ⊕ xj ⊕ xk = a`, for i, j, k ∈ [n] and a` ∈ {±1}n;

the goal is to maximize the number of constraints satisfied. Note that Π can also be rep-
resented uniquely as a multilinear polynomial over {±1}n by taking the Fourier expansion.
We can rewrite each P`(x) = xi ⊕ xj ⊕ xk = a` as

P`(x) :=
1

2
+

1

2
(−1)

1−a`
2 xixjxk.

The value of Π on some assignment x ∈ {−1, 1}n is given by

Π(x) =
1

m

∑
i∈[m]

Pi(x),

which is the fraction of constraints satisfied by assignment x. We will denote by

opt(Π) = max
x∈{−1,1}n

Π(x),

the largest fraction of constraints of Π satisfiable by any assignment x ∈ {−1, 1}n.
If we want to express this as a linear program, then we need to linearize this function. To

do this, we can associate some ordering to the 2
(
n
3

)
possible 3XORn constraints, P1, . . . , P2(n

3)
.
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A natural way of linearizing such a function is to associate with each 3XORn instance Π on

m vertices, a vector Π̃ ∈ R2(n
3), where the ith entry is 1/m if Π contains contains constraint

Pi and 0 otherwise. Similarly, we can associate with each assignment x ∈ {−1, 1}n a vector

x̃ ∈ R2(n
3) in which x̃i = 1 if Pi(x) = 1 and 0 otherwise. This satisfies, for every 3XORn

instance Π and assignment x ∈ {−1, 1}n, that

〈Π̃, x̃〉 = Π(x).

This lends itself to a natural linear program: let P ⊆ R2(n
3) be the convex hull of all x̃ for

x ∈ {−1, 1}n; the linear program is given by

L(Π) = max
y∈P
〈y, Π̃〉.

This polytope P has vertices corresponding to the points x̃ for x ∈ {−1, 1}n and facets
corresponding to the encodings Π̃ of all 3XORn instances Π. Therefore, the value returned
by optimizing over P will be opt(Π).

Unfortunately, the polytope P has an exponential number of facets and therefore cannot
be optimized over efficiently. One possible way to overcome this issue is to find some new
polytope P ′ in a higher dimensional space Rd≥n with much fewer facets and such that there
is a linear projection from P ′ down to P . We could then optimize over the new polytope P ′
instead of optimizing over P . Such a polytope P ′ is known as an extended formulation of
the polytope P .

The size of an extended formulation is the number of facets of the polytope, while the
extension complexity of the base polytope P , denoted xc(P) is the smallest extended formu-
lation of P . We stress that an extended formulation P ′ depends only on the input size and
not the particular instance Π ∈ 3XORn that we want to compute; the instance Π is defined
only in he objective function.

Yannakakis gave a beautiful characterization of the extension complexity of a polytope in
terms of the non-negative rank of its slack matrix. Consider a linear program P computing
3XORn. The slack matrix MS has rows corresponding to the instances Π̃ ∈ 3XORn, and
columns corresponding to the vertices x̃ of P . The entry at some row, column (Π̃, x̃) is the
slack between that vertex and that instance,

MS
Π̃,x̃

:= L(Π)− 〈x̃, Π̃〉,

where L(Π) = maxy∈P〈y, Π̃〉. The non-negative rank of a matrix M , denoted rk+(M) is the
smallest dimension r such that M can be written as a product of two non-negative matrices
F and V with inner-dimension r.

Theorem 1. (Yannakakis [4]) For any polytope P, xc(P) + 1 = rk+(P)

The Proof relies on Farkas’ Lemma.
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Figure 1: Representation of Theorem 1, the decomposition of the slack matrix into two
non-negative matrices with inner dimension r.

Lemma 1. (Farkas’ Lemma) Let P be a with facets defined by inequalities {A1x ≤ b1, . . . , Amx ≤
br} and let Cx ≤ d be an inequality that is valid for P (that is, every point α ∈ P satisfies
Cα ≤ d) then there exists λ0, . . . , λr ∈ R≥0 such that

d− Cx = λ0 +
r∑
i=1

λ(bi − Aix)

We will only prove the forward direction, since it is all that we will need.

Proof. (of Theorem 1) Let P ′ be an extended formulation of P such that P ′ has r facets,
defined by inequalities A1x ≤ b1, . . . , Arx ≤ br. Observe that for every Π ∈ 3XORn, the
inequality opt(Π)− 〈Π̃, y〉 ≥ 0 is valid for the polytope P , for every y ∈ P and furthermore,
that opt(Π) = L(Π) because P computes 3XORn exactly. Applying Farkas’ Lemma, we can
write

L(Π)− 〈Π̃, y〉 = λ0(Π̃) +
r∑
i=1

λi(Π̃) · (bi − 〈Ai, y〉), (1)

for some λ0(Π̃), . . . , λr(Π̃) ∈ R≥0. Now, because there is a linear projection from P to P ′,
there is a vertex v of P ′ that projects to each vertex x̃ of P . We will restrict to these vertices,

L(Π)− 〈Π̃, x̃〉 = λ0(Π̃) +
r∑
i=1

λi(Π̃) · (bi − 〈Ai, v〉). (2)

Furthermore, the x̃ are in one-to-one correspondence with the x ∈ {−1, 1}n, we can rewrite
this as each bi − 〈Ai, v〉 as a non-negative function qi : {−1, 1}n → R≥0, where

qi(x) = bi − 〈Ai, v〉.
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Therefore, we can rewrite equation 2 as

L(Π)− 〈 ˜̃Π, x̃〉 = λ0(Π̃) +
r∑
i=1

λi(Π̃) · qi(x);

this is the slack between vertex x̃ and instance Π̃. We now construct the non-negative
matrices V and F with inner dimension r + 1. Let the rows of V be indexed by the Π̃ for
Π ∈ 3XORn and the columns of F be indexed by the x̃ for x ∈ {−1, 1}n. The Π̃th row of V
will be the vector [λ0(Π̃), . . . , λr(Π̃)] corresponding to Π̃. The ith row of F is the truth table
encoding of qi, where the (i, j)th entry of F is the evaluation of qi(x). The (r + 1)st row of
F is the all 1 vector. This can be seen in figure 1. Therefore, the inner product between VΠ̃

and Fx̃ is

λ0(Π̃) +
r∑
i=1

λi(Π̃) · qi(x) = L(Π)− 〈Π̃, x̃〉.

Note: Because the extended formulation computes Π ∈ 3XORn exactly, L(Π) = opt(Π).
Furthermore because the rows and columns of the slack matrix are in one-to-one correspon-
dence between x ∈ {−1, 1}n and Π ∈ 3XORn, the (x̃, Π̃)th entry of the slack matrix is
equivalent to

MS
Π,x = opt(Π)− Π(x),

because, 〈x̃, Π̃〉 = Π(x). Therefore, the slack matrix will be the same for any base polytope
P , the particular linearization is irrelevant. Therefore, more generally, we can define an
extended formulation that exactly computes 3XORn as a polytope P ⊆ Rd≥n such that

1. for every assignment x ∈ {−1, 1}n there is a vector x̃ ∈ P and for every instance
Π ∈ 3XORn there is a vector Π̃ ∈ Rd such that

Π(x) = 〈x̃, Π̃〉

2. opt(Π) = maxy∈P〈y, Π̃〉 for every Π ∈ 3XORn.

The extension complexity of 3XORn, xc(3XORn) is then the smallest extended formulation
for 3XORn.

The key fact from Theorem 1 that we will use is that if an extended formulation P of size r
computes 3XORn then, for every instance Π, there exists a representation

L(Π)− Π = λ0(Π) +
r∑
i=1

λiqi(Π),

where each qi is a slack function of P . We will call this representation an extended formulation
witness, because it witnesses that P computes Π. From now on, we will write λi(Π) as simply
λi, where the dependence on Π is implicit.
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Recall that the degree-d Sherali-Adams hierarchy computes an instance Π ∈ 3XORn if
opt(Π)− Π can be written as a non-negative linear combination of d-juntas, q̃i,

opt(Π)− Π =
∑
i∈I

λiq̃i.

This representations is superficially similar, and one might wonder if there is a way to ap-
proximate an extended formulation witness with a Sherali-Adams witness. Obviously, it
would be too much to hope for that each of the non-negative functions in the extended for-
mulation witness could be well approximated by a non-negative junta. Surprisingly, Chan,
Lee, Raghavendra and Steurer [1] showed that after a specialized random restriction, the
resulting qi can be well approximated by non-negative d-juntas. Using this, they are able to
lift Sherali-Adams lower bounds to extension lower complexity lower bounds. This transfor-
mation works for the class of constraint satisfaction problems (CSP), but we will prove it
for the special case of 3XORn.

Theorem 2. ([1]) Suppose that the d(n)-round Sherali-Adams relaxation cannot compute
3XORn, then for all sufficiently large n, no extended formulation of size at most nd(n)2 can
compute 3XORN for some N = n10d(n)

We begin with the family of 3XORN instances over N variables, and some extended
formulation P of size r. By Yannakakis’ Theorem above, each instance Π ∈ 3XORN , can be
written as L(Π)− Π =

∑r
i=1 λiqi, where each qi is a function {−1, 1}N → R≥0. Our goal is

to write (a restriction of) L(Π) − Π as a non-negative linear combination of d-juntas plus
some small error term. The proof proceeds in three steps.

1. First, we show that we can restrict our attention to qi that are sufficiently smooth (the
infinity norm of these functions is bounded).

2. Then, we show that each of these qi can be approximated by an N0.2-junta q′i, such
that the error on the low degree Fourier coefficients of qi−q′i is small. Here we crucially
use the fact that degree-d Sherali-Adams can only reason about monomials of degree
up to d. This step will incur some error, but we will show that this error goes to 0 as
n goes to infinity.

3. Up until now, this proof has worked for any instance Π ∈ 3XORN . We will now fix a
particular instance which will allow us to make the connection to Sherali-Adams lower
bounds. Let Π0 ∈ 3XORn be a hard instance for Sherali-Adams on n variables. To
obtain the instance Π ∈ 3XORN , we plant Π0 at random inside a larger space of N
variables by picking a subset of n of the variables and defining the constraints of Π0

on them; the remaining N − n variables will remain unconstrained. Finally, we argue
that with high probability, the set of significant coordinates of q′i when restricted to
the variables on which Π0 is define is at most d, and so the existence of this extended
formulation implies that degree-d Sherali-Adams computes this instance exactly.
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Fourier Analysis

We will need several tools from Fourier analysis. We will define the inner product between
two n-variable functions f and g as

〈f, g〉 := Ex∈{−1,1}n [f(x)g(x)],

where the expectation is taken over the uniform distribution on {−1, 1}n. The Fourier
representation of a function f : {−1, 1}n → R is its unique representation over the basis of
parity functions χα :=

∏
i∈α xi for α ⊆ [n]. We can represent f over this basis as

f =
∑
α⊆[n]

f̂(α)χα,

where the fourier coefficient f̂(α) is defined as f in the χα direction,

f̂(α) := 〈f, χα〉.

Intuitively, f̂(α) measures the correlation of the variables Πi∈αxi. Throughout this, we
will use the functions regular representation and its Fourier representation interchangeably.
Furthermore, if f is non-negative and Ex∈{−1,1}n [f(x)] = 1, then we can treat the Fourier
coefficients of f as a distribution over {−1, 1}n.

Step 1: Smooth Slack Functions

We will now prove the main theorem by following the three steps laid out previously. Again,
suppose that we have an extended formulation P of size r ≤ Nd/2 which computes 3XORN
exactly. By Yannakakis’ Theorem, for any Π ∈ 3XORN , we can write Π as a sum of non-
negative slack functions,

L(Π)− Π = λ0 +
r∑
i=1

λiqi,

where λi ≥ 0 and qi : {−1, 1}N → R≥0. Furthermore, we can normalize each qi and write it
as qi(x) = γiqi(x) for some γi ∈ R≥0 such that E[qi] = 1. That is,

L(Π)− Π = λ0 +
r∑
i=1

(λiγi) · qi.

Define the set
Q := {i : ‖qi‖∞ ≤ Nd},

of the qi which are fairly smooth. Recall that d is the degree of the Sherali-Adams proof we
are trying to obtain. We will show that restricting attention to the set of functions Q will
only incur a small additive error. We can decompose the previous sum into

L(Π)− Π = λ0 +
∑
i∈Q

(λiγi) · qi +
∑

j∈[r]\Q

(λjγj) · qj.
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Because the value of opt(Π) − Π(x) ∈ [0, 1] for every x ∈ {−1, 1}N and Π ∈ 3XORN and
because λj, γj ≥ 0 and qj is non-negative and E[qj] = 1, we must have λjγj ≤ N−d for every
instance Π ∈ 3XORN . Because of this,

∑
j∈[r]\Q(λjγj)qj cannot be very large and we will

treat it as some small additive error term, which we will denote by ε(Π). Later, we will
bound its value,

L(Π)− Π = λ0 +
∑
i∈Q

(λiγi) · qi + ε(Π).

Step 2: Approximate Functionals by High-Degree Juntas

The aim now is to show that the smooth slack functions qi for i ∈ Q can be well approximated
by high-degree juntas. For this, we will use a density version of Chang’s Lemma. The proof
follows from the entropic proof of Chang’s Lemma in Impagliazzo, Moore and Russell [2].

Lemma 2. (Chang’s Lemma) Let q be a density with entropy at least N − t for some t ≥ 0,
let σ > 0 and define R = {α : |f̂(α)| ≥ σ2−t}. Then R spans a space of dimension less than
2t/σ2

A consequence of Chang’s Lemma is the following.

Lemma 3. If qi has entropy at least N − d logN , then for any σ > 0, there exists a set
J(qi) ⊆ [N ] with

|J(qi)| ≤
2d2 logN

σ2

such that for every α 6⊆ J(qi) with |α| ≤ d, we have |q̂(α)| ≤ σ.

Proof. Consider S = {|α| ≤ d : |q̂(α)| ≥ σ} and let S ′ be the maximal set of linearly
independent elements in S. The density version of Chang’s Lemma states that, after setting
t = d logN , that |S ′| ≤ 2σ−2d logN . Let J(qi) = ∪α∈S′α, then |J(qi)| ≤ 2d2 logN/σ2

because each α contains at most d elements (it follows by linear independence that for all
α 6∈ J(qi) with |α| ≤ d, that q̂i(α) ≤ sigma.

This lemma says that we can decompose any high-entropy qi into two parts q′i and ei,
where

q′i =
∑

α⊆J(qi)

q̂i(α)χα, and ei =
∑

α⊆[N ]\J(qi)

q̂i(α)χα.

That is, q′i depends only on the set of variables in J(qi) and in ei, the Fourier coefficients of
correlations up to degree-d are very small.

Beyond degree-d we have no control over the magnitude of the Fourier coefficients in ei.
However, recall that the degree-d Sherali-Adams hierarchy can only perceive correlations of
degree up to d. Therefore, because our end goal is to convert this into a Sherali-Adams
proof, this is a non-issue for us.

Therefore, if we could ensure that each of the q′i were d-junta – that is, that |J(qi)| ≤ d,
and that the extra error ei was small, then the proof would be finished. We would have
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arrived at a representation of L(Π)−Π consisting of d-juntas plus some small additive error.
Unfortunately, because we need

∑
i∈Q ei to tend to 0 as n→∞, it turns out that the largest

that we will be able to set σ, and still achieve this is σ =
(

16nd2 logN√
N

)1/2

. Under Lemma 3,

this only guarantees that each q′i is an (
√
N/8n)-junta, which is approximately N0.2 when

the final numbers are plugged in.
Finally, we verify that each qi with i ∈ Q indeed has high enough entropy to satisfy the

hypothesis of Lemma 3:

H(qi) =
∑

x∈{−1,1}N

qi(x)

2N
log

(
2N

qi(x)

)
≥

 ∑
x∈{−1,1}N

qi(x)

2N

 · log

(
2N

‖qi‖∞

)

≥

 ∑
x∈{−1,1}N

qi(x)

2N

 · log

(
2N

Nd

)
= N − d logN,

where we used the fact that E[qi] = 1. So far we have achieved a representation of the form

L(Π)− Π = λ0 +
∑
i∈Q

(λiγi) · (q′i + ei) + ε(Π),

where ei are error terms whose Fourier coefficients corresponding to degree-up-to-d correla-
tions are bounded by σ, and qi are ≈ N0.2-juntas.

Step 3: Random Restriction to a Hard Instance for Sherali-Adams

The final step is to reduce the N0.2-juntas to d-Juntas. To do this, we will employ a special
random restriction which will restrict to an instance Π0 ∈ 3XORn for which we have Sherali-
Adams lower bounds. Note that until this point, the steps of the proof have not relied on the
particular instance of 3XORN . We will now restrict attention to a particular sub-family of
instances. Consider an instance Π0 of 3XORn on n variables, where n is much smaller than
N (Π0 should be thought of as a hard instance for Sherali-Adams). To create our instance
Π, we will randomly plant Π0 inside a larger space of N unconstrained variables by picking
a subset S of n variables and defining the constraints of Π0 on them. The idea is that since
the only constraints in Π are those corresponding to Π0,

L(Π) = opt(Π) = opt(Π0).

Now, because each of the junta q′i depend on at most N0.2 variables, then if we restrict to
the variables of Π0, with high probability only a small fraction of the variables on which qi
depends will remain. This can be seen in figure 2. This will be done in the following lemma;
recall that in step 2, using Chang’s Lemma, we decomposed qi = q′i + ei.
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var(q1') var(q4')

var(q3')
var(q2')

var(q5')

Figure 2: The intersection between the variable space of each N0.2-junta q′i and the restricted
set S on which we will plant Π0.

Lemma 4. There exists a set S ⊆ [N ] of size n such that for each qi with i ∈ Q, there is a
set J(q) ⊆ S with |J(q)| ≤ d such that

|q̂(α)| ≤
(

16nd2 logN√
N

)1/2

,

for all α ⊆ S \ J(q) with |α| ≤ d.

For the proof, we will need the following inequality. Let X1, . . . , Xn be i.i.d. {0, 1}-
random variables, with E[Xi] = p. Then

Pr

[
n∑
i=1

Xi ≥ t

]
≤ (pn)t (3)

Proof. We will choose the set S as follows:

1. Uniformly at random, pick a partition of [N ] into sets S1, . . . , Sn, each of size N/n.

2. For each variable i ∈ [n], pick a variable vi from Si uniformly at random.

3. Let S = {vi : i ∈ [n]}
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In step 2 we argued, using Lemma 3, that we could decompose qi = q′i + ei, where each
q′i is an

√
N/8n-junta which depends on a set of coordinates J(qi), and for every α ⊆ [N ]

with |α| ≤ d, |ei(α)| ≤
(

16nd2 logN√
n

)1/2

. We will show that with some positive probability, the

intersection of each of the sets J(qi) with the set S is at most d. For each variable ` ∈ J(qi),
let X` be the event ` ∈ S. Then, E[qi] = n/N because we are choosing each element of S
uniformly at random, and so

Pr[|J(q′i) ∩ S| ≥ d] = Pr

 ∑
`∈J(q′i)

X` ≥ d

 ≤ ( n
N
· |J(q′i)|

)d
≤ 1

8dNd/2
,

where the second inequality follows from inequality 3 above. Finally, because we have
assumed that our original extended formulation is of size at most Nd/2, we have that
|Q| ≤ Nd/2, and so taking a union bound over all J(qi) for i ∈ Q completes the proof.

Finally, we construct the instance Π ∈ 3XORN as follows: Let Π0 be an instance of 3XORn
on n variables. Apply Lemma 4 to obtain a subset S = {v1, . . . , vn} ⊆ [N ]. Define the
constraints of Π as the constrains of Π0 defined on the variables {v1, . . . , vn}; the remaining
N − n variables are left unconstrained.

Let E∗ be the degree-d Sherali-Adams pseudo-expectation which achieves the optimal
value on the Π0,

E∗ = SAd[Π0] = max
Ẽ∼d−PE

Ẽ[Π0],

where we think of Π(x) as its representation as a multilinear polynomial so that we can apply
E∗ to it. Furthermore, we can represent each of the functions qi as a multilinear polynomial
by taking its Fourier transform. We will think of qi as having that representation from now
on so that we can apply E∗ to them. We now plant E∗ on the set of variables S, that is, we
define E∗ on the variables in S and extend it to have Fourier coefficient 0 on all terms outside
of S. To do this, we note that Π is unconstrained on variables outside of S and therefore,
we define the underlying pseudo-distribution to be uniform on all variables on outside of S.
Applying it to both sides of equation ?? we arrive at

E∗[L(Π)− Π(x)] = λ0 +
∑
i∈Q

λiγi · (E∗[q′i] + E∗[ei]) + E∗ [ε(Π)]

L(Π)− SAd[Π0] = λ0 +
∑
i∈Q

λiγi · (E∗[q′i] + E∗[ei]) + E∗ [ε(Π)] ,

Now, because E∗ gives non-zero value only on the variables of S, we have that

E∗[q′i] = E∗[q′i �S],

and so, by Lemma 4, we know that q′i depends only on at most d variables in S, so it is a
non-negative d-junta. Therefore, E∗[q′i] ≥ 0, and so

L(Π) ≥ SAd[Π0] +
∑
i∈Q

λiγi · E∗[ei] + E∗ [ε(Π)] .
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Now, if we can show the error terms,
∑

i∈Q λiγi · E∗[ei] + E∗ [ε(Π)] go to 0 as n → ∞, then
we will arrive at a representation of the form

L(Π) ≥ SAd[Π0],

and so Sherali-Adams lower bounds will imply extension complexity lower bounds.

Bounding Error Terms

All that is left is to show that the error terms go to 0 as n→∞. We begin with bounding

E∗ [ε(Π)] =
∑

j∈[r]\Q

(λjγj) · E∗[qj], (4)

the error term that we obtained from Step 1. We will need a simple fact about pseudo-
expectations

Claim 1. For any degree-d pseudo-expectation E∗ in its Fourier representation as a multi-
linear polynomial over {−1, 1}n, we have ‖E∗‖∞,

∑
α⊆[n] |E∗[χα]| ≤

∑d
i=0

(
n
i

)
.

Proof. The Fourier representation of E∗ is

E∗ =
∑
α≤d

E∗[χα]χα,

where χα =
∏

i∈α xi. We know that because E∗ is a pseudo-expectation that E∗[χα] ≤ 1
(this follows because a pseudo-expectation is the expectation over a pseudo-distribution).
Because it is a degree-d pseudo-expectation, there can be at most

∑d
i=0

(
n
d

)
non-zero Fourier

coefficients, each having absolute value at most 1.

We can apply this claim as follows: Viewing qj as its Fourier representation as a multi-
linear polynomial, and noting that E∗ assigns values to monomials of degree at most d we
can write

E∗[qj] ≤ ‖E∗‖∞ ≤
d∑
i=0

(
n

d

)
,

the first inequality follows because the Fourier representation of E∗ is E∗ =
∑

α≤d E∗[χα]
and so the Fourier coefficient corresponding to the monomial χα is E∗[χα], the value that
E∗ assigns to χα. Therefore, we can view E∗ as a vector whose αth place is the Fourier
coefficient E∗[χα]. Similarly, we view qj as a vector, where the αth entry is the Fourier

coefficient f̂(α), which is the coefficient of χα in the representation of qj as a multilinear
polynomial. Therefore, taking the inner product between these two vectors 〈E∗, qj〉 gives the
evaluation E∗[qj]. Because qi is a density, that is E[qj] = 1 and qj ≥ 0, we can represent it
as a distribution over assignments x ∈ {−1, 1}n, and associate with each such assignment a
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set which contains element i if xi = −1. Then, 〈E∗, qj〉 = Eα∼qi [E∗[α] ≤ ‖E∗‖∞

During step 1, we argued that because the qj, λj, γj ≥ 0, that ‖qi‖∞ ≥ Nd for every
i ∈ [r] \Q, and because L(Π)−Π0 ∈ [0, 1], we must have (λjγj) < N−d for each j ∈ [r] \Q.
Putting all of this together, we have

E∗ [ε(Π)] =
∑

j∈[r]\Q

(λjγj) · E∗[qj] ≥ −
d∑
i=1

(
n

i

)
rN−d ≥ −

(en
d

)d
N−d/2,

where the second inequality follows because |[r] \ Q| ≤ r, and the final inequality follows
because r, the size of the extended formulation, is at most Nd/2.

Finally, we bound the error term
∑

i∈Q(λiγi) · E∗[ei] in a similar way, by noting that

|E∗[ei]| ≤
∑
α⊆S

|E∗[χα]| · |êi(α)| =
∑

α⊆S:|α|≤d

|E∗[χα]| · |êi(α)| ≤
∑

α⊆S:|α|≤d

|E∗[χα]|
(

16nd2 logN√
N

)1/2

≤
d∑
i=0

(
n

d

)(
16nd2 logN√

N

)1/2

≤
(en
d

)d(16nd2 logN√
N

)1/2

,

where the equality follows because E∗[χα] = 0 for all |α| > d, the third inequality follows
from the bound we got on the size of the degree-up-to-d Fourier coefficients of ei from Lemma
4, and the fourth inequality follows from Claim 1. Therefore, we have

∑
i∈Q

(λiγi) · |E∗[ei]| ≥ −
(en
d

)d(16nd2 logN√
N

)1/2∑
i∈Q

(λiγi) ≥ −
(en
d

)d(16nd2 logN√
N

)1/2

,

where the final inequality follows from the observation that
∑r

i=1(λiγi) ≤ 1. To see this,
note that opt(Π) − Π ∈ [0, 1], and E[qi] = 1, and apply an expectation over assignments in
{−1, 1}n to both sides of opt− Π(x) = λ0 +

∑r
i=1(λiγi) · qi.

Finishing Up

Finally, putting everything together, we have

L(Π)− SAd[Π0] = λ0 +
∑
i∈Q

λiγi · (E∗[q′i] + E∗[ei]) + E∗ [ε(Π)]

≥ λ0 +
∑
i∈Q

(λiγi) · E∗[q′i]−
(en
d

)d(16nd2 logN√
N

)1/2

−
(en
d

)d
N−d/2.

Therefore, we arrive at an expression of the form

L(Π) ≥ SAd[Π0]− errn.

12



We now show that errn :=
(
en
d

)d (4d
√
n logN
N1/4

)
+
(
en
d

)d
N−d/2 goes to 0 as n→∞. Plugging in

our value for N = n10d we have

errn =
(en
d

)d(4d
√

10dn log n

n5d/2
+ n−5d

)
,

=

(
ed4d
√

10dn log n+ 1

ddn3d/2

)
,

= o(1).

Therefore, this theorem lifts Sherali-Adams degree lower bounds of up to to extended for-
mulation lower bounds. Unfortunately, because we set need to set N = n10d, the best lower
bound that we can achieve this way (lifting a Sherali-Adams lower bound of degree Ω(n) is

N o( logN
log logN ). The bottleneck, which limits Chan et al. to only obtaining quasi-polynomial

size lower bounds is the application of Chang’s Lemma in step 2. Later, Kothari, Meka and
Raghavendra [3] overcame this barrier, obtaining truly exponential lower bounds.
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