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1 SOS SDP Hierarchy Review

Let K be a polytope defined by a set of m linear constraints on n variables, arising as the relaxation of an
integer linear program using {0, 1}-valued decision variables. That is,

K := {x ∈ Rn | Ax− b ≥ 0},

where the feasible set of the original ILP can be written as K ∩ {0, 1}n.
In general, the relaxationK can be quite a bad approximation of the integral hull, conv(K∩{0, 1}n)—where
conv( · ) denotes the convex closure or convex hull of a set of points. If we could derive all linear constraints
implied by those of K ({

∑
iAlixi − bl ≥ 0 | l ∈ [m]}) and integrality ({x2i = xi | i ∈ [n]}), then we could

“tighten” K to the integral hull. Unfortunately, integer programming is NP-hard, so we can’t expect to derive
the integral hull in polynomial time.

For t ≥ 1, the SOS degree t semidefinite program is a systematic way to tighten the polytope K to a better
approximation of the integral hull. It is a “lift and project” method, meaning that additional variables are
introduced (i.e. the polytope is “lifted” to a higher dimension), and then after tightening the lifted polytope,
we “project” back down onto the original variables, resulting in a tightened polytope in the original dimension.
The SOS method is sound: all feasible integral solutions are preserved by the tightening. For degree t = n,
the SOS method derives exactly the integral hull, albeit in exponential time.

The SOS degree t SDP is the set SOSt(K) of points y = (y∅, y{1}, . . . , y{n}, . . . , yI , . . . , y[n]) in R2[n]

that satisfy
the following constraints.

(1) Mt(y) := (yI∪J)|I|,|J|≤t � 0

(2) M l
t(y) := (

∑n
i=1Ali yI∪J∪{i} − bl yI∪J)|I|,|J|≤t � 0 ∀l ∈ [m]

(3) y∅ = 1

A feasible solution to the SOSt SDP is indexed by subsets of [n] corresponding to subsets of the original
variables x1, ..., xn. The rows and columns of the matrices Mt(y) and M l

t(y) are also indexed by subsets of
the original variables, and the matrices are constrained to be positive semidefinite (psd). Mt(y) is called the
moment matrix, andM l

t(y) is called the moment matrix of slacks corresponding to constraint l.

Notice that although there are 2n variables in this SDP, only
(

n
≤2t+1

)
=
∑2t+1
k=0

(
n
k

)
≤ n2t+1 variables are

mentioned by the SDP constraints, so this SDP can be solved in mnO(t) time (modulo technical conditions
that we typically ignore). Variables yI , |I| > 2t+1, are entirely unconstrained at level t of the SOS hierarchy,
but it is convenient to define the feasible sets of each level to be of the same dimension.

We summarize important properties of the SOS degree t SDP here. Let SOSprojt (K) denote the projection of the
feasible region SOSt(K) on to the original variables; that is, SOSprojt (K) := {(y{1}, . . . , y{n}) | y ∈ SOSt(K)}.

Lemma 1. Let K = {x ∈ Rn|Ax− b ≥ 0}, let t ≥ 0, and let y ∈ SOSt(K). Then the following hold.

1. 0 ≤ yI ≤ 1, for all |I| ≤ t

2. 0 ≤ yJ ≤ yI ≤ 1, for all I ⊆ J with |I|, |J | ≤ t

3. |yI∪J | ≤
√
yI yJ , for all |I|, |J | ≤ t

4. SOS0(K) ⊇ · · · ⊇ SOSt(K) ⊇ · · · ⊇ SOSn(K)
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5. K = SOSproj0 (K)

6. SOSprojn (K) = conv(K ∩ {0, 1}n)

We now state two important lemmas. (For proofs of these results and the above properties, see the notes by
Thomas Rothvoss.)

Lemma 2. Decomposition Lemma. Let y ∈ SOSt(K), and let S ⊆ [n], |S| ≤ t. We can write

y =
∑

a∈{0,1}S
λay

(a),

such that λa ≥ 0,
∑
λa = 1; and for all λa 6= 0, y(a) ∈ SOSt−|S| and y

(a)
i = ai ∀i ∈ S.

The above lemma states that for a feasible point y at level t of the SOS hierarchy, and a set S of at most t
original variables, y can be decomposed into a convex combination of feasible points y(a) from a lower level
of the hierarchy, such that all y(a) are integral on their entries corresponding to the original variables in S.

Lemma 3. Locally Consistent Probability Distribution. Let y ∈ SOSt(K), and let S ⊆ [n], |S| ≤ t. There
exists a probability distribution Dy(S) over {0, 1}S such that for all I ⊆ S

Pr
a∼Dy(S)

[∧
i∈I

(ai = 1)

]
= yI .

The above lemma states that a feasible y at level t of the SOS hierarchy defines a probability distribution over
integral assignments to the variables in S, where S can be any set of at most t original variables. Moreover,
these “local” distributions are consistent with one another: for two sets of variables S ∩ S′ 6= ∅, the distribu-
tions Dy(S) and Dy(S

′) agree on the probability of events defined in their intersection. In this sense, y can
be though of as a “pseudo-distribution” over integral assignments to the original variables x1, . . . , xn, assign-
ing locally-consistent probabilities to each event

∧
I(xi = 1) ∧

∧
J(xj = 0) that mentions at most t variables

(|I ∪ J | ≤ t). Events mentioning more than t variables may be assigned negative (pseduo)-probability under
y, or may be inconsistent with one another in their marginal probabilities.

2 Goemans Williamson Algorithm (Standard Vector Program)

We now turn to MAXCUT problem, and the Goemans–Williamson 0.878-approximation algorithm. Let G =
(V,E) be a weighted undirected graph with |V | = n and where each edge (i, j) has weight wij ≥ 0. The goal
of MAXCUT is to find a cut S which maximizes the sum of the edge weights of edges crossing (S, V − S).
We can formulate the problem as the following quadratic program:

Maximize:
∑

(i,j)∈E

wij(1− xixj)
2

(1)

Subject to: xi ∈ {−1,+1}, for i ∈ [n] (2)

where xi is associated with vertex vi and xixj = 1 if and only if vi and vj are placed in the same set. Let
OPT denote the optimum solution to this quadratic program.

Next we introduce the vector programming relaxation of the above quadratic program:

Maximize:
∑

(i,j)∈E

wij(1− ui · uj)

2
(3)

Subject to: ‖ui‖2 = 1 and ui ∈ Rn, for i ∈ [n]. (4)
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To see that this is indeed a relaxation, take ui = (xi, 0, ..., 0) for each i ∈ [n]. These ui’s satisfy the constraints
(‖ui‖2 = 1 and ui ∈ Rn) and ui · uj = xixj . Thus, if OPTV P denotes the optimum solution to the vector
program, then OPTV P ≥ OPT .
The above vector program is equivalent to the following semidefinite program:

Maximize:
∑

(i,j)∈E

wij(1−Xij)

2
(5)

Subject to: Xii = 1 for i ∈ [n] and X � 0 (6)

whereX has entriesXij; to see that these two forms are equivalent remark thatX � 0 if and only ifX = UTU .
If we take the columns of U to be the set of vectors {ui} of the vector program, then feasible solutions of SDP
corresponds to feasible solutions of the vector program and vice versa.

We can solve this SDP in polynomial time and obtain an optimal solution X∗. Cholesky factorize X∗ into
(U)TU and let the columns of U , ui ∈ Rn, be the solutions to the vector program. We want to round each
ui to xi ∈ {−1,+1}. Then the set {xi}ni=1 will be a solution to our original quadratic program. Apply
randomized rounding as follows: pick r = (r1, ..., rn) by drawing each ri independently from the distribution
N (0, 1). Then let

xi =

{
1 ui · r ≥ 0

−1 otherwise
.

It is helpful to have the geometric picture in mind: each ui is a vector which lies on the (n− 1)-dimensional
unit sphere. The hyper-plane with normal r splits the sphere in-half. All vectors ui in the same half of the
sphere gets mapped to the same value c ∈ {−1, 1} and all vectors uj in the other half gets mapped to −c.
To show the constant of approximation, we consider the probability that an edge (i, j) gets cut. This is
equivalent to the probability that ui and uj fall in different halves of the sphere cut by the hyper-plane.
Consider the projecting of the normalized vector r onto the span of {ui,uj}. See Figure 1.

uj

Figure 1: If the normalized r lies in the shaded region then ui · r and ui · r have different sign.

Thus the probability that r · ui and r · uj have different sign is 2θ
2π = θ

π . Since θ = arccos(ui · uj),

Pr[(i, j) is in the cut] =
arccos(ui · uj)

π
. (7)
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We state without proof that

arccos(x)

π
≥ 0.878

(
1− x
2

)
(8)

for x ∈ [−1, 1]— it helps to observe that the constant 0.878 approximately minimizes f(x) = 2 arccos(x)
π(1−x) . Thus

the expected sum of weights obtained by the algorithm is

E[W ] =
∑

(i,j)∈E

wijPr[(i, j) is in the cut]

=
∑

(i,j)∈E

wij
arccos(ui · uj)

π
by 7

≥ 0.878 ·

 ∑
(i,j)∈E

wij
1− ui · uj

2

 by 8

= 0.878 ·OPTV P

Since the vector program is a relaxation of the original quadratic program, it is the case that E[W ] ≥ 0.878 ·
OPTV P ≥ 0.878 · OPT . Further, since this algorithm is constructive, the cut found can have value at most
OPT so OPT ≥ E[W ] ≥ 0.878 ·OPTV P .

3 Vector Representation

Before examining how the SOS hierarchy behaves for the problem of MAXCUT, we see an equivalent way to
represent solutions to the SOS SDP.

Let y be a feasible solution in SOSt(K). We can equivalently represent y as vectors {vI}, |I| ≤ t, such that
yI∪J = 〈vI , vJ〉 for all |I|, |J | ≤ t. This representation arises from the Cholesky decomposition of the moment
matrix,Mt(y) � 0, into matrices V T and V ; the columns of V become the vectors vI . Notice that ‖vI‖2 = yI
for |I| ≤ t, and in particular, ‖v∅‖2 = 1.

This alternate representation associates a vector of dimension
(
n
≤t
)
to each event |I| ≤ t, and allows us to

form crucial geometric intuition about the SOS solution y. In particular, we note that each vector vI lies on
the sphere defined by the endpoints of v∅, with radius 1

2 and center 1
2v∅. This can be seen by the following

calculation: ‖vI − 1
2v∅‖

2
= ‖vi‖2 − 2( 12vI · v∅) +

1
4‖v∅‖

2
= 1

4 . See Figure 2.

vi

yi �

2
v�

~� v�

Figure 2: Visualization of the vector representation of an SOS solution
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More generally, for events J ⊆ I with |I|, |J | ≤ t, we see that vI lies on the sphere defined by the endpoints
of vJ : the sphere with radius 1

2‖vJ‖ =
1
2

√
yJ and center 1

2vJ . (Again, because ‖vI −
1
2vJ‖

2
= ‖vi‖2 − 2( 12vI ·

vJ) +
1
4‖vJ‖

2
= 1

4yJ .) Recall that vI lies on the sphere defined by the endpoints of v∅ as mentioned before;
thus vI lies on the intersection of the two spheres. (The nontrivial intersection of twom-dimensional spheres
is an m− 1-dimensional sphere. In 3 dimensions, the intersection of two spheres is a circle; see Figure 3.)

Figure 3: Intersection of two 3D spheres: note the circular rim of the Death Star’s superlaser

If two events are “disjoint”, that is yI∪J = 0, then vI and vJ will be at an angle of π2 , and thus vI and vJ will
be antipodal on the sphere centered at 1

2v∅. Also, for any |I|, |J | ≤
t
2 , the angle between vI and vJ will be at

most π2 , by the nonnegativity of y{I∪J}.

4 Goemans Williamson Algorithm via SOS (t = 5)

We are now ready to present the GW algorithm through the lens of SOS. Let our graph G = (V,E) be as the
above with |V | = n and where each edge (i, j) has weight wij ≥ 0. Formulate MAXCUT as the following
integer linear program:

Maximize:
∑

(i,j)∈E

wijzij

Subject to: max(xi − xj , xj − xi) ≤ zij ≤ min(xi + xj , 2− xi − xj) for (i, j) ∈ E,
xi, zij ∈ {0, 1} for i ∈ [n] and (i, j) ∈ E

where xi is the indicator variable for a vertex chosen to be in set S of the partition and zij is the indicator
variable for an edge crossing the cut (S, V − S). Observe that zij = (xi − xj)2.
Let K be the feasible region of the LP relaxation of the above integer program. For any graph we can set
xi =

1
2 and zi,j = 1 in the LP and obtain a value of

∑
(i,j)∈E wij . In particular, since the max cut of a complete

graph on n-vertices with unit weight edges is at most |E|2 +O(
√
|E|) while the output to the relaxation is |E|,

the integrality gap of this relaxation approaches 2 for large n.

Consider instead y ∈ SOS5(K). The elements of note in y are yxi , yxi,xj , and yzij for all (i, j) ∈ E.

Lemma 4. For any edge (i, j) ∈ E,

yzij = yxi + yxj − 2yxi,xj . (9)

Proof. Consider edge (i, j) ∈ E, and let S = {xi, zij , xixj}. By the Decomposition Lemma (Lemma 2),
y =

∑
λỹ where ỹ ∈ SOS2(K) and the entry ỹs ∈ {0, 1} for each s ∈ S. Since equation (9) is linear, if we

can show that the lemma holds for each ỹ, then we can take a linear combination of the elements of ỹ and
show that the lemma holds for the elements of y.
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Since ỹxi
, ỹxj

∈ {0, 1}, by Locally Consistent Probability Distributions (Lemma 3), ỹiỹj = Pr[xi = 1] ·Pr[xj =
1] = Pr[xi = 1, xj = 1] = ỹxixj . Thus

ỹxi + ỹxj − 2ỹxi,xj = ỹxi + ỹxj − 2ỹxi ỹxj = ỹ2xi
+ ỹ2xj

− 2ỹxi ỹxj = (ỹxi − ỹxj )
2

since ỹ2xi
= ỹxi

and ỹ2xj
= ỹxj

as ỹxi
, ỹxj

∈ {0, 1}. Since ỹ is a feasible solution to the original LP and
ỹzij , ỹxi , ỹxj ∈ {0, 1}, (ỹxi − ỹxj )

2 = ỹzij . Thus

yzij =
∑

λỹzij =
∑(

ỹxi + ỹj − 2ỹxi,xj

)
= yxi + yxj − 2yxi,xj

for all edges (i, j) as claimed.

We solve the SOS SDP to obtain an optimum moment matrix M5(y). Using the vector representation from
section 3,M5(y) = V TV where the columns vi of V satisfy: 〈vi,vj〉 = yxi,xj for all i, j ∈ [n]. Recall however
that the angle between any two vectors vi and vj is between 0 and π

2 so applying hyper-plane rounding on
the vi’s would be sub-optimal; we want the vectors to be between 0 and π so that a random hyper-plane
through the origin would be more likely to separate a pair of vectors belonging to different sets.

Perform the vector transformation ui = 2vi − v∅. Observe that ui is a unit vector on the sphere centered
at the origin. See Figure 4. In essence this transformation takes vectors vi ∈ [0, 1]n to vectors ui ∈ [−1, 1]n
before rounding ui to {0, 1}.

Figure 4: Vector transformation from vi to ui = 2vi − v∅.

Lemma 5. {ui} forms a solution to the vector program (equation 3 above) and yzij =
1−ui·uj

2 .

Proof. We need to show that ui is a unit vector and that yzij =
1−ui·uj

2 . Observe that

u2
i = (2vi − v∅)

2 = 4v2
i − 4viv∅ + v2

∅ = 1

since 〈vi,vi〉 = yxi = 〈vi,v∅〉 and v2
∅ = y∅ = 1. Further

1− ui · uj
2

=
1− (2vi − v∅) · (2vj − v∅)

2
= vi · v∅ + vj · v∅ − 2vj · vi = yxi + yxj − 2yxi,xj = yzij .

by Lemma 4. Thus the ui vectors form a solution to the vector program.

It remains to round each ui to {0, 1} to obtain a solution to our original ILP. The rounding algorithm and
analysis is identical to that of the standard vector program formulation. Thus we again obtain a cut with
expected weight E[W ] bounded by OPT ≥ E[W ] ≥ 0.878 ·OPT .
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