
1 Dictionary Learning and Tensor Decomposition via the Sum-of-
Squares Method

In these notes we consider the algorithm for the dictionary learning problem as described by Barak, Kelner,
and Steurer [BKS15]. This algorithm uses a sum-of-squares procedure for solving noisy tensor decomposition
as its main tool. This algorithm is an improvement on prior results as it places much fewer requirements on
the samples used for learning.

1.1 Preliminaries: Dictionary Learning

In dictionary learning, the goal is to learn the columns of a matrix A when given only examples of the form
y = Ax+ e where x is a sparce vector and e is a noise vector of small magnitude.

This problem has machine learning applications. For example, Mairal, Elad, and Sapiro [MES08] used
dictionary learning for image processing: the samples y were images, and the dictionary A was components
of these images.

We will consider a version of the dictionary learning problem where A is a σ-dictionary (Definition 1) and
the vectors x are sampled from a (d, ϕ)-nice distribution (Definition 2). The latter definition allows x to
be non-sparse, which makes this a less constrained version of the problem than what has been considered
historically.

Definition 1. An m× n matrix A is a σ-dictionary if:

• σ||u||22−||A>u||22, when viewed as a polynomial with u as the input, is a sum-of-squares of polynomials.

• All of the columns of A (denoted ai) are unit vectors.

The first property of a σ-dictionary is equivalent to saying that the spectral norm of A>A is σ. This can be
seen as a proxy for the overcompleteness of A. Here we will consider matrices where m = O(n), so σ will be
O(1).

To motivate the definition of (d, ϕ)-nice distributions (Definition 2), let us first consider the nice properties
of sparse vectors that we would like to include in our more relaxed constraints.

First, to assist in calculations we would like the expected value of a certain moment of each coordinate to
be normalized to the same value. For simplicity, we will normalize this expected value to 1. Second, we
would like each coordinate to be uncorrelated, such that any pair of coordinates has high magnitude with
low probability. This second property captures the spirit of sparsity while allowing for distributions where
the vectors are not actually sparse.

To motivate the final property, note that without loss of generality Pr[xi = a] = Pr[xi = −a] in dictionary
learning. This is because, if we are given y = Ax + e and y′ = Ax′ + e′, we can consider examples of the
form (y − y′) instead. This works because (y − y′) = A(x − x′) + (e − e′), where (x − x′) is a slightly less
“sparse” distribution of vectors and (e − e′) is a slightly more noisy distribution of vectors. Indeed, using
this trick the expected value of x2k+1

i for any natural number k is 0. We enforce that the expected value of
every non-square monomial over the coordinates of x is also 0. This is not without loss of generality, but is
a reasonable restriction given the above discussion.

Definition 2. A distribution of n-dimensional vectors is a (d, ϕ)-nice distribution for even d if the following
hold:

• ∀i,Exdi = 1.

• ∀ degree-d monomials xα 6∈ {xd1, xd2, . . . xdn}, Exα ≤ ϕ.1

• ∀ degree-d non-square monomials xα, Exα = 0.

1We write degree-d monomials as xα, where α ∈ [d]n, ||α||1 = d, and xα =
∏n
i=1 x

αi
i .
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The following is a simple example of a (d, ϕ)-nice distribution.

∀i, xi =


ϕ−

1
d with probability ϕ

2

−ϕ− 1
d with probability ϕ

2

0 otherwise

Note that because our definition of (d, ϕ)-nice distributions does not enforce strict sparsity, we can consider
examples of the form y = Ax by thinking of the small noise vector e as simply a part of x. This will simplify
our calculations.

1.2 Overview

We will be able to solve dictionary learning efficiently.

Theorem 3. For every ε > 0, σ ≥ 1, and δ > 0, there exists a d such that for every σ-dictionary A and
(d, (ϕ = n−δ))-nice distribution {x}, given poly(n) samples from {y = Ax}, with high probability we can
efficiently output a set that is ε-close to the columns of A.

We define ε-close in the following way.

Definition 4. The correlation of two vectors u and v is

Cor(u, v) =
〈u, v〉2

||u||22||v||22

Definition 5. Two sets S and T of vectors are ε-close if:

• ∀s ∈ S, ∃t ∈ T such that Cor(s, t) ≥ 1− ε.

• ∀t ∈ T , ∃s ∈ S such that Cor(s, t) ≥ 1− ε.

To achieve the algorithm described in Theorem 3, we use the following result about Noisy Tensor Decompo-
sition.

Theorem 6. For every ε > 0, σ ≥ 1, ∃d, τ such that for every σ-dictionary A, given a polynomial P such
that:

• P (u)− ||A>u||dd − τ ||u||d2 is a sum-of-squares of polynomials.

• ||A>u||dd + τ ||u||d2 − P (u) is a sum-of-squares of polynomials.

With high probability we can efficiently output a set that is ε-close to the columns of A.

The polynomial P in Theorem 6 is required by the constraints to be “close” to the polynomial ||A>u||dd. We
will use unit vectors for u, so we get the nice property that |P (u)− ||A>u||dd| ≤ τ .

1.3 Dictionary Learning as Tensor Decomposition

Given the algorithm guaranteed by Theorem 6 as a black box, the only thing we need to do to prove
Theorem 3 is to find a polynomial that fits the constraints. Here it is!

P (u) =
1

N

N∑
i=1

〈yi, u〉d

If we have access to enough samples, then this polynomial approaches Ey〈y, u〉d, which is equal to Ex〈Ax, u〉d
by the definition of y. In these notes, we will ignore the error introduced by the difference between P (u) and
Ey〈y, u〉d, as it turns out to only affect things by a constant factor.
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Lemma 7. ||A>u||dd+ϕσddd||u||d2−Ex〈Ax, u〉d is a sum-of-squares of polynomials. Furthermore, Ex〈Ax, u〉d−
||A>u||dd is a sum-of-squares of polynomials.

Lemma 7 shows that P (u) fits the constraints in Theorem 6, with τ = ϕσddd.

Proof. Consider the following polynomial:

p(v) = ||v||dd + ϕdd||v||d2 − Ex〈x, v〉d

The first part of p(v) (||v||dd) is the sum of the dth moments of the coordinates of v, that is, (vd1 + vd2 + . . . ).

The second part of p(v) (ϕdd||v||d2) is a constant times (v21 + v22 + . . . )d/2. This is equal to the sum of all
degree-d square monomials.

The third part of p(v) (Ex〈x, v〉d) is Ex(x1v1 + x2v2 + . . . )d.

This third part is subtracted from two parts that are themselves sums-of-squares of polynomials. Therefore,
to show that p(v) itself is a sum-of-squares, we simply need to show that things cancel out nicely.

The value Ex(x1v1 + x2v2 + . . . )d is composed of three categories of monomials, which we will analyze using
the properties of (d, ϕ)-nice distributions.

• Exxdi vdi . By the first property, we know that each of these is equal to vdi , and therefore each of these
terms cancels exactly with the corresponding term from the first part of p(v).

• For each square α, we have with multiplicity less than dd terms of the form Exxαvα. By the second
property, these are at most ϕvα. Each of these is cancelled out by some term of the second part of
p(v), and we have some terms of that second part left over.

• For each non-square α, we have Exxαvα = 0 by the third property, so we don’t need to consider this
category.

Substitute v = A>u. Recall that σd||u||d2 − ||A>u||d2 is a sum-of-squares of polynomials. Then the upper
bound is proven. To show that the lower bound holds, note that Ex〈x, v〉d − ||v||dd is a sum-of-squares of
polynomials by a very similar analysis as above.

1.4 Noisy Tensor Decomposition

Theorem 6 states that we can find a set of vectors ε-close to A. To find one such vector,

1. Use SOS to find the degree-k pseudodistribution {u} that maximizes P (u) s.t. ‖u‖2 ≡ 1.

2. Let W =
∏t=O(logm)
i=1 〈vi, u〉 where the vi are standard random Gaussian vectors.

3. Output the top eigenvector of M , where Mij = ẼW (u)2uiuj .

(To find all the vectors, iterate m times, with the additional requirement that 〈u, s〉 < 1 − O(ε) for all
previous vectors s chosen.) To prove this, first we consider the case where {u} is an actual distribution, and
then we describe how to generalize the arguments to the case where {u} is a pseudo-distribution.

First we show that {u} is close to one of the columns of A. If {u} is exactly one of the columns of A then

P = ‖ATu‖dd − τ‖u‖d2 ≥ 1− τ‖u‖d2 = 1− τ

But if u is such that maxi〈ai, u〉 is small then

P ≈ ‖ATu‖dd =
∑
i

〈ai, u〉d ≤ max
i
〈ai, u〉d−2

∑
i

〈ai, u〉2 ≤ smalld−2σ
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Therefore u is close to one of the ai. In the worst case (proof: mucking about with the triangle inequality),
{u} is the uniform distribution on {±a1, . . . ,±am}. Then,

M =
1

m

m∑
i=1

W (ai)
2aia

T
i

If |W (a1)| �
√
m|W (ai)| then M ≈ (a constant)a1a

T
1 , and the top eigenvector is a1. We want to show that

this happens with probability at least poly−1(m). We know that W ≈
∏
i〈vi, aj〉 for some fixed column

aj of A. Each 〈vi, aj〉 has expected value 1, and is greater than 2 with probability bounded away from
0, so P(W (a1) > 2t) ≥ exp(−O(t)) = m−O(1). Conditioned on this event, with high probability, for all i,
|W (ai)| < 1.9t, in which case

|W (a1)/W (ai)| ≥ (2/1.9)t �
√
m

Now we need to generalize this to the case where {u} is a pseudodistribution. Previously we used ‖v‖dd ≤
‖v‖d−2∞ ‖v‖22. Now we need a SOS proof for something like that. First, replace ‖v‖∞ with ‖v‖k (where
k = O(logm) is a multiple of d− 2), so we want

(‖v‖dd)k/(d−2) ≤ ‖v‖kk(‖v‖22)k/(d−2)

Or for s = k/(d− 2), (
m∑
i=1

vdi

)s
�

(∑
i

v2i

)s∑
i

v
(d−2)s
i

By expanding the expressions, we get (where
(
s
α

)
= s!

α1!...αm! )∑
|α|=s

(
s

α

)
vdα �

∑
|α|=s

(
s

α

)
v2α

∑
i

v
(d−2)s
i

It suffices to prove vdα � v2α
∑
i v

(d−2)s
i for arbitrary α. It suffices to prove v(d−2)α �

∑
i v

(d−2)s
i . This is

implied by the following:

Lemma 8. Let w1, . . . , wn be SOS polynomials. Then wα �
∑
i w
|α|
i .

(Apply this with wi = vd−2i , since d is even.) The proof is by repeated application of x · y � 1
2x

2 + 1
2y

2. e.g.

w3
1w2 = w2

1 · w1w2 �
1

2
w4

1 +
1

2
w2

1 · w2
2 �

1

2
w4

1 +
1

2
(
1

2
w4

1 +
1

2
w4

2) � w4
1 + w4

2

(The last step uses the fact that the wi are SOS.)

The following lemma basically says, “If u is chosen from a (pseudo)-distribution, and ‖ATu‖dd is close to 1,
then |〈c, u〉| is likely to be close to 1.”

Lemma 9. Let u be a degree-3k pesudodistribution over Rn such that ‖ATu‖dd ≥ e−δd and ‖u‖22 = 1. Then

there exists a column c of A such that Ẽ〈c, u〉k ≥ e−εk for ε = O(δ + log δ
d + logm

d ).

Proof. By a SOS version of Holder’s Inequality, if d− 2 | k,

(‖v‖dd)k/(d−2) � ‖v‖kk · (‖v‖22)k/(d−2)
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Therefore,

‖ATu‖kk ≥
(
‖ATu‖dd
‖ATu‖22

)k/(d−2)
SOS Holder’s with v = ATu

≥
(

e−δd

‖ATu‖22

)k/(d−2)
assumption of the lemma

≥
(
e−δd

σ‖u‖2

)k/(d−2)
definition of σ

= (e−δd/σ)k/(d−2) ‖u‖2 = 1

There exists a column c of A such that

Ẽ〈c, u〉k ≥ Ẽ ‖ATu‖kk/m averaging

≥ (e−δd/σ)k/(d−2)/m the above
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