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They are based on a series of blog posts by Sam Hopkins [4].

1 Introduction

1.1 Mixtures of Gaussians

Let D1, . . . ,Dk be spherical Gaussians on Rd with means µ1, . . . , µk and variance 1. We consider mixtures
of Gaussians defined by the following sampling procedure:

1. Choose i ∈ [k] uniformly at random;

2. Return a sample X drawn from Di

1.2 The Learning Problem

Given i.i.d. samples X1, . . . , Xn drawn from an unknown mixture of Gaussians, our goal is to recover the
means µ1, . . . , µk.

• Actually, we will recover the true cluster membership of most samples.

1.3 Parameter Regime

If the means µ1, . . . , µk are allowed to be dense, then exponentially many samples may be required to learn
the mixture.

• This is true even from the information-theoretic point of view.

For this reason, we consider a parameter ∆ which denotes the separation between means, i.e. ||µi−µj || ≥ ∆
for i ̸= j.

In the end, the parameter regime we would like is

• n ∼ poly(d)

• runtime poly(d)

• ∆ as small as possible
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1.4 History

1. With radius of clusters ∼
√
d and ∆ > 4

√
d, the problem is solved easily with a greedy clustering

algorithm

2. [Dasgupta 1999]

• polytime algorithm for ∆ = ϵ
√
k.

• Gaussians not necessarily spherical

• ϵ is a parameter which describes the geometry of the variance

3. [Dasgupta-Schulman 2013]

• expectation maximization (EM)

• polytime algorithm for ∆ ∼ k1/4

4. [Regev-Vijayaraghavan 2017]

• maximum likelihood estimation (MLE)

• ∆ = O(
√
log d)

• only poly(d) samples but the runtime is exp(d)

1.5 Main Theorem

1.1 Main Theorem (Hopkins-Li, Kothari-Steinhardt, Diakonikolas-Kane-Stewart). For arbitrarily large
t ∈ N, there is an algorithm requiring n = dO(t)kO(1) samples from the equidistributed mixture of Gaussians
and running in time nO(t) which outputs, up to a permutation of [n], a partition T1, . . . , Tk of [n] into k sets
of size N = n/k such that, with high probability,

∀i, |Si ∩ Ti|
N

≥ 1− k10 ·
(
C
√
t

∆

)t

for some universal constant C.

Special Case A. If ∆ = kϵ (where ϵ > 0) and t = 100/ϵ, then the algorithm:

• uses poly(k, d) samples;

• runs in poly(k, d) time;

• and recovers the correct clustering up to 1/poly(k) errors.

Special Case B. For some universal constant C ′, if ∆ = C ′√log k and t = O(log k), then the algo-
rithm:

• uses quasipoly(k, d) samples;

• runs in quasipoly(k, d) time;

• and recovers the correct clustering up to 1/poly(k) errors.

2



1.6 Related work

[Diakonikolas-Kamath-Kane-Li-Moitra-Stewart 2017]

• does not use SOS

• learning a single high-dimensional Gaussian rather than a mixture

• Gaussian is not necessarily spherical

– estimate mean and variance matrix

• outlier robust estimation:

– accurately estimate parameters even when an ϵ-fraction are corrupted by an adversary

[Kothari-Steurer 2017]

• does use SOS

• outlier robust estimation

• applies to distributions other than Gaussians; assumes moment bounds instead

• not just estimating means and variance, estimate other low-degree moments also

2 Setup (d = 1 dimension)

Throughout our discussion of d = 1, we make the following assumptions.

• We are given samples X1, . . . , Xn ∈ R.

• There is an unknown partition {S1, . . . , Sk} of [n] into k parts of size N = n/k such that each part
{Xj}j∈Si

obeys the empirical moment bound

E
j∼Si

|Xj − µi|t ≤ 2 · tt/2

where µi is the empirical mean Ej∼Si
Xj .

• |µi − µj | ≥ ∆ for i ̸= j.

Since the latter two conditions hold with high probability, we only require that our algorithm succeeds when
they are satisfied.

Goal. Up to permutation, obtain a partition {T1, . . . , Tk} such that Ti ≈ Si.

In particular, we want
|Si ∩ Ti|

N
≥ 1−O

(
2O(t)tt/2k2

∆t

)
Why we want to learn Ea∼ν aa

T .

Let a1, . . . , ak ∈ {0, 1}n be the 0/1 indicators for clusters S1, . . . , Sk.

Let ν be the uniform distribution on {a1, . . . , ak}.

Note that the matrix Ea∼ν aa
T reveals the cluster membership of samples since[

E
a∼ν

aaT
]
s,t

:=
1

k

∑
i∈[k]

ai,sai,t =

{
1
k , if Xs and Xt in same cluster
0, otherwise
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Furthermore, the sth and tth rows of Ea∼ν aa
T agree iff Xs and Xt are in the same cluster.

What we learn instead:

Learn a pseudo-expectation ẼwwT .

3 As a semi-definite program

Think of (w1, . . . , wn) ∈ Rn as the 0/1 indicator vector for a cluster T .

Let A be the set of equations and inequalities
w2

i = wi for i ∈ [n]∑
i∈[n] wi = N

1
N

∑
i∈[n] wi · (Xi − µ)t ≤ 2 · tt/2

where µ = µ(w) is the polynomial 1
N

∑
i∈[n] wiXi.

3.1 Approximation Lemma. Let Ẽ be a degree O(t) pseudo-expectation solving

min ||ẼwwT || such that Ẽ satisfies A

Let ν be the uniform distribution over a1, . . . , ak ∈ {0, 1}n where ai is the indicator for cluster Si. Then,

||ẼwwT − E
a∼ν

aaT || ≤ ||E aaT || ·
(
2O(t)tt/2k2

∆t

)1/2

Why min ||ẼwwT||?

For intuition, consider instead the case where ν is an actual distribution supported on vectors a1, . . . , ak ∈
{0, 1}n which are 0/1 indicators for clusters S1, . . . , Sk.
Using ⟨ai, aj⟩ = 0 for i ̸= j, obtain

|| E
a∼ν

aaT||2 =

⟨∑
i∈[k]

ν(ai)aia
T
i ,
∑
i∈[k]

ν(ai)aia
T
i

⟩

=
∑
i∈[k]

ν(ai)
2 · ||ai||4 = ||ν|| · (n/k)2

which is minimized when ν is uniform.

Since the distribution we are trying to approximate has this structure, minimization of ||ẼwwT || provides
a ‘soft’ way of enforcing this structure on Ẽ.

To prove the Approximation Lemma, we need the following result:

3.2 Main Lemma. Any degree O(t) pseudo-expectation Ẽ which satisfies A must also satisfy

Ẽ

∑
i∈[k]

(
|T ∩ Si|

N

)2
 ≥ 1− 2O(t)tt/2k2

∆t

where |T ∩ Sj | denotes
∑

i∈Sj
wi.
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Note, this result does not assume that Ẽ is necessarily the minimizer for ||ẼwwT ||. In fact, any Ẽ which
satisfies A will give us one cluster since

∑
i∈[k]

(
|T∩Si|

N

)2
is a lower bound on maxi∈[k]

|T∩Si|
N . However,

iterating this procedure to identify multiple clusters leads to difficult error analysis where analysis of later
rounds must account for errors made in earlier rounds.

The Approximation Lemma is an immediate consequence of the Main Lemma:

Proof of Approximation Lemma. The uniform distribution ν over a1, a2, . . . , ak is a feasible solution and
satisfies ||Ea∼ν aa

T ||2 = n2/k3.

Hence, the optimal pseudo-expectation Ẽ satisfies ||ẼwwT ||2 ≤ n2/k3.

Furthermore,

||ẼwwT − E
a∼ν

aaT ||2 = ||ẼwwT ||2 + || E
a∼ν

aaT ||2 − 2⟨ẼwwT ,E aaT ⟩

≤ 2

(
n2

k3
− ⟨ẼwwT ,E aaT ⟩

)

Using the Main Lemma, we obtain

⟨ẼwwT ,E aaT ⟩ = 1

k
Ẽ
∑
i∈[k]

|Si ∩ T |2 ≥ n2

k3
·
(
1− 2O(t)tt/2k2

∆t

)

which, by substitution, implies

||ẼwwT − E
a∼ν

aaT || ≤
(
2n2

k3

)1/2(
2O(t)tt/2k2

∆t

)1/2

≤ ||E aaT || ·
(
2O(t)tt/2k2

∆t

)1/2

■

We now turn to proving the Main Lemma:

Proof of Main Lemma. Proof: Let Ẽ be a degree O(t) pseudo-expectation which satisfies A.

Assume i ̸= j. Since µi = Eℓ∼Si
Xℓ and µj = Eℓ∼Sj

Xℓ satisfy |µi − µj |2 ≥ ∆2, the SOS triangle inequality
implies

⊢t (µi − µ)t + (µj − µ)t ≥ 2−t[(µi − µ)− (µj − µ)]t ≥ 2−t∆t

Hence,
Ẽ|T ∩ Si|t|T ∩ Sj |t ≤ Ẽ

[
(µi − µ)t + (µj − µ)t

2−t∆t
|T ∩ Si|t|T ∩ Sj |t

]
Recall that, by Lemma 1,

A ⊢O(t)

(
|T ∩ Si|

N

)t

· (µ− µi)
t ≤ 2O(t) · tt/2 ·

(
|T ∩ Si|

N

)t−1

Therefore,

Ẽ|T ∩ Si|t|T ∩ Sj |t ≤
2O(t)tt/2N

∆t
·
(
Ẽ|T ∩ Si|t|T ∩ Sj |t−1 + Ẽ|T ∩ Si|t−1|T ∩ Sj |t

)
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Since A ⊢t w
2
i ≥ 1 and thereby A ⊢t |T ∩ Si| ≤ N , it follows that

Ẽ|T ∩ Si|t|T ∩ Sj |t ≤
2O(t)tt/2N

∆t
· Ẽ|T ∩ Si|t−1|T ∩ Sj |t−1

Furthermore, by pseudo-expecation Cauchy-Schwartz,

Ẽ|T ∩ Si|t−1|T ∩ Sj |t−1 ≤ (E |T ∩ Si|t|T ∩ Sj |t)1/2(E |T ∩ Si|t−2|T ∩ Sj |t−2)1/2

Combined with the preceding, we get

Ẽ|T ∩ Si|t|T ∩ Sj |t ≤
2O(t)ttN4

∆2t
Ẽ|T ∩ Si|t−2|T ∩ Sj |t−2

Now by the pseudo-expectation Holder’s inequality,

Ẽ|T ∩ Si|t−2|T ∩ Sj |t−2 ≤ (Ẽ|T ∩ Si|t|T ∩ Sj |t)(t−2)/t

so
Ẽ|T ∩ Si|t|T ∩ Sj |t ≤ (Ẽ|T ∩ Si|t|T ∩ Sj |t)(t−2)/t

Cancelling out terms on both sides of

Ẽ|T ∩ Si|t|T ∩ Sj |t ≤
2O(t)ttN4

∆2t
(Ẽ|T ∩ Si|t|T ∩ Sj |t)(t−2)/t

and then applying Cauchy-Schwartz results in

Ẽ|T ∩ Si||T ∩ Sj | ≤ (Ẽ|T ∩ Si|t|T ∩ Sj |t)1/t ≤
2O(t)tt/2N2

∆t

Finally, since
Ẽ
∑

i,j∈[k]

|T ∩ Si||T ∩ Sj | = Ẽ(
∑
i∈[n]

)2 = N2

we may obtain

Ẽ

∑
i∈[k]

(
|T ∩ Si|

N

)2
 =

1

N2
Ẽ

∑
i∈[k]

|T ∩ Si|2


=
1

N2

Ẽ ∑
i,j∈[k]

|T ∩ Si||T ∩ Sj | −
∑
i̸=j

|T ∩ Si||T ∩ Sj |


=

1

N2

[
N2 − k22O(t)tt/2N2

∆t

]
= 1− k22O(t)tt/2

∆t

■

4 Rounding for the win

4.1 Rounding Lemma. Let A ∈ {0, 1}n×n be the 0/1 same-set indicator matrix for a partition {S1, . . . , Sk}
of [n] into k parts of size N = n/k.

• i.e. Aij = 1 iff ∃p such that i, j ∈ Sp.
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Suppose also that M ∈ Rn×n satisfies ||M −A|| ≤ ϵ||A||.

Then there is a polytime algorithm which, on input M , with probability 1 − O(k2ϵ), produces a partition
T1, . . . , Tk of [n] into clusters of size N such that

Si ∩ Ti

N
≥ 1−O(ϵ2k) ∀i

with appropriate permutation.

Once we have the Rounding Lemma, the Main Theorem will follow:

Proof of Main Theorem. Our algorithm is:

1. Given X1, . . . , Xn, solve

argmin ||ẼwwT || such that Ẽ is degree O(t) and satisfies A

2. Then apply the rounding algorithm guaranteed by our lemma and output the resulting partition.

A concentration argument shows that the vectors X1, . . . , Xn satisfy the empirical moment bound with
probability 0.99 when n ≥ poly(k).

■

Proof of Main Theorem. In the case that the samples X1, . . . , Xn do obey the moment bound, then the
conclusion of the Approximation Lemma holds, namely

||ẼwwT − E
a∼ν

aaT || ≤ ||E aaT || ·
(
2O(t)tt/2k2

∆t

)1/2

where ν is the uniform distribution on the 0/1 indicator vectors for S1, . . . , Sk.

Now we may apply our rounding algorithm by taking

A = k Ea∼νaa
T M = k ẼwwT ϵ =

(
2O(t)tt/2k2

∆t

)1/2

It follow that, up to permutation, the rounding algorithm produces a partition T1, . . . , Tk of [n] such that

|Si ∩ Ti|
N

≥ 1−O

(
2O(t)tt/2k3

∆t

)
■

It remains to prove the Rounding Lemma:

Proof of Rounding Lemma. We use consider following algorithm, with δ = 0.1:

Rounding Algorithm
1. Let I = [n] be the set of active indices.
2. Pick i ∼ I uniformly.
3. Let T ⊆ I be those indices j for which ||Mj −Mi|| ≤ δ ·

√
n/k.

4. Add T to the list of clusters and let I := I \ T
5. If |I| > n/2k, go to Step 2.

7



A row index i is considered good if

||Mi −Ai|| ≤
δ

2
·
√
n/k =

δ

2
||Ai||

Otherwise, say that i is bad.

1. Good rows are not misclassified:

Case A: If i, j are good indices in the same cluster Sp, then Ai = Aj implies

||Mi −Mj || ≤ ||Mi −Ai||+ ||Mj −Aj || ≤ δ ·
√
n/k

so, if the algorithm selects i, then j is placed in the same cluster.

Case B: Let δ < 0.1. Suppose i and j are good indices in distinct clusters Sp and Sq resp. Then
||Ai −Aj || = 2

√
n/k implies

||Mi −Mj || ≥ ||Ai −Aj || − ||Ai −Mi|| − ||Aj −Mj ||

≥ 2
√

n/k − δ ·
√
n/k ≥ δ ·

√
n/k

so, if the algorithm selects i, then j is not placed in the same cluster.

2. Most rows are good:

By hypothesis, ∑
i∈[n]

||Mi −Ai||2 = ||M −A||2 ≤ ϵ2||A||2

Each bad index contributes δ2

4 ||Ai||2 to the left side and ||Ai||2 = ||A||2/n so the number of bad indices
is at most (

ϵ2||A||2
)/(

δ2||A||2

4n

)
= 4ϵ2n/δ2

3. Algorithm succeeds if bad indices are never chosen:

Suppose the algorithm never chooses a bad index.

Then, before post-processing, the clusters T1, . . . , Tk satisfy that Ti contains all good indices in Si.

Hence, only bad indices are misclassified or not classified. This implies that at most 4ϵ2n/δ2 are moved
in the post-processing step.

In the end, the only misclassified are

• those that were misclassified before post-processing;

• those that were moved after post-processing because they were displaced by some misclassified
point.

It follows that at most 8ϵ2n/δ2 are misclassified.

In particular, each Si differs from each Ti on at most 8ϵ2n/δ2 points.

4. With high probability, bad indices are never chosen:

Consider implementing the algorithm by drawing a list L of k2 indices before seeing M .

When the algorithm asks for a random index i ∈ I, it is given the next element from L which is still
in I.
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The probability that L intersects with I as long as |I| > n/2k is at least 1−O(1/k).

Furthermore, since there are only 4ϵ2n/δ2 bad indices,

Pr(L does not contain a bad index) ≤
k2∑
i=1

Pr(Li is a bad index) = 4ϵ2k2

δ2

With δ = 0.01, we may concude that the probability of our algorithm encountering a bad index is at
most O(ϵ2k2) +O(1/k) = O(ϵ2k2) [since k = Ω(1/ϵ)].

■

5 Moving to higher dimensions...

5.1 Identifiability

Recall that previously we used the tth moment bound which was defined for an arbitary set S as

E
j∈S

|Xj − µ|t ≤ 2 · tt/2 (∗)

where µ = Ej∈S Xj is the empirical mean of the cluster Si.

Three important properties were used:

1. With high probability, (∗) holds for all true clusters S1, . . . , Sk;

2. Supposing (∗) holds for all true clusters S1, . . . , Sk as well as for some arbitary set T , then T ≈ Si for
some i;

3. (∗) may be expressed in the language of SOS.

In higher dimensions, it is tempting to generalize the moment bound as follows.

∀u ∈ Rd, E
h∼S

⟨
Xj − µ,

u

||u||

⟩t

≤ 2 · tt/2 (⋄)

where µ = Ej∈S Xj is the empirical mean of the cluster Si. Indeed, this is enough for identifiability
(Properties 1 and 2):

• If S and S′ are clusters which both satisfy (⋄), then large |S ∩ S′| implies small |µ− µ′| [where µ and
µ′ are the respective empirical means].

• To show this, reduce to the 1-dimensional case by projecting onto the line (µ, µ′). In particular, (⋄)
implies that{⟨

Xj − µ,
µ− µ′

||µ− µ′||

⟩t
}

j∈S

and
{⟨

Xj − µ,
µ− µ′

||µ− µ′||

⟩t
}

j∈S′

are sets of points which each satisfy the 1-dimensional tth moment bound

Unfortunately, (⋄) cannot be expressed in the language of SOS:

• Having ||u|| in the denominator means that these are not low degree polynomials.

– Just multiply through by ||u|| and raise to a power to get a polynomial inequality.
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• The moment bound has the quantifier “∀u ∈ Rd”

– This is a more serious issue.

We want to enforce

max
u∈Rd

1

N

∑
i∈[n]

wi⟨Xi − µ, u⟩t ≤ 2 · tt/2 · ||u||t (⋆)

by way of a low degree polynomial inequality.

• Does there exist a low degree polynomial inequality which certifies (⋆)?

– Probably not. Use a stronger certificate instead.

When Y1, . . . ,Ym are sufficiently-many samples from a d-dimensional Gaussian, the following inequality
holds w.h.p.: ∣∣∣∣∣∣

∣∣∣∣∣∣ 1N
∑
i∈[m]

(Y⊗t/2
i )(Y⊗t/2

i )T − E
Y∼N (0,I)

(Y⊗t/2)(Y⊗t/2)T

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 1

Moreover, it implies (⋆).

5.2 The multi-dimensional setup

We are given samples X1, . . . , Xn ∈ Rd. Assume
1. There is an unknown partition {S1, . . . , Sk} of [n] into k pieces of size N = n/k such that each collection

{Xj}j∈Si
has bounded moments by way of∣∣∣∣∣∣∣∣ 1N E

j∼Si

([Xj − µi]
⊗t/2)([Xj − µi]

⊗t/2)T − E
Y∼N (0,I)

(Y⊗t/2)(Y⊗t/2)T
∣∣∣∣∣∣∣∣2 ≤ 1

where µi is the empirical mean Ej∼Si
Xj .

2. ||µi − µj || ≥ ∆ for i ̸= j.

Goal. Up to permutation, obtain a partition {T1, . . . , Tk} such that Ti ≈ Si. In particular, we want

|Si ∩ Ti|
N

≥ 1− k10 ·
(
C
√
t

∆

)t

5.3 Multi-dimensional setup – SDP

Again, think of (w1, . . . , wn) as the indicator vector for a cluster T .

Let B be the set of equations and inequalities
w2

i = wi for i ∈ [n]∑
i∈[n] wi = N∣∣∣∣∣∣ 1N ∑i∈[n] wi([Xi − µ]⊗t/2)([Xi − µ]⊗t/2)T − EY∼N (0,I)(Y⊗t/2)(Y⊗t/2)T

∣∣∣∣∣∣2 ≤ 1

where µ = µ(w) is the polynomial 1
N

∑
i∈[n] wiXi.

Objective: min ||ẼwwT ||
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As before, we use semi-definite programming to obtain a degree O(t) pseudo-expectation Ẽ which minimizes
||ẼwwT || subject to B.

Then ẼwwT provides an approximation of the same-cluster matrix, which allows us to determine cluster
membership using the same algorithm as before.

5.4 Main Lemma

This time, we rely on the following multi-dimensional version of our earlier Main Lemma:

5.1 Main Lemma (multi-dimensional). Any degree O(t) pseudo-expectation Ẽ which satisfies B must
also satisfy

Ẽ

∑
i∈[k]

(
|T ∩ Si|

N

)2
 ≥ 1− 2O(t)tt/2k2

∆t

where |T ∩ Sj | denotes
∑

i∈Sj
wi.

Largely, the proof of the Main Lemma will follow the proof of the 1-d case.

The main difference will be in leveraging the new moment bound. Doing so will rely on the following propo-
sition:

5.2 Moment Inequality. Let u ∈ Rd be an indeterminate. Then,

⊢t E
Y∼N (0,I)

⟨Y, u⟩t ≤ tt/2 · ||u||t

Proof of Moment Inequality. We may expand E⟨Y, u⟩t as

E⟨Y, u⟩t = E
∑
|α|=t

uαYα =
∑
|α|=t

uα EYα =
∑
|α|=t
α even

uα EYα

where α is a multi-index over [n], uα =
∏

i u
αi
i , and “even” means that every element of α is even.

Each monomial uα on the RHS is a square.

EYα ≤ tt/2 holds by a standard moment bound but this only involves constants. Hence,

⊢t

∑
|α|=t
α even

uα EYα ≤ tt/2
∑
|α|=t
α even

uα = tt/2||u||t

■

Proof of the Main Lemma relies on the following intermediate fact.

5.3 Mean-bound Lemma (analogue of Lemma 1). Suppose S ⊆ [n], |S| = N , has empirical mean
µS = Ei∼S Xi.

Then, under our previous assumptions,

B ⊢O(t)

(
|T ∩ S|

N

)2t

||µ− µS ||4t ≤ 2O(t) · tt ·
(
|T ∩ S|

N

)2(t−1)

||µ− µS ||2t

Note that this is the polynomial version of the inequality

||µ− µS || ≤ O

(
√
t ·
(
|T ∩ S|

N

)−1/t
)
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Proof of the Mean-bound Lemma. First, expand in terms of X1, . . . , Xn.(∑
i∈S

wi

)t

||µ− µS ||2t = (wi⟨µ− µS , µ− µS⟩)t = (wi⟨(µ−Xi)− (µS −Xi), µ− µS⟩)t

Apply SOS Holder’s inequality to the RHS to obtain

B ⊢O(t)

(∑
i∈S

wi

)t

||µ− µS ||2t ≤

(∑
i∈S

wi

)t−1(∑
i∈S

wi⟨(µ−Xi)− (µS −Xi), µ− µS⟩t
)

Using ⊢t (a− b)t ≤ 2t(at + bt) and wi = w2
i ≤ 1, we get

B ⊢O(t)

(∑
i∈S

wi

)t

||µ− µS ||2t ≤ 2t ·

(∑
i∈S

wi

)t−1

·

∑
i∈[n]

wi⟨Xi − µ, µ− µS⟩t +
∑
i∈S

⟨Xi − µS , µ− µS⟩t


So that we can eventually apply Cauchy-Schwarz, square both sides and apply ⊢2 (a + b)2 ≤ 2(a2 + b2) to
the RHS.

B ⊢O(t)

(∑
i∈S

wi

)t

||µ− µS ||2t

≤ 2O(t) ·

(∑
i∈S

wi

)2(t−1)

·


∑

i∈[n]

wi⟨Xi − µ, µ− µS⟩t
2

+

(∑
i∈S

⟨Xi − µS , µ− µS⟩t
)2


It is now enough to show

B ⊢O(t)

∑
i∈[n]

wi⟨Xi − µ, µ− µS⟩t
2

≤ 2O(t)tt · ||µ− µs||2t ·N2

and

B ⊢O(t)

(∑
i∈S

⟨Xi − µS , µ− µS⟩t
)2

≤ 2O(t)tt · ||µ− µs||2t ·N2

First we show

B ⊢O(t)

(∑
i∈S

⟨Xi − µS , µ− µS⟩t
)2

≤ 2O(t)tt · ||µ− µs||2t ·N2

Working from the LHS, we have

1

N

∑
i∈S

⟨Xi − µS , µ− µS⟩t = E
Y∼N (0,I)

⟨Y, µ− µS⟩t +

(
1

N

∑
i∈S

⟨Xi − µS , µ− µS⟩ − E
Y∼N (0,I)

⟨Y, µ− µS⟩t
)

Once again, square both sides and apply ⊢2 (a+ b)2 ≤ 2(a2 + b2) to get

1

2N2

(∑
i∈S

⟨Xi − µS , µ− µS⟩t
)2

= E
Y∼N (0,I)

⟨Y, µ− µS⟩2t

+

(
1

N

∑
i∈S

⟨Xi − µS , µ− µS⟩ − E
Y∼N (0,I)

⟨Y, µ− µS⟩t
)2

12



We bound each term on the RHS. By the Proposition,

⊢2t

(
E

Y∼N (0,I)
⟨Y, µ− µS⟩t

)2

≤ 2O(t)tt · ||µ− µS ||2t

For the second term, we have(
1

N

∑
i∈S

⟨Xi − µS , µ− µS⟩ − E
Y∼N (0,I)

⟨Y, µ− µS⟩t
)2

= ⟨M, [(µ− µs)
⊗t/2][(µ− µs)

⊗t/2]T ⟩

where M is the matrix

M = E
j∈S

([Xj − µS ]
⊗t/2)([Xj − µS ]

⊗t/2)T − E
Y∼N (0,I)

(Y⊗t/2)(Y⊗t/2)T

Apply Cauchy-Schwarz to get

⊢O(t) ⟨M, ([Xj − µS ]
⊗t/2)⟩2 ≤ ||M ||2 · ||µ− µS ||2t ≤ ||µ− µS ||2t

This allow us to conclude

B ⊢O(t)

(∑
i∈S

⟨Xi − µS , µ− µS⟩t
)2

≤ 2O(t)tt · ||µ− µs||2t ·N2

It remains to show

B ⊢O(t)

∑
i∈[n]

wi⟨Xi − µ, µ− µS⟩t
2

≤ 2O(t)tt · ||µ− µs||2t ·N2

but this follows a similar argument with∣∣∣∣∣∣
∣∣∣∣∣∣ 1N

∑
i∈[m]

(Y⊗t/2
i )(Y⊗t/2

i )T − E
Y∼N (0,I)

(Y⊗t/2
i )(Y⊗t/2

i )T

∣∣∣∣∣∣
∣∣∣∣∣∣ ≤ 1

in place of ||M ||2 ≤ 1.
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