
L_arningtocustuungsossim.pk
( but still interesting ) version

Of problem :

K = number of clusters

d. dimension

n = ft of samples

We have fixed spherical ( but unknown )

Gaussians D.
,

... ,
Dk

,
with means

µ ,
. .

,
Me

,

and variance 1
.

inputis : n samples X
,

... Xn drawn

from mixture

Output : means M
, ... Uk

or clusters (say which distils each

sample
-

is from )



Hard Info Theatrically if means are

too

dose
togethert.at#=

These 2 different mixtures look too similar

.

K gaussians hail var distance - ZK
from single gaussian . Need exp ( k ) samplesRETTA: K - d

n ( It samples) ~ poly ( d )

runtime poly ( d )
d as small as possible

SeparatimAyVitjlnei.Msf.a@3iuYnrgfafeafkdampayusteringimposs.bk



n samples n~pdy(d)

History d dimensions
,

K gaussians k~d

@
radius 4 clusters ~ rd

a > 4rd greedy clustering
easy

@ Dasgupta ( special )

pohtime alg for D= ere

�3� Dasgupta - Schulman C Em )

d ~ KY potytiine

�4� Reger - Vijay araghavan ( MLE )

D= O( Flogd) poly (d) samples

but runtime exp (d)

d = H Mi - M ;H ( h distance in Rd)



Ned 3 papers stoc
'

18

[ Hopkins - Li ]
,

[ Kothari - Steinhardt ]
,

[ Diakonikolas - Kane - Stewart ]

they F constant c

For a =  ctofd
,

there is a

quasipohcd) - time alg ,
error plc

For a = &
, poly (d) - time alg ,

error potyd)

* Also works for robust versions

of the problem ,
and for

more general distributions

\



Actua1TheoremstaHme# Fixq =k
,

Ft

st for n = dolt )
. KO

" )

,
there is

an algorithm running In time potcn )
and on

that takes as input
r

samples X
, ,

. . ,XneRd

[ 5
, , . , Sk is the true partition of [n] st .

{ X
,

lies , } -

is from Di
,

and IS :L = na=]and outputs a partition T
, ,

. . ,Tk of [n]

St
. ITII = N

,
and whp Hi

t' fit . 1 - ii.

partyFor D= OIFGI
,

chooset~D(kgk )

D= KE
,

choose t ~ 1000



Overview ( d =/ )

• In order to get an algorithm running In quaspdy time

Need to show quasipdy many samples suffice

That is it is Necessary to prove quasip 64

sample complexity bounds

Sos
• We 'll give low degree sample complexity

bounds
,

which will automatically [by
Sos automata ability ] giie us an

efficient learning algorithm

arrears the" "

aentonexnakthg!T .

but correct at a high kill



Importantpwpertyolthesampks (
dgfenkrealagig )

Let D= N ( µ
,

1) be gaussian

and Y, . . .Yn be samples from D
.

Then for N = NH ) large enough , Whp

E µ

;
. iilt a- a Eh

jrcn]]p
sample ( concentration of

mean th empirical moments]
A Our algorithm will assume

that the samples X
,

... Xn come from

a true Partition 5
,

. . Sk , Siew
,

b. Is ,E=N

st
.

Vice
[ k]

,
E IX

;
. nip ± 2. Eh

'

gns
; T

empirical avg of

{ X; ljesi }
An easy calculation shows this is true whp .



Algonthminthed-lcase_fny.it?txn
]

Let A be the following equations :

We?
= W

,
it [ n ]

En
,

Wi = N ( n=E )

Tv If ,
wi Him )t± 2. th

,

where µ= tn tfnwixi

( variables are vectors w
,

... wn ]

sohe SDP of degree OH ) SOS lift ofA
to Minimize HWWT112nathat'nx%benµs

nom

hi as a vector



Claim If ✓ NT
'

is solution to degree Oct ) SOS lift ,

then 11 rut - aat 112 < 2C Me - < vvt
,

aat ) )

Proof Assume X
,

... XnXn+ ,
i. Xzn . .  - - X←, )n+ ,

.  .  ' XKN
wwg T # . . ST

ffotnrestanjnessaammppkdsaiednramfmtfiianasoonf

Then these values for W satisfy A :

ai Iai -9i±II
In

The Corresponding solutions to degree z variables WWT ( wins )
are :

oai¥¥T.

...
,

a⇐
'

'

FI
.

...... 9a¥
'

"

:
.

:@
So the avg aat also Is

satisfies A ; K
y

k

:

YK



z

io Haat H ( Frsbenivs norm =L
,

norm as a vector )

= to . KNZ
= ± ,n÷ =Fe

Say degree Olt ) SDP finds a solution vvt

satisfying degree off ) sos of A
,

and

minimising HWWTH
.

Then HWTHE Haatlkyig

Then

Hvvt . aatlt = yvvt ItHaatlp .

24'T ,
aat )

< 2¥,
-24J

,

aat )

= 2 (Pg - < vvt
,

aat ))
B end J daiin



MAINLEMMA_l.lt K .  . Xn ER
,

S
,

. . 5k

a partition of [ n ]
,

19.1 = he
,

st
.

the [ K ] :

j§
,

1 Xj - Milt = 2.tk

Let W be a solution to degree oh ) SDP for A .

( so v is a degree Oct ) pseudodbtrib)

then W satisfies

Eu,
YTIIY

'

> i.

Entity
at

T.am
" 's it §s

.

.ws fypnotn ]

[ IF# "¥
2

=§ag(§qw;) = K . N
'

( 1 -

EH th k
'

tea .

it )



Corollary (of claim a MAIN Lemma )
11 vvt - aat H < Haat 11

. zo
# ttkk ' K

⇒
E

÷
3y claim

11 vvt - aat 1/2 e 2(Y÷3 - ( vvt
,

aat ))

By Main Lemma

( vii. aat ). ± Na ( i . i#at¥2)

: vt . aaill £ face. if .n÷iHat¥i)]k
÷ 2 z

Isthat
11

= will
"C"¥he)÷

.



Reay X
,

. .  . . Xn ,
S

,
.

. .sk

we solve degree OH ) SOS SDP to get

pseudo distribution WWT st
.

HWWT - aat 11 = Haut A • {small fraction )
so WWT is very close to the

"

good
"

solution aat

Note from aat we know 5
,

... Sk
and WWT is very close entry . wise to aaT

Roundly
( 1 ) Let I :[ n ] be acthe indices

e) Pick i~I uniformly a Let

SEJ be the indices j st
.

HM
,

- MJIKSFE
( so the rows that are almost
\ the same as row i )

add S to List f clusters a let J=I\s

(3) Jf II ) ? Yzk go to (2)

y ) Assign remaining indices to clusters

til all had size Yk



STMT
A M

a

%

.

Ya -

. yxxxxxxxxx
Act bad WWT ( close to aat)

rows

A row i is good if 11mi -

AiysotoFc . too " till

There are
*in bad rows ( by urging ) ,

If  rounding alg Near picks a bad row
,

there

a 'Swill duster a " 9°°d rows WHY )Prob
.

round alg New picks a bad row

is = lie

sina.ENKM.t.lt
/

= HM . AN = EHAIP


