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1 Upper and lower bounds for SoS

In the last lecture we saw how the MAXCUT problem can be solved with the optimal approximation
ratio of 0.878 by degree 5 SoS, in an argument that mirrors the famed Goemans-Williamson algorithm
by constraining the degree 2 moments to be both {0, 1} valued and to obey some nice properties in
relation to one another. This is an example of how moving up in the SoS hierarchy can give us tangible
progress towards the ultimate goal, which is the intersection of the feasible region with the Boolean
hypercube. From the perspective of the proof system SoS, introducing higher degree terms means that
any pseudodistribution has to obey both consistency with the input axioms and local consistencies with
one another at a higher degree, which can become much harder if the tautology can be refuted very
locally.

But what if moving up in the hierarchy doesn’t help us? We saw how degree 0 SoS gave almost the
worst possible integrality gap for MAXCUT, 1

2 + ε for any ε > 0, which barely beats choosing the cut
at random. Also once we hit degree 5 and obtain the optimal approximation ratio under P 6= NP, and
using the fact that degree d SoS proofs can be found in time nO(d), we immediately get that, modulo
P 6= NP, degree ω(1) is needed to push past this 0.878 barrier.

In this lecture we see an far stronger lower bound, showing that for a problem in P, degree d SoS
has an integrality gap of 1

2 + ε for d = Θ(n). The problem we use is 3XOR, where the constraints are
of the form

xixjxk = aijk (xi, xj , xk, aijk ∈ {±1})

This is the canonical way of representing the {0, 1} valued constraints xi⊕xj ⊕xk = aijk, noting that
the mod operation can be tricky to express in a polynomial over the reals. While we’ve moved into
a different domain, namely {±1}, these variables can be transformed into {0, 1} valued variables via
the simple transformation zi = 1−xi

2 . Also new is the fact that the input axioms are of degree 3 instead
of linear, but since our degree lower bound is Θ(n) this difference is insignificant.

The 3XOR problem varies wildly in terms of difficulty depending on what problem we want to
solve. Håstad’s 3XOR lemma states that for δ, ε > 0, it is NP hard to decide whether a given 3XOR
instance φ on m = O(n) constraints has value at least 1 − δ or at most 1

2 + ε, where the value of φ
is the maximum fraction of clauses satisfiable simultaneously. However if we shift the goalposts a bit
and ask the complexity of distinguishing whether φ has value 1, in other words if φ is satisfiable, or
value at most 1

2 + ε, then the problem can be solved in time n3 using the classic technique of Gaussian
elimination. In particular, this polytime algorithm holds for the random 3XOR problem, where in each
of the m constraints of φ we pick xixjxk uniformly at random and then either choose the aijks to be
consistent with some assignment α ∈ {±1}n (φ has value 1) or uniformly at random, in which case we
will show that with high probability a random 3XOR instance has value at most 1

2 + ε.
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This is somewhat shocking at first considering the strength of SoS; consider, for example, the
fact that under Unique Games SoS achieves the best integrality gap for every NP-complete problem.
The lower bound is based on a constraint satisfaction problem for Gaussian elimination, and uses
randomness to ensure that with high probability, a) we have a minimal number of constraints satisfied
(only 1

2 + ε), and b) finding a contradiction among the constraints is highly “non-local”, in that it takes
fixing a huge number of terms to falsify even one axiom.

An important application of this lower bound is in hardness reductions, or shifting the pseudodistri-
bution to give hardness results for other problems. We will show at the end how to immediately achieve
an integrality gap of 7

8 + ε for random instances of 3SAT, which is known to be both easy to achieve (a
random assignment suffices) and impossible to beat under P 6= NP.

But probably the most important part of the result for this course is the proof, which is incredibly
elegant and simple but uses a lot of the techniques that show up time and time again in proof complexity
lower bounds. A rough outline of the proof is as follows:

1. Figure out every pseudodistribution value that has to be fixed and fix them appropriately, setting
the rest to be perfectly random. This may or may not be well-defined.

2. Show that the resulting moment matrix is positive semi-definite by using a partition of the mono-
mials into equivalence classes, assuming the pseudodistribution is well-defined.

3. Show that the pseudodistribution is well defined with high probability, using both the expansion
of the 3XOR instance, the fact that expansion implies good boundary expansion, and that good
boundary expansion implies that any contradiction in the way we’ve defined the pseudodistribu-
tion must occur at a very high degree, setting our d to be just below that threshold.

The third step in particular has many ingredients crucial in a number of fundamental lower bounds in
proof complexity, such as the pigeonhole principle and the Tseitin tautologies.

Before going into the pseudodistribution we show that a random 3XOR instance is indeed highly
unsatisfiable with high probability.

Lemma 1.1. Let φ be an instance of 3XOR on n variables withm = cεn constraints (for some constant
cε depending only on ε) be chosen as follows: for each constraint we choose i, j, k ∼ [n], aijk ∼ {±1}
iid. Then with probability at least 1 − 2−n, every assignment x ∈ {±1}n satisfies at most (12 + ε)m
constraints, where the probability is over the choice of φ.

Proof. For a fixed α ∈ {±1}n we let Y α
j be the event that the jth constraint is satisfied by x = α and

Y α =
∑

j Y
α
j be the number of constraints satisfied by x = α. By construction of the constraints, for a

fixed α each Y α
j is an independent Bernoulli random variable with expectation 1

2 . Therefore Chernoff
implies

Pr
φ

[Y α > (
1

2
+ ε)m] < 2O(−ε2m) ∀α ∈ {±1}n

and so by a union bound on all x

Pr
φ

[∃α ∈ {±1}n | Y α > (
1

2
+ ε)m] < 2n−O(ε2m)

Choosing m = cεn for an appropriate cε = O( 1
ε2

) makes this probability less than 2−n.
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2 The 3XOR lower bound for SoS

Fix a random 3XOR instance φ on n variables with m = cεn clauses. By Lemma 1.1 it has soundess
at most 1

2 + ε with overwhelmingly high probability. The degree lower bound on 3XOR then follows
from the following lemma, which will be our main task for the rest of this lecture:

Lemma 2.1. For any such φ, with probability 0.99 there exists a pseudodistribution of degree Ω(n)
such that in expectation all constraints of φ are satisfied.

Proof. Let xS =
∏
i∈S xi, and in particular let xijk = xixjxk for convenience. Our degree d pseudo-

expectation operator Ẽ[xS ] will be required to satisfy the following constraints:

1. Ẽ[xS ] is defined for all |S| ≤ d, and extends linearly to all Ẽ[f ] of degree at most d

2. Ẽ[x2f ] = Ẽ[f ] (recall that x ∈ {±1}, not {0, 1})

3. Ẽ[1] = 1

4. Ẽ[xijk] = aijk for all input axioms

5. M� 0 whereMS,T = Ẽ[xS ]Ẽ[xT ]

While the only real constraint on the nontrivial monomials seems to be (4), there are many other
low-degree implications we need to take into account. For example, x123 = +1 and x145 = −1 implies
that x2345 = +1×−1 = −1. Note that the x1 variables cancel out by (2), and in general what we are
left with when multiplying xS and xT is the symmetric difference xS4T . This suggests a procedure for
choosing our pseudodistribution, and it turns out that these are the only implications we need to make;
all other monomials can be safely left right in between +1 and −1 (here we will see the convenience
of our representation, as Ẽ[x] = 0 instead of 1

2 for completely random x).
Our pseudoexpectation will be defined by the following algorithm:

• let D ← ∅

• for all axioms xijk = aijk:

– set Ẽ[xijk] = aijk

– D ← D ∪ {{i, j, k}}

• while there are S, T ∈ D such that S 4 T /∈ D and |S 4 T | ≤ 2d:

– Ẽ[xS4T ] = Ẽ[xS ]Ẽ[xT ]

– D ← D ∪ {S 4 T}

• if there exist S, T ∈ D such that Ẽ[xS4T ] 6= Ẽ[xS ]Ẽ[xT ], return failure

• for all S /∈ D such that |S| ≤ d, set Ẽ[xS ] = 0

• for all f of degree at most d− 2 and all x, set Ẽ[x2f ] = Ẽ[f ]

• return Ẽ
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We first assume that the bolded line is not invoked and show that we’ve satisfied all the conditions
on Ẽ. Clearly (1)-(4) are satisfied by construction, and so we only need to show (5). We define an
equivalence relation ∼ on sets of size at most d as follows: S ∼ T iff Ẽ[xS4T ] 6= 0, or equivalently
S 4 T ∈ D (note that we run over all sets of size at most 2d in our algorithm, so we don’t need to
require that |S 4 T | ≤ d). This is clearly reflexive and symmetric, and to see transitivity note that if
S ∼ T and T ∼ U , then S4 T, T 4U ∈ D at some point, and so (S4 T )4 (T 4U) = S4U will
be too. Thus ∼ partitions the set of all sets of size at most d into equivalence classes I , and we let SI
be a representative from each class.

We claim that
Ẽ[xS ]Ẽ[xT ] =

∑
I

Ẽ[xS4SI ]Ẽ[xT4SI ]

First consider the case when S ∼ T . Then S, T ∈ I for some I , which implies that S ∼ SI and T ∼ SI
and thus

Ẽ[xS4SI ]Ẽ[xT4SI ] = Ẽ[xS4SI4T4SI ] = Ẽ[xS4T ] = Ẽ[xS ]Ẽ[xT ]

by definition of ∼, whereas for all other classes I ′,

Ẽ[xS4SI′ ]Ẽ[xT4SI′ ] = 0× 0 = 0

Thus the sum over all I gives us∑
I

Ẽ[xS4SI ]Ẽ[xT4SI ] = Ẽ[xS ]Ẽ[xT ] +
∑
I′

0 = Ẽ[xS ]Ẽ[xT ]

Now consider when S 6∼ T . Then S and T are in different equivalence classes, and so for every I , at
least one of Ẽ[xS4SI ] and Ẽ[xT4SI ] is 0. Thus∑

I

Ẽ[xS4SI ]Ẽ[xT4SI ] =
∑
I

0 = 0

Because |S|, |T | ≤ d, if Ẽ[xS ]Ẽ[xT ] 6= 0 then |S 4 T | ≤ 2d and so Ẽ[xS4T ] 6= 0, which implies that
S ∼ T and contradicts our assumption. Thus Ẽ[xS ]Ẽ[xT ] =

∑
I Ẽ[xS4SI ]Ẽ[xT4SI ] as claimed, and

so we can writeMS,T = Ẽ[xS ]Ẽ[xT ] =
∑

I Ẽ[xS4SI ]Ẽ[xT4SI ], or in other words

M =
∑
I

xIx
T
I xI = (xS4SI )|S|≤d

which implies thatM� 0 by the characterization of PSD matrices as sums of outer products.
Now we turn our attention to the bolded condition, and show that we never contradict ourselves

by defining Ẽ[xS ] = +1 and Ẽ[xS ] = −1 at the same time. For this we will need to shift our view
of random 3XOR to a bipartite graph picture. Let B = C ∪ V be a bipartite graph where |C| = m
and |V | = n, and for every vertex Cj ∈ C we give it a uniformly random neighborhood of size 3
as well as a random label aj ∼ {±1}. This is equivalent to the original random 3XOR generating
procedure, interpreting the neighborhood of Cj as the three variables in the jth constraint. We let the
neighborhood of Cj be referred to as Γ(Cj), and more generally Γ(T ) = ∪Cj∈TΓ(Cj)

We say that B is a (t, β)-expander if for all left hand side sets T ⊂ C, |T | ≤ t, we have that
|Γ(T )| ≥ β|T |. Roughly speaking the more our graph expands, the larger number of variables that
show up in each monomial that we derive from a small subset of the constraints, and the larger our
monomials the harder it is to find a contradiction because each individual variable is “less constrained”.
To begin analyzing how a contradiction could occur in our algorithm we show that our random 3XOR
instance has good expansion with high probability.
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Lemma 2.2. For m = cεn and any constant δ > 0 there exists a constant η > 0 depending on δ and
cε such that with probability 0.99, B is (ηn, 2− δ)-expanding.

Proof. Let YS be the event that the set S ⊆ [m] of size s ≤ ηn has expansion less than 2 − δ.
There are at most

(
n

(2−δ)s
)

possible neighborhoods, and each vertex has
(
(2−δ)s

3

)
possible individual

neighborhoods from this total neighborhood, each occurring with probability 1
n3 . By extension there

are
(((2−δ)s3 )

s

)
possible settings of all the edges on S, each of which occurs with probability ( 1

n3 )s. Thus
we get that

Pr[YS > 1] ≤
(

n
(2−δ)s

)(((2−δ)s3 )
s

)
( 1
n3 )s

≤ ( ne
(2−δ)s)

(2−δ)s(( (2−δ)se3 )3 1s )s 1
n3s

≤ C(n
2−δ

s2−δ
· s2 · 1

n3 )s

≤ C( sδ

n1+δ )s

≤ C( sn)δsn−s

and taking the sum over all
(
m
s

)
possible S gives us

Pr[∃S, |S| ≤ s | YS > 1] ≤ ms · C( sn)δsn−s

≤ C( sn)δs( cεnn )s

= (cε,δ
s
n)δs

which is at most 0.01 for s ≤ ηn as long as η ≤ 1
2cε,δ

.

Another concept we use is boundary expansion. Similarly to expansion we say that B is a (t, γ)-
boundary expander if for all left hand side sets T ⊂ C, |T | ≤ t, we have that |BΓ(T )| ≥ β|T |, where
BΓ(T ) is the set of all vertices in Γ(T ) with exactly one neighbor in T . A simple observation connects
expansion and boundary expansion.

Lemma 2.3. If B is a (t, β)-expander and C is 3-regular, then B is a (t, 2β− 3)-bounndary expander.

Proof. Fix any set S ⊆ C of size s ≤ t. Letting the number of edges on S be E(S), we have that

3|S| = E(S)
≥ |BΓ(S)|+ 2|Γ(S)/BΓ(S)|
= 2|Γ(S)| − |BΓ(S)|
≥ 2β|S| − |BΓ(S)|

The lemma follows by adding |BΓ(S)| − 3|S| to both sides.

Thus if we choose δ in our expansion lemma to be strictly less than 0.5, say δ = 0.3, then our
graph will have constant boundary expansion for sets up to the same size. When δ = 0.3 the boundary
expansion will be 2 · 1.7 − 3 = 0.4, and so from here on out we assume B is a (ηn, 0.4)-boundary
expander. Here we pause and flesh out our intuition about how expansion will help us by looking at
boundary expansion. If we have a large set T ⊆ C such that T ≤ ηn, it must have have a boundary
of size 0.4|T | = Ω(n). Now if we consider the monomial that is the symmetric difference of all
constraints in T , that symmetric difference must include the boundary, as each variable in the boundary
appears in exactly one constraint in T . Therefore in order to “collect up” enough axioms in C in order
to derive a contradiction, we will need to define some intermediate pseudoexpectations of very high
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degree monomials, and if we set our degree just below this threshold we can avoid being able to get
enough axioms to get a contradiction

We now formalize this with the concept of deriving a pseudoexpectation value for xS . Since the
only pseudoexpectations defined in our algorithm are either input axioms or symmetric differences of
previous sets, we can associate each monomial xS for which Ẽ[xS ] 6= 0 with a set of the input axioms
T ⊆ C, such that 4Cj∈TΓ(Cj) = xS and Ẽ[xS ] =

∏
Cj∈T aj . In order to define xS in this way

however, we need to ensure that every intermediate monomial has low degree. We define a sequence
for xS to be S = (T1 . . . Tk) for Ti ⊆ [m] such that

• each Ti either has size at most 1 (corresponding to a single input axiom Ẽ[xijk] = aijk or the
axiom Ẽ[x∅] = 1) or is the symmetric difference of two previous sets Tj 4 T`, j, ` < i

• 4Cj∈TkΓ(Cj) = xS

• | 4Cj∈T` Γ(Cj)| ≤ d for all T` ∈ S

• we call
∏
Cj∈Tk aj the value of S, and note that Ẽ[xS ] receives this value by our algorithm

We define a contradiction at xS to be two distinct sequences for xS with different values, or in other
words S1 = (T1 . . . Tk),S2 = (T ′1 . . . T

′
k′) such that 4Cj∈TkΓ(Cj) = 4Cj∈T ′k′

Γ(Cj) = xS but∏
Cj∈Tk aj = −1 and

∏
Cj∈T ′k′

aj = +1. Observe that if such sequences exist then there exists a
contradiction at x∅, where S1 = (T1 . . . Tk, T ′1 . . . T

′
k′ , Tk 4 T ′k′) and S2 = {∅}, as the value of S1 is∏

Cj∈Tk4T ′k′
aj =

∏
Cj∈Tk aj

∏
Cj∈T ′k′

aj = −1 and the value of S2 is
∏
Cj∈∅ aj = +1.

We focus our attention on S1, which we relabel as T1 . . . Tk without loss of generality. We first
note that |T1| = 1, because the first element in the sequence must be an input axiom. Next, we use
boundary expansion to show that |Tk| > ηn. Indeed since we are deriving a value for x∅, we have
that 4Cj∈TkΓ(Cj) = ∅, and because of the boundary expansion of C either |BΓ(Tk)| ≥ 0.4|Tk| or
|Tk| > ηn. But because we’re deriving the value −1 it cannot be the case that Tk is empty, and so if it
has any boundary expansion then | 4Cj∈Tk Γ(Cj)| ≥ |BΓ(Tk)| > 0, which is a contradiction because
| 4Cj∈Tk Γ(Cj)| = 0. Therefore |Tk| > ηn as desired.

Now we note that because T` is either an axiom or a symmetric difference of two previous sets,
|T`| ≤ 2 max`′<` |T`′ |. Therefore there must exist some set T in our sequence such that |T | ∈ [ηn2 , ηn].
Because |T | ≤ ηn, by expansion | 4Cj∈T Γ(Cj)| ≥ |BΓ(T )| ≥ 0.4|T | ≥ 0.2ηn. Set d = 0.01ηn.
Then this sequence is invalid as the monomial derived at T has degree strictly larger than d. Therefore
such a sequence cannot exist, and so our algorithm never fails. Thus with probability 0.99 a random
3XOR instance with value 1

2 + ε has a degree Θ(n) SoS pseudodistribution with value 1.

3 Hardness reductions

As mentioned earlier in the lecture, the pseudodistribution for 3XOR can be used to show hardness
of other problems. In particular, using a natural restriction of random 3SAT instances yielding 3XOR
instances we get the following easy corollary.

Corollary 3.1. Let φ be an instance of 3SAT on n variables with m = cepsilonn constraints (for cε
a constant only dependent on ε) be chosen as follows: for each constraint we choose i, j, k ∼ [n],
ei, ej , ek ∼ {0, 1} iid and take our clause to be (xeii ∨ x

ej
j ∨ x

ek
k ) (where x0 = x, x1 = x). Then with

probability at least 0.99,
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• every assignment x ∈ {±1}n satisfies at most (78 + ε)m clauses

• there exists a pseudodistribution of degree Ω(n) such that in expectation all clauses of φ are
satisfied

where the probability is over the choice of φ.

Proof. Let φ be our random instance. For the soundness we leave it as an exercise to the reader to use
the same argument as in the 3XOR case. For completeness we define φ⊕ to be a 3XOR instance as
follows: for clause C : (xeii ∨ x

ej
j ∨ x

ek
k ), we have a constraint C ′ : xixjxk = aijk = (−1)ei+ej+ek .

This is a random instance of 3XOR, as i, j, k were chosen iid and (−1)ei+ej+ek is uniformly distributed
over ±1. Thus with probability 0.99 there exists a pseudodistribution satisifying all constraints in φ⊕.
The result follows by noting that if we transform this pseudodistribution back to {0, 1} valued variables
via x→ 1−x

2 , any assignment in the support of the pseudodistribution satisfies C ′, and any assignment
satisfying C ′ also satisfies C.

Random 3SAT isn’t unique in terms of reducibility to 3XOR; in fact similar arguments can be
shown to give good integrality gaps for a number of constant width constraint satisfaction problems.
While these gaps are all constant at best, as every k-CSP has gap at most 2−k, it turns out that similar
hardness reduction strategies can be used to show much stronger lower bounds against SOS. In partic-
ular, Håstad’s argument showing that Independent Set cannot be approximated to within O(n1−o(1))
can be turned into a proof that degree Θ(n) SoS has the same integrality gap, based on reducing to a
k-CSP with the right gap between the integrality gap and the number of ways to satisfy each constraint.
This reduction also showcases a somewhat counterintuitive way of arguing lower bounds against SoS:
once we have a relatively weak lower bound on some CSP, we can use the power of SoS to reduce this
CSP to a much harder problem while preserving the completeness of the pseudodistribution, yielding
a stronger lower bound. Hence when it comes to analyzing SoS on new hard problems like planted
clique, it may not be clear a priori whether the power of SoS will be a blessing as with MAXCUT or
a curse as with Independent Set.
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