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Recall: Frege Systems

Finite, implicationally complete set R of
axioms/inference rules

Refutation version:

Proof of unsatisfiability of F - sequence ~,,....F,
of formulas (called lines) s.t.

F,=F
each F; follows from an axiom in R or follows
from previous ones via an inference rule in R
F. =L trivial falsehood, e.g. (x UZx)
Positive version:
Start with nothing, end with tautology F



Resolution

Frege-like system using CNF clauses only
Start with original input clauses of CNF F
Resolution rule

(AUX), Buax)|] (A UB)
Goal: derive empty clause L

Most-popular systems for practical theorem-
proving



C-Frege proof systems

Many circuit complexity classes C are defined as
follows:

C={f: T i1s computed by polynomial-size circuits
with structural property P }

e.g. non-uniform classes NC*, ACY, AC°[p], ACC,
TCO, P/poly

Define C-Frege to be the p-equivalence class of
Frege-style proof systems s.t.

each line has structural property P.-
finite number of axioms/inference rules
complete for circuits with property P



Circuit Complexity

P/poly - polysize circuits
NC! - polysize formulas = O(log n) depth fan-in 2
CNF - polysize CNF formulas

ACO - constant-depth unbounded fan-in polysize
circuits using and/or/not gates

ACO[m] - also = O mod m tests

TCO - threshold instead



What we know In circuit complexity

CNF | ACO | ACOp] ! TC° forp prime
TCO | NC! i P/poly I NP/poly

ACO[m] | #P



Intuition for hard examples

A tautology seems likely to be hard to prove
In C-Frege If the ‘natural’ proof of It requires
concepts that are not computable in circuit
complexity class C

e.g. Majority is not computable in AC°[p] so one

might guess something counting-related might be
hard for ACY[p]-Frege

Randomly chosen tautologies/unsatisfiable
formulas might be hard to prove because
there is no simple good reason to show It.



Counting

Pigeonhole principle PHP™®n
No 1-1 function from m to n for m>n




Counting

onto-Pigeonhole principle ontoPHP™®n
No 1-1,onto function from m to n for m>n




Pigeonhole propositional formulas

Variables
Complete bipartite graph of
variables P;; representing T(i)=]

Clauses
fis total: (P, UP, U.. UP, ) fori=1l,..m
Tis1-1: (@P U@ij) for 1£ i<k £ m, j=1,....n

fisonto: (P U P; U... U Py Tor j=1,..
T 1s a function: (JP; Uap.,) for i=1,...,m, 1£j<k £n

Note: we usually leave out the function clauses.
One can derive the relational form from the functional
form by setting P',;=P;; U2P; U ... UZP, ,,



Usual Proof of PHP"*1®n

The usual inductive proof of PHPn1®n . .j
Base: PHP?® 1 is trivially false o N
Inductive Step: n+l

1T f(n+1)=n then T on {1,...,n} also violates PHP"® -
else define g:{1,...n} ® {1,.., n-1} by

f(i) i £(i)Ln
90)= { f(n+1) if F(i)=n

g I1s 1-1/onto Iff T is



Extended Frege Proof of PHPM®n

The usual inductive proof of PHPn1®n . .j
Base: PHP?® 1 is trivially false o N
Inductive Step: n+l

1T f(n+1)=n then T on {1,...,n} also violates PHP"® -
else define g:{1,...n} ® {1,.., n-1} by

f(i) if F(i)tn
90)= { f(n+1) if £(i)=n
g iIs 1-1/onto Iff T is

Extended Frege translation: Define new variables
QIJ - PIJ U (@P(n+1)n U Pm U P(n+1)_]) for i:].,...n, j:].,...,n_l

Derive PHP"® "1 clauses in the Q;; in O(n?) steps



Cutting Planes Proof of PHP™®T

Given
P+ P, + ...+ P 2 1Ffori=l,.,m
PijtPy £ 1 for 1£ i<k £m, j=1,...n

Pij 3 O, Pij £ 1 for i:1,...,m, i:1,...,n

Derive P,; + P,; + ...+ P, £ 1 as follows
For k=3 to m do
Add (k-2) copies of P; + P, + .. + Py 1, £ 1
and one each of P,;+P,;, £ 1,.., P, ;+P; £ 1 10
get (k-1)P;; + (k-1)P,; + ... + (k=1)P,; £ 2k-3
Apply division rule to get Py; + P,; + ..+ P, £ 1
Compute sum of all P;; in two ways to get m£n



Resolution and PHP"®n-1

Theorem [Haken 84, Beame-Pitassi 96] Any resolution proof

of PHP™® -1 requires size at least 2"/20
Applies also to ontoPHP®n-1

Original proof idea: Bottleneck counting

View truth assignments flowing through the proof
Assignments start at L, flow out towards input clauses
A clause in the proof lets only those assignments it
falsifies flow through it

At a ‘middle’ level In the proof, clauses must talk

about lots of pigeons

such a clause falsifies few assignments so need lots of
them to let all the assignments flow through



Revised proof outline

PHP"@ -1 lower bound:

Show that

a partial assignment to the variables, called a restriction
can be applied to every small proof so that

every large clause disappears and
the result is still a PHP" "1 proof for an good size n’

every proof of PHP"® "1 contains a medium complexity
clause

every medium complexity clause is large



Critical truth assignments for PHpP"®n-1

CTAs match all n-1 holes to all but one of the pigeons
o d
1-1, onto clauses (and function clauses) always satisfied
only input clauses that may not be are clauses

C=(P, U... U Pin)
saying that pigeon i is mapped somewhere

Modify each of the clauses in the proof

Replace each UP;; by (P U..U Pi-nj U P isn); U..U Poi)
so all literals are positive
Lets precisely the same CTAs through



Any PHP proof has a medium complexity
clause

Given modified clause C and Il {1,...,n} we say

I implies C iff whenever " il |. C, is true under
some CTA thensois C

complexity comp(C)=min{|I'|: I implies C}
Every proof contains a clause of complexity m

between n/3 and 2n/3

L has complexity n
input clauses have complexity £ 1
IT clauses A and B imply C then comp(C) £comp(A)+comp(B)

walk backwards in proof from L, clause complexities
decrease but both can't jump over (n/3,2n/3] region



Medium complexity clauses are big

Suppose | implies C and |1 |=m=comp(C), n/3EmE2n/3

Since | is minimal, " il | there isa CTA a. s.t.
Ci(a;)=C(a;)=false

| |
For each jI | toggle — g

a; toyield a;, YA/‘A/‘
Since C,(a;;)=true, C(a;)=true Qi

AR 1 k
thus P, | Csince it is

only new true var since a,

i J
[
At least m(n-m) 2 2n2/9 >e< ] A/ djj
k

total vars in C



Restrictions

Partial assignments that map certain pigeons
to certain holes

P;; I1s set to true and all other P, or P ; are set to
false

Reduces PHP™@ -1 tg PHP-1@n-2
More generally, partial matchings

N A

Restrictions shrink some clauses, satisfy others



Final proof argument

Call a modified clause large iff it has ® n“/10 vars.
Assume proof has at most S<2"/?0 large clauses.

On average, restricting a P;; to 1 will satisfy S/10
large clauses since large clauses each have 1710 of all
variables.

Choose a P;; that satisfies the most large clauses

Repeat until all large clauses removed:
Each time, # of large clauses decreases by a factor of 9/10
Total size of restriction = 10g,,,, S < 0.329 n
Remaining proof proves PHP for some n’ s.t. 2(n")?/9 > n?/10
Contradiction



Width of resolution proofs

IT F Is a set of clauses let
w(F) = length of longest clause in F

IT P iIs a resolution proof
width(P) = length of longest clause in P

Theorem [BW]: Every Davis-Putnam

(DLL)/tree-like resolution proof of F of

size S can be converted to one of width
édog,Su + w(F)



Width of Tree-like Resolution

Proof: By induction on the size of the proof

Induction Step:

Assume that for all sets ' of clauses with a tree
resolution refutation of size S < S, thereis a
tree-like resolution proof P’ of ' with
width(P’)£ dog,S’ww(F’)

Consider a tree resolution refutation of size S of a
set of clauses F and let x be the last variable
resolved on to derive L

One of the two subtrees has size at most S/2 and
the other has size strictly smaller than S.



Width of Tree-like Resolution
L

£S/2

<S




Width of Tree-like Resolution
L

~ proves @x In
size at most S/2

£S/2

<S




Width of Tree-like Resolution

L
DX %
~ proves @x In
Size at most S/2 cs /o
F proves x In <S

size less than S




Width of Tree-like Resolution
L

~.. 1 proves L In
size at most S/2

£S/2

F.. o proves L In <S
size less than S




Width of Tree-like Resolution
L

BX »

~.. ., proves L iIn
size at most S/2

£S/2

<S

~.. , proves L In width at most
dog,(S/72)u +w(F)= édog,Su +w(F)-1




Width of Tree-like Resolution
L

~.. 1 proves L In
size at most S/2

<S

~.. ., proves L In width at most
dog,(S/72)u +w(F)= édog,Su +w(F)-1

F proves in @x In width at most éog,Si+w(F)




Width of Tree-like Resolution
L

DX

.. o proves L In
size less than S

F.. o proves L in width
at most €og,Su+w(F)




Width of Tree-like Resolution

=y 0+
New Refutation: w=élog,Su+w(F)

1. Derive @x from F in width w |
2. Resolve @x with clauses

of F containing x to derive F,_
3. Prove L inwidth w from F,_ ,




Width and Resolution

Theorem [BW] Every resolution proof of
F of size S can be converted to one of

width O(/nlogS ) +w(F)

Proof idea [CEI] Repeatedly find the most popular
literals appearing in large clauses in the proof (like
PHP proof )

Say a clause is large iff it has width 3W= /2nInS

There are at most 2n literals and 3 W of them per large
clause

An average literal occurs in® W/2n fraction of large clauses



Proof

By induction on n and k: if (1-W/2n)<x S £ 1 then any F with
at most S large clauses has a proof of width £ k+w(F)

Note: W was chosen to be large enough that (1-W/2n)"W S £ 1



Proof

By induction on n and k: if (1-W/2n)<x S £ 1 then any F with
at most S large clauses has a proof of width £ k+w(F)

Note: W was chosen to be large enough that (1-W/2n)"W S £ 1
Initially at most S large clauses

Choose literal x most frequently occurring in large clauses
and set it to 1, satisfying ¢ (\W/2n) fraction of large clauses

Result is a proof of F,_ |, with £ S (1-W/2n) large clauses



Proof

By induction on n and k: if (1-W/2n)<x S £ 1 then any F with
at most S large clauses has a proof of width £ k+w(F)

Note: W was chosen to be large enough that (1-W/2n)VW S £ 1
Initially at most S large clauses

Choose literal x most frequently occurring in large clauses
and set it to 1, satisfying ¢ (\W/2n) fraction of large clauses

Result is a proof of F,_ |, with £ S (1-W/2n) large clauses
By induction = | has a proof of width at most k-1 +w(F)



Proof

By induction on n and k: if (1-W/2n)<x S £ 1 then any F with
at most S large clauses has a proof of width £ k+w(F)

Note: W was chosen to be large enough that (1-W/2n)VW S £ 1
Initially at most S large clauses

Choose literal x most frequently occurring in large clauses
and set it to 1, satisfying ¢ (\W/2n) fraction of large clauses

Result is a proof of F,_ |, with £ S (1-W/2n) large clauses

By induction F__ | has a proof of width at most k-1 +w(F)
So there is a derivation of @x from F of width k+w(F)



Proof

By induction on n and k: if (1-W/2n)<x S £ 1 then any F with
at most S large clauses has a proof of width £ k+w(F)

Note: W was chosen to be large enough that (1-W/2n)W S £ 1
Initially at most S large clauses

Choose literal x most frequently occurring in large clauses
and set it to 1, satisfying ¢ (\W/2n) fraction of large clauses

Result is a proof of F,_ |, with £ S (1-W/2n) large clauses

By induction = | has a proof of width at most k-1 +w(F)
So there is a derivation of @x from F of width k+w(F)

By induction there is a proof of ~ _ , of width £ k+w(F)

restrict proof of F which has at most S large clauses
~.. o has fewer variables



Proof

By induction on n and k: if (1-W/2n)<x S £ 1 then any F with
at most S large clauses has a proof of width £ k+w(F)

Note: W was chosen to be large enough that (1-W/2n)VW S £ 1
Initially at most S large clauses
Choose literal x most frequently occurring in large clauses
and set it to 1, satisfying ¢ (\W/2n) fraction of large clauses
Result is a proof of F,_ |, with £ S (1-W/2n) large clauses
By induction = | has a proof of width at most k-1 +w(F)

So there is a derivation of @x from F of width k+w(F)
By induction there is a proof of ~ _ , of width £ k+w(F)

restrict proof of F which has at most S large clauses

F.. o has fewer variables

New proof:1) Derive @x from F in width k+w(F)
2) Resolve @x with F to get F__ , in width w(F)
3) Refute F,_ , in width k+w(F)



Notes

Relationship between width and size is
roughly optimal for general resolution

[Bonet, et al 99] There are tautologies with constant
Input size and polynomial-size proofs that require
width W(On)

Davis-Putnam/DLL/tree-like resolution can require

exponentially larger proofs than general resolution
[BEGJ 98],[BW 98].

Polynomial versus 2'n/log n) sjze
Uses graph pebbling and width-based lower bound



Width-size relationships

Let width(F) = the minimal width of any
resolution proof of F

Corollary: Any Davis-Putnam/DLL/tree

resolution proof of F requires size at least
2W(width(F)-w(F))

Corollary: Any resolution proof of F requires

size at least __
2V\€(width(F)-w(F))2/n§



Resolution lower bound arguments

PHP"@ -1 lower bound:

Show that

a restriction can be applied to every small proof so that

every large clause disappears and
the result is still a PHP"@ -1 proof for an good size n’

every proof of PHP"® "1 contains a medium complexity
clause

every medium complexity clause is large

Width-size relationships:

Simply need to show

every proof of F must contain a large clause relative to #
of variables and size of F's input clauses



Minimum unsatisfiable subformula

F - a set of clauses

S(F) - size of minimum subset of F that
IS unsatisftiable



Boundary

F - a set of clauses

S(F) - size of minimum subset of F that
IS unsatisftiable

d F - boundary of F - set of variables
appearing in exactly one clause of F



Sub-critical Expansion

F - a set of clauses

S(F) - size of minimum subset of F that
IS unsatisftiable

d F - boundary of F - set of variables
appearing in exactly one clause of F

e(F) - sub-critical expansion of F =

{2>|9]|>S\2 .29 :| 93| }nim xS



Width and expansion

Lemma [CS] : IT P iIs a resolution proof
of F then width(P)3 e(F).
3/2 to s S(F)

N

’OQ@©O OQ

/ \\/

contains d G v b




Consequences

Corollaries:

Any Davis-Putnam (DLL) proof of F
requires size at least 2¢e()

Any resolution proof of F requires size

at least Wie2(F) /n’
2 &



Random k-CNF formulas

Make m independent choices of one of

the okaeg clauses of length K
K g

D = m/n Is the clause-density of the
formula

e : k
Distribution Fn,D



Threshold behavior of random k-SAT




Hypergraph Expansion

F - hypergraph

dF - boundary of F - set of degree 1
vertices of F

S, (F) - size of minimum subset of F
that does not have a System of
Distinct Representatives

e,(F) - sub-critical expansion of F -

{2>|9]|>S\2 759|938 |}nirm xsm

(A pe=2



System of Distinct Representatives

variables/nodes O

clauses/edges Q

sy(F)E s(F) so ey(F) £e(F)



Density and SDR’s

The density of a hypergraph is
#(edges)/#(vertices)

Hall’'s Theorem: A hypergraph F has a system
of distinct representatives Iff every
subgraph has density at most 1.



s(F) and e(F) for random formulas

If Fis a random formula from F/;
then

s(F) is W(n/DY&-2)) almost certainly
e(F) is W(n/D#&-2)*€) almost certainly

Proved for Hypergraph expansion



Density and Boundary

A k-uniform hypergraph of density
bounded below 2/k, say 2/k-e, has
average degree bounded below 2

E:)constant fraction of nodes are In
the boundary



Density of random formulas

Fix set S of vertices/variables of size r

Probability p that a single edge/clause
lands in S is at most (r/n)k

Probability that S contains at least g edges
IS at most

DN Dqu
Pr [B(Dn,p)? qf £ g&ep; = {1 :




s(F) for random formulas

Apply for g=r+1 for all r up to s using
union bound:

5 a8 OaeDr* 0 £és‘8me(j aeDr* o
- k-1 = - k-1 +
rzkrﬂgnlg r=k € ﬂgnlg
r+l1
5 r a®°Dr**o

£a ——3I =o(1)
—ceng n 7

for s = O(n/DY(k-2))



e(F) for random formulas

Apply for g=2r/k Tor all r between s/2
and s using union bound:

és a8 OaeDr** ¢ 3 ?e@r% rto
P — =
r=s/2 rﬂg n 1] r=sr2€ 1 @ n [7,]

a1 .2r/k
a g k-1-k/2 -
r=s/2 n [}

for s = Q(n/D%/(k-2))

=0(1)



Lower bounds

For random k-CNF chosen from F,
almost certainly for any e>0:

Any Davis-Putnam proof requires size
n/ 2 2/ (k-2)+e

Any resolution proof requires size
2n /2 M (k-2)+e



A digression: Upper Bound

Theorem [BKPS]: For F chosen from F/, and
D above the threshold, the simple Davis-
Putnam (DLL) algorithm almost certainly
finds a refutation of size

ZO(n/ Y <k'2>) O(1)

n
and this is a tight bound...



Simple Davis-Putnam Algorithm

Refute(F)

While (F contains a clause of size 1)
set variable to make that clause true
simplify all clauses using this assignment

IT F has no clauses then
output “F is satisfiable” and HALT

IT F does not contain an empty clause then
Choose smallest-numbered unset variable x

Run Refute( F,_ ) splitting rule
Run Refute(F,_ ;)



Idea of proof

2-clause dlgraph
(x Uy)

Contradictory cycle: contains both x and X

After setting O(n/DY&-2)) variables, 31/2 the
variables are almost certainly in
contradictory cycles of the 2-clause digraph

a few splitting steps will pick one almost certainly
setting clauses of size 1 will finish things off



Implications

Random k-CNF formulas are provably hard
for the most common proof search
procedures.

This hardness extends well beyond the
phase transition.

Even at clause ratio D=n1/3, current
algorithms on random 3-CNF formulas have
asymptotically the same running time as the
best factoring algorithms.



Random graph k-colorability

Random graph G(n,p) where each edge
occurs independently with probability p

Sharp threshold for whether or not graph
Is k—colorable, e.g. p ~ 4.6/n for k=3



Lower Bound

Theorem [BCM 99]: Non-k-colourability

requires exponentially large resolution proofs
for random graphs

Basic proof idea:
same outline as before
notion of boundary of a sub-graph
set of vertices of degree < k
s(G) smallest non-k-colourable sub-graph



Nullstellensatz proof system
C

Clause (x,U @x, U x.)
becomes equation (1-x;)x,(1-x5)=0
Qc
Add equations x;°-x; =0 for each variable
Guarantees only O-1 solutions

A proof is polynomials P, ..., P ., proving
unsatisftiability: 1.e. such that

é. Pj QCJ- +é. Pm+i (XZ' X) °1
j=1 i=1



Polynomial Calculus

Similar to Nullstellensatz except:
Begin with Q,,...,Q,..,as before
Given polynomials R and S can infer

a-R + b-S forany a, b in K
X*R
Derive constant polynomial 1

Degree = maximum degree of polynomial appearing
In the proof

Can find proof of degree d in time n° using
Groebner basis-like algorithm (linear algebra)

Special case of ACY[p]-Frege if K=GF(p) (depth 1)



Natural polynomials for ontoPHP™®n

Tis total: P, +P+...+P, -1=0 for i=1,....,m
fisl-1: P; P,=0 for 1£ i<k £m, J=1,....n
Fisonto: Py+P,+...+P ;-1=0 for j=1,...,n

1T m=n+1 can simply sum up the total polynomials
and subtract the onto polynomials to get O=1,
degree 1 Nullstellensatz proof

Facts:

[BR] I m=n+p" and n>p?¢, need degree 2* Nullstellensatz
proofs over GF(p) but easy over GF(q)

[R] Without onto clauses requires PC proofs of degree
n/2 for any m and any field



Counting again

Counting mod 2 -
cannot pair up an odd size set Countz

=

Counting mod r
no perfect r-partition If r doesn’t divide n

Count, ntOmodr



Polynomials for Count™Ir

Let E=[m](") be the set of all size r subsets
of {1,..m}
l.e. complete r-uniform hypergraph

Variables x. such that el E

Equations
Every point is covered:
1-5Sgie% =0 fori=1,.,m

Edges are disjoint:
X, Xg=0foralle® fl Est.eCf?® f

Exercise: Count™' is easy to refute over Z,



Tseitin tautologies - odd-charged
graphs

Given a low degree graph G(V,E) with 0-1
charges on it nodes
s.t. total is odd 0

One variable x_
per edge el E

Clauses saying parity
of edges touching v 1
IS charge(Vv) 0

I T degree iIs large, add extension variables to
compute parity at each vertex

Unsatisfiable




Polynomials in Fourier basis (char(K) 1 2)

Interpret atom x over {1,-1} instead of {O,1};
Le., y=(-1)*
linear transform y=1-2x
Variables are {1,-1}
y? — 1 = 0instead of x* - x = 0
Contradiction is 1=-1

Convenient for expressing parity
x,A .. Ax,=0 becomes vy,y,...y, = 1

Exercise Since transformation is linear and
Invertible it preserves degrees of proofs



Tseltin tautologies In Fourier basis

variables are in {1,-1}
(y)?2=1 foreveryel E

parity of edges equal charge
P oveVe = (-1)chareelv) for every v 1 V

Degree of polynomials equals degree of graph

Theorem: There is a constant degree graph G s.t. a

Tseitin tautology for G with all charges 1 requires
degree \W(n) to prove in Nullstellensatz [Grigoriev]
degree \W(n) to prove in Polynomial Calculus [BGIP]



Expander graphs

Defn: Let G=(V,E) be a graph. G has expansion e
ITf every subset S of £ |\V|/2 vertices has

IN(S)| * (1+€)|S]
Fact: [Margulis, Gabber-Galil] Constant degree regular
bipartite graphs with constant expansion e > O exist.

Many applications in complexity
Originally considered for regular resolution lower bounds

Let E(S) | E be those edges with one endpoint in S
and one outside S. Expansion e implies E(S) 2 eS > 0O
for all sets S of size at most n/2.

Degree lower bound is en/8



Proof idea: binomial equations

Every input polynomial has two terms so can
think of It as an equivalence for monomials

Can one rewrite 1 and -1 to equal each other?

Every monomial corresponds to a parity of a subset
of edges (and a sign)

Each equivalence corresponds to the parity of the
set of edges leaving a small non-empty set of
vertices

initially just a single vertex v

Might as well think of summation equations mod 2

In the original variables and derive 0=1 rather than
use products since they represent the same thing



Parity Reasoning

Given S, let S denote the sum of the original

edge variables leaving a set S. Every

equation is of the form S.=|S| (mod 2).
Initially S={v} and all charges are 1

1T we add two equations S.=|S| (mod 2) and
S¢=|S’| (mod 2) we get So=|SDS’| (mod 2)




Relation to degree

No contradiction can be reached If always
have |SDS’'|£n/2 since |E(SDS')|=0

| T sets started of size at most n/4 then this won't
happen

By expansion, sets of size more than n/4 have at
least en/4 edges leaving them so if one is working
with sums of fewer than en/4 terms one won't see
such sets.

Each binomial corresponds to a parity summation
eguation with some portion of the equation in each
monomial

No contradiction if monomials have degree at most en/8



Implications for CounthIr

Can reduce Tseitin to Count2n+i2

Implies W(n) degree lower bounds for Count2nl?
for all fields K with char(K) * 2

Can generalize Tseitin tautologies to
arbitrary characteristics Tseitin(p)

encode in extension fields having pt roots of unity
Instead of using the Fourier basis

similar binomial degree lower bounds if char(K) *p

Can reduce Tseitin(p) to Count"lp

Implies W(n) degree lower bounds for Countrn#tip
for all fields K with char(K) *p



Some Proof System Relationships

C ZFC D
X

@poly—Fre@

—

< Davis-Putnam_>+--.... “CNullstellensatz
s

ruth Tables )




Polynomials in Fourier basis (char(K) 1 2)

Interpret atom x over {1,-1} instead of {O,1};
Le., y=(-1)*
linear transform y=1-2x
Variables are {1,-1}
y? — 1 = 0instead of x* - x = 0
Contradiction is 1=-1

Convenient for expressing parity
x,A .. Ax,=0 becomes vy,y,...y, = 1

Exercise Since transformation is linear and
Invertible it preserves degrees of proofs




Binomial equations

1T every input polynomial has two terms so
can think of it as an equivalence for
monomials

Yip - Yi, = Yj, Y orYi Y = YY)

Might as well think of summation equations
mod 2 in the original variables and derive O=1
rather than use products since they
represent the same thing

X: +...tX: +X: +..+X;: =0 (mod 2) or
1 'k "1 Ji

X: +..4X; +X: +..+X: =1 (mod 2)
1 'k "1 ]




PCR = PC + Resolution

Two variables x and x’ for each atomic
proposition X

x" stands for @x

Include equations x+x'-1=0, x?-x=0, and (x')?-x'=0
Translate (x,U @x, U X;) as (1-x,)x,(1-x5)=0
or as x'; X, x'5,=0
Same proof rules as polynomial calculus

Exercises:

Show how PCR simulates resolution with degree £ width and no
increase in size

Show how the resolution relationships between size and width
apply to PCR using size and degree

Binomial equations work just as in PC if char(K)! 2




Hypergraph Expansion

F - hypergraph

dF - boundary of F - set of degree 1
vertices of F

S, (F) - size of minimum subset of F
that does not have a System of
Distinct Representatives

e,(F) - sub-critical expansion of F -

{2>|9]|>S\2 759|938 |}nirm xsm

(N pe=2

<>




<>

Hypergraph Expansion and
Polynomial Calculus

Theorem [BIl]: The degree of any PCR,
polynomial calculus or Nullstellensatz
proof of unsatisfiability of F Is at

least e (F)/2 IT the characteristic Is
not 2.

) Groebner basis algorithm bound is
only n®eu®)



kK-CNF and parity equations

<>

Clause (X; U @x, U X,)
Is implied by X;+(X,+1)+X5; = 1 (mod 2)
l.e. X;+X,+X53 = 0 (mod 2)

Derive contradiction O = 1 (mod 2) by
adding collections of equations

# of variables in longest line is at least e (F)



Parity equations and polynomial
calculus

<>

Given equations of form
X1+X,+X5 = 0 (mod 2)
Represent in the Fourier basis
Polynomial equation y;?-1=0 for each variable
yi = 1-2x;
Polynomial equation y; y, y;-1=0
would be y; y, y;+1=0 if RHS were 1

Imply the usual equations for original clauses
In degree k if char(K) is not 2



Relationship of equations

We have 3 forms
Original clause (x, U @x, U X,)
Usual {0,1} polynomials (1-x,)x,(1-x5)=0, %?-x=0
Stronger parity equation x,+x,+x; = 0 (mod 2)
Fourier basis polynomials y, y, y,—-1=0, y?>-1=0
where y=1-2x;

y:2-=1=0 and y;=1-2%; imply x,?-x,=0

Each equation only involves k variables so we use our

standard degree upper bound on Nullstellensatz to

get usual {0,1} polynomials since the transformed
polynomials are stronger




Lower bound

For random k-CNF chosen from F,
almost certainly for any e>0:
Any Nullstellensatz, Polynomial Calculus

or PCR refutation over a field K with

char(K)! 2 requires degree at least
n/ ? 2/(k-2)+e

and size at least
a/(k- 2
2Ce”/ ?A/(k-2)te

<>
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