
Lower Bounds in Proof
Complexity

Paul Beame

University of Washington

PCMI 2000 Tues-Wed July 24-25

Recall: Frege Systems

z Finite, implicationally complete set R of
axioms/inference rules

z Refutation version:
y Proof of unsatisfiability of F - sequence F1,…,Fr

of formulas (called lines) s.t.
x F1 = F
x each Fj follows from an axiom in R or follows

from previous ones via an inference rule in R
x Fr = Λ trivial falsehood, e.g. (x ∧¬x)

z Positive version:
y Start with nothing, end with tautology F

Resolution

z Frege-like system using CNF clauses only
z Start with original input clauses of CNF F
z Resolution rule

y (A ∨ x), (B ∨ ¬x) | (A ∨ B)
z Goal: derive empty clause Λ

z Most-popular systems for practical theorem-
proving

C-Frege proof systems

z Many circuit complexity classes C are defined as
follows:
y C={f: f is computed by polynomial-size circuits

with structural property PC}
y e.g. non-uniform classes NC1, AC0, AC0[p], ACC,

TC0, P/poly

z Define C-Frege to be the p-equivalence class of
Frege-style proof systems s.t.
y each line has structural property PC

y finite number of axioms/inference rules
y complete for circuits with property PC

Circuit Complexity

z P/poly - polysize circuits
z NC1 - polysize formulas = O(log n) depth fan-in 2
z CNF - polysize CNF formulas
z AC0 - constant-depth unbounded fan-in polysize

circuits using and/or/not gates

z AC0[m] - also = 0 mod m tests

z TC0 - threshold instead

What we know in circuit complexity

z CNF ⊂ AC0 ⊂ AC0[p] ⊂ TC0 for p prime

z TC0 ⊆ NC1 ⊆ P/poly ⊆ NP/poly

z AC0[m] ⊂ # P

Intuition for hard examples

z A tautology seems likely to be hard to prove
in C-Frege if the ‘natural’ proof of it requires
concepts that are not computable in circuit
complexity class C
y e.g. Majority is not computable in AC0[p] so one

might guess something counting-related might be
hard for AC0[p]-Frege

z Randomly chosen tautologies/unsatisfiable
formulas might be hard to prove because
there is no simple good reason to show it.

Counting

z Pigeonhole principle PHPm→n

y No 1-1 function from m to n for m>n

Counting

z onto-Pigeonhole principle ontoPHPm→n

y No 1-1,onto function from m to n for m>n

Pigeonhole propositional formulas
Variables
Complete bipartite graph of
variables Pij representing f(i)=j

Clauses
f is total: (Pi1 ∨ Pi2 ∨ ... ∨ Pin) for i=1,...,m
f is 1-1: (¬Pij ∨ ¬Pkj) for 1≤ i<k ≤ m, j=1,...,n
f is onto: (P1j ∨ P2j ∨... ∨ Pmj) for j=1,...,n
f is a function: (¬Pij ∨ ¬Pik) for i=1,...,m, 1≤ j<k ≤ n

Note: we usually leave out the function clauses.
One can derive the relational form from the functional
form by setting P’ij=Pij ∧¬Pi1 ∧ ... ∧¬Pi(j-1)

Usual Proof of PHPn+1→n

The usual inductive proof of PHPn+1→n

Base: PHP2→1 is trivially false
Inductive Step:
if f(n+1)=n then f on {1,...,n} also violates PHPn→n-1

else define g:{1,...,n} →{1,.., n-1} by

g(i)=

g is 1-1/onto iff f is

f(i) if f(i)≠n
f(n+1) if f(i)=n

n+1
n

j
i

Extended Frege Proof of PHPn+1→n

The usual inductive proof of PHPn+1→n

Base: PHP2→1 is trivially false
Inductive Step:
if f(n+1)=n then f on {1,...,n} also violates PHPn→n-1

else define g:{1,...,n} →{1,.., n-1} by

g(i)=

g is 1-1/onto iff f is

f(i) if f(i)≠n
f(n+1) if f(i)=n

Extended Frege translation: Define new variables
Qij = Pij ∨ (¬P(n+1)n ∧ Pin ∧ P(n+1)j) for i=1,...n, j=1,...,n-1

Derive PHPn→n-1 clauses in the Qij in O(n2) steps

n+1
n

j
i

Cutting Planes Proof of PHPm→n

z Given
y Pi1 + Pi2 + ... + Pin ≥ 1 for i=1,…,m
y Pij+Pkj ≤ 1 for 1≤ i<k ≤ m, j=1,...,n
y Pij ≥ 0; Pij ≤ 1 for i=1,…,m, i=1,…,n

z Derive P1j + P2j + ... + Pmj ≤ 1 as follows
y For k=3 to m do

x Add (k-2) copies of P1j + P2j + ... + P(k-1)j ≤ 1
and one each of P1j+Pkj ≤ 1, ..., P(k-1)j+Pkj ≤ 1 to
get (k-1)P1j + (k-1)P2j + ... + (k-1)Pkj ≤ 2k-3

x Apply division rule to get P1j + P2j + ... + Pkj ≤ 1
z Compute sum of all Pij in two ways to get m≤n

Resolution and PHPn→n-1

z Theorem [Haken 84, Beame-Pitassi 96] Any resolution proof
of PHPn→n-1 requires size at least 2n/20

y Applies also to ontoPHPn→n-1

z Original proof idea: Bottleneck counting
y View truth assignments flowing through the proof

x Assignments start at Λ, flow out towards input clauses
x A clause in the proof lets only those assignments it

falsifies flow through it
y At a ‘middle’ level in the proof, clauses must talk

about lots of pigeons
x such a clause falsifies few assignments so need lots of

them to let all the assignments flow through

Revised proof outline

z PHPn→n-1 lower bound:
y Show that

x a partial assignment to the variables, called a restriction
can be applied to every small proof so that

• every large clause disappears and
• the result is still a PHPn’→n’-1 proof for an good size n’

x every proof of PHPn’→n’-1 contains a medium complexity
clause

x every medium complexity clause is large

Critical truth assignments for PHPn→n-1

z CTAs match all n-1 holes to all but one of the pigeons

y 1-1, onto clauses (and function clauses) always satisfied
y only input clauses that may not be are clauses

Ci=(Pi1 ∨... ∨ Pin)
saying that pigeon i is mapped somewhere

z Modify each of the clauses in the proof
y Replace each ¬Pij by (P1j ∨ ... ∨ P(i-1)j ∨ P(i+1)j ∨ ... ∨ Pnj)

so all literals are positive
y Lets precisely the same CTAs through

Any PHP proof has a medium complexity
clause

z Given modified clause C and I⊆{1,...,n} we say
y I implies C iff whenever ∀i∈I. Ci is true under

some CTA then so is C
y complexity comp(C)=min{|I|: I implies C}

z Every proof contains a clause of complexity m
between n/3 and 2n/3
y Λ has complexity n
y input clauses have complexity ≤ 1
y if clauses A and B imply C then comp(C) ≤comp(A)+comp(B)
y walk backwards in proof from Λ, clause complexities

decrease but both can’t jump over (n/3,2n/3] region

Medium complexity clauses are big

z Suppose I implies C and |I|=m=comp(C), n/3≤m≤2n/3
z Since I is minimal, ∀i∈I there is a CTA αi s.t.

Ci(αi)=C(αi)=false

z For each j∉I toggle
αi to yield αij

z Since Ci(αij)=true, C(αij)=true
thus Pik∈C since it is
only new true var since αi

z At least m(n-m) ≥ 2n2/9
total vars in C

i j
I I

k

i j

k

αi

αij

Restrictions

z Partial assignments that map certain pigeons
to certain holes
y Pij is set to true and all other Pik or Pkj are set to

false
y Reduces PHPn→n-1 to PHPn-1→n-2

y More generally, partial matchings

z Restrictions shrink some clauses, satisfy others

Final proof argument

z Call a modified clause large iff it has ≥ n2/10 vars.
z Assume proof has at most S<2n/20 large clauses.
z On average, restricting a Pij to 1 will satisfy S/10

large clauses since large clauses each have 1/10 of all
variables.

z Choose a Pij that satisfies the most large clauses

z Repeat until all large clauses removed:
y Each time, # of large clauses decreases by a factor of 9/10
y Total size of restriction = log10/9 S < 0.329 n
y Remaining proof proves PHP for some n’ s.t. 2(n’)2/9 > n2/10
y Contradiction

Width of resolution proofs

z If F is a set of clauses let
w(F) = length of longest clause in F

z If P is a resolution proof
width(P) = length of longest clause in P

z Theorem [BW]: Every Davis-Putnam
(DLL)/tree-like resolution proof of F of
size S can be converted to one of width
log2S + w(F)

Width of Tree-like Resolution

z Proof: By induction on the size of the proof
y Induction Step:

Assume that for all sets F’ of clauses with a tree
resolution refutation of size S’ < S, there is a
tree-like resolution proof P’ of F’ with
width(P’)≤ log2S’+w(F’)

y Consider a tree resolution refutation of size S of a
set of clauses F and let x be the last variable
resolved on to derive Λ

y One of the two subtrees has size at most S/2 and
the other has size strictly smaller than S.

Width of Tree-like Resolution

<S

≤S/2

¬x x

Λ

Width of Tree-like Resolution

<S

≤S/2

¬x x

Λ

F proves ¬x in
size at most S/2

Width of Tree-like Resolution

<S

≤S/2

¬x x

Λ

F proves ¬x in
size at most S/2

F proves x in
size less than S

Width of Tree-like Resolution

<S

≤S/2

¬x x

Λ

Fx←1 proves Λ in
size at most S/2

Fx←0 proves Λ in
size less than S

Width of Tree-like Resolution

<S

≤S/2

¬x x

Λ

Fx←1 proves Λ in
size at most S/2

Fx←1 proves Λ in width at most
log2(S/2) +w(F)= log2S +w(F)-1

w= log2S +w(F)

Width of Tree-like Resolution

<S

≤w

¬x x

Λ

Fx←1 proves Λ in
size at most S/2

Fx←1 proves Λ in width at most
log2(S/2) +w(F)= log2S +w(F)-1

w= log2S +w(F)

F proves in ¬x in width at most log2S+w(F)

Width of Tree-like Resolution

< S

≤w

¬x x

Λ

Fx←0 proves Λ in
size less than S

Fx←0 proves Λ in width
at most log2S +w(F)

w= log2S +w(F)

Width of Tree-like Resolution

≤ w

Λ

w= log2S +w(F)New Refutation:
1. Derive ¬x from F in width w
2. Resolve ¬x with clauses
of F containing x to derive Fx←0
3. Prove Λ in width w from Fx←0

≤w

¬x

≤w

¬x

≤w

¬x

≤w

¬x

Width and Resolution

z Theorem [BW] Every resolution proof of
F of size S can be converted to one of
width

z Proof idea [CEI] Repeatedly find the most popular
literals appearing in large clauses in the proof (like
PHP proof)
y Say a clause is large iff it has width ≥W=
y There are at most 2n literals and ≥ W of them per large

clause
y An average literal occurs in ≥ W/2n fraction of large clauses

w(F))logSnO(+

S2n ln

Proof
z By induction on n and k: if (1-W/2n)k S ≤ 1 then any F with

at most S large clauses has a proof of width ≤ k+w(F)
x Note: W was chosen to be large enough that (1-W/2n)W S ≤ 1

Proof
z By induction on n and k: if (1-W/2n)k S ≤ 1 then any F with

at most S large clauses has a proof of width ≤ k+w(F)
x Note: W was chosen to be large enough that (1-W/2n)W S ≤ 1

y Initially at most S large clauses
y Choose literal x most frequently occurring in large clauses

and set it to 1, satisfying ≥ (W/2n) fraction of large clauses
y Result is a proof of Fx←1 with ≤ S (1-W/2n) large clauses

Proof
z By induction on n and k: if (1-W/2n)k S ≤ 1 then any F with

at most S large clauses has a proof of width ≤ k+w(F)
x Note: W was chosen to be large enough that (1-W/2n)W S ≤ 1

y Initially at most S large clauses
y Choose literal x most frequently occurring in large clauses

and set it to 1, satisfying ≥ (W/2n) fraction of large clauses
y Result is a proof of Fx←1 with ≤ S (1-W/2n) large clauses
y By induction Fx←1 has a proof of width at most k-1 +w(F)

Proof
z By induction on n and k: if (1-W/2n)k S ≤ 1 then any F with

at most S large clauses has a proof of width ≤ k+w(F)
x Note: W was chosen to be large enough that (1-W/2n)W S ≤ 1

y Initially at most S large clauses
y Choose literal x most frequently occurring in large clauses

and set it to 1, satisfying ≥ (W/2n) fraction of large clauses
y Result is a proof of Fx←1 with ≤ S (1-W/2n) large clauses
y By induction Fx←1 has a proof of width at most k-1 +w(F)

x So there is a derivation of ¬x from F of width k+w(F)

Proof
z By induction on n and k: if (1-W/2n)k S ≤ 1 then any F with

at most S large clauses has a proof of width ≤ k+w(F)
x Note: W was chosen to be large enough that (1-W/2n)W S ≤ 1

y Initially at most S large clauses
y Choose literal x most frequently occurring in large clauses

and set it to 1, satisfying ≥ (W/2n) fraction of large clauses
y Result is a proof of Fx←1 with ≤ S (1-W/2n) large clauses
y By induction Fx←1 has a proof of width at most k-1 +w(F)

x So there is a derivation of ¬x from F of width k+w(F)
y By induction there is a proof of Fx←0 of width ≤ k+w(F)

x restrict proof of F which has at most S large clauses
x Fx←0 has fewer variables

Proof
z By induction on n and k: if (1-W/2n)k S ≤ 1 then any F with

at most S large clauses has a proof of width ≤ k+w(F)
x Note: W was chosen to be large enough that (1-W/2n)W S ≤ 1

y Initially at most S large clauses
y Choose literal x most frequently occurring in large clauses

and set it to 1, satisfying ≥ (W/2n) fraction of large clauses
y Result is a proof of Fx←1 with ≤ S (1-W/2n) large clauses
y By induction Fx←1 has a proof of width at most k-1 +w(F)

x So there is a derivation of ¬x from F of width k+w(F)
y By induction there is a proof of Fx←0 of width ≤ k+w(F)

x restrict proof of F which has at most S large clauses
x Fx←0 has fewer variables

y New proof:1) Derive ¬x from F in width k+w(F)
2) Resolve ¬x with F to get Fx←0 in width w(F)
3) Refute Fx←0 in width k+w(F)

Notes

z Relationship between width and size is
roughly optimal for general resolution
y [Bonet, et al 99] There are tautologies with constant

input size and polynomial-size proofs that require
width Ω(√n)

z Davis-Putnam/DLL/tree-like resolution can require
exponentially larger proofs than general resolution
[BEGJ 98],[BW 98].

y Polynomial versus 2Ω(n/log n) size
y Uses graph pebbling and width-based lower bound

Width-size relationships

z Let width(F) = the minimal width of any
resolution proof of F

z Corollary: Any Davis-Putnam/DLL/tree
resolution proof of F requires size at least

2Ω(width(F)-w(F))

z Corollary: Any resolution proof of F requires
size at least

















 n2Fw-F
2

))()(width(Ω

Resolution lower bound arguments

z PHPn→n-1 lower bound:
y Show that

x a restriction can be applied to every small proof so that
• every large clause disappears and
• the result is still a PHPn’→n’-1 proof for an good size n’

x every proof of PHPn’→n’-1 contains a medium complexity
clause

x every medium complexity clause is large

z Width-size relationships:
y Simply need to show

x every proof of F must contain a large clause relative to #
of variables and size of F’s input clauses

Minimum unsatisfiable subformula

z F - a set of clauses
z s(F) - size of minimum subset of F that

is unsatisfiable

Boundary

z F - a set of clauses
z s(F) - size of minimum subset of F that

is unsatisfiable
z δ F - boundary of F - set of variables

appearing in exactly one clause of F

Sub-critical Expansion

z F - a set of clauses
z s(F) - size of minimum subset of F that

is unsatisfiable
z δ F - boundary of F - set of variables

appearing in exactly one clause of F
z e(F) - sub-critical expansion of F =

Width and expansion

z Lemma [CS] : If P is a resolution proof
of F then width(P) e(F).≥

s(F)

Λ

s/2 to s

G

contains δ G

Consequences

z Corollaries:
y Any Davis-Putnam (DLL) proof of F
requires size at least 2e(F)

y Any resolution proof of F requires size
at least

















 n(F)2e
2

Ω

Random k-CNF formulas

z Make m independent choices of one of
the clauses of length k

z ∆ = m/n is the clause-density of the
formula

z Distribution









k
nk2

k
n,F ∆

Threshold behavior of random k-SAT

Hypergraph Expansion

z F - hypergraph
z δ F - boundary of F - set of degree 1

vertices of F
z sH(F) - size of minimum subset of F

that does not have a System of
Distinct Representatives

z eH(F) - sub-critical expansion of F -

System of Distinct Representatives

sH(F) s(F) so eH(F) e(F)≤ ≤

variables/nodes

clauses/edges

Density and SDR’s

z The density of a hypergraph is
#(edges)/#(vertices)

z Hall’s Theorem: A hypergraph F has a system
of distinct representatives iff every
subgraph has density at most 1.

s(F) and e(F) for random formulas

z If F is a random formula from
then
y s(F) is Ω (n/∆1/(k-2)) almost certainly

y e(F) is Ω (n/∆2/(k-2)+ε) almost certainly

z Proved for Hypergraph expansion

k
n,F ∆

Density and Boundary

z A k-uniform hypergraph of density
bounded below 2/k, say 2/k-ε , has
average degree bounded below 2
y constant fraction of nodes are in

the boundary

Density of random formulas

z Fix set S of vertices/variables of size r
y Probability p that a single edge/clause

lands in S is at most (r/n)k

y Probability that S contains at least q edges
is at most

[]
q

1k-

1k-q

n
re

q
npeqp)n,B(Pr 







 ∆
≤







 ∆
≤≥∆

s(F) for random formulas

z Apply for q=r+1 for all r up to s using
union bound:

z for s = O(n/∆1/(k-2))
∑

∑∑

=

+−

+−

=

+−

=

=






 ∆
≤








 ∆






≤







 ∆









s

kr

1r

2k-

2k2

1r

1k-

1krs

kr

1r

1k-

1ks

kr

o(1)
n
re

en
r

n
re

r
ne

n
re

r
n

e(F) for random formulas

z Apply for q=2r/k for all r between s/2
and s using union bound:

z for s = Θ(n/∆2/(k-2))
∑

∑∑

=

−−+

−

=

−

=

=






 ∆
≤








 ∆






≤







 ∆









s

s/2r

2r/k

k/2-1k-

k/21kk/21

2r/k

1k-

1krs

s/2r

2r/k

1k-

1ks

s/2r

o(1)
n

re

n
re

r
ne

n
re

r
n

Lower bounds

z For random k-CNF chosen from
almost certainly for any ε>0:
y Any Davis-Putnam proof requires size

y Any resolution proof requires size

k
n,F ∆

ε+−2)2/(kn/2 ?

ε+−2)4/(kn/2 ?

A digression: Upper Bound

z Theorem [BKPS]: For F chosen from and
∆ above the threshold, the simple Davis-
Putnam (DLL) algorithm almost certainly
finds a refutation of size

z and this is a tight bound...

k
n,F ∆

() O(1)n/O n2
2)1/(k−?

Simple Davis-Putnam Algorithm

z Refute(F)
y While (F contains a clause of size 1)

x set variable to make that clause true
x simplify all clauses using this assignment

y If F has no clauses then
x output “F is satisfiable” and HALT

y If F does not contain an empty clause then
x Choose smallest-numbered unset variable x
x Run Refute(Fx←0)
x Run Refute(Fx←1) splitting rule

Idea of proof

z 2-clause digraph
y (x ∨ y)

z Contradictory cycle: contains both x and x
z After setting O(n/∆1/(k-2)) variables, ≥1/2 the

variables are almost certainly in
contradictory cycles of the 2-clause digraph
y a few splitting steps will pick one almost certainly
y setting clauses of size 1 will finish things off

x

y

x

y

Implications

z Random k-CNF formulas are provably hard
for the most common proof search
procedures.

z This hardness extends well beyond the
phase transition.
y Even at clause ratio ∆=n1/3, current

algorithms on random 3-CNF formulas have
asymptotically the same running time as the
best factoring algorithms.

Random graph k-colorability

z Random graph G(n,p) where each edge
occurs independently with probability p
y Sharp threshold for whether or not graph

is k-colorable, e.g. p ~ 4.6/n for k=3

Lower Bound

z Theorem [BCM 99]: Non-k-colourability
requires exponentially large resolution proofs
for random graphs

z Basic proof idea:
y same outline as before
y notion of boundary of a sub-graph

x set of vertices of degree < k
y s(G) smallest non-k-colourable sub-graph

Nullstellensatz proof system

z Clause (x1∨ ¬x2 ∨ x3)
becomes equation (1-x1)x2(1-x3)=0

z Add equations xi
2-xi =0 for each variable

y Guarantees only 0-1 solutions

z A proof is polynomials P1,…, Pm+n proving
unsatisfiability: i.e. such that

1≡−+ +
==
∑∑ x)(xPQP 2

im

n

1i
Cj

m

1j
j

C

QC

Polynomial Calculus
z Similar to Nullstellensatz except:

y Begin with Q1,…,Qm+n as before
y Given polynomials R and S can infer

x a•R + b•S for any a, b in K
x xi•R

y Derive constant polynomial 1
y Degree = maximum degree of polynomial appearing

in the proof
y Can find proof of degree d in time nO(d) using

Groebner basis-like algorithm (linear algebra)

z Special case of AC0[p]-Frege if K=GF(p) (depth 1)

Natural polynomials for ontoPHPm→n

z f is total: Pi1+Pi2+...+Pin-1=0 for i=1,...,m
z f is 1-1: Pij Pkj=0 for 1≤ i<k ≤ m, j=1,...,n
z f is onto: P1j+P2j+...+Pmj-1=0 for j=1,...,n

y If m=n+1 can simply sum up the total polynomials
and subtract the onto polynomials to get 0=1,
degree 1 Nullstellensatz proof

z Facts:
y [BR] If m=n+pk and n>p2k, need degree 2k Nullstellensatz

proofs over GF(p) but easy over GF(q)
y [R] Without onto clauses requires PC proofs of degree

n/2 for any m and any field

Counting again

z Counting mod 2
y cannot pair up an odd size set

z Counting mod r
y no perfect r-partition if r doesn’t divide n

12n
2Count +

 r mod 0 n ≠n
rCount

Polynomials for Countm|r

z Let E=[m](r) be the set of all size r subsets
of {1,...m}
i.e. complete r-uniform hypergraph

z Variables xe such that e∈E
z Equations

y Every point is covered:
x 1 - Σe,i∈e xe = 0 for i=1,...,m

y Edges are disjoint:
x xe xf = 0 for all e ≠ f ∈E s.t. e∩f ≠ φ

z Exercise: Countm|r is easy to refute over Zr

Tseitin tautologies - odd-charged
graphs
z Given a low degree graph G(V,E) with 0-1

charges on it nodes
s.t. total is odd

z One variable xe
per edge e∈E
y Clauses saying parity

of edges touching v
is charge(v)

y If degree is large, add extension variables to
compute parity at each vertex

z Unsatisfiable

0
1

1 0

0
1

Polynomials in Fourier basis (char(K) ≠ 2)

z Interpret atom x over {1,-1} instead of {0,1};
i.e., y=(-1)x
y linear transform y=1-2x

z Variables are {1,-1}
x y2 - 1 = 0 instead of x2 - x = 0

z Contradiction is 1=-1
z Convenient for expressing parity

y x1⊕...⊕xk=0 becomes y1y2...yk = 1

z Exercise Since transformation is linear and
invertible it preserves degrees of proofs

Tseitin tautologies in Fourier basis

z variables are in {1,-1}
y (ye)2 = 1 for every e ∈E

z parity of edges equal charge
y Πe,v∈e ye = (-1)charge(v) for every v ∈V

z Degree of polynomials equals degree of graph

z Theorem: There is a constant degree graph G s.t. a
Tseitin tautology for G with all charges 1 requires
y degree Ω(n) to prove in Nullstellensatz [Grigoriev]
y degree Ω(n) to prove in Polynomial Calculus [BGIP]

Expander graphs
z Defn: Let G=(V,E) be a graph. G has expansion ε

iff every subset S of ≤ |V|/2 vertices has
|N(S)| ≥ (1+ε)|S|

z Fact: [Margulis, Gabber-Galil] Constant degree regular
bipartite graphs with constant expansion ε > 0 exist.
y Many applications in complexity
y Originally considered for regular resolution lower bounds

z Let E(S) ⊆ E be those edges with one endpoint in S
and one outside S. Expansion ε implies E(S) ≥ εS > 0
for all sets S of size at most n/2.

z Degree lower bound is εn/8

Proof idea: binomial equations

z Every input polynomial has two terms so can
think of it as an equivalence for monomials
y Can one rewrite 1 and -1 to equal each other?
y Every monomial corresponds to a parity of a subset

of edges (and a sign)
y Each equivalence corresponds to the parity of the

set of edges leaving a small non-empty set of
vertices
x initially just a single vertex v

y Might as well think of summation equations mod 2
in the original variables and derive 0=1 rather than
use products since they represent the same thing

Parity Reasoning

z Given S, let ΣS denote the sum of the original
edge variables leaving a set S. Every
equation is of the form ΣS=|S| (mod 2).
y Initially S={v} and all charges are 1
y If we add two equations ΣS=|S| (mod 2) and

ΣS’=|S’| (mod 2) we get ΣS∆S’=|S∆S’| (mod 2)

S
S’

Relation to degree

z No contradiction can be reached if always
have |S∆S’|≤n/2 since |E(S∆S’)|>0
y If sets started of size at most n/4 then this won’t

happen
y By expansion, sets of size more than n/4 have at

least εn/4 edges leaving them so if one is working
with sums of fewer than εn/4 terms one won’t see
such sets.

y Each binomial corresponds to a parity summation
equation with some portion of the equation in each
monomial

x No contradiction if monomials have degree at most εn/8

Implications for Countn|r

z Can reduce Tseitin to Count2n+1|2

y Implies Ω(n) degree lower bounds for Count2n+1|2

for all fields K with char(K) ≠2
z Can generalize Tseitin tautologies to

arbitrary characteristics Tseitin(p)
y encode in extension fields having pth roots of unity

instead of using the Fourier basis
y similar binomial degree lower bounds if char(K) ≠p

z Can reduce Tseitin(p) to Countn|p

y Implies Ω(n) degree lower bounds for Countpn+1|p

for all fields K with char(K) ≠p

Some Proof System Relationships

Truth Tables

Davis-Putnam Nullstellensatz

Polynomial CalculusResolution

Cutting Planes

Frege

AC0-Frege

ZFC

P/poly-Frege

PCR

Polynomials in Fourier basis (char(K) ≠ 2)

z Interpret atom x over {1,-1} instead of {0,1};
i.e., y=(-1)x
y linear transform y=1-2x

z Variables are {1,-1}
x y2 - 1 = 0 instead of x2 - x = 0

z Contradiction is 1=-1
z Convenient for expressing parity

y x1⊕...⊕xk=0 becomes y1y2...yk = 1

z Exercise Since transformation is linear and
invertible it preserves degrees of proofs

Binomial equations

z If every input polynomial has two terms so
can think of it as an equivalence for
monomials

x yi1
... yik

= yj1
...yjl

or yi1
... yik

= -yj1
...yjl

z Might as well think of summation equations
mod 2 in the original variables and derive 0=1
rather than use products since they
represent the same thing

x xi1
+... +xik

+xj1
+...+xjl

=0 (mod 2) or
x xi1

+...+xik
+xj1

+...+xjl
=1 (mod 2)

PCR = PC + Resolution
z Two variables x and x’ for each atomic

proposition x
y x’ stands for ¬x
y include equations x+x’-1=0, x2-x=0, and (x’)2-x’=0

z Translate (x1∨ ¬x2 ∨ x3) as (1-x1)x2(1-x3)=0
or as x’1 x2 x’3=0

z Same proof rules as polynomial calculus
z Exercises:

y Show how PCR simulates resolution with degree ≤ width and no
increase in size

y Show how the resolution relationships between size and width
apply to PCR using size and degree

y Binomial equations work just as in PC if char(K)≠2

Hypergraph Expansion

z F - hypergraph
z δ F - boundary of F - set of degree 1

vertices of F
z sH(F) - size of minimum subset of F

that does not have a System of
Distinct Representatives

z eH(F) - sub-critical expansion of F -

Hypergraph Expansion and
Polynomial Calculus

z Theorem [BI]: The degree of any PCR,
polynomial calculus or Nullstellensatz
proof of unsatisfiability of F is at
least eH(F)/2 if the characteristic is
not 2.

z Groebner basis algorithm bound is
only nO(eH(F))

k-CNF and parity equations

z Clause (x1 ∨ ¬x2 ∨ x3)
is implied by x1+(x2+1)+x3 = 1 (mod 2)
i.e. x1+x2+x3 = 0 (mod 2)

z Derive contradiction 0 = 1 (mod 2) by
adding collections of equations

z # of variables in longest line is at least eH(F)

Parity equations and polynomial
calculus

z Given equations of form
y x1+x2+x3 = 0 (mod 2)

z Represent in the Fourier basis
y Polynomial equation yi

2-1=0 for each variable
x yi = 1-2xi

y Polynomial equation y1 y2 y3-1=0
x would be y1 y2 y3+1=0 if RHS were 1

z Imply the usual equations for original clauses
in degree k if char(K) is not 2

Relationship of equations

z We have 3 forms
y Original clause (x1 ∨ ¬x2 ∨ x3)
y Usual {0,1} polynomials (1-x1)x2(1-x3)=0, xi

2-xi=0
y Stronger parity equation x1+x2+x3 = 0 (mod 2)
y Fourier basis polynomials y1 y2 y3-1=0, yi

2-1=0
where yi=1-2xi

z yi
2-1=0 and yi=1-2xi imply xi

2-xi=0
z Each equation only involves k variables so we use our

standard degree upper bound on Nullstellensatz to
get usual {0,1} polynomials since the transformed
polynomials are stronger

Lower bound

z For random k-CNF chosen from
almost certainly for any ε>0:
y Any Nullstellensatz, Polynomial Calculus
or PCR refutation over a field K with
char(K)≠2 requires degree at least

and size at least

k
n,F ∆

ε+−2)2/(kn/?

ε+−2)4/(kn/c2 ?ε

Sources
z [Chvatal, Szemeredi 89]
z [Mitchell, Selman, Levesque 93]
z [Clegg, Edmonds, Impagliazzo 96]
z [Beame, Pitassi 97]
z [Razborov 97]
z [Beame, Riis 98]
z [Beame, Karp, Pitassi, Saks 98]
z [Ben-Sasson, Wigderson 99]
z [Ben-Sasson, Impagliazzo 99]
z [Buss, Grigoriev, Impagliazzo, Pitassi 99]
z [Impagliazzo, Pudlak, Sgall 99]
z [Beame, Culberson, Mitchell 00]

