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Recall: Frege Systems

z Finite, implicationally complete set R of 
axioms/inference rules

z Refutation version:
y Proof of unsatisfiability of F - sequence F1,…,Fr

of formulas (called lines) s.t.
x F1 = F
x each Fj follows from an axiom in R or follows 

from previous ones via an inference rule in R
x Fr = Λ trivial falsehood, e.g. (x ∧¬x)

z Positive version:
y Start with nothing,  end with tautology F



Resolution

z Frege-like system using CNF clauses only
z Start with original input clauses of CNF  F
z Resolution rule

y (A ∨ x), (B ∨ ¬x) | (A ∨ B)
z Goal: derive empty clause  Λ

z Most-popular systems for practical theorem-
proving



C-Frege proof systems

z Many circuit complexity classes C are defined as 
follows:
y C={f: f is computed by polynomial-size circuits    

with structural property PC}
y e.g.  non-uniform classes NC1, AC0, AC0[p], ACC, 

TC0, P/poly

z Define C-Frege to be the p-equivalence class of
Frege-style proof systems s.t.
y each line has structural property PC

y finite number of axioms/inference rules
y complete for circuits with property PC



Circuit Complexity

z P/poly - polysize circuits
z NC1 - polysize formulas = O(log n) depth fan-in 2
z CNF - polysize CNF formulas
z AC0 - constant-depth unbounded fan-in polysize

circuits using and/or/not gates

z AC0[m] - also = 0 mod m tests 

z TC0 - threshold instead



What we know in circuit complexity

z CNF ⊂ AC0 ⊂ AC0[p] ⊂ TC0 for p prime

z TC0 ⊆ NC1 ⊆ P/poly ⊆ NP/poly

z AC0[m] ⊂ # P



Intuition for hard examples

z A tautology seems likely to be hard to prove 
in C-Frege if the ‘natural’ proof of it requires 
concepts that are not computable in circuit 
complexity class C
y e.g. Majority is not computable in AC0[p] so one 

might guess something counting-related might be 
hard for AC0[p]-Frege

z Randomly chosen tautologies/unsatisfiable 
formulas might be hard to prove because 
there is no simple good reason to show it.



Counting

z Pigeonhole principle  PHPm→n

y No 1-1 function from m to n for m>n



Counting

z onto-Pigeonhole principle  ontoPHPm→n

y No 1-1,onto function from m to n for m>n



Pigeonhole propositional formulas
Variables
Complete bipartite graph of
variables Pij representing f(i)=j

Clauses
f is total:  (Pi1 ∨ Pi2 ∨ ... ∨ Pin) for i=1,...,m
f is 1-1:  (¬Pij ∨ ¬Pkj) for 1≤ i<k ≤ m, j=1,...,n
f is onto: (P1j ∨ P2j ∨... ∨ Pmj) for j=1,...,n
f is a function: (¬Pij ∨ ¬Pik) for i=1,...,m, 1≤ j<k ≤ n

Note: we usually leave out the function clauses.
One can derive the relational form from the functional 
form by setting P’ij=Pij ∧¬Pi1 ∧ ... ∧¬Pi(j-1)



Usual Proof of PHPn+1→n

The usual inductive proof of PHPn+1→n

Base: PHP2→1 is trivially false 
Inductive Step:
if f(n+1)=n then f on {1,...,n} also violates PHPn→n-1

else define g:{1,...,n} →{1,.., n-1} by

g(i)=

g is 1-1/onto iff f is

f(i) if f(i)≠n
f(n+1) if f(i)=n
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Extended Frege Proof of PHPn+1→n

The usual inductive proof of PHPn+1→n

Base: PHP2→1 is trivially false 
Inductive Step:
if f(n+1)=n then f on {1,...,n} also violates PHPn→n-1

else define g:{1,...,n} →{1,.., n-1} by

g(i)=

g is 1-1/onto iff f is

f(i) if f(i)≠n
f(n+1) if f(i)=n

Extended Frege translation: Define new variables
Qij = Pij ∨ (¬P(n+1)n ∧ Pin ∧ P(n+1)j) for i=1,...n, j=1,...,n-1

Derive PHPn→n-1 clauses in the Qij in O(n2) steps

n+1
n

j
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Cutting Planes Proof of  PHPm→n

z Given
y Pi1 + Pi2 + ... + Pin ≥ 1 for i=1,…,m
y Pij+Pkj ≤ 1 for 1≤ i<k ≤ m, j=1,...,n
y Pij ≥ 0; Pij ≤ 1 for i=1,…,m, i=1,…,n

z Derive P1j + P2j + ... + Pmj ≤ 1 as follows
y For k=3 to m do

x Add (k-2) copies of P1j + P2j + ... + P(k-1)j ≤ 1
and one each of P1j+Pkj ≤ 1, ..., P(k-1)j+Pkj ≤ 1 to 
get (k-1)P1j + (k-1)P2j + ... + (k-1)Pkj ≤ 2k-3

x Apply division rule to get P1j + P2j + ... + Pkj ≤ 1
z Compute sum of all Pij in two ways to get m≤n



Resolution and PHPn→n-1

z Theorem [Haken 84, Beame-Pitassi 96] Any resolution proof 
of PHPn→n-1 requires size at least 2n/20

y Applies also to ontoPHPn→n-1

z Original proof idea: Bottleneck counting
y View truth assignments flowing through the proof

x Assignments start at Λ, flow out towards input clauses
x A clause in the proof lets only those assignments it 

falsifies flow through it
y At a ‘middle’ level in the proof, clauses must talk 

about lots of pigeons
x such a clause falsifies few assignments so need lots of 

them to let all the assignments flow through



Revised proof outline

z PHPn→n-1 lower bound:
y Show that

x a partial assignment to the variables, called a restriction 
can be applied to every small proof so that 

• every large clause disappears and
• the result is still a PHPn’→n’-1 proof for an good size n’

x every proof of PHPn’→n’-1 contains a medium complexity 
clause

x every medium complexity clause is large



Critical truth assignments for PHPn→n-1

z CTAs match all n-1 holes to all but one of the pigeons

y 1-1, onto clauses (and function clauses) always satisfied
y only input clauses that may not be are clauses

Ci=(Pi1 ∨... ∨ Pin) 
saying that pigeon i is mapped somewhere

z Modify each of the clauses in the proof
y Replace each ¬Pij by (P1j ∨ ... ∨ P(i-1)j ∨ P(i+1)j ∨ ... ∨ Pnj) 

so all literals are positive
y Lets precisely the same CTAs through



Any PHP proof has a medium complexity 
clause

z Given modified clause C and I⊆{1,...,n} we say
y I implies C iff whenever ∀i∈I. Ci is true under 

some CTA then so is C
y complexity comp(C)=min{|I|: I implies C}

z Every proof contains a clause of complexity m
between n/3 and 2n/3
y Λ has complexity n
y input clauses have complexity ≤ 1
y if clauses A and B imply C then comp(C) ≤comp(A)+comp(B)
y walk backwards in proof from Λ, clause complexities 

decrease but both can’t jump over (n/3,2n/3] region



Medium complexity clauses are big

z Suppose I implies C and |I|=m=comp(C), n/3≤m≤2n/3
z Since I is minimal, ∀i∈I there is a CTA αi s.t. 

Ci(αi)=C(αi)=false

z For each j∉I toggle                                      
αi to yield αij

z Since Ci(αij)=true, C(αij)=true
thus Pik∈C since it is                                         
only new true var since αi

z At least m(n-m) ≥ 2n2/9
total vars in C

i j
I I

k
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k
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Restrictions

z Partial assignments that map certain pigeons 
to certain holes
y Pij is set to true and all other Pik or Pkj are set to 

false
y Reduces PHPn→n-1 to PHPn-1→n-2

y More generally, partial matchings

z Restrictions shrink some clauses, satisfy others



Final proof argument

z Call a modified clause large iff it has ≥ n2/10 vars. 
z Assume proof has at most S<2n/20 large clauses.
z On average, restricting a Pij to 1 will satisfy S/10

large clauses since large clauses each have 1/10 of all 
variables.

z Choose a Pij that satisfies the most large clauses

z Repeat until all large clauses removed:
y Each time, # of large clauses decreases by a factor of 9/10
y Total size of restriction = log10/9 S < 0.329 n
y Remaining proof proves PHP for some n’ s.t. 2(n’)2/9 > n2/10
y Contradiction



Width of resolution proofs

z If F is a set of clauses let                                    
w(F) = length of longest clause in F

z If P is a resolution proof      
width(P) = length of longest clause in P

z Theorem [BW]: Every Davis-Putnam 
(DLL)/tree-like resolution proof of F of 
size S can be converted to one of width 
log2S + w(F)



Width of Tree-like Resolution

z Proof:   By induction on the size of the proof
y Induction Step:

Assume that for all sets F’ of clauses with a tree 
resolution refutation of size   S’ < S, there is a 
tree-like resolution proof P’ of F’ with       
width(P’)≤ log2S’+w(F’)

y Consider a tree resolution refutation of size S of a 
set of clauses F and let x be the last variable 
resolved on to derive Λ

y One of the two subtrees has size at most S/2 and 
the other has size strictly smaller than S.



Width of Tree-like Resolution

<S

≤S/2

¬x x

Λ



Width of Tree-like Resolution

<S

≤S/2

¬x x

Λ

F proves ¬x in 
size at most S/2



Width of Tree-like Resolution

<S

≤S/2

¬x x

Λ

F proves ¬x in 
size at most S/2

F proves x in 
size less than S



Width of Tree-like Resolution

<S

≤S/2

¬x x

Λ

Fx←1 proves Λ in 
size at most S/2

Fx←0 proves Λ in 
size less than S



Width of Tree-like Resolution

<S

≤S/2

¬x x

Λ

Fx←1 proves Λ in 
size at most S/2

Fx←1 proves Λ in width at most
log2(S/2) +w(F)= log2S +w(F)-1

w= log2S +w(F)



Width of Tree-like Resolution

<S

≤w

¬x x

Λ

Fx←1 proves Λ in 
size at most S/2

Fx←1 proves Λ in width at most
log2(S/2) +w(F)= log2S +w(F)-1

w= log2S +w(F)

F proves in ¬x in width at most log2S+w(F)



Width of Tree-like Resolution

< S

≤w

¬x x

Λ

Fx←0 proves Λ in 
size less than S

Fx←0 proves Λ in width
at most log2S +w(F)

w= log2S +w(F)



Width of Tree-like Resolution

≤ w

Λ

w= log2S +w(F)New Refutation:
1. Derive ¬x from F in width w
2. Resolve ¬x with clauses 
of F containing x to derive Fx←0
3. Prove Λ in width w from Fx←0

≤w

¬x

≤w

¬x

≤w

¬x

≤w

¬x



Width and Resolution

z Theorem [BW] Every resolution proof of 
F of size S can be converted to one of 
width

z Proof idea [CEI] Repeatedly find the most popular 
literals appearing in large clauses in the proof (like 
PHP proof )
y Say a clause is large iff it has width ≥W=
y There are at most 2n literals and ≥ W of them per large 

clause
y An average literal occurs in ≥ W/2n fraction of large clauses

w(F))logSnO( +

S2n ln



Proof
z By induction on n and k: if  (1-W/2n)k S ≤ 1 then any F with 

at most S large clauses has a proof of width ≤ k+w(F)
x Note: W was chosen to be large enough that (1-W/2n)W S ≤ 1



Proof
z By induction on n and k: if  (1-W/2n)k S ≤ 1 then any F with 

at most S large clauses has a proof of width ≤ k+w(F)
x Note: W was chosen to be large enough that (1-W/2n)W S ≤ 1

y Initially at most S large clauses
y Choose literal x most frequently occurring in large clauses 

and set it to 1, satisfying ≥ (W/2n) fraction of large clauses
y Result is a proof of Fx←1 with ≤ S (1-W/2n) large clauses



Proof
z By induction on n and k: if  (1-W/2n)k S ≤ 1 then any F with 

at most S large clauses has a proof of width ≤ k+w(F)
x Note: W was chosen to be large enough that (1-W/2n)W S ≤ 1

y Initially at most S large clauses
y Choose literal x most frequently occurring in large clauses 

and set it to 1, satisfying ≥ (W/2n) fraction of large clauses
y Result is a proof of Fx←1 with ≤ S (1-W/2n) large clauses
y By induction Fx←1 has a proof of width at most k-1 +w(F)



Proof
z By induction on n and k: if  (1-W/2n)k S ≤ 1 then any F with 

at most S large clauses has a proof of width ≤ k+w(F)
x Note: W was chosen to be large enough that (1-W/2n)W S ≤ 1

y Initially at most S large clauses
y Choose literal x most frequently occurring in large clauses 

and set it to 1, satisfying ≥ (W/2n) fraction of large clauses
y Result is a proof of Fx←1 with ≤ S (1-W/2n) large clauses
y By induction Fx←1 has a proof of width at most k-1 +w(F)

x So there is a derivation of ¬x from F of width k+w(F)



Proof
z By induction on n and k: if  (1-W/2n)k S ≤ 1 then any F with 

at most S large clauses has a proof of width ≤ k+w(F)
x Note: W was chosen to be large enough that (1-W/2n)W S ≤ 1

y Initially at most S large clauses
y Choose literal x most frequently occurring in large clauses 

and set it to 1, satisfying ≥ (W/2n) fraction of large clauses
y Result is a proof of Fx←1 with ≤ S (1-W/2n) large clauses
y By induction Fx←1 has a proof of width at most k-1 +w(F)

x So there is a derivation of ¬x from F of width k+w(F)
y By induction there is a proof of Fx←0 of width ≤ k+w(F)

x restrict proof of F which has at most S large clauses
x Fx←0 has fewer variables



Proof
z By induction on n and k: if  (1-W/2n)k S ≤ 1 then any F with 

at most S large clauses has a proof of width ≤ k+w(F)
x Note: W was chosen to be large enough that (1-W/2n)W S ≤ 1

y Initially at most S large clauses
y Choose literal x most frequently occurring in large clauses 

and set it to 1, satisfying ≥ (W/2n) fraction of large clauses
y Result is a proof of Fx←1 with ≤ S (1-W/2n) large clauses
y By induction Fx←1 has a proof of width at most k-1 +w(F)

x So there is a derivation of ¬x from F of width k+w(F)
y By induction there is a proof of Fx←0 of width ≤ k+w(F)

x restrict proof of F which has at most S large clauses
x Fx←0 has fewer variables

y New proof:1) Derive ¬x from F in width k+w(F)
2) Resolve ¬x with F to get Fx←0 in width w(F)
3) Refute Fx←0 in width k+w(F)



Notes

z Relationship between width and size is 
roughly optimal for general resolution
y [Bonet, et al 99] There are tautologies with constant 

input size and polynomial-size proofs that require 
width Ω(√n)

z Davis-Putnam/DLL/tree-like resolution can require 
exponentially larger proofs than general resolution 
[BEGJ 98],[BW 98].

y Polynomial versus  2Ω(n/log n) size
y Uses graph pebbling and width-based lower bound



Width-size relationships

z Let width(F) = the minimal width of any  
resolution proof of F

z Corollary: Any Davis-Putnam/DLL/tree 
resolution proof of F requires size at least

2Ω(width(F)-w(F))

z Corollary: Any resolution proof of F requires 
size at least
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Resolution lower bound arguments

z PHPn→n-1 lower bound:
y Show that

x a restriction can be applied to every small proof so that 
• every large clause disappears and
• the result is still a PHPn’→n’-1 proof for an good size n’

x every proof of PHPn’→n’-1 contains a medium complexity 
clause

x every medium complexity clause is large

z Width-size relationships:
y Simply need to show

x every proof of F must contain a large clause relative to # 
of variables and size of F’s input clauses



Minimum unsatisfiable subformula

z F - a set of clauses
z s(F) - size of minimum subset of F that 

is unsatisfiable



Boundary

z F - a set of clauses
z s(F) - size of minimum subset of F that 

is unsatisfiable
z δ F - boundary of F - set of variables 

appearing in exactly one clause of F



Sub-critical Expansion

z F - a set of clauses
z s(F) - size of minimum subset of F that 

is unsatisfiable
z δ F - boundary of F - set of variables 

appearing in exactly one clause of F
z e(F) - sub-critical expansion of F =



Width and expansion

z Lemma [CS] : If P is a resolution proof 
of F then width(P) e(F).≥

s(F)

Λ

s/2 to s

G

contains δ G



Consequences

z Corollaries:
y Any Davis-Putnam (DLL) proof of F
requires size at least 2e(F)

y Any resolution proof of F requires size        
at least 


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Random k-CNF formulas

z Make m independent choices of one of 
the clauses of length k

z ∆ = m/n is the clause-density of the 
formula

z Distribution  


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
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
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k
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Threshold behavior of random k-SAT



Hypergraph Expansion

z F - hypergraph
z δ F - boundary of F - set of degree 1

vertices of F
z sH(F) - size of minimum subset of F

that does not have a System of 
Distinct Representatives

z eH(F) - sub-critical expansion of F -



System of Distinct Representatives

sH(F) s(F) so  eH(F) e(F)≤ ≤

variables/nodes

clauses/edges



Density and SDR’s

z The density of a hypergraph is
#(edges)/#(vertices)

z Hall’s Theorem: A hypergraph F has a system 
of distinct representatives iff every
subgraph has density at most 1.



s(F) and e(F) for random formulas

z If F is a random formula from
then 
y s(F) is Ω (n/∆1/(k-2)) almost certainly

y e(F) is Ω (n/∆2/(k-2)+ε) almost certainly

z Proved for Hypergraph expansion

k
n,F ∆



Density and Boundary

z A k-uniform hypergraph of density 
bounded below 2/k, say 2/k-ε , has 
average degree bounded below 2
y constant fraction of nodes are in 

the boundary



Density of random formulas

z Fix set S of vertices/variables of size r
y Probability p that a single edge/clause 

lands in S is at most (r/n)k

y Probability that S contains at least q edges 
is at most
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s(F) for random formulas

z Apply for q=r+1 for all r up to s using 
union bound:

z for s = O(n/∆1/(k-2))
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e(F) for random formulas

z Apply for q=2r/k for all r between s/2 
and s using union bound:

z for s = Θ(n/∆2/(k-2))
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Lower bounds

z For random k-CNF chosen from 
almost certainly for any ε>0:
y Any Davis-Putnam proof requires size

y Any resolution proof requires size

k
n,F ∆

ε+−2)2/(kn/2 ?

ε+−2)4/(kn/2 ?



A digression: Upper Bound

z Theorem [BKPS]: For F chosen from      and 
∆ above the threshold, the simple Davis-
Putnam (DLL) algorithm almost certainly 
finds a refutation of size

z and this is a tight bound...

k
n,F ∆

( ) O(1)n/O n2
2)1/(k−?



Simple Davis-Putnam Algorithm

z Refute(F)
y While (F contains a clause of size 1)

x set variable to make that clause true
x simplify all clauses using this assignment

y If F has no clauses then
x output “F is satisfiable” and HALT

y If F does not contain an empty clause then
x Choose smallest-numbered unset variable x   
x Run Refute( Fx←0)
x Run Refute( Fx←1 ) splitting rule



Idea of proof

z 2-clause digraph
y (x ∨ y)

z Contradictory cycle: contains both x and x
z After setting O(n/∆1/(k-2)) variables, ≥1/2 the 

variables are almost certainly in 
contradictory cycles of the 2-clause digraph
y a few splitting steps will pick one almost certainly
y setting clauses of size 1 will finish things off 

x

y

x

y



Implications

z Random k-CNF formulas are provably hard 
for the most common proof search 
procedures.

z This hardness extends well beyond the 
phase transition.
y Even at clause ratio ∆=n1/3, current 

algorithms on random 3-CNF formulas have 
asymptotically the same running time as the 
best factoring algorithms.



Random graph k-colorability

z Random graph G(n,p) where each edge 
occurs independently with probability p
y Sharp threshold for whether or not graph 

is k-colorable, e.g. p ~ 4.6/n for k=3



Lower Bound

z Theorem [BCM 99]: Non-k-colourability
requires exponentially large resolution proofs 
for random graphs

z Basic proof idea:
y same outline as before
y notion of boundary of a sub-graph

x set of vertices of degree < k
y s(G) smallest non-k-colourable sub-graph



Nullstellensatz proof system

z Clause (x1∨ ¬x2 ∨ x3)
becomes equation (1-x1)x2(1-x3)=0

z Add equations xi
2-xi =0 for each variable

y Guarantees only 0-1 solutions

z A proof is polynomials P1,…, Pm+n proving
unsatisfiability: i.e. such that

1≡−+ +
==
∑∑ x)(xPQP 2

im

n

1i
Cj

m

1j
j
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Polynomial Calculus
z Similar to Nullstellensatz except: 

y Begin with Q1,…,Qm+n as before
y Given polynomials R and S can infer 

x a•R + b•S for any a, b in K
x xi•R

y Derive constant polynomial 1
y Degree = maximum degree of polynomial appearing 

in the proof
y Can find proof of degree d in time nO(d) using 

Groebner basis-like algorithm (linear algebra)

z Special case of AC0[p]-Frege if K=GF(p) (depth 1)



Natural polynomials for ontoPHPm→n

z f is total:  Pi1+Pi2+...+Pin-1=0 for i=1,...,m
z f is 1-1:  Pij Pkj=0 for 1≤ i<k ≤ m, j=1,...,n
z f is onto: P1j+P2j+...+Pmj-1=0 for j=1,...,n

y If m=n+1 can simply sum up the total polynomials 
and subtract the onto polynomials to get 0=1, 
degree 1 Nullstellensatz proof

z Facts: 
y [BR] If m=n+pk and n>p2k, need degree 2k Nullstellensatz

proofs over GF(p) but easy over GF(q)
y [R] Without onto clauses requires PC proofs of degree 

n/2 for any m and any field



Counting again

z Counting mod 2
y cannot pair up an odd size set

z Counting mod r
y no perfect r-partition if r doesn’t divide n       

12n
2Count +

    r mod 0  n ≠n
rCount



Polynomials for Countm|r

z Let E=[m](r) be the set of all size r subsets   
of {1,...m}                                     
i.e. complete r-uniform hypergraph

z Variables xe such that e∈E
z Equations

y Every point is covered:
x 1 - Σe,i∈e xe = 0 for i=1,...,m

y Edges are disjoint:
x xe xf = 0 for all e ≠ f ∈E s.t. e∩f ≠ φ

z Exercise: Countm|r is easy to refute over Zr



Tseitin tautologies - odd-charged 
graphs
z Given a low degree graph G(V,E) with 0-1 

charges on it nodes                                         
s.t. total is odd

z One variable xe
per edge e∈E
y Clauses saying parity                                           

of edges touching v
is charge(v)

y If degree is large, add extension variables to 
compute parity at each vertex

z Unsatisfiable

0
1

1 0

0
1



Polynomials in Fourier basis (char(K) ≠ 2)

z Interpret atom x over {1,-1} instead of {0,1}; 
i.e., y=(-1)x
y linear transform y=1-2x

z Variables are {1,-1}
x y2 - 1 = 0 instead of x2 - x = 0

z Contradiction is 1=-1
z Convenient for expressing parity

y x1⊕...⊕xk=0 becomes  y1y2...yk = 1

z Exercise Since transformation is linear and 
invertible it preserves degrees of proofs



Tseitin tautologies in Fourier basis

z variables are in {1,-1}
y (ye)2 = 1 for every e ∈E

z parity of edges equal charge
y Πe,v∈e ye = (-1)charge(v) for every v ∈V

z Degree of polynomials equals degree of graph

z Theorem: There is a constant degree graph G s.t. a 
Tseitin tautology for G with all charges 1 requires 
y degree Ω(n) to prove in Nullstellensatz  [Grigoriev]
y degree Ω(n) to prove in Polynomial Calculus [BGIP]



Expander graphs
z Defn: Let G=(V,E) be a graph.  G has expansion ε

iff every subset S of ≤ |V|/2 vertices has         
|N(S)| ≥ (1+ε)|S|

z Fact: [Margulis, Gabber-Galil] Constant degree regular 
bipartite graphs with constant expansion ε > 0 exist.
y Many applications in complexity
y Originally considered for regular resolution lower bounds 

z Let E(S) ⊆ E be those edges with one endpoint in S
and one outside S.  Expansion ε implies E(S) ≥ εS > 0
for all sets S of size at most n/2.

z Degree lower bound is εn/8



Proof idea: binomial equations

z Every input polynomial has two terms so can 
think of it as an equivalence for monomials
y Can one rewrite 1 and -1 to equal each other?
y Every monomial corresponds to a parity of a subset 

of edges (and a sign)
y Each equivalence corresponds to the parity of the

set of edges leaving a small non-empty set of 
vertices 
x initially just a single vertex v

y Might as well think of summation equations mod 2 
in the original variables and derive 0=1 rather than 
use products since they represent the same thing



Parity Reasoning

z Given S, let ΣS denote the sum of the original 
edge variables leaving a set S.   Every 
equation is of the form ΣS=|S| (mod 2). 
y Initially S={v} and all charges are 1
y If we add two equations ΣS=|S| (mod 2) and  

ΣS’=|S’| (mod 2) we get ΣS∆S’=|S∆S’| (mod 2)

S
S’



Relation to degree

z No contradiction can be reached if always 
have |S∆S’|≤n/2 since |E(S∆S’)|>0 
y If sets started of size at most n/4 then this won’t 

happen
y By expansion, sets of size more than n/4 have at 

least εn/4 edges leaving them so if one is working 
with sums of fewer than εn/4 terms one won’t see 
such sets.

y Each binomial corresponds to a parity summation 
equation with some portion of the equation in each 
monomial

x No contradiction if monomials have degree at most εn/8



Implications for Countn|r

z Can reduce Tseitin to Count2n+1|2

y Implies Ω(n) degree lower bounds for Count2n+1|2

for all fields K with char(K) ≠2
z Can generalize Tseitin tautologies to 

arbitrary characteristics Tseitin(p)
y encode in extension fields having pth roots of unity 

instead of using the Fourier basis 
y similar binomial degree lower bounds if char(K) ≠p

z Can reduce Tseitin(p) to Countn|p

y Implies Ω(n) degree lower bounds for Countpn+1|p

for all fields K with char(K) ≠p



Some Proof System Relationships

Truth Tables

Davis-Putnam Nullstellensatz

Polynomial CalculusResolution

Cutting Planes

Frege

AC0-Frege

ZFC

P/poly-Frege

PCR



Polynomials in Fourier basis (char(K) ≠ 2)

z Interpret atom x over {1,-1} instead of {0,1}; 
i.e., y=(-1)x
y linear transform y=1-2x

z Variables are {1,-1}
x y2 - 1 = 0 instead of x2 - x = 0

z Contradiction is 1=-1
z Convenient for expressing parity

y x1⊕...⊕xk=0 becomes  y1y2...yk = 1

z Exercise Since transformation is linear and 
invertible it preserves degrees of proofs



Binomial equations

z If every input polynomial has two terms so 
can think of it as an equivalence for 
monomials

x yi1
... yik

= yj1
...yjl

or yi1
... yik

= -yj1
...yjl

z Might as well think of summation equations 
mod 2 in the original variables and derive 0=1
rather than use products since they 
represent the same thing

x xi1
+... +xik

+xj1
+...+xjl

=0 (mod 2) or
x xi1

+...+xik
+xj1

+...+xjl
=1 (mod 2)



PCR = PC + Resolution
z Two variables x and x’ for each atomic 

proposition x
y x’ stands for ¬x
y include equations x+x’-1=0, x2-x=0, and (x’)2-x’=0

z Translate (x1∨ ¬x2 ∨ x3) as (1-x1)x2(1-x3)=0 
or as  x’1 x2 x’3=0

z Same proof rules as polynomial calculus
z Exercises:

y Show how PCR simulates resolution with  degree ≤ width and no 
increase in size

y Show how the resolution relationships between size and width 
apply to PCR using size and degree

y Binomial equations work just as in PC if char(K)≠2



Hypergraph Expansion

z F - hypergraph
z δ F - boundary of F - set of degree 1

vertices of F
z sH(F) - size of minimum subset of F

that does not have a System of 
Distinct Representatives

z eH(F) - sub-critical expansion of F -



Hypergraph Expansion and 
Polynomial Calculus

z Theorem [BI]: The degree of any PCR, 
polynomial calculus or Nullstellensatz
proof of unsatisfiability of F is at 
least eH(F)/2 if the characteristic is 
not 2.

z Groebner basis algorithm bound is 
only nO(eH(F))



k-CNF and parity equations

z Clause (x1 ∨ ¬x2 ∨ x3)
is implied by x1+(x2+1)+x3 = 1 (mod 2)
i.e. x1+x2+x3 = 0 (mod 2)

z Derive contradiction 0 = 1 (mod 2) by 
adding collections of equations

z # of variables in longest line is at least eH(F)



Parity equations and polynomial 
calculus

z Given equations of form
y x1+x2+x3 = 0 (mod 2)

z Represent in the Fourier basis
y Polynomial equation yi

2-1=0 for each variable
x yi = 1-2xi

y Polynomial equation y1 y2 y3-1=0   
x would be y1 y2 y3+1=0 if RHS were 1

z Imply the usual equations for original clauses 
in degree k if char(K) is not 2



Relationship of equations

z We have 3 forms
y Original clause (x1 ∨ ¬x2 ∨ x3)
y Usual {0,1} polynomials (1-x1)x2(1-x3)=0, xi

2-xi=0
y Stronger parity equation x1+x2+x3 = 0 (mod 2)
y Fourier basis polynomials y1 y2 y3-1=0, yi

2-1=0 
where yi=1-2xi

z yi
2-1=0 and yi=1-2xi imply xi

2-xi=0
z Each equation only involves k variables so we use our 

standard degree upper bound on Nullstellensatz to 
get usual {0,1} polynomials since the transformed 
polynomials are stronger 



Lower bound

z For random k-CNF chosen from 
almost certainly for any ε>0:
y Any Nullstellensatz, Polynomial Calculus 
or PCR refutation over a field K with 
char(K)≠2 requires degree at least           

and size at least

k
n,F ∆

ε+−2)2/(kn/?

ε+−2)4/(kn/c2 ?ε
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