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In the previous le
ture, we introdu
ed a lower bound on the length of Resolution proofs for the

pigeonhole prin
iple. We then talked about the width vs. size of tree-like resolution, and resolution

proofs based on the width-size relationship.

In this le
ture, we �rst show a lower bound on the length of Resolution proofs for random

formulas. Intuitively, these formulas should be hard to prove be
ause they simply have no stru
ture

that 
an be exploited to get a really short proof. We then bring up some open problems about the

lower bound of Resolution proofs. Finally, we will talk about automatizability and proof sear
h for

Resolution.

1 Random k-CNF Formulas

De�ne a random distribution F

k

n;�

on the set of k-CNF formulas in n variables by 
hoosingm = �n


lauses independently and uniformly from among the 2

k

�

n

k

�


lauses of length k. � here is density

of the formula. For F 
hosen from this distribution we write F � F

k

n;�

. It is 
onje
tured that the

typi
al satis�ability properties of su
h random k-CNF formulas are determined by a sharp density

threshold. Random formulas with density more than the threshold are asymptoti
ally almost

surely (a.a.s.) unsatis�able, whereas those with density below the threshold are a.a.s. satis�able.

For example, for k = 3 it 
an be shown that if there are more than 5n 
lauses then a random

3-CNF is almost 
ertainly unsatis�able, and less than 2n 
lauses is almost 
ertainly satis�able,

although the exa
t 
onstant (whi
h seems to be around 4:2 empiri
ally) has not been determined.

For random formulas whose density is not too large, we 
an show that any Resolution proofs of

their unsatis�ability are almost surely super-polynomial, as stated more pre
isely in the following

theorem:

Theorem 1 For F � F

k

n;�

, almost 
ertainly for any � > 0,

1. Any Davis-Putnam (DLL) proof of F requires size at least 2

n

�

2=(k�2)+�

.

2. Any resolution proof of F requires size at least 2

n

�

4=(k�2)+�

.

This result implies that random k-CNF formulas are provably hard for the most 
ommon proof

sear
h pro
edures whi
h are DLL type. In fa
t, this hardness extends well beyond the threshold.

Even at density � = n

1=3

, 
urrent algorithms for random 3-CNF have qualitatively the same

asymptoti
 
omplexity as the best known fa
toring algorithms, for example.
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The proof of this theorem is based on properties of random hypergraphs. We asso
iate ea
h

formula to a hypergraph. A k-CNF formula 
an be asso
iated with hypergraphs in a natural way,

where ea
h variable be
omes a vertex and ea
h 
lause be
omes a hyperedge. This mapping dis
ards

the distin
tion between a variable and its negation, but is suÆ
ient for proving useful results.

In the previous le
ture, we de�ned sub-
riti
al expansion of a set of 
lauses F as follows:

e(F ) = max

s(F )

3

�s�

2s(F )

3

min fjÆGj : G � F; jGj = sg

We showed that all boundary variables of a set of 
lauses G appear in a 
lause C

�

su
h that

G )

P

C

�

. We now de�ne the sub-
riti
al expansion of a hypergraph. Let F be a hypergraph.

Denote by ÆF the boundary of F , whi
h is the set of degree 1 verti
es of F . The density of F is

the ratio of the number of hyperedges to the number of verti
es. We say that a subset of F has a

system of distin
t representatives (see Figure 1) i� with ea
h hyperedge in F , we 
an asso
iate a

unique vertex (a representative) belonging to that hyperedge. In Figure 1, it is easy to see that the

bla
k nodes or representatives 
an independently be set to true or false in a way that makes the

whole formula true. Let s

H

(F ) be the size of minimum subset of F that does not have a system of

distin
t representatives. De�ne the sub
riti
al expansion e

H

(F ), where F is a hypergraph, as

e

H

(F ) = max

s

H

(F )

3

�s�

2s

H

(F )

3

min fjÆGj : G � F; jGj = sg

variables/nodes

representatives


lauses/edges

Figure 1: System of distin
t representatives

Hall's Theorem allows us to get lower bounds on s

H

(F ) for random hypergraphs:

Theorem 2 (Hall's Theorem) A hypergraph F has a system of distin
t representatives i� every

subgraph of F has density at most 1.

The expansion of a hypergraph F is also related to the densities of its subgraphs, so we 
an analyze

both s

H

(F ) and e

H

(F ) by looking at the density of subgraphs of F .

Having de�ned s(F ) and s

H

(F ), we 
an now 
ompare them:

� s(F ): the size of the minimum subset of F that is unsatis�able (F is an unsatis�able k-CNF

formula).

� s

H

(F ): the size of the minimum subset of F that has no system of distin
t representatives

(F is the underlying hypergraph of a k-CNF formula).
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It is easy to see that if the underlying hypergraph of a k-CNF formula has a system of distin
t

representatives, then the 
orresponding k-CNF formula is satis�able and a satisfying assignment


an be obtained by setting ea
h representative to satisfy the 
lause whi
h it represents. With this

translation s

H

(F ) � s(F ) and e

H

(F ) � e(F ).

Lemma 3 If F � F

k

n;�

, then almost 
ertainly

1. s(F ) = 


�

n

�

1=(k�2)

�

, and

2. e(F ) = 


�

n

�

2=(k�2)+�

�

for any � > 0.

Proof The proof of this lemma is based on the fa
t that a k-uniform hypergraph of density bounded

below

2

k

, say

2

k

��, has average degree bounded below 2. Given a k-uniform hypergraph with density

bounded below

2

k

, we �rst prove that a 
onstant fra
tion of its nodes are in its boundary.

Assume that Æ is the fra
tion of variables (nodes) that are not in the boundary, V is the number

of variables (nodes), and E is the number of hyperedges (
lauses). Using the fa
t that the average

degree of this hypergraph is bounded below 2, and its density is bounded below

2

k

, we have:

E

V

= (

2

k

� �)

2ÆV + (1� Æ)V � kE � k(

2

k

� �)V

Therefore,

Æ � 1� k�

and,

k� � 1� Æ

Thus, a 
onstant fra
tion of variables (nodes) are in the boundary.

Fix a set S of verti
es/variables of size r. The probability p that a single edge/
lause lands in

S is at most (r=n)

k

. Therefore the probability that S 
ontains at least q edges is at most

Pr[B(�n; p) � q℄ �

�

e�np

q

�

q

�

�

e�r

k�1

n

k�1

�

q

To get a bound on s(F ), we apply this for q = r + 1 for all r up to s using union bound:

Pr[s(F ) � s℄ �

s

X

r=k

�

n

r

��

e�r

k�1

n

k�1

�

r+1

�

s

X

r=k

�

ne

r

�

r

�

e�r

k�1

n

k�1

�

r+1

�

s

X

r=k

�

e

2

�r

k�2

n

k�2

�

r+1
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This quantity is o(1) in n for s = O(n=�

1=(k�2)

). In a similar way, we get a bound on e(F ) by

summing the probability for q = 2r=(k + �

0

) for all r between s=3 and 2s=3.

Pr[e(F ) � s℄ �

2s=3

X

r=s=3

�

n

r

��

e�r

k�1

n

k�1

�

2r=(k+�

0

)

�

2s=3

X

r=s=3

�

ne

r

�

r

�

e�r

k�1

n

k�1

�

2r=(k+�

0

)

�

2s=3

X

r=s=3

 

e

1+(k+�

0

)=2

�r

k�1�(k+�

0

)=2

n

k�1�(k+�

0

)=2

!

2r=(k+�

0

)

This is o(1) in n for s = �(n=�

2=(k�2��

0

)

).

2 Open Problems

In this le
ture and the previous le
ture, we showed:

� For suÆ
iently large n, any Resolution refutation of PHP

n+1

n

requires exponential size (i.e.,

2

n=20

).

� For suÆ
iently large n, any Resolution refutation of formula F su
h that F 2 F

k

n;�

requires

exponential size.

A problem whi
h was open for a long time was to prove exponential lower bounds for the

pigeonhole prin
iple, PHP

m

n

, where the number of pigeons, m, is large (say n

5

). More pre
isely,

�nd an � su
h that:

8m any Resolution Proof of PHP

m

n

requires size of 2

o(n

�

)

When m is signi�
antly larger than n, we have more 
lauses, and intuitively the formula is

more unsatis�able, therefore we might be able to get shorter Resolution proofs. Ran Raz has

re
ently proven the above theorem for � = 1=10. His result was further improved and simpli�ed by

Razborov.

In the other dire
tion, it is known that PHP

m

n

has quasi-polynomial size depth 2 Frege proofs

for m � (1 + �)n. For m = n+ n=polylogn, superpolynomial bounded-depth Frege lower bounds

have been proven re
ently by (Beame, Buresh-Oppenheim, Pitassi, Raz and Sabharwal). But for

m = 2n it is it is not known whether polynomial-size AC

0

-Frege proofs of PHP

m

n

are possible.

3 Automatizability and Proof Sear
h for Resolution

Bounding the size of proof systems is useful in relation to the goal of proving NP 6=
oNP. The

proof system de�nition, however, does not say anything about how 
ostly is to �nd a short proof

in the given proof system. Whereas short proofs might exists, �nding them may not be easy.
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Here, we want to prove lower bounds on the hardness of �nding short Resolution refutations

of a given unsatis�able CNF formula f . The problem 
an be stated pre
isely as the following

optimization problem for any proof system P :

De�nition [Optimization Problem asso
iated with proof system P ℄

Minimum Length Proof (MLP

P

)

Instan
e: A propositional formula f whi
h is a tautology.

Solution: A P -proof of f .

Obje
tive: Minimize the size of the proof.

Here, we are interested in �nding Resolution refutations qui
kly. Therefore we 
onsider the

following problem:

De�nition [Optimization Problem asso
iated with Resolution℄

Minimum Length Proof (MLP

Res

)

Instan
e: A propositional formula f whi
h is unsatis�able.

Solution: A Res-proof of f .

Obje
tive: Minimize the size of the refutation.

We shall only dis
uss algorithms that are polynomial time in the size of the shortest proof of

the input. A proof system P is automatizable if:

De�nition A proof system P is automatizable if there is a polynomial-time algorithm that

approximates MLP

P

to within a polynomial fa
tor.

In 1995, Samuel Buss proved that for a parti
ular Frege system F

1

, MLP

F

1

is NP-hard. In

1997, Iwama proved that it is NP-hard to �nd the shortest Resolution refutation. In other words,

Iwama proved that MLP

Res

is NP-hard. In 1998, Alekhnovi
h, Buss, Moran, and Pitassi proved

that:

� If P 6=NP, then there is no polytime approximation s
heme for MLP

P

, and

� If NP * QP then there is no polytime algorithm to approximate MLP

P

to within a fa
tor

of 2

log

1��

n

for any �.

Noti
e that P 
an be almost any proof system: Frege, Extended Frege, Sequent Cal
uls, Cut-

free sequent 
al
ulus, Resolution, Polynomial 
al
ulus, . . . , in tree-like or dag-like form.

In 2001, Alekhnovi
h and Razborov showed that neither general Resolution nor tree-like Res-

olution is automatizable unless the 
lass W[P℄ from the hierar
hy of parameterized problems is

�xed-parameter tra
table by randomized algorithms with one-side error. A less te
hni
al restate-

ment of this result is that if Resolution is automatizable then we 
an solve the Clique problem (or

a problem of the same 
lass as the Clique problem) in time f(k)n

O(1)

instead of n

k

.

We now introdu
e the Monotone Minimum Satisfying Assignment problem and dis
uss the

relevant prior results about the hardness of approximating NP-optimization problems.
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De�nition

Monotone Minimum Satisfying Assignment (MMSA)

Instan
e: A monotone formula '(x

1

; : : : ; x

n

) over the basis f^;_g.

Solution: A truth assignment � su
h that '(�) = 1.

Obje
tive: Minimize the number of 1's in � .

The Hardness Theorem for Resolution proof system is stated as follows:

Theorem 4 (Hardness Theorem)

a. If P 6= NP, then there is no polynomial time algorithm whi
h 
an approximate MLP

Res

to

within a 
onstant fa
tor.

b. If NP * QP, then there is no polynomial time algorithm whi
h 
an approximate MLP

Res

to

within a fa
tor of 2

log

(1��)

n

for any �.

These hardness results apply to both dag-like and tree-like Resolution. To prove Hardness The-

orem, we shall redu
e the Monotone Minimum Satisfying Assignment problem (MMSA) to Mini-

mum Length Resolution Refutation problems (MLP

Res

). We give polynomial-time approximation-

preserving redu
tions from MMSA to MLP.

Let '(x

1

; :::; x

k

) be an instan
e of MMSA, j'j = n. Enumerate the subformulas of ' as '

1

,. . . ,

'

l

, where the input variables are �rst in the enumeration and where ea
h '

i

is listed only after all

of its own subformulas are enumerated, and thus '

l

is '. Obviously the number l of subformulas

is less than the number of symbols n in '. We introdu
e new propositional variables y

1

; :::; y

l

, and

de�ne the set �

'

to 
ontain the following 
lauses:

a. The 
lause fy

l

g is in �

'

.

b. For ea
h i � l, if '

i

is ('

j

^ '

k

), then the 
lause fy

j

; y

k

; y

i

g is in �

'

.


. For ea
h i � l, if '

i

is ('

j

_ '

k

), then 
lauses fy

j

; y

i

g and fy

k

; y

i

g are in �

'

.

The above 
lauses des
ribe the evaluation of '; however, note that they say nothing about

the truth of the input variables x

1

: : : x

p

of '. For ea
h variable x

i

of ', we introdu
e new

variables x

i;j

for j = 1; 2; : : : ;m, and further in
lude in �

'

the following 
lauses:

d. For ea
h i � p, the 
lauses fx

i;1

g and fx

i;m

; y

i

g and

fx

i;j

; x

i;j+1

g for j = 1; : : : ;m� 1

are in
luded in �

'

. These 
lauses are said to be asso
iated with x

i

.

That 
ompletes the de�nition of �

'

. Informally, �

'

asserts that there exists a truth-evaluation

to all subformulas of ' su
h that: the truth evaluation given to the output formula is 0, the

truth evaluation given to all input variables is 1, and the truth evaluation is 
onsistent with all

intermediate gate values. Clearly, this is an unsatis�able formula sin
e ' is monotone.
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^

^

_
y

4

y

6

y

5

y

1

y

2

' :

(�y

6

)

(�y

4

�y

5

y

6

)

(x

21

) (�x

21

x

22

) : : : (�x

2m

y

2

)

(x

11

) (�x

11

x

12

) : : : (�x

1m

y

1

)

�

'

:

(�y

1

y

4

) (�y

2

y

4

)

(�y

1

�y

3

y

5

)

(x

31

) (�x

31

x

32

) : : : (�x

3m

y

3

)


. �

x

1

x

2

x

3

x

1

!

!

y

3

y

1

3-Phase Refutation:

a. (�y

4

�y

5

); (�y

1

�y

5

); (�y

1

�y

3

)

b. (y

1

); (y

2

); (y

3

)

Figure 2: An example of MMSA problem

Example An example is given in Figure 2. �

'

is the formula asso
iated with ', and is polynomial

in the size of '. To refute ', if we start the proof from bottom to the top then the size of the

Resolution would be nm+n (the worst 
ase). To make the proof shorter, we 
an do the Resolution

proof from top to bottom. In this way, we 
an improve the size of Resolution refutation to km+n.

Lemma 5 Let ' be an instan
e of Monotone Minimum Satisfying Assignment and let � equal the


ardinality of the minimum satisfying assignment for '. �

'

has a tree-like Resolution refutation

with O(�m+ n) 
lauses.

Proof Let I � fx

1

; : : : ; x

p

g spe
ify a satisfying assignment for ' of 
ardinality �. We use a

top-down pro
edure to generate the refutation. The �rst phase of the refutation starts with the


lause fy

l

g and derives su

essively 
lauses of the form fy

k

1

; y

k

2

; : : : ; y

k

r

g with k

1

> k

2

> : : : > k

r

.

Su
h a 
lause is resolved with one of the (at most two) 
lauses that 
ontain y

k

1

positively. This


ontinues until we have a 
lause whi
h 
ontains only literals y

i


orresponding to input x

i

of '. It

is possible to do this so that the remaining 
lause is just fy

i

: x

i

2 Ig. For the se
ond phase of

the refutation, derive the 
lauses fy

i

g, for x

i

2 I, with �m steps, and for the third phases, use �

resolutions to derive the empty 
lause.

There are obviously O(n) steps in the �rst and third phases of the derivation, so the whole

refutation has O(�m+ n) steps.

Lemma 6 Let ' and � be as above. Then any resolution refutation must have at least �m 
lauses.
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Proof Let R be a Resolution refutation. An input variable x

i

is de�ned to be R-analyzed if every

one of the (m+ 1)-
lauses asso
iated with x

i

is used in the refutation R. Obviously it will suÆ
e

to prove that at least � input variables are R-analyzed. In fa
t, if I is de�ned to equal the set of

R-analyzed variables, then I implies a satisfying assignment for '.

This last fa
t is almost immediate. To prove it formally, we de�ne a truth assignment � as

follows: (1) � assigns truth values to variables y

i

a

ording to the value I assigns to '

i

(2) � assigns

True to x

i;k

i� ea
h 
lause fx

i;1

g and fx

i;j

; x

i;j+1

g for 1 � j < k is used in R. If I doesn't satisfy

', then � would satisfy all the 
lauses used in the refutation R, whi
h is impossible. Therefore, I

is a satisfying assignment for '.

Using lemma 5 and lemma 6, we 
an prove that MMSA 
annot be �-approximated, unless

P=NP. This immediately implies Theorem 4 Part a.
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