CS 2429 - Propositional Proof Complexity Lecture #5: 10 October 2002

CS 2429 - Propositional Proof Complexity
Lecture #5: 10 October 2002

Lecturer: Toniann Pitassi

Scribe Notes by: Shiva Nejati

In the previous lecture, we introduced a lower bound on the length of Resolution proofs for the
pigeonhole principle. We then talked about the width vs. size of tree-like resolution, and resolution
proofs based on the width-size relationship.

In this lecture, we first show a lower bound on the length of Resolution proofs for random
formulas. Intuitively, these formulas should be hard to prove because they simply have no structure
that can be exploited to get a really short proof. We then bring up some open problems about the
lower bound of Resolution proofs. Finally, we will talk about automatizability and proof search for
Resolution.

1 Random k£-CNF Formulas

Define a random distribution F,'f A on the set of k-CNF formulas in n variables by choosing m = An
clauses independently and uniformly from among the 2% (Z) clauses of length k. A here is density
of the formula. For F' chosen from this distribution we write F' ~ FT’f A- It is conjectured that the
typical satisfiability properties of such random k-CNF formulas are determined by a sharp density
threshold. Random formulas with density more than the threshold are asymptotically almost
surely (a.a.s.) unsatisfiable, whereas those with density below the threshold are a.a.s. satisfiable.
For example, for kK = 3 it can be shown that if there are more than 5n clauses then a random
3-CNF is almost certainly unsatisfiable, and less than 2n clauses is almost certainly satisfiable,
although the exact constant (which seems to be around 4.2 empirically) has not been determined.
For random formulas whose density is not too large, we can show that any Resolution proofs of
their unsatisfiability are almost surely super-polynomial, as stated more precisely in the following
theorem:

Theorem 1 For F' ~ F/f,A, almost certainly for any € > 0,
1. Any Davis-Putnam (DLL) proof of F requires size at least 2 82/(F=2)+<
2. Any resolution proof of F' requires size at least 2%/ (k=2+e

This result implies that random k-CNF formulas are provably hard for the most common proof
search procedures which are DLL type. In fact, this hardness extends well beyond the threshold.
Even at density A = n!/?, current algorithms for random 3-CNF have qualitatively the same
asymptotic complexity as the best known factoring algorithms, for example.

CS 2429 - Propositional Proof Complexity Lecture #5: 10 October 2002

The proof of this theorem is based on properties of random hypergraphs. We associate each
formula to a hypergraph. A k-CNF formula can be associated with hypergraphs in a natural way,
where each variable becomes a vertex and each clause becomes a hyperedge. This mapping discards
the distinction between a variable and its negation, but is sufficient for proving useful results.

In the previous lecture, we defined sub-critical expansion of a set of clauses F' as follows:

e(F)= max min {|0G|: G C F,|G| = s}
) g 28UF)
3 ="— 3

We showed that all boundary variables of a set of clauses G appear in a clause C* such that
G =p C*. We now define the sub-critical expansion of a hypergraph. Let F' be a hypergraph.
Denote by 6 F the boundary of F', which is the set of degree 1 vertices of F'. The density of F' is
the ratio of the number of hyperedges to the number of vertices. We say that a subset of F' has a
system of distinct representatives (see Figure 1) iff with each hyperedge in F', we can associate a
unique vertex (a representative) belonging to that hyperedge. In Figure 1, it is easy to see that the
black nodes or representatives can independently be set to true or false in a way that makes the
whole formula true. Let sy (F') be the size of minimum subset of F' that does not have a system of
distinct representatives. Define the subcritical expansion ey (F'), where F' is a hypergraph, as

eg(F) = max min {|0G|: G C F,|G| = s}

sy (F) 2sp (F)
I B

variables/nodes o

representatives @

clauses/edges Q

Figure 1: System of distinct representatives

Hall’s Theorem allows us to get lower bounds on sy (F') for random hypergraphs:

Theorem 2 (Hall’s Theorem) A hypergraph F has a system of distinct representatives iff every
subgraph of F has density at most 1.

The expansion of a hypergraph F' is also related to the densities of its subgraphs, so we can analyze
both sy (F) and ey (F') by looking at the density of subgraphs of F.
Having defined s(F') and sy (F), we can now compare them:

e s(F): the size of the minimum subset of F' that is unsatisfiable (F is an unsatisfiable k-CNF
formula).

e si(F): the size of the minimum subset of F' that has no system of distinct representatives
(F is the underlying hypergraph of a k-CNF formula).

CS 2429 - Propositional Proof Complexity Lecture #5: 10 October 2002

It is easy to see that if the underlying hypergraph of a k-CNF formula has a system of distinct
representatives, then the corresponding k-CNF formula is satisfiable and a satisfying assignment
can be obtained by setting each representative to satisfy the clause which it represents. With this
translation sy (F) < s(F) and ey (F) < e(F).

Lemma 3 If F ~ Fy’f,m then almost certainly
1. s(F) = (5=) and

2. e(F)=Q (W) for any € > 0.

Proof The proof of this lemma is based on the fact that a k-uniform hypergraph of density bounded
below %, say %—e, has average degree bounded below 2. Given a k-uniform hypergraph with density
bounded below %, we first prove that a constant fraction of its nodes are in its boundary.

Assume that 0 is the fraction of variables (nodes) that are not in the boundary, V' is the number
of variables (nodes), and F is the number of hyperedges (clauses). Using the fact that the average
degree of this hypergraph is bounded below 2, and its density is bounded below %, we have:

%v+u—®vnggM%—av

Therefore,
0<1-—ke

and,

ke <1-9

Thus, a constant fraction of variables (nodes) are in the boundary.
Fix a set S of vertices/variables of size r. The probability p that a single edge/clause lands in
S is at most (r/n)*. Therefore the probability that S contains at least ¢ edges is at most

eAnp\? eArk—1\1
Pr[B(An,p) > q] < (7) < <W

To get a bound on s(F'), we apply this for ¢ = r 4+ 1 for all up to s using union bound:

LI DS (n) (%yﬂ

<
r=k
°L smeNT [eArkl i
< 2 () ()
r==k
s 62A’rk—2 r+1
< ()
r=Fk

CS 2429 - Propositional Proof Complexity Lecture #5: 10 October 2002

This quantity is o(1) in n for s = O(n/AY#=2), In a similar way, we get a bound on e(F) by
summing the probability for ¢ = 2r/(k + €’) for all r between s/3 and 2s/3.

2'=>’/3 k—1y 2r/(k+¢€)
n eAr
Prle(F) <s] < (7“) (o)
r=s/3
2s/3 o 2/ (k+¢')
= (7) ()
r=s/3
25/3 k)2 g k1= ()2 | 2)
S nk—1=(k+¢)/2
r= 3/3

This is o(1) in n for s = O(n/A2/(k—2-€)),

2 Open Problems

In this lecture and the previous lecture, we showed:

e For sufficiently large n, any Resolution refutation of PHPZH requires exponential size (i.e.,
271/20)‘

e For sufficiently large n, any Resolution refutation of formula F' such that F € Fff A requires
exponential size.

A problem which was open for a long time was to prove exponential lower bounds for the
pigeonhole principle, PHP'™, where the number of pigeons, m, is large (say n®). More precisely,
find an € such that:

Vm any Resolution Proof of PHP] requires size of 20(n)

When m is significantly larger than n, we have more clauses, and intuitively the formula is
more unsatisfiable, therefore we might be able to get shorter Resolution proofs. Ran Raz has
recently proven the above theorem for e = 1/10. His result was further improved and simplified by
Razborov.

In the other direction, it is known that PHP]"' has quasi-polynomial size depth 2 Frege proofs
for m > (1 + €)n. For m = n + n/polylogn, superpolynomial bounded-depth Frege lower bounds
have been proven recently by (Beame, Buresh-Oppenheim, Pitassi, Raz and Sabharwal). But for
m = 2n it is it is not known whether polynomial-size AC’-Frege proofs of PHP!" are possible.

3 Automatizability and Proof Search for Resolution

Bounding the size of proof systems is useful in relation to the goal of proving NP#coNP. The
proof system definition, however, does not say anything about how costly is to find a short proof
in the given proof system. Whereas short proofs might exists, finding them may not be easy.

CS 2429 - Propositional Proof Complexity Lecture #5: 10 October 2002

Here, we want to prove lower bounds on the hardness of finding short Resolution refutations
of a given unsatisfiable CNF formula f. The problem can be stated precisely as the following
optimization problem for any proof system P:

Definition [Optimization Problem associated with proof system P]
Minimum Length Proof (MLPp)

Instance: A propositional formula f which is a tautology.

Solution: A P-proof of f.

Objective: Minimize the size of the proof.

Here, we are interested in finding Resolution refutations quickly. Therefore we consider the
following problem:

Definition [Optimization Problem associated with Resolution]
Minimum Length Proof (MLPges)

Instance: A propositional formula f which is unsatisfiable.
Solution: A Res-proof of f.

Objective: Minimize the size of the refutation.

We shall only discuss algorithms that are polynomial time in the size of the shortest proof of
the input. A proof system P is automatizable if:

Definition A proof system P is automatizable if there is a polynomial-time algorithm that
approximates MLPp to within a polynomial factor.

In 1995, Samuel Buss proved that for a particular Frege system Fj, MLPp, is NP-hard. In
1997, Iwama proved that it is NP-hard to find the shortest Resolution refutation. In other words,
Iwama proved that MLPpges is NP-hard. In 1998, Alekhnovich, Buss, Moran, and Pitassi proved
that:

e [f P NP, then there is no polytime approximation scheme for MLPp, and

o If NP ¢ QP then there is no polytime algorithm to approximate MLPp to within a factor
of 209" " for any e.

Notice that P can be almost any proof system: Frege, Extended Frege, Sequent Calculs, Cut-
free sequent calculus, Resolution, Polynomial calculus, ..., in tree-like or dag-like form.

In 2001, Alekhnovich and Razborov showed that neither general Resolution nor tree-like Res-
olution is automatizable unless the class W[P] from the hierarchy of parameterized problems is
fixed-parameter tractable by randomized algorithms with one-side error. A less technical restate-
ment of this result is that if Resolution is automatizable then we can solve the Clique problem (or
a problem of the same class as the Clique problem) in time f(k)n°() instead of nF.

We now introduce the Monotone Minimum Satisfying Assignment problem and discuss the
relevant prior results about the hardness of approximating NP-optimization problems.

CS 2429 - Propositional Proof Complexity Lecture #5: 10 October 2002

Definition
Monotone Minimum Satisfying Assignment (MMSA)
Instance: A monotone formula ¢(z1,...,z,) over the basis {A, V}.

Solution: A truth assignment 7 such that ¢(7) = 1.
Objective: Minimize the number of 1’s in 7.

The Hardness Theorem for Resolution proof system is stated as follows:

Theorem 4 (Hardness Theorem)

a. If P # NP, then there is no polynomial time algorithm which can approximate MLPRes to
within a constant factor.

b. If NP ¢ QP, then there is no polynomial time algorithm which can approzimate MLPpes to
within a factor of 9logt=In for any e.

These hardness results apply to both dag-like and tree-like Resolution. To prove Hardness The-
orem, we shall reduce the Monotone Minimum Satisfying Assignment problem (MMSA) to Mini-
mum Length Resolution Refutation problems (MLPgs). We give polynomial-time approximation-
preserving reductions from MMSA to MLP.

Let ¢(z1,...,z) be an instance of MMSA, |p| = n. Enumerate the subformulas of ¢ as ¢,...,
1, where the input variables are first in the enumeration and where each ¢; is listed only after all
of its own subformulas are enumerated, and thus ¢; is ¢. Obviously the number [of subformulas
is less than the number of symbols n in ¢. We introduce new propositional variables vy, ..., y;, and
define the set [',, to contain the following clauses:

a. The clause {g;} is in I',,.
b. For each i <1, if ¢; is (¢, A ¢y), then the clause {77, Uk, vi} is in 'y,

c. For each i <1, if ¢; is (¢; V ¢x), then clauses {77, y;} and {7, y;} are in I',.

The above clauses describe the evaluation of ¢; however, note that they say nothing about
the truth of the input variables z; ...z, of ¢. For each variable x; of ¢, we introduce new
variables z; ; for j = 1,2,...,m, and further include in I', the following clauses:

d. For each i < p, the clauses {z;;} and {Z;,,y;} and

{m7$i;j+1} f07“j=1,...,m—1
are included in I',. These clauses are said to be associated with z;.

That completes the definition of I'y,. Informally, I';, asserts that there exists a truth-evaluation
to all subformulas of ¢ such that: the truth evaluation given to the output formula is 0, the
truth evaluation given to all input variables is 1, and the truth evaluation is consistent with all
intermediate gate values. Clearly, this is an unsatisfiable formula since ¢ is monotone.

CS 2429 - Propositional Proof Complexity Lecture #5: 10 October 2002

@ Z/6
ys(v) (D Ys

ejeele
Yr Y2 Y1 Y3

r11) (Tu 212) -+ (Tim 1)
T21) (To1 T22) - (Tom ¥2)
T31) (Ts1 32) - (Tam ¥s)

N N N~

3-Phase Refutation:

a. (Ja Us), (U1 Us), (U1 Ua)
b./(\yl), (y2), (y3)

Figure 2: An example of MMSA problem

Example An example is given in Figure 2. Iy, is the formula associated with ¢, and is polynomial
in the size of p. To refute ¢, if we start the proof from bottom to the top then the size of the
Resolution would be nm +n (the worst case). To make the proof shorter, we can do the Resolution
proof from top to bottom. In this way, we can improve the size of Resolution refutation to km + n.

Lemma 5 Let ¢ be an instance of Monotone Minimum Satisfying Assignment and let p equal the
cardinality of the minimum satisfying assignment for ¢. L'y, has a tree-like Resolution refutation
with O(pm + n) clauses.

Proof Let I C {zi,...,z,} specify a satisfying assignment for ¢ of cardinality p. We use a
top-down procedure to generate the refutation. The first phase of the refutation starts with the
clause {7;} and derives successively clauses of the form {Ug,, Uy, .-, Uk, } with k1 > ko > ... > k.
Such a clause is resolved with one of the (at most two) clauses that contain yy, positively. This
continues until we have a clause which contains only literals 7; corresponding to input z; of . It
is possible to do this so that the remaining clause is just {7; : z; € I'}. For the second phase of
the refutation, derive the clauses {y;}, for z; € I, with pm steps, and for the third phases, use p
resolutions to derive the empty clause.

There are obviously O(n) steps in the first and third phases of the derivation, so the whole
refutation has O(pm + n) steps.

Lemma 6 Let ¢ and p be as above. Then any resolution refutation must have at least pm clauses.

CS 2429 - Propositional Proof Complexity Lecture #5: 10 October 2002

Proof Let R be a Resolution refutation. An input variable z; is defined to be R-analyzed if every
one of the (m + 1)-clauses associated with z; is used in the refutation R. Obviously it will suffice
to prove that at least p input variables are R-analyzed. In fact, if I is defined to equal the set of
R-analyzed variables, then I implies a satisfying assignment for ¢.

This last fact is almost immediate. To prove it formally, we define a truth assignment 7 as
follows: (1) 7 assigns truth values to variables y; according to the value I assigns to ¢; (2) T assigns
True to z; iff each clause {z;1} and {T;j, z; 41} for 1 < j < k is used in R. If I doesn’t satisfy
@, then 7 would satisfy all the clauses used in the refutation R, which is impossible. Therefore, I
is a satisfying assignment for ¢.

Using lemma 5 and lemma 6, we can prove that MMSA cannot be e-approximated, unless
P=NP. This immediately implies Theorem 4 Part a.

