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In the previous leture, we introdued a lower bound on the length of Resolution proofs for the

pigeonhole priniple. We then talked about the width vs. size of tree-like resolution, and resolution

proofs based on the width-size relationship.

In this leture, we �rst show a lower bound on the length of Resolution proofs for random

formulas. Intuitively, these formulas should be hard to prove beause they simply have no struture

that an be exploited to get a really short proof. We then bring up some open problems about the

lower bound of Resolution proofs. Finally, we will talk about automatizability and proof searh for

Resolution.

1 Random k-CNF Formulas

De�ne a random distribution F

k

n;�

on the set of k-CNF formulas in n variables by hoosingm = �n

lauses independently and uniformly from among the 2

k

�

n

k

�

lauses of length k. � here is density

of the formula. For F hosen from this distribution we write F � F

k

n;�

. It is onjetured that the

typial satis�ability properties of suh random k-CNF formulas are determined by a sharp density

threshold. Random formulas with density more than the threshold are asymptotially almost

surely (a.a.s.) unsatis�able, whereas those with density below the threshold are a.a.s. satis�able.

For example, for k = 3 it an be shown that if there are more than 5n lauses then a random

3-CNF is almost ertainly unsatis�able, and less than 2n lauses is almost ertainly satis�able,

although the exat onstant (whih seems to be around 4:2 empirially) has not been determined.

For random formulas whose density is not too large, we an show that any Resolution proofs of

their unsatis�ability are almost surely super-polynomial, as stated more preisely in the following

theorem:

Theorem 1 For F � F

k

n;�

, almost ertainly for any � > 0,

1. Any Davis-Putnam (DLL) proof of F requires size at least 2

n

�

2=(k�2)+�

.

2. Any resolution proof of F requires size at least 2

n

�

4=(k�2)+�

.

This result implies that random k-CNF formulas are provably hard for the most ommon proof

searh proedures whih are DLL type. In fat, this hardness extends well beyond the threshold.

Even at density � = n

1=3

, urrent algorithms for random 3-CNF have qualitatively the same

asymptoti omplexity as the best known fatoring algorithms, for example.
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The proof of this theorem is based on properties of random hypergraphs. We assoiate eah

formula to a hypergraph. A k-CNF formula an be assoiated with hypergraphs in a natural way,

where eah variable beomes a vertex and eah lause beomes a hyperedge. This mapping disards

the distintion between a variable and its negation, but is suÆient for proving useful results.

In the previous leture, we de�ned sub-ritial expansion of a set of lauses F as follows:

e(F ) = max

s(F )

3

�s�

2s(F )

3

min fjÆGj : G � F; jGj = sg

We showed that all boundary variables of a set of lauses G appear in a lause C

�

suh that

G )

P

C

�

. We now de�ne the sub-ritial expansion of a hypergraph. Let F be a hypergraph.

Denote by ÆF the boundary of F , whih is the set of degree 1 verties of F . The density of F is

the ratio of the number of hyperedges to the number of verties. We say that a subset of F has a

system of distint representatives (see Figure 1) i� with eah hyperedge in F , we an assoiate a

unique vertex (a representative) belonging to that hyperedge. In Figure 1, it is easy to see that the

blak nodes or representatives an independently be set to true or false in a way that makes the

whole formula true. Let s

H

(F ) be the size of minimum subset of F that does not have a system of

distint representatives. De�ne the subritial expansion e

H

(F ), where F is a hypergraph, as

e

H

(F ) = max

s

H

(F )

3

�s�

2s

H

(F )

3

min fjÆGj : G � F; jGj = sg

variables/nodes

representatives

lauses/edges

Figure 1: System of distint representatives

Hall's Theorem allows us to get lower bounds on s

H

(F ) for random hypergraphs:

Theorem 2 (Hall's Theorem) A hypergraph F has a system of distint representatives i� every

subgraph of F has density at most 1.

The expansion of a hypergraph F is also related to the densities of its subgraphs, so we an analyze

both s

H

(F ) and e

H

(F ) by looking at the density of subgraphs of F .

Having de�ned s(F ) and s

H

(F ), we an now ompare them:

� s(F ): the size of the minimum subset of F that is unsatis�able (F is an unsatis�able k-CNF

formula).

� s

H

(F ): the size of the minimum subset of F that has no system of distint representatives

(F is the underlying hypergraph of a k-CNF formula).
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It is easy to see that if the underlying hypergraph of a k-CNF formula has a system of distint

representatives, then the orresponding k-CNF formula is satis�able and a satisfying assignment

an be obtained by setting eah representative to satisfy the lause whih it represents. With this

translation s

H

(F ) � s(F ) and e

H

(F ) � e(F ).

Lemma 3 If F � F

k

n;�

, then almost ertainly

1. s(F ) = 


�

n

�

1=(k�2)

�

, and

2. e(F ) = 


�

n

�

2=(k�2)+�

�

for any � > 0.

Proof The proof of this lemma is based on the fat that a k-uniform hypergraph of density bounded

below

2

k

, say

2

k

��, has average degree bounded below 2. Given a k-uniform hypergraph with density

bounded below

2

k

, we �rst prove that a onstant fration of its nodes are in its boundary.

Assume that Æ is the fration of variables (nodes) that are not in the boundary, V is the number

of variables (nodes), and E is the number of hyperedges (lauses). Using the fat that the average

degree of this hypergraph is bounded below 2, and its density is bounded below

2

k

, we have:

E

V

= (

2

k

� �)

2ÆV + (1� Æ)V � kE � k(

2

k

� �)V

Therefore,

Æ � 1� k�

and,

k� � 1� Æ

Thus, a onstant fration of variables (nodes) are in the boundary.

Fix a set S of verties/variables of size r. The probability p that a single edge/lause lands in

S is at most (r=n)

k

. Therefore the probability that S ontains at least q edges is at most

Pr[B(�n; p) � q℄ �

�

e�np

q

�

q

�

�

e�r

k�1

n

k�1

�

q

To get a bound on s(F ), we apply this for q = r + 1 for all r up to s using union bound:

Pr[s(F ) � s℄ �

s

X

r=k

�

n

r

��

e�r

k�1

n

k�1

�

r+1

�

s

X

r=k

�

ne

r

�

r

�

e�r

k�1

n

k�1

�

r+1

�

s

X

r=k

�

e

2

�r

k�2

n

k�2

�

r+1
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This quantity is o(1) in n for s = O(n=�

1=(k�2)

). In a similar way, we get a bound on e(F ) by

summing the probability for q = 2r=(k + �

0

) for all r between s=3 and 2s=3.

Pr[e(F ) � s℄ �

2s=3

X

r=s=3

�

n

r

��

e�r

k�1

n

k�1

�

2r=(k+�

0

)

�

2s=3

X

r=s=3

�

ne

r

�

r

�

e�r

k�1

n

k�1

�

2r=(k+�

0

)

�

2s=3

X

r=s=3

 

e

1+(k+�

0

)=2

�r

k�1�(k+�

0

)=2

n

k�1�(k+�

0

)=2

!

2r=(k+�

0

)

This is o(1) in n for s = �(n=�

2=(k�2��

0

)

).

2 Open Problems

In this leture and the previous leture, we showed:

� For suÆiently large n, any Resolution refutation of PHP

n+1

n

requires exponential size (i.e.,

2

n=20

).

� For suÆiently large n, any Resolution refutation of formula F suh that F 2 F

k

n;�

requires

exponential size.

A problem whih was open for a long time was to prove exponential lower bounds for the

pigeonhole priniple, PHP

m

n

, where the number of pigeons, m, is large (say n

5

). More preisely,

�nd an � suh that:

8m any Resolution Proof of PHP

m

n

requires size of 2

o(n

�

)

When m is signi�antly larger than n, we have more lauses, and intuitively the formula is

more unsatis�able, therefore we might be able to get shorter Resolution proofs. Ran Raz has

reently proven the above theorem for � = 1=10. His result was further improved and simpli�ed by

Razborov.

In the other diretion, it is known that PHP

m

n

has quasi-polynomial size depth 2 Frege proofs

for m � (1 + �)n. For m = n+ n=polylogn, superpolynomial bounded-depth Frege lower bounds

have been proven reently by (Beame, Buresh-Oppenheim, Pitassi, Raz and Sabharwal). But for

m = 2n it is it is not known whether polynomial-size AC

0

-Frege proofs of PHP

m

n

are possible.

3 Automatizability and Proof Searh for Resolution

Bounding the size of proof systems is useful in relation to the goal of proving NP 6=oNP. The

proof system de�nition, however, does not say anything about how ostly is to �nd a short proof

in the given proof system. Whereas short proofs might exists, �nding them may not be easy.

4



CS 2429 - Propositional Proof Complexity Leture #5: 10 Otober 2002

Here, we want to prove lower bounds on the hardness of �nding short Resolution refutations

of a given unsatis�able CNF formula f . The problem an be stated preisely as the following

optimization problem for any proof system P :

De�nition [Optimization Problem assoiated with proof system P ℄

Minimum Length Proof (MLP

P

)

Instane: A propositional formula f whih is a tautology.

Solution: A P -proof of f .

Objetive: Minimize the size of the proof.

Here, we are interested in �nding Resolution refutations quikly. Therefore we onsider the

following problem:

De�nition [Optimization Problem assoiated with Resolution℄

Minimum Length Proof (MLP

Res

)

Instane: A propositional formula f whih is unsatis�able.

Solution: A Res-proof of f .

Objetive: Minimize the size of the refutation.

We shall only disuss algorithms that are polynomial time in the size of the shortest proof of

the input. A proof system P is automatizable if:

De�nition A proof system P is automatizable if there is a polynomial-time algorithm that

approximates MLP

P

to within a polynomial fator.

In 1995, Samuel Buss proved that for a partiular Frege system F

1

, MLP

F

1

is NP-hard. In

1997, Iwama proved that it is NP-hard to �nd the shortest Resolution refutation. In other words,

Iwama proved that MLP

Res

is NP-hard. In 1998, Alekhnovih, Buss, Moran, and Pitassi proved

that:

� If P 6=NP, then there is no polytime approximation sheme for MLP

P

, and

� If NP * QP then there is no polytime algorithm to approximate MLP

P

to within a fator

of 2

log

1��

n

for any �.

Notie that P an be almost any proof system: Frege, Extended Frege, Sequent Caluls, Cut-

free sequent alulus, Resolution, Polynomial alulus, . . . , in tree-like or dag-like form.

In 2001, Alekhnovih and Razborov showed that neither general Resolution nor tree-like Res-

olution is automatizable unless the lass W[P℄ from the hierarhy of parameterized problems is

�xed-parameter tratable by randomized algorithms with one-side error. A less tehnial restate-

ment of this result is that if Resolution is automatizable then we an solve the Clique problem (or

a problem of the same lass as the Clique problem) in time f(k)n

O(1)

instead of n

k

.

We now introdue the Monotone Minimum Satisfying Assignment problem and disuss the

relevant prior results about the hardness of approximating NP-optimization problems.
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De�nition

Monotone Minimum Satisfying Assignment (MMSA)

Instane: A monotone formula '(x

1

; : : : ; x

n

) over the basis f^;_g.

Solution: A truth assignment � suh that '(�) = 1.

Objetive: Minimize the number of 1's in � .

The Hardness Theorem for Resolution proof system is stated as follows:

Theorem 4 (Hardness Theorem)

a. If P 6= NP, then there is no polynomial time algorithm whih an approximate MLP

Res

to

within a onstant fator.

b. If NP * QP, then there is no polynomial time algorithm whih an approximate MLP

Res

to

within a fator of 2

log

(1��)

n

for any �.

These hardness results apply to both dag-like and tree-like Resolution. To prove Hardness The-

orem, we shall redue the Monotone Minimum Satisfying Assignment problem (MMSA) to Mini-

mum Length Resolution Refutation problems (MLP

Res

). We give polynomial-time approximation-

preserving redutions from MMSA to MLP.

Let '(x

1

; :::; x

k

) be an instane of MMSA, j'j = n. Enumerate the subformulas of ' as '

1

,. . . ,

'

l

, where the input variables are �rst in the enumeration and where eah '

i

is listed only after all

of its own subformulas are enumerated, and thus '

l

is '. Obviously the number l of subformulas

is less than the number of symbols n in '. We introdue new propositional variables y

1

; :::; y

l

, and

de�ne the set �

'

to ontain the following lauses:

a. The lause fy

l

g is in �

'

.

b. For eah i � l, if '

i

is ('

j

^ '

k

), then the lause fy

j

; y

k

; y

i

g is in �

'

.

. For eah i � l, if '

i

is ('

j

_ '

k

), then lauses fy

j

; y

i

g and fy

k

; y

i

g are in �

'

.

The above lauses desribe the evaluation of '; however, note that they say nothing about

the truth of the input variables x

1

: : : x

p

of '. For eah variable x

i

of ', we introdue new

variables x

i;j

for j = 1; 2; : : : ;m, and further inlude in �

'

the following lauses:

d. For eah i � p, the lauses fx

i;1

g and fx

i;m

; y

i

g and

fx

i;j

; x

i;j+1

g for j = 1; : : : ;m� 1

are inluded in �

'

. These lauses are said to be assoiated with x

i

.

That ompletes the de�nition of �

'

. Informally, �

'

asserts that there exists a truth-evaluation

to all subformulas of ' suh that: the truth evaluation given to the output formula is 0, the

truth evaluation given to all input variables is 1, and the truth evaluation is onsistent with all

intermediate gate values. Clearly, this is an unsatis�able formula sine ' is monotone.
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^

^

_
y

4

y

6

y

5

y

1

y

2

' :

(�y

6

)

(�y

4

�y

5

y

6

)

(x

21

) (�x

21

x

22

) : : : (�x

2m

y

2

)

(x

11

) (�x

11

x

12

) : : : (�x

1m

y

1

)

�

'

:

(�y

1

y

4

) (�y

2

y

4

)

(�y

1

�y

3

y

5

)

(x

31

) (�x

31

x

32

) : : : (�x

3m

y

3

)

. �

x

1

x

2

x

3

x

1

!

!

y

3

y

1

3-Phase Refutation:

a. (�y

4

�y

5

); (�y

1

�y

5

); (�y

1

�y

3

)

b. (y

1

); (y

2

); (y

3

)

Figure 2: An example of MMSA problem

Example An example is given in Figure 2. �

'

is the formula assoiated with ', and is polynomial

in the size of '. To refute ', if we start the proof from bottom to the top then the size of the

Resolution would be nm+n (the worst ase). To make the proof shorter, we an do the Resolution

proof from top to bottom. In this way, we an improve the size of Resolution refutation to km+n.

Lemma 5 Let ' be an instane of Monotone Minimum Satisfying Assignment and let � equal the

ardinality of the minimum satisfying assignment for '. �

'

has a tree-like Resolution refutation

with O(�m+ n) lauses.

Proof Let I � fx

1

; : : : ; x

p

g speify a satisfying assignment for ' of ardinality �. We use a

top-down proedure to generate the refutation. The �rst phase of the refutation starts with the

lause fy

l

g and derives suessively lauses of the form fy

k

1

; y

k

2

; : : : ; y

k

r

g with k

1

> k

2

> : : : > k

r

.

Suh a lause is resolved with one of the (at most two) lauses that ontain y

k

1

positively. This

ontinues until we have a lause whih ontains only literals y

i

orresponding to input x

i

of '. It

is possible to do this so that the remaining lause is just fy

i

: x

i

2 Ig. For the seond phase of

the refutation, derive the lauses fy

i

g, for x

i

2 I, with �m steps, and for the third phases, use �

resolutions to derive the empty lause.

There are obviously O(n) steps in the �rst and third phases of the derivation, so the whole

refutation has O(�m+ n) steps.

Lemma 6 Let ' and � be as above. Then any resolution refutation must have at least �m lauses.
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Proof Let R be a Resolution refutation. An input variable x

i

is de�ned to be R-analyzed if every

one of the (m+ 1)-lauses assoiated with x

i

is used in the refutation R. Obviously it will suÆe

to prove that at least � input variables are R-analyzed. In fat, if I is de�ned to equal the set of

R-analyzed variables, then I implies a satisfying assignment for '.

This last fat is almost immediate. To prove it formally, we de�ne a truth assignment � as

follows: (1) � assigns truth values to variables y

i

aording to the value I assigns to '

i

(2) � assigns

True to x

i;k

i� eah lause fx

i;1

g and fx

i;j

; x

i;j+1

g for 1 � j < k is used in R. If I doesn't satisfy

', then � would satisfy all the lauses used in the refutation R, whih is impossible. Therefore, I

is a satisfying assignment for '.

Using lemma 5 and lemma 6, we an prove that MMSA annot be �-approximated, unless

P=NP. This immediately implies Theorem 4 Part a.
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