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1 Lower bound for bounded-depth Frege proofs of PHP

n+1

n

In this le
ture we will 
ontinue the proof of the following theorem.

Theorem 1 Any bounded-depth Frege proof of PHP

n+1

n

requires exponential size.

We have seen in the previous le
tures the de�nitions of mat
hing restri
tions, mat
hing dis-

jun
tions, mat
hing de
ision trees.

1.1 Overview

We will prove the theorem by 
ontradi
tion. Assuming there is a short proof P of PHP

n+1

n

in

whi
h all formulas have depth at most d, we will apply math
ing restri
tions in order to turn the

formulas into mat
hing de
ision trees. The assignment of mat
hing de
ision trees to formulas is

a k-evaluation. We 
onsider the formulas in P in order of in
reasing depth (re
all that depth is

de�ned as the maximum number of alternations of quanti�ers).

If S = :A is a formula in our proof, assume we have assigned a mat
hing de
ision tree T (A)

to formula A. We assign it a de
ision tree T (S) by turning all leaf labels in T (A) from 0 to 1 and

from 1 to 0.

If S = A

1

_ � � � _A

k

is a disjun
tion in P, we 
onstru
t T (S) by taking the OR path of 1 leaves

in all T (A

i

), applying a ni
e restri
tion to that DNF formula, and building a 
anoni
al mat
hing

de
ision tree for that formula. A swit
hing Lemma will guarantee that ni
e restri
tions exist.

The 
ontradi
tion will 
ome in the following manner.

1. Axioms of the Frege system will be turned into 1-trees (ie, trees whi
h have only leaves

labelled by 1).

2. The rules of the Frege system preserve 1-trees.

3. However, any formula in PHP

n+1

n

is transformed into a 0-tree.
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1.2 Analogy

The assignment of trees to formulas 
reates an analogy with the proof that bounded-depth 
ir
uit


omputing Parity requires super-polynomial size. However, the analogy is broken in the sense that

the trees in there 
ompute the exa
t fun
tion, while the mat
hing de
ision trees in the k-evaluations

used for the proof of Theorem 1 do not, not even on restri
tions 
ompatible with that tree. That

is, assuming � = �

1

: : : �

k

is a \good" restri
tion, 
ompare f only on assignments whi
h extend �

to T .

The tree is equivalent to the formula for only one level. However, when S = A

1

_ � � �A

k

,

rewriting the mat
hing de
ision trees as mat
hing disjun
tions will not preserve the equivalen
e.

Consider � a partial mat
hing. Even if there exists one path in all trees T (A

i

) 
onsistent with

�, the trees might have nothing in 
ommon. Ea
h one is querying only some pigeons and we are

trying to build something about all pigeons. Eg, in a tree whi
h starts by quering P

1;1

and � sends

pigeon 2 to hole 5, there might be many paths 
onsistent wth �.

TONI: I didn't quite get the argument above.

1.3 PHP

n+1

n


onsists of 0-trees

PHP is the disjun
tion of the following formulas:

1. :(:P

i;k

_ :P

j;k

);8i 6= j � n+ 1;8k � n

2. :(P

i;1

_ � � � _ P

i;n

);8i � n+ 1

Restri
tions redu
e PHP to fewer pigeons and holes. After the se
ond blo
k of _, the tree is

no longer equivalent to the formula.

Consider formulas of the �rst type. In order to show that T (:(:P

i;k

_ :P

j;k

)) is a 0-tree, it's

enough to show that T (:P

i;k

_ :P

j;k

) is a 1-tree. By de�nition

T (:P

i;k

_ :P

j;k

) = T (Disj(T




(P

i;k

)) _Disj(T




(P

j;k

)))

T




(P

i;k

) is a tree of size 2 whi
h has 1's for all assignments where i and k are mapped to

something, and only one 0 
orresponding to mapping pigeon i to hole k [pi
ture?℄.

The DNF Disj(T




(P

i;k

)) _Disj(T




(P

j;k

)) will 
ontain all terms where i, j and k are mapped

to something, be
ause, eg, mapping k to i is always a leaf labelled with 1 in T




(P

j;k

). [pi
ture?℄

For formulas of the se
ond kind, it is enough to show that T (P

i;1

_ � � � _ Pi; n) is a 1-tree. By

de�nition,

T (P

i;1

_ � � � _ Pi; n) = T (_

n

j=1

Disj(T (P

i;j

)))

But ea
h Disj(T (P

i;j

)) 
ontains only one term, namely P

i;j

. Then the DNF is P

i;1

_ � � � _Pi; n

and its asso
iated tree starts by querying pigeon i and will have all leaves labelled with 1 at one

level below root, as the formula is true no matter where this pigeon is mapped.
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1.4 All formulas in a bounded-depth Frege proofs get assigned 1-trees

This is Lemma 5.1 in the paper. The Frege system we are 
onsidering has axiom A_:A, and rules

A

A _B

;

A _A

A

;

A _ (B _ C)

(A _B) _ C

;

A _B;:A _ C

B _ C

The proof is in the paper, using as parameter the maximum number of subformulas in ea
h

rule.

Theorem 2 (Lemma 5.1) Let f be the maximum number of subformulas appearing in a rule

(this is a 
onstant, 7?). Let P be a proof of PHP

n+1

n

, T a k-evaluation for all subformulas in P

and k < n=f , then any formula o

uring as a line in P gets 
onverted to a 1-tree.

The proof is by indu
tion on the number of lines, if we start with axioms and keep applying

sound rules (as the ones above), all formulas 
onvert to 1-trees.

After applying a restri
tion the number of variables we are left is n

0

= n

�

. Sin
e we might be

applying d restri
tions (the bound on the depth of formulas), we want k << n

�

d

.

TONI: Here you argued that the proof works for two of the rules, the axiom and

A

A_B

but I didn't

understand the argument for either.

TONI: Next you qui
kly 
onsidered how the parameters look like. What I have is very vague.

The entire argument also works for onto-PHP or fun
-PHP be
ause they also 
onvert to

0-trees.
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