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1 Lower bound for bounded-depth Frege proofs of PHP

n+1

n

In this leture we will ontinue the proof of the following theorem.

Theorem 1 Any bounded-depth Frege proof of PHP

n+1

n

requires exponential size.

We have seen in the previous letures the de�nitions of mathing restritions, mathing dis-

juntions, mathing deision trees.

1.1 Overview

We will prove the theorem by ontradition. Assuming there is a short proof P of PHP

n+1

n

in

whih all formulas have depth at most d, we will apply mathing restritions in order to turn the

formulas into mathing deision trees. The assignment of mathing deision trees to formulas is

a k-evaluation. We onsider the formulas in P in order of inreasing depth (reall that depth is

de�ned as the maximum number of alternations of quanti�ers).

If S = :A is a formula in our proof, assume we have assigned a mathing deision tree T (A)

to formula A. We assign it a deision tree T (S) by turning all leaf labels in T (A) from 0 to 1 and

from 1 to 0.

If S = A

1

_ � � � _A

k

is a disjuntion in P, we onstrut T (S) by taking the OR path of 1 leaves

in all T (A

i

), applying a nie restrition to that DNF formula, and building a anonial mathing

deision tree for that formula. A swithing Lemma will guarantee that nie restritions exist.

The ontradition will ome in the following manner.

1. Axioms of the Frege system will be turned into 1-trees (ie, trees whih have only leaves

labelled by 1).

2. The rules of the Frege system preserve 1-trees.

3. However, any formula in PHP

n+1

n

is transformed into a 0-tree.
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1.2 Analogy

The assignment of trees to formulas reates an analogy with the proof that bounded-depth iruit

omputing Parity requires super-polynomial size. However, the analogy is broken in the sense that

the trees in there ompute the exat funtion, while the mathing deision trees in the k-evaluations

used for the proof of Theorem 1 do not, not even on restritions ompatible with that tree. That

is, assuming � = �

1

: : : �

k

is a \good" restrition, ompare f only on assignments whih extend �

to T .

The tree is equivalent to the formula for only one level. However, when S = A

1

_ � � �A

k

,

rewriting the mathing deision trees as mathing disjuntions will not preserve the equivalene.

Consider � a partial mathing. Even if there exists one path in all trees T (A

i

) onsistent with

�, the trees might have nothing in ommon. Eah one is querying only some pigeons and we are

trying to build something about all pigeons. Eg, in a tree whih starts by quering P

1;1

and � sends

pigeon 2 to hole 5, there might be many paths onsistent wth �.

TONI: I didn't quite get the argument above.

1.3 PHP

n+1

n

onsists of 0-trees

PHP is the disjuntion of the following formulas:

1. :(:P

i;k

_ :P

j;k

);8i 6= j � n+ 1;8k � n

2. :(P

i;1

_ � � � _ P

i;n

);8i � n+ 1

Restritions redue PHP to fewer pigeons and holes. After the seond blok of _, the tree is

no longer equivalent to the formula.

Consider formulas of the �rst type. In order to show that T (:(:P

i;k

_ :P

j;k

)) is a 0-tree, it's

enough to show that T (:P

i;k

_ :P

j;k

) is a 1-tree. By de�nition

T (:P

i;k

_ :P

j;k

) = T (Disj(T



(P

i;k

)) _Disj(T



(P

j;k

)))

T



(P

i;k

) is a tree of size 2 whih has 1's for all assignments where i and k are mapped to

something, and only one 0 orresponding to mapping pigeon i to hole k [piture?℄.

The DNF Disj(T



(P

i;k

)) _Disj(T



(P

j;k

)) will ontain all terms where i, j and k are mapped

to something, beause, eg, mapping k to i is always a leaf labelled with 1 in T



(P

j;k

). [piture?℄

For formulas of the seond kind, it is enough to show that T (P

i;1

_ � � � _ Pi; n) is a 1-tree. By

de�nition,

T (P

i;1

_ � � � _ Pi; n) = T (_

n

j=1

Disj(T (P

i;j

)))

But eah Disj(T (P

i;j

)) ontains only one term, namely P

i;j

. Then the DNF is P

i;1

_ � � � _Pi; n

and its assoiated tree starts by querying pigeon i and will have all leaves labelled with 1 at one

level below root, as the formula is true no matter where this pigeon is mapped.
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1.4 All formulas in a bounded-depth Frege proofs get assigned 1-trees

This is Lemma 5.1 in the paper. The Frege system we are onsidering has axiom A_:A, and rules

A

A _B

;

A _A

A

;

A _ (B _ C)

(A _B) _ C

;

A _B;:A _ C

B _ C

The proof is in the paper, using as parameter the maximum number of subformulas in eah

rule.

Theorem 2 (Lemma 5.1) Let f be the maximum number of subformulas appearing in a rule

(this is a onstant, 7?). Let P be a proof of PHP

n+1

n

, T a k-evaluation for all subformulas in P

and k < n=f , then any formula ouring as a line in P gets onverted to a 1-tree.

The proof is by indution on the number of lines, if we start with axioms and keep applying

sound rules (as the ones above), all formulas onvert to 1-trees.

After applying a restrition the number of variables we are left is n

0

= n

�

. Sine we might be

applying d restritions (the bound on the depth of formulas), we want k << n

�

d

.

TONI: Here you argued that the proof works for two of the rules, the axiom and

A

A_B

but I didn't

understand the argument for either.

TONI: Next you quikly onsidered how the parameters look like. What I have is very vague.

The entire argument also works for onto-PHP or fun-PHP beause they also onvert to

0-trees.
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