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In the previous le
ture we presented the �rst part of the proof that for the AC

0

-Frege proof

systems (also 
alled bounded depth Frege proof systems) there exists an exponential lower bound

with respe
t to the proof size. In order to establish this result we started to prove that every

PHP

n+1

n

proof requires exponential proof size. The atta
k to this problem uses the following

tools: (a)\translation" of the swit
hing lemma from the 
ir
uit 
omplexity to the proof 
omplexity


ontext and (b) an interpretation from model/proof theory. From model/proof theory we apply

the idea of interpreting ea
h formula in a lo
al fashion that it is 
onsistent with the negation of the

pigeonhole prin
iple derived formula. In this le
ture we de�ne and sket
h the proof of the swit
hing

lemma.

Theorem 1 Any AC

0

-Frege proof of PHP

n+1

n

requires exponential size.

1 Overview

There is a di�eren
e between the use of the de
ision trees in 
ir
uit 
omplexity lower bound proof

and their use in proof 
omplexity. The problem is that we 
annot straightforward relate a de
ision

tree with ea
h formula or subformula (as we did with the gates of the 
ir
uits), be
ause ea
h

formula/subformula is a tautology and hen
e 
omputes the 
onstant 1. So, subsequently, we are

going to de�ne the notion of Mat
hing De
ision Trees. The high level of this proof follows:

� De�ne mat
hing de
ision trees and relate them with the restri
tions. Show how to \
ombine"

mat
hing de
ision trees.

� Prove a variation of the swit
hing lemma we demonstrated in the previous le
ture. This

swit
hing lemma 
on
erns the proof 
omplexity. Spe
i�
ally it 
on
erns the pigeonhole prin-


iple where we will use new distributions of the restri
tions.

In this le
ture we sket
h the proof of the swit
hing lemma and we give the basi
 intuition behind

the semanti
s we are going to use.

2 Mat
hing De
ision Trees and Restri
tions

We begin with some de�nitions, and then we are going to prove a few properties for them.
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Figure 1: D stands for the domain and R for the range. jDj = n+1, jRj = n and P

ij

; i � n+1; j � n

De�nition

1. A restri
tion � is a mat
hing from D to R.

2. The set of all partial mat
hings M

n

(there is no total mat
hing from D to R - �gure 2).

3. A mat
hing term is the asso
iated set of literals (i.e. P

32

; P

45

; P

54

).
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Figure 2: A partial mat
hing

All of the above de�nitions are referring to the same thing. We 
ontinue by providing some more

de�nitions:

De�nition A mat
hing 
overs a pigeon at the hole i if some edge in mat
hing mentions i.

De�nition A mat
hing disjun
tion is an unbounded disjun
tion of mat
hing terms.

For example P

11

P

22

_ P

34

P

21

_ P

54

P

11

is a mat
hing disjun
tion. Keep in mind that this is the

kind of mat
hing we really 
are about.
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De�nition An r-disjun
tion is a mat
hing disjun
tion where all terms have size at most 2.

Let F = C

1

_ C

2

_ : : : _ C

n

be a mat
hing disjun
tion over fD;Rg = S and � a mat
hing

restri
tion. A 
anoni
al mat
hing de
ision tree for F over S, Tree

S

(F �

�

) is des
ribed as follows:

In the de
ision tree we are going to \trun
ate" all the paths that 
ontain assignments that do not


orrespond to the mat
hing. S
hemati
ally, assume that we have the mat
hing of �gure 3. Also,

assume that we have the (lexi
ographi
ally ordered subs
ripts) formula

F = P

17

P

38

_ P

16

P

27

_ P

49

P

56

_ P

16

P

59

, where after the appli
ation of the restri
tion, it remains:

F �

�

= P

27

_ P

59

5

4

3

2

1

10

9

8

7

6

D R

Figure 3: Pigeon 1 goes to hole 6. Hen
e P

16

is true. The dashed lines 
orrespond to falsi�ed

variables (not all dashed lines appear in this �gure).

The de
ision tree of �gure 3 is going to query all possible holes where P 
an get mapped to.

Pay attention of how the tree is being formed. For example 
onsider the path 2; 7; 5. from node 5

we only ask whether \pigeon 5 goes to hole 9" and we do not ask (query) whether \pigeon 5 goes

to hole 7" be
ause in this path pigeon 4 has already been mapped to hole 7.

5,7
4,7

3,7

5 5

5,74,73,7

7

2,9
2,8

2

2,7

1

1
0

0 0 0

5,
9

1

5,
9

Figure 4: A 
anoni
al mat
hing de
ision tree (every

To make things more 
lear, 
onsider another formula F

0

= P

27

_ P

59

. Assume that we have a

restri
tion � where pigeon 2 goes to hole 8 and pigeon 3 goes to hole 7 (in F

0

pigeon 2 is mapped
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to hole 7). Thus, F

0

�

�

= P

59

.

A bran
h of a (de
ision) tree is a path from the root to a leaf. It is 
lear that a mat
hing tree

is a de
ision tree in whi
h bran
hes represent mat
hings. The formal de�nition of a mat
hing tree

follows:

De�nition A mat
hing tree T over S (remember S = D [ R)is a tree satisfying the above


onditions:

1. The nodes of the tree, other than the leaves, are labeled with verti
es of S.

2. If a node of a T is labeled with a vertex i 2 S then the edges leading out of the vertex are

labeled with distin
t pairs of the form fi; jg, where j 2 R if i 2 D or j 2 D if i 2 R.

3. No vertex or edge label is repeated on a bran
h of T .

4. If p is a vertex of T then the edge labels on the path from the root of T to p determine a

mat
hing �(p) between D and R.

Intuitively there is a need for an \interfa
e" between the tree and the mat
hing. The following

de�nitions establish this fa
t:

De�nition The bran
h of T Br(T ) is the set of all mat
hing terms/restri
tions asso
iated with the

paths of T . We distinguish between the paths having as leaves 1 and 0. Then, Br

1

(T )[Br

0

(T ) =

Br(T ).

Formally, the above de�nition 
orresponds to Br(T ) = f�(l)jl is a leaf of Tg.

If M is the set of mat
hings, then T is 
omplete for M if for every vertex p in T labeled with a

vertex i 2 S, the set of mat
hings f�(q)jq is a 
hild of pg 
onsists of all mat
hings of M of the

form �(q) [ ffi; jgg.

De�nition If F is a mat
hing disjun
tion and T is a mat
hing de
ision tree then T represents F

if for every � 2 B

r

(T ); F �

�

= 1. If � is labeled 1 in T and F �

�

= 0 if � is labeled by 0 in T .

Below we provide the indu
tive de�nition of a 
anoni
al mat
hing tree.

De�nition Let F = C

1

_ : : : _ C

m

be a mat
hing disjun
tion over S. The 
anoni
al mat
hing

de
ision tree for F over S, Tree

S

F , is de�ned indu
tively as follows:

1. If F � 0 then Tree

S

(F ) is a single node labeled 0. If F � 1 then Tree

S

(F ) is a single node

labeled 1.

2. If F 6� 1 and F 6� 0, then let C be the �rst mat
hing term in F su
h that C 6� 0. Then

Tree

S

(F ) is 
onstru
ted as follows:

(a) Constru
t the full mat
hing tree for the verti
es that are asso
iated with variables

o

urring in C.

(b) Repla
e ea
h leaf l of the previously 
onstru
ted full mat
hing tree by the 
anoni
al

mat
hing de
ision tree Tree

S�

�(l)

(F � �(l)).
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Follows a key 
on
ept of this proof:

Important Remark: The same tree 
an represent a lot of formulae. The reason is that we

do not have values for the hole truth assignment.

We s
hemati
ally sket
h the de�nition of a restri
tion applied to a 
omplete mat
hing de
ision

tree: Let T be a 
omplete mat
hing de
ision tree and � a restri
tion. Consider the tree of �gure

4. Then T �

�

is another mat
hing de
ision tree obtained as in �gure 5. You 
an observe that the

restri
tion shrinks the tree. The new (derived under the restri
tion) tree is the one of �gure 6.

5,7
4,7

3,7

5 5

5,74,73,7

7

2,9
2,8

2

2,7

1

1
0

0 0 0

5,
9

1

5,
9

Figure 5: We apply the restri
tion � : 4! 7

2,9

2

0

5

1

5,
9

Figure 6: The resulting tree, after the appli
ation of the restri
tion (see �gure 5).

A few more de�nitions and we the subsequent lemma are provided.

De�nition Let T be a mat
hing de
ision tree, then T




is the tree T with the leaf labels 
omple-

mented (just 
hange the leaves from 0 to 1 and vi
e versa).

De�nition Disj(T ) = t

1

_ : : : _ t

m

, where ft

1

; : : : ; t

m

g = Br

1

(T ).

Lemma 2 Let T be a mat
hing de
ision tree, � a restri
tion.

1. Disj(T ) �

�

= Disj(T �

�

).
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2. If T is 
omplete for D;R then T �

�

is 
omplete for D �

�

; R �

�

.

3. (T �

�

)




= T




�

�

4. If l is a leaf in T �

l

then there is a leaf l

0

in T with the same label as l so that �(l

0

) � �(l)[�,

where � is a restri
tion or a mat
hing term.

5. If T represents F , then T �

�

represents F �

�

.

From the above lemma the \most important" part for our proof is the (5).

3 Evaluations and the Mat
hing Swit
hing Lemma

Let P be a small (that is 2

n

s

, where s <

1

5

d

) depth of Frege proof of PHP

n+1

n

. P = F

1

; F

2

; : : : ; F

m

,

where F

m

=PHP

n+1

n

bounded depth Frege proof. Let R be their set of all subformulae o

urring

in P (think of it of the 
orresponding way, of as having many 
ir
uits).

De�nition R = R

1

[R

2

[ : : : [R

d

, where R

i

is the depth

1

i subformulae in R.

Let M

�

n

= f� 2 M

n

jR �

�

= lg. We intuitively de�ne whi
h is bad: \you" are bad if the


orresponding 
anoni
al tree has height bigger than s. Hen
e:

Bad

l

n

(F; s) = f� 2M

l

n

j height(Tree

S�

�

(F �

�

)) � sg

Lemma 3 Let F be an r-disjun
tion over D;R, where jDj = n + 1; jRj = n; l � 10; � =

l

n

. If

r � l and p

4

n

3

� 1=10 then:

jBad

l

n

(F; 2s)j

jM

l

n

j

� (11p

4

n

3

r)

s

The proof goes like the one we have seen in the previous le
ture (le
ture 9). Now we are going

to put everything together:

De�nition Let R be as de�ned previously. A k-evaluation T is an assignment of a 
omplete

mat
hing de
ision trees T (A) to formulae A in R su
h that:

1. T (A) has depth less or equal to k.

2. T (1) is the single node labeled 1, and T (0) is the single node labeled 0.

3. T (P

ij

) is the full tree for i; j over D;R (i.e. the 
anoni
al tree for P

ij

).

4. T (:A) = T (A)




5. If A is a disjun
tion A = A

1

_A

2

_ : : : _A

k

, then T (A) represents _

i2I

Disj(T (A

i

)).

This is one of the basi
 
on
epts of the proof. Semanti
ally there is some 
onne
tion with the

tree and the representation as it is shown in �gure 7. For example if all leaves are labeled to 1 we

have a \kind" of \tautology". However this notion of \tautology" is not preserved under (sound)

inferen
es. This is the key idea of the lower bound argument.

This 
onne
tion 
an be demonstrated by the example of �gure 8 (Attention! This is not a

formula whi
h 
orresponds to the PHP; we provided it here only to exemplify things). We will talk

about this \semanti
 
onne
tion" in the next le
ture.

1

For a de�nition of 
ir
uit depth see at le
ture 9
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Associated
 with

A1 A2 Am

0 0 1 1 0 0 1 1 1 1 0 0 0 0 1

Figure 7: XXX

1,2

P11 \/ P12 \/ ... \/ P1n

0 1 1

1 1 1

1,1 Hole 1

Pigeon 1

0 1

Pigeon 1

1 1 1

Hole 2

1

Figure 8: XXX
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