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In the previous lecture we presented the first part of the proof that for the AC)-Frege proof
systems (also called bounded depth Frege proof systems) there exists an exponential lower bound
with respect to the proof size. In order to establish this result we started to prove that every
PHP! proof requires exponential proof size. The attack to this problem uses the following
tools: (a)“translation” of the switching lemma from the circuit complexity to the proof complexity
context and (b) an interpretation from model/proof theory. From model/proof theory we apply
the idea of interpreting each formula in a local fashion that it is consistent with the negation of the
pigeonhole principle derived formula. In this lecture we define and sketch the proof of the switching
lemma.

Theorem 1 Any ACy-Frege proof of PHP™" requires exponential size.

1 Overview

There is a difference between the use of the decision trees in circuit complexity lower bound proof
and their use in proof complexity. The problem is that we cannot straightforward relate a decision
tree with each formula or subformula (as we did with the gates of the circuits), because each
formula/subformula is a tautology and hence computes the constant 1. So, subsequently, we are
going to define the notion of Matching Decision Trees. The high level of this proof follows:

e Define matching decision trees and relate them with the restrictions. Show how to “combine”
matching decision trees.

e Prove a variation of the switching lemma we demonstrated in the previous lecture. This
switching lemma concerns the proof complexity. Specifically it concerns the pigeonhole prin-
ciple where we will use new distributions of the restrictions.

In this lecture we sketch the proof of the switching lemma and we give the basic intuition behind
the semantics we are going to use.

2 Matching Decision Trees and Restrictions

We begin with some definitions, and then we are going to prove a few properties for them.



CS 2429 - Propositional Proof Complexity Lecture #10: 21 November 2002

Figure 1: D stands for the domain and R for the range. |D| =n+1, |R| =nand Pj;,i <n+1,j5 <n
Definition

1. A restriction p is a matching from D to R.
2. The set of all partial matchings M,, (there is no total matching from D to R - figure 2).

3. A matching term is the associated set of literals (i.e. P2, Pys5, Psy).
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Figure 2: A partial matching

All of the above definitions are referring to the same thing. We continue by providing some more
definitions:

Definition A matching covers a pigeon at the hole 7 if some edge in matching mentions 7.
Definition A matching disjunction is an unbounded disjunction of matching terms.

For example Pj1Poy V P34 Po1 V P54 Pj; is a matching disjunction. Keep in mind that this is the
kind of matching we really care about.
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Definition An r-disjunction is a matching disjunction where all terms have size at most 2.

Let FF = C; VCyV ...V C, be a matching disjunction over {D, R} = S and p a matching
restriction. A canonical matching decision tree for F over S, Treeg(F [,) is described as follows:
In the decision tree we are going to “truncate” all the paths that contain assignments that do not
correspond to the matching. Schematically, assume that we have the matching of figure 3. Also,
assume that we have the (lexicographically ordered subscripts) formula
F = Pi7P33 V PigPo7 V PygPsg V PigPsg, where after the application of the restriction, it remains:
F = Pyr V Psg

2 7
3 o 8
4 | 9
5 10

Figure 3: Pigeon 1 goes to hole 6. Hence Pjg is true. The dashed lines correspond to falsified
variables (not all dashed lines appear in this figure).

The decision tree of figure 3 is going to query all possible holes where P can get mapped to.
Pay attention of how the tree is being formed. For example consider the path 2,7,5. from node 5
we only ask whether “pigeon 5 goes to hole 9” and we do not ask (query) whether “pigeon 5 goes
to hole 7”7 because in this path pigeon 4 has already been mapped to hole 7.

Figure 4: A canonical matching decision tree (every

To make things more clear, consider another formula F' = Py; V Ps9. Assume that we have a
restriction o where pigeon 2 goes to hole 8 and pigeon 3 goes to hole 7 (in F’ pigeon 2 is mapped
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to hole 7). Thus, F' [,= Psg.

A branch of a (decision) tree is a path from the root to a leaf. It is clear that a matching tree
is a decision tree in which branches represent matchings. The formal definition of a matching tree
follows:

Definition A matching tree T over S (remember S = D U R)is a tree satisfying the above
conditions:

1. The nodes of the tree, other than the leaves, are labeled with vertices of S.

2. If a node of a T is labeled with a vertex ¢ € S then the edges leading out of the vertex are
labeled with distinct pairs of the form {i,j}, where j € Rifi € D or j € D if i € R.

3. No vertex or edge label is repeated on a branch of T

4. If p is a vertex of T then the edge labels on the path from the root of T' to p determine a
matching 7(p) between D and R.

Intuitively there is a need for an “interface” between the tree and the matching. The following
definitions establish this fact:

Definition The branch of T Br(T) is the set of all matching terms/restrictions associated with the
paths of T. We distinguish between the paths having as leaves 1 and 0. Then, Br(T) U Bro(T') =
Br(T).

Formally, the above definition corresponds to Br(T) = {n(l)|l is a leaf of T'}.
If M is the set of matchings, then T is complete for M if for every vertex p in T labeled with a
vertex 7 € S, the set of matchings {7 (q)|q is a child of p} consists of all matchings of M of the

form 7(q) U {{3,j}}.

Definition If F'is a matching disjunction and 7T is a matching decision tree then T' represents F
if for every w € B,(T),F |,= 1. If 7 is labeled 1 in T and F [,= 0 if 7 is labeled by 0 in T

Below we provide the inductive definition of a canonical matching tree.

Definition Let FF = C; V...V C,, be a matching disjunction over S. The canonical matching
decision tree for F over S, TreegF', is defined inductively as follows:

1. If F =0 then Treeg(F) is a single node labeled 0. If F' = 1 then Treeg(F) is a single node
labeled 1.

2. If F # 1 and F # 0, then let C be the first matching term in F' such that C #Z 0. Then
Treeg(F') is constructed as follows:

(a) Construct the full matching tree for the vertices that are associated with variables
occurring in C.

(b) Replace each leaf [ of the previously constructed full matching tree by the canonical

matching decision tree Treeg; , (F | 7(l)).
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Follows a key concept of this proof:

Important Remark: The same tree can represent a lot of formulae. The reason is that we
do not have values for the hole truth assignment.

We schematically sketch the definition of a restriction applied to a complete matching decision
tree: Let T be a complete matching decision tree and p a restriction. Consider the tree of figure
4. Then T |, is another matching decision tree obtained as in figure 5. You can observe that the
restriction shrinks the tree. The new (derived under the restriction) tree is the one of figure 6.

Figure 6: The resulting tree, after the application of the restriction (see figure 5).
A few more definitions and we the subsequent lemma, are provided.

Definition Let T be a matching decision tree, then T° is the tree 7" with the leaf labels comple-
mented (just change the leaves from 0 to 1 and vice versa).

Definition Disj(T) =1tV ...V ty, where {t1,...,t,n} = Bri(T).

Lemma 2 Let T be a matching decision tree, p a restriction.

1. Disj(T) |,= Disj(T 1,).
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2. If T is complete for D, R then T [, is complete for D [,, R [,.
3. (T1,)=T°1,

4. Ifl is a leaf in T |, then there is a leaf I' in T with the same label as | so that w(I') C w(I)Up,
where w is a restriction or a matching term.

5. If T represents I, then T |, represents F' [,.

From the above lemma the “most important” part for our proof is the (5).

3 Evaluations and the Matching Switching Lemma

Let P be a small (that is 2", where s < 5%) depth of Frege proof of PHP'. P = F|, Fy,...,Fy,,
where F,,, =PHP"*! bounded depth Frege proof. Let R be their set of all subformulae occurring
in P (think of it of the corresponding way, of as having many circuits).

Definition R =R{URyU...URy, where R; is the depth! i subformulae in R.

Let M) = {p € M,|R |,= l}. We intuitively define which is bad: “you” are bad if the
corresponding canonical tree has height bigger than s. Hence:
Badl,(F,s) = {p € M},| height(Trees;,(F 1,)) > s}

Lemma 3 Let F be an r-disjunction over D, R, where |D| = n+ 1,|R| =n, [ > 10,p = % If
r <1 and p*n3 < 1/10 then:
|Bad!, (F,2s)|

M| < (11p*n3r)®
n

The proof goes like the one we have seen in the previous lecture (lecture 9). Now we are going
to put everything together:

Definition Let R be as defined previously. A k-evaluation T is an assignment of a complete
matching decision trees T'(A) to formulae A in R such that:

1. T(A) has depth less or equal to k.
T'(1) is the single node labeled 1, and T'(0) is the single node labeled 0.
T(P;;) is the full tree for 4, over D, R (i.e. the canonical tree for P;;).
T(~A4) = T(A)"
If Ais a disjunction A = A1 V Ay V...V Ay, then T'(A) represents V;crDisj(T(A;)).

.C“r“?"!\’

This is one of the basic concepts of the proof. Semantically there is some connection with the
tree and the representation as it is shown in figure 7. For example if all leaves are labeled to 1 we
have a “kind” of “tautology”. However this notion of “tautology” is not preserved under (sound)
inferences. This is the key idea of the lower bound argument.

This connection can be demonstrated by the example of figure 8 (Attention! This is not a
formula which corresponds to the PHP; we provided it here only to exemplify things). We will talk
about this “semantic connection” in the next lecture.

!For a definition of circuit depth see at lecture 9
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