
CS 2429 - Propositional Proof Complexity Lecture #1: 12 September 2002

CS 2429 - Propositional Proof Complexity

Lecture #1: 12 September 2002

Lecturer: Toniann Pitassi

Scribe Notes by: Toniann Pitassi

1 Introduction to Propositional Logic

What is a proof system? In this course we will define a proof system in a very general way, as
folows.

Definition A proof system for a language L is a polynomial time algorithm V such that for all x
x ∈ L if and only if there exists a string p such that V (x, p) accepts.

In this definition, V is the verifier and the string p is an encoding of a proof that x is in L.
The ”if and only if” in the above definition encorporates the standard notions of soundness and
completeness. Soundness (the ”if” direction) means that if V (x, p) accepts for some p, then x is in
L. Completeness (the ”only if” direction) means that if x is in L, then there is some string p such
that V (x, p) accepts.

Definition The complexity of V is a function fV from natural numbers to natural numbers,
defined as follows. fV (n) is

max
x∈L,|x|=n

min
p s.t. V (x,p)accepts

|p|.

V is polynomially bounded iff fV is a polynomial function of n.

We will now give several examples of proof systems, each for different languages L.

1.1 Example 1 Satisfiability

The canonical language with a polynomially bounded proof system is SAT . SAT consists of the
set of all satisfiable formulas. For example, the following conjunctive normal form formula is in
SAT :

f = (x1 ∨ x2 ∨ ¬x3) ∧ (x2 ∨ ¬x4) ∧ (x1 ∨ x3 ∨ ¬x4) ∧ (x3 ∨ x4).

The verifier V for SAT takes two strings, f and p as input, where f an encoding of a boolean
formula, and p a truth assignment to the underlying variables of f . V (f, p) accepts if and only if
p is a satisfying assignment to f . Clearly V is polynomial-time computable for all inputs, and f is
in SAT if and only if there exists a string p such that V (f, p) accepts.

1

CS 2429 - Propositional Proof Complexity Lecture #1: 12 September 2002

1.2 Example 2 DPLL

The most prominent and well studied proof systems are all for the languages TAUT and UNSAT .
TAUT is the set of all boolean formulas that are tautologies, and UNSAT is the complement of
SAT , consisting of the set of all boolean formulas that are unsatisfiable. For example, the CNF
formula f = (x1 ∨ x2) ∧ (¬x1 ∨ x2) ∧ (¬x2) is in UNSAT because it is unsatisfiable.

Since UNSAT and TAUT are so important, we will explicitly define a proof system for them.

Definition A propositional proof system (pps) is a proof system for the set UNSAT (TAUT) of
propositional logic unsatisfiable (tautological) formulas.

The following simple theorem, giving the basic connection between proof system complexity
and complexity thoery, was stated and proven by Cook and Reckhow in their seminal paper on
propositional proof complexity.

Theorem 1 NP equals coNP if and only if there exists a polynomially bounded propositional proof
system.

The most well-studied proof system for UNSAT is the DPLL system, which is both a proof
system as well as a family of algorithms for SAT . Consider the example f = (x1 ∨ x2 ∨ ¬x3) ∧
(x1 ∨ x3) ∧ (x1 ∨ ¬x2) ∧ (¬x1). A DPLL proof is a tree with fanin 2 and with the following
properties. Each internal node of the tree is labelled with an underlying variable xi. If a node is
labelled by variable xi, then the two outgoing edges of the node are labelled by xi = 0 and xi = 1
respectively. Corresponding to each internal node is a formula, which is the value of the original
formula under the partial evaluation of variables defined by the path to that node. For example,
if a node in the tree is reachable by a path from the root labelled by x1 = 0 and x2 = 0, then the
formula corresponding to this node is (¬x3) ∧ (x3). For each leaf node l in the tree, the formula
corresponding to l must be the false formula. That is, for each leaf node l in the tree, the partial
assignment corresponding to the path to l must force the formula f to false. Each leaf node is
labelled by a clause C from the original f that is forced to false along this path.

The following figure illustrates a DPLL tree for the formula f = (a∨ b∨ c)(a∨¬c)(¬a∨d)(¬d∨
b)(¬b).

The above proof system fits into our definition of a propositional proof system where the verifier
interprets the second input p as the encoding of a tree as defined above, and checks that all of the
relevant conditions are satisfied. The proof system is sound and complete since a formula will be
unsatisfiable if and only if there exists a decision tree as defined above.

The DPLL algorithm for satisfiability associated with the above proof system starts with a
formula f and tries to build a DPLL tree for f in a depth-first manner. Either the algorithm is
successful and a valid tree is found, in which case the algorithm can output ”unsatisfiable” or the
algorithm gets to a point where a partial assignment is found that satisfies the formula, and in this
case the algorithm can not only output ”satisfiable”, but can also output a satisfying assignment.

2

CS 2429 - Propositional Proof Complexity Lecture #1: 12 September 2002

1.3 Example 3 The Hajos Calculus

Our next example is a proof system for graph non-q-colorability. An undirected graph G = (V,E)
is 3-colorable if there is a function mapping each of the vertices in V to one of three colors (Red,
Blue or Green) and such that every two adjacent vertices are assigned distinct colors. The language
3COL is the set of all 3-colorable graphs. This problem is well-known to be NP-complete, and de-
ciding non-3-colorability is therefore coNP-complete. The language qCOL can be defined similarly,
and again is NP-complete as long as q is at least 3. In the 1960’s in an attempt to prove the four
color theorem, Hajos defined a proof system, now called the Hajos calculus, for deriving the set
of all non-q-colorable graphs, for q ≥ 3. The only axiom is the graph Kq, the complete graph on
q vertices. There are three rules for building larger graphs as follows, the add, contract and join
rules. (i) (Add) From G, can derive G′ where G′ is G with extra vertices or edges added to G; (ii)
(Contract) From G, can derive G′ where G′ is G but with two nonadjacent vertices contracted into
a single new vertex; (iii) (Join) Let Gi contain two vertices ai and bi and such that there is an edge
from ai to bi. Then from G1 and G1, can derive G′ where G′ is the union G1 and G2 but with a1
and a2 contracted into a single new vertex, a, and with the edges (a, b1) and (a, b2) removed, and
with the edge (b1, b2) added.

A Hajos calculus derivation that a graph G is not q-colorable is a sequence of graphs, G1, G2, . . . , Gm

such that Gm = G, and all other graphs are either instances of Kq, or follow from one or two pre-
viously derived graphs by one of the above three rules. The size of a derivation is the sum of the
sizes of all graphs in the derivation. Hajos proved in 1961 that a graph G is non-q-colorable if and
only if it has a Hajos derivation. This fits into our standard definition of a proof system where
V (G, p) views p as the encoding of a Hajos calculs derivation of G.

It is still an open problem whether or not the Hajos calculus proof system is polynoimally
bounded; that is, whether there exist non-3-colorable graphs that require superpolynomial-size
Hajos derivations.

1.4 Example 4 Tree proofs for Hypergraph Transversal

Our next example is a proof system for a language that is not known to be NP-complete (and
is probably not NP-complete). The hypergraph transversal problem is defined as follows. The
input is a pair of set systems, S = {s1, . . . , sk} and T = {t1, . . . , tl} over an underlying universe
U = {x1, . . . , xn}. A set s is a minimal transversal for a set system T if every set in T has nonempty
intersection with s, and furthermore s is minimal (removing any element from s will violate the
first condition). The input is accepted if and only if S is the set of all minimal transversals of T .
Note that the definition is symmetric: S is the set of all minimal transversals of T if and only if
T is the set of all minimal transversals of S. This problem is not known to be in P , or known to
be NP -complete. However, there is a quasipolynomial-time algorithm that solves it. It is easily
seen to be equivalent to the monotone CNF/DNF equivalence problem: Given a monotone CNF
formula f and a monotone DNF formula g, determine whether or not they are equivalent.

A common and natural proof for this problem is a transversal tree defined as follows. The
internal nodes of the tree are labelled with underlying elements from U . If a node is labelled xi,
then the two edges out of xi are labelled by xi = 0 and xi = 1 respectively. There is a pair of set
systems associated with each node as follows. The original set system (S, T , and U) corresponds
to the root. If a node in the tree has a corresponding path with the label x1 = 0 then the subtree
rooted at this node is labelled with the set system S′, T ′ and U ′ where U ′ is U minus x1, S′

3

CS 2429 - Propositional Proof Complexity Lecture #1: 12 September 2002

consists of each set s of S, but with x1 removed from s, and T ′ are those sets in T that do not
contain x1. In other words, this subtree is computing the transversals of S that do not contain x1.
Similarly, if a node has path with the label x1 = 1, then the subtree rooted at this node is labelled
by the set system S′, T ′ and U ′ where again U ′ is U minus x1, but now S′ consists of those sets
of S not containing x1, and T ′ consists of those sets of T that contain x1 but with x1 removed.
Finally, the leaves of the transversal tree should have both S′ and T ′ empty. The proof system,
V ((S, T, U), p) interprets p as a transversal tree and checks whether or not it is a valid tree for the
triple (S, T, U). It is not known whether or not this proof system (for the hypergraph transversal
language) is polynomially bounded.

2 Motivations, connections

It is striking that even when talking about totally different languages, that the natural proof
systems for them often are strikingly similar. For example, the DPLL proof system is very similar
to the proof system that we described for the transversal problem.

We will focus our attention on propositional proof systems for most of this course, although we
will try to encorporate results about proof systems for other languages as we go along.

There are several motivations for studying proof complexity. First, it gives an interesting way
to classify algorithms for solving SAT. Then once we obtain lower bounds for a particular proof
system, it implies lower bounds for the corresponding class of algorithms for SAT. This can be
viewed as an alternative to the circuit complexity approach for proving that P is different from NP.
In the circuit approach, one tries to develop lower bounds for restricted circuit classes (for example,
bounded-depth circuits, bounded-depth threshold formulas, etc) in the hopes of eventually building
up enough machinery to prove that SAT does not have polynomial-size circuits.

An alternative approach based on proof complexity is to try to prove lower bounds for restricted
classes of propositional proof sytsems. An advantage of this alternative approach is that the one
can actually show that certain algorithmic methods that are actually used and studied for solving
SAT, cannot work. In contrast, noone really thinks or tries to solve SAT by focusing on algorithms
that can be implemented in the restricted circuit models. Thus, along the way we obtain very
useful intermediate results that can say powerful things about algorithms for SAT. A disadvantage
of this alternative approach is that it may not ever lead to a proof that P is different from NP.
This is for two reasons. First, we don’t even know if there is an optimal proof system, so it isn’t
clear how to show that no proof system is polynomially bounded. And secondly, it is not at all
clear that NP is different from coNP in the first place.

A second motivation is simple. The complexity of proofs is a fundamental question of logic,
and underlies a lot of research in automated theorem proving.

Finally, several other unexpected connections have developed as this area has progressed. For
example, there are very interesting links between proof complexity and the complexity of NP search
problems. There are also links with learnability and cryptography. We hope to uncover some of
these other connections throughout the course.

4

CS 2429 - Propositional Proof Complexity Lecture #1: 12 September 2002

3 References and Bibliographical notes

• A seminal early paper on propositional proof complexity is by Cook and Reckhow. Cook and
Reckhow, The relative efficiency of propositional proof systems. Journal of Symbolic Logic,
Vol 44, pp. 36-50, 1979.

• The DPLL procedure was originally proposed by Davis, Putnam, Loveland and Logam. There
are hundreds or possibly even thousands of papers on Resolution based proof systems. I will
give more references later.

• The Hajos calculus was defined by Hajos in 1961. A more recent paper discussing the
complexity of the Hajos calculus is by Pitassi and Urquhart. Pitassi and Urquhart, The
complexity of the Hajos Calculus, Siam Journal of Discrete Mathematics, Vol. 8, No. 3,
pp.464-483, August 1995.

• The hypergraph transversal problem is a well-known problem in data mining, AI and database
circles. It is equivalent to testing equivalence of a monotone CNF and a monotone DNF for-
mula, a well-known problem in theory. A good survey article is: Eiter and Gottlob, Identifying
the minimal transversals of a hypergraph and related problems, SIAM Journal on Comput-
ing, 24(6), pp. 1278-1304, December 1995. The best known algorithm for the problem (with
quasipolynomial runtime) is: Fredman and Khachiyan, On the complexity of dualization of
monotone disjunctive normal forms. Technical Report, Department of Computer Science,
Rutgers University, 1994.

5

