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Abstract

We consider the problem to determine the maxi-
mal number of satisfiable equations in a linear system
chosen at random. We make several plausible conjec-
tures about the average case hardness of this problem
for some natural distributions on the instances, and
relate them to several interesting questions in the the-
ory of approximation algorithms and in cryptography.
Namely we show that our conjectures imply the follow-
ing facts:

e Feige’s hypothesis about the hardness of refuting a
random SCNF is true, which in turn implies in-
approzimability within a constant for several com-
binatorial problems, for which no NP-hardness of
approximation is known.

e [t is hard to approrimate the NEAREST CODE-
WORD within factor n'~¢.

e [t is hard to estimate the rigidity of a matriz. More
exactly, it is hard to distinguish between matrices
of low rigidity and random ones.

o There exists a secure public-key (probabilistic)
cryptosystem, based on the intractability of decod-
ing of random binary codes.

Our conjectures are strong in that they assume cryp-
tographic hardness: no polynomial algorithm can solve
the problem on any non-negligible fraction of inputs.
Nevertheless, to the best of our knowledge no efficient
algorithms are currently known that refute any of our
hardness conjectures.

1. Introduction

Since the discovery of the PCP theorem in the be-
ginning of 90s ([AS92],|ALMSS98]), there has been
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much progress in proving the hardness of approximat-
ing optima for various classes of combinatorial prob-
lems. This research lead to many brilliant results, for
many problems the optimal hardness of approximation
that matches the upper bounds given by approxima-
tion algorithms has been achieved. However in some
cases there is still a large gap between known upper
and lower bounds. In some cases (see [Has88], [LLS90],
[GGI8)) it is unlikely to show NP-hardness of approx-
imation within factor beyond a certain barrier. Thus,
it is a natural goal to investigate the hardness of such
problems in some other frameworks different from NP-
completeness.

Recently, Feige [Fei02] suggested to use crypto-
graphic conjectures for proving interesting inapprox-
imability results. His method is based on the observa-
tion that if an instance of some certain NP-complete
problem looks “like random” then more approximation
preserving reductions can be constructed, that donot
work on the arbitrary instance. It was assumed in
[Fei02] that it is hard to refute in polynomial time
a random 3CNF with linearly many clauses. On one
hand this hypothesis is much stronger than the usual
worst case hardness assumptions. In particular, by it-
self it immediately implies the hardness of approximat-
ing MAX-3SAT within the optimal constant 8/7 — e.
On the other hand, this hypothesis implies inapprox-
imability for problems, for which no NP-hardness of
approximation is known, which makes it a promising
and interesting direction for the further investigation
of tractability of NP-complete problems.

In this paper we continue the research initiated by
Feige and show more relations between the average case
complexity and the complexity of approximation. In
order to investigate this direction further it is conve-
nient to define a uniform framework that would em-
brace both the average case and the worst case com-
plexity. For this we suggest to use the notion of a
promise problem generalized for the probabilistic case.
In this new concept the instance of the problem is
“promised” to be chosen according to one of random
distributions, that belong to some given family. The
most important example of such a problem is the classi-
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cal cryptographic task to distinguish two distributions
with non-negligible success probability.

In the base of our considerations lies the problem of
maximizing the number of satisfied equations in a lin-
ear system. Due to its high symmetry over GF, field
the linear mapping possesses some nice “pseudoran-
dom” and pointwise independent properties. The pow-
erful gaussian elimination procedure can invert a linear
mapping, however if one adds small non-linear noise
to the system, the resulting function becomes hard to
invert or to decode in general (one exception is effi-
ciently decodable linear error correcting codes, however
only few codes have known polynomial decoding algo-
rithms). The complexity of a linear mapping (some-
times augmented with small number of “non-linear”
errors) was considered by many researchers and suc-
cessfully used in several theoretical and practical ap-
plications. To name just a few, this includes

e Hastad’s PCP [Has01]. His construction in par-
ticular shows that it is NP-hard to approximate
MAX-3LIN within the optimal factor 1/2—e. This
implies that nothing better than a random guess-
ing is possible to maximize the number of satisfi-
able linear constraints over 3 variables.

e Classical construction of (almost) pointwise inde-
pendent families using linear codes, see for exam-
ple [NN93].

e Tseitin tautologies for propositional calculus.
Since the seminal paper [Tse68] there has been
proved a lot of lower bounds on refuting an unsat-
isfiable linear system for many propositional proof
systems.

e Property testing [BHRO03]. This recent work pro-
vides examples of 3CNF properties based on linear
functions that are hard to test.

e Practical cryptographic applications: linear feed-
back shift registers. In these practical construc-
tions an output of finite automata computing a lin-
ear operator augmented by some nonlinear trans-
form is used as a very fast generator of pseudoran-
dom bits, see for example [GC89).

In this paper we consider the following problem: dis-
tinguish vectors located within hamming distance k
from the linear space Im(A) from those located within
distance k+1 from Im(A), where A : {0,1}" — {0,1}™
is a linear operator over GF5. We make several con-
jectures about the hardness of this problem on average
for various types of A. As a corollary we derive the
following hardness results.
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First, if the problem to compute the distance to
Im(A) is hard on average for a random sparse matrix
A (which doesnot contradict to the current state of the
art in efficient algorithms) then it is hard to refute a
random 3CNF on average, i.e. Feige’s assumption is
true. We believe that this result brings more evidence
for Feige’s hypothesis.

Under a similar (strong) conjecture we prove that it
is hard to approximate the NEAREST CODEWORD
problem within factor n'~¢. As a consequence of this
result we show the hardness of estimating the rigidity
of a given matrix. Since this is one of our main motiva-
tions we would like to elaborate more on this concept.

As defined by Valiant [Val77], the rigidity Ras(r)
of (0 — 1)-matrix M is the minimal number of en-
tries of M that have to be changed to reduce its rank
below r. This notion is tightly connected to the lin-
ear circuit complexity, namely Valiant showed that for
any sequence of matrices M, s.t. Ry, (en) > n't?
the vector multiplication by M, cannot be performed
by linear circuits of linear size and logarithmic depth.
Since then a lot of research has been done towards the
understanding the notion of rigidity ([Raz89], [PV91],
[Fri93], [SSS97], [KR9I8], [Lok01]), however still there
are no known explicit constructions of matrices with
high rigidity. We try to explain the intricate difficulty
to find such explicit matrices from the point of the nat-
ural proofs approach by Razborov and Rudich [RR97].
We show that it is not likely to prove lower bounds for
the rigidity by constructing an efficiently computable
property p(M) which separates matrices of low rigid-
ity from random ones. We hope that this result may
give some evidence that new (“non-natural”) ideas are
necessary for proving lower bounds on matrix rigidity.

Finally, modulo stronger hypothesis that it is not
feasible to decode n'/2~¢ errors for a random linear er-
ror correcting code we construct two public key cryp-
tosystems, based on binary codes. The first cryptosys-
tem was inspired by Ajtai-Dwork lattice cryptosystem
([AD97]), which gives a brilliant reduction from the
worst-case to the average case complexity. Our sec-
ond cryptosystem is similar to McElice cryptosystem
([M78]), however in our case the choice of the under-
lying error correcting code is arbitrary and the secu-
rity is based solely on the assumed hardness of decod-
ing a random code. We donot claim (although donot
exclude either) any practical significance of the con-
structed cryptosystems, however we hope that they
might be interesting from the theoretical point of view,
and probably might have some applications in complex-
ity theory.

The paper is organized in the following way. Sec-
tion 2 contains some basic notation and the definition
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of probabilistic promise problems. Section 3 proves our
main reduction, which we use for applications in Sec-
tion 4. We finish our paper with discussion and open
questions in Section 5.

2. Preliminaries

We will mainly work in the field GFs. For 0 — 1
vector x, its hamming weight is the number of ones in x.
We use greek letters for random variables and capital
letters for distributions. For a distribution D we write
¢ ~ D to indicate that random variable & is chosen
according to D. We denote the uniform distribution

on the set {0,1}"™ by U,.

Definition 2.1 (statistical distance) For two ran-
dom variables €' and €2 their statistical distance is de-
fined as

p(eh, &) = max [Pr[A(§") = 1] — Pr[A(¢?) = 1]

)

where A(x) is an arbitrary statistical test.

Definition 2.2 (computational distance) Two se-
quences of random variables & and &2 are said to be
computationally f(n)-close iff for any constant k and
for any (randomized) algorithm C running in time n*
there exists N s.t. for alln > N

[Pr[C(&,) = 1] = Pr[C(&7) = 1]| < f(n).

Sometimes when clear from the context we omit the
lower index n in the asymptotic notation of random
sequences (as well as other objects parameterized by
the length of the input). We write p.(£1,€2) < f(n)
to indicate that ¢! and &2 are computationally f(n)-
close. Distributions are computationally f(n)-close if
so are the corresponding random variables. Distri-
butions are computationally indistinguishable iff their
computational distance is less than 1/n(1),

It is well known that statistical and computational
distance are metrics on the space of random variables.
In particular, the following fact holds.

Proposition 2.1 Assume that £',€2,€3 are random

sequences satisfying pe(&',€?) < fi(n) and p(€2,€%) <
fa(n). Then

pe(€',€%) < fi(n) + fa(n).

A linear binary error correcting code C is a linear
subspace of GF5'. As any linear space it can be spec-
ified as an image of a linear operator: C = Im(G) (in
this case G is called the generator of the code C) or as
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a kernel of a linear operator: C = Ker(H) (in this case
H is called the parity check matriz for C). For the code
C generated by G its dual code Ct is the code with
parity check matrix G7.
2.1. Probabilistic promise problems

Promise problems are a useful formalism for prov-
ing gaps in approximation of NP-hard problems. In a
promise problem the instance is “promised” to be taken
out of specific subclass of all instances. It is convenient
to use the following generalized definition of this notion
for the statement of our results.

Definition 2.3 (probabilistic promise problem)
Let Q be a probability space, ¥ a finite alphabet,
and X" be the set of all words of length n over
Y. A probabilistic promise problem is a sequence
(I3, II52),

Tes, e € (5%,

such that for every n, 114 and II7'° contain only mea-
surable functions &, : Q — X"

For an algorithm A and the probabilistic promise
problem (I1¥¢°,117°) define its completeness as

» = min PrlA(§) =1
0 = min, Pr(A(6) = 1]

and its soundness as

Sp = gréll%);io %I‘[A(g) = 1)]
The algorithm solves the problem with success proba-
bility f(n) iff for every n c, — s, > f(n).

One can imagine this definition in the following way.
Assume that the instance of the promise problem is
generated according to some probabilistic distribution,
which belongs to some general family (e.g. normal dis-
tributions). Then the success of an algorithm is defined
as the worst among all distributions in the family. The
next example shows that this definition is indeed a gen-
eralization of usual promise problems.

Example 1

Given a pair of non-intersecting languages LY¢® and
L™° that describe the standard promise problem choose
) = {0} and let II¥** contain the functions £ : 0 — x,,
for all x,, € ¥"N LY and II}}° contain the functions ¢ :
0 — y, for all y, € XN L"°. There is no randomness,
the admissible distributions coincide with yes and no
instances and ¢, s, are always either 0 or 1.

Another example is the problem considered in
[Fei02].
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Example 2 (refuting a random 3CNF)
Let II}° contain only one distribution that chooses a
random 3CNF with n variables and An clauses, where
A is a large constant. II1¥°® consists of all distributions
for which the generated 3CNF is always satisfiable.
Clearly every algorithm that solves this probabilistic
promise problem with high success probability should
always say “yes” on every satisfiable CNF and say “no”
with high probability on a random CNF.

A probabilistic promise problem is samplable iff both
I1¥¢¢ and II™° contain only one distribution which is
samplable in polynomial time. It is easy to show that
in this case the probabilistic promise problem is equiv-
alent to the standard cryptographic task to distinguish
yes and no distributions:

Proposition 2.2 Assume that II = (II¥¢5 11™°),
Imyes = {gyes} 110 = {&°} is a samplable promise
problem and

pe(£Y°°,€"%) > f(n),

where f(n) = 1/n®W) . Then there exists an algorithm
that solves the problem II with success f(n)/2.

Proof. By the statement of the proposition there ex-
ists an algorithm A that distinguishes &Y¢° and £™°.
The only difficulty is that given A it is not clear
whether Pr[A(£v¢%) = 1] — Pr[A(£™°) = 1] > f(n) or
Pr[A(¢™°) = 1] — Pr[A(&¥*®) = 1] > f(n). However
since £Y¢%, £ are samplable, this can be determined
in polynomial time with probability 1 — o(1).m

3. Main reduction

In the core of our reductions lies the following
NP-optimization problem called MAXIMUM SATIS-
FYING LINEAR SUBSYSTEM (MAX-LIN-SAT for
short).

Problem 1 (MAXIMUM SATISFYING L.S.)

e INSTANCE: System Az = b of linear equations,
where A is m x n matrix over GF5, and b is a
vector in {0, 1}™.

e SOLUTION: A vector z € {0,1}".

e OBJECTIVE FUNCTION: The number of equa-
tions satisfied by z.

Below we define an average case version of this prob-
lem, in which the random system is generated by choos-
ing a planted solution and adding a number of errors.

4

Definition 3.1 Let A be m x n matriz over GFq. Let
Dy (A) be the distribution of the random vector

Nk (A) = Az + e,

where x ~ U, ts random and e € (ZL) is randomly
chosen from the vectors of hamming weight k.

Thus, Dy (A) is the distribution of a random vector
located within distance k from Im(A). We are inter-
ested in the complexity of maximizing the number of
satisfied equations in the system

Az = .

More exactly, we want to distinguish between distribu-
tions Dy (A) and Dy41(A). Below we show that if this
problem is hard then the distribution Dy (A) is com-
putationally close to the uniform, i.e. ni(A4) is a good
pseudorandom generator.

Theorem 3.1 Let k = k(n),m = m(n) be integer pa-
rameters, € = €(n) be a positive real and A, be a se-
quence of m X n matrices over GFy. Assume that

pe(Di(A), De-1(A)) < € and po(Di(A), Dy1(A)) < e.

Then the distribution Dy (A) is computationally O(te+
meX=t/m) _close to the uniform for any choice of t.

Proof. We need the following classical example of
rapidly mixing random walk:

Definition 3.2 (lazy random walk on the cube)

Let & € {0,1}™ be a random vector equal O with prob-
ability 1/2 and a randomly chosen vector of weight 1
with probability 1/2. This is the “step” of the random

walk. Let
k
gk = Z £§1)7
i=1

where fgi) ~ &1 are i.4.d. variables and the sum is taken
over GFs.

It is well known (see for example [PVO01]) that the
distribution of & converges to the uniform very fast,
namely the statistical distance

p(&, Upy) < me™ 2™,

Lemma 3.1 Let n,.(A) ~ D,(A). In the assumption
that pe(nk(A), mk-1(A)) < € and pe(nk(A), me41(A4)) <

€ holds
pe(me(A)smi(A) +&1) < €/2.
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Proof. Let C be a randomized polynomial algorithm.
The variable 7y (A)+&; results from 7 (A) by flipping a
random bit with probability 1/2. Recall that n,(A) =
Az + ey, thus

m(A) + & = Az + (e + &1).

With probability 1/2 the variable e + &; is a uniform
vector of weight k, with probability 1/2 - k/n it is a
uniform vector of weight & — 1 and with probability
1/2-(n —k)/n it is of weight k 4+ 1. Denote by p, =
Pr[C(n,) = 1]. Thus, we can write

e INPUT: Parameters n, m and € = ¢(n) > 0.

e YES INSTANCE: A random pair (A, b;), where
A, is a random m x n (0 — 1)-matrix in which
every row contains exactly three ones and b; ~

e NO INSTANCE: A random pair (A,,bs), where
A,, is a random m X n matrix in which every row
contains exactly three ones and by ~ Diepyy1(An)-

Conjecture 1 For any m = O(n), for any firved
€0 > 0 and for any € > €y no polynomial algorithm

1 k n—k can solve Average-3LIN with success probability greater
Pr{Cm + &) = 1 = gpr + 5 -pr-1 + —5 =P+t than 1/(n1n2n).
which implies that Remark 1 It can be shown that if the matrix A,, hap-
pens to be “degenerate” (for example, contains two
Pr[C(n +&1) = 1] _pk’ = equal rows, which occurs with probability 1/n) then
one can distinguish vectors b; and by with probabil-
k n—k ity roughly 1/n. This gives an algorithm that distin-
‘2n (Pr—1 = pi) 2n (P —pu)| <€/ guishes (4,b;) and (A, by) with success 1/n?. We be-

The lemma follows.m

Now it is easy to finish the proof of the theorem.
It follows by Lemma 3.1 that 7 is computationally e-
close to n; + &1. Since variables & can be sampled in
polynomial time this implies that

Pk +&—1,mk + &) <,

which implies by Proposition 2.1 that

(M, M + &) < et.

Finally, it is left to notice that the distribution of ng+&;
is statistically me=%(*/")_close to the uniform. The
theorem is proved.m

4. Applications

In this section we apply the general result of Theo-
rem 3.1 to show the intractability of several optimiza-
tion problems. Our results in this section are based
on three different conjectures about the average hard-
ness of MAXIMUM SATISFYING LINEAR SUBSYS-
TEM. We are unaware about efficient algorithms that
refute any of these assumptions. Formally, all conjec-
tures are independent and have different implications
in the theory of approximation algorithms and in cryp-
tography. Conjecture 2 may be of independent interest
as it assumes a mixture of average case and worst-case
hardness.

Problem 2 (Average-3LIN)

5

lieve that no algorithm can do substantially better than
this bound, and if A, is an expander (which occurs
with probability 1 — O(1/n)) then the distributions of
b1 and by are indistinguishable. Thus, we could specify
in Problem 2 that A is chosen uniformly from the set of
good expanders and assume its 1/n9(1)—intractability
(but this would sacrifice the property of being sam-
plable).

Problem 3 (Average LIN-SAT)
e INPUT: Parameters n, m and € = ¢(n) > 0.

e YES INSTANCE: Any m x n matrix A, and a
random vector by ~ Drpe1(Ay).

e NO INSTANCE: Any m x n matrix A,, and a ran-
dom vector by ~ Drpe141(An).

This problem resembles the question how to decode
a linear error correcting code from n¢ errors. However,
the matrix A,, is not necessarily a generator of a good
code. Thus, a priori Problem 3 may be more difficult
than the unique decoding of the random codeword with
n¢ errors.

Conjecture 2 For any m = O(n), any fized ¢y and
any € > €y no polynomial algorithm solves Problem 3
with success better than 1/n*™).

Note that this conjecture combines the worst case
assumption (in the choice of A,,) with the average case
assumption in the random choice of n€ unsatisfied equa-
tions. Finally for our cryptographic applications in
Section 4.4 we need the following conjecture.
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Problem 4 (Average-NEAREST-CODEWORD)

e INPUT: Parameters n, m and § = §(n) > 0.

e YES INSTANCE: A random pair (4,,b;), where
A, is a random m x n matrix and by ~ Dpps1(Ay).

e NO INSTANCE: A random pair (A,,bs), where
A, is a random m X n matrix and by ~

D[n‘s—\ +1 (An)~

Conjecture 3 For any m = O(n) there exist 6; <
0 < 1/2, s.t. for any 6y < & < d2 no polynomial
time algorithm solves Problem 4 with success better
than 1/n$M).

4.1. Average MAX-3LIN and Feige’s Refute-
3SAT hypothesis

In his paper on average case hardness versus hard-
ness of approximation [Fei02], Feige assumes that the
following problem (that we call Refute-3SAT) is hard
on average and infers the hardness of approximation for
several interesting problems, for which it is not known
whether the approximation is NP-hard.

Problem 5 (Refute-3SAT)

e INPUT: Parameters n, m and € > 0.

e YES INSTANCE: 3CNF ¢ with n variables and
m clauses, for which at least (1 — €)m clauses are
satisfiable.

e NO INSTANCE: A random 3CNF ¢ with n vari-
ables and m clauses.

Note, that since nothing is said about the distribu-
tion of yes instances it is assumed to be chosen in the
worst case. Thus in order to solve this probabilistic
promise problem the algorithm should always output
“yes” on every yes instance and w.h.p. say “no” on
every mo instance. Stated in our terms, Hypothesis 2
in [Fei02] assumes that no polynomial algorithm can
solve Refute-3SAT with success 1 —o(1). One can sim-
ilarly define Refute-3LIN problem:

Problem 6 (Refute-3LIN)

e INPUT: Parameters n, m and € > 0.

e YES INSTANCE: A set of m linear constraints on
three variables, such that at least (1 — €)m con-
straints are satisfiable.

6

DENSE+4-SUBGRAPH MAX-BIPARTITE-CLIQUE

MIN-BISECTION 2-CATALOG-SEGMENTATION

F
(F) ® (F)

(F)

REFUTE-3SAT-«—3 REFUTE-3LIN
success >1—¢€ success >1—¢€

4

AVERAGE-3LIN
success >1/(nln’n)
Figure 1. The graph of average-case reductions

e NO INSTANCE: A set of m linear constraints on
three variables, each of which is chosen at random
from the set of all constraints over n variables.

It was shown in [Fei02] that Refute-3SAT and
Refute-3LIN are essentially equivalent, and if they are
hard then the following problems cannot be approx-
imated within some constant: Min Bisection, Dense
k-subgraph, Max Bipartite Clique, 2-Catalog Segmen-
tation. Below we show that if Average-3LIN (with
success probability 1/(n1n*n)) is hard for polynomial
algorithms then Refute-3LIN is hard (and hence the
other hardness results hold too, see Figure 1). This
result may be interesting as

e it gives more evidence that Hypothesis 2 in [Fei02]
is true.

e Average-3LIN is a samplable problem, thus more
natural from the cryptographic point of view.

Theorem 4.1 Conjecture 1 implies that no polyno-
mial algorithm can solve Refute-3LIN with success
1—o0(1).

Proof. Assume for the sake of contradiction that
there exists a polynomial algorithm A, which always
outputs “yes” on any system of m linear constraints
that contains a satisfiable subsystem of size (1 — e)m
and w.h.p. outputs “no” on the completely random
system. Let k& = em. Then w.h.p. (according to
the choice of A,,) this algorithm distinguishes between
the distribution Dy (A,) and the uniform one. By
Theorem 3.1 this implies that there exists an algo-
rithm that distinguishes Dy (A,,) and either Dy_1(A,)
or Dy41(A,) with success greater than 1/(nIn?n) (to
see this choose in the statement of the theorem t =
nin®n/10). By Proposition 2.2 there exists an algo-
rithm that solves Average-3LIN promise problem with
success 1/(nIn®n). This however contradicts to Con-
jecture 1.m
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4.2. Nearest Codeword

In this section we study the limitations on approx-
imability of the following problem.

Problem 7 (Nearest Codeword)

e INSTANCE: A linear binary code given by its gen-
erator m X n matrix A and a vector b.

e SOLUTION: A vector z € {0,1}™ that specifies a
codeword Azx.

e OBJECTIVE FUNCTION: The hamming dis-
tance d(Ax,b).

The best known NP-hard lower bound on the fagctor
of approximation for the Nearest Codeword is 2'°8 "
for any € > 0 due to [ABSS97].

Theorem 4.2 Conjecture 2 implies that the Nearest
Codeword is hard to approzimate within n'=¢.

Proof.

Lemma 4.1 For any m xn matriz A s.t. m > 2n the
hamming distance of the uniformly distributed vector
y € {0,1}™ and Im(A) is greater than m/10 w.h.p.

Proof. By a simple counting argument. The number
of different vectors in Im(A) is at most 2", the ball of
radius m/10 contains ( ) points, the union of these
balls covers at most

m7/7L10
2n2H(1/10)m < 20.97m

points, which consists a negligible part of the whole
space.m

The rest of the proof is similar to that of Theo-
rem 4.1. Let £ = n°. By Lemma 4.1 any algorithm
that approximates the Nearest Codeword can be used
to distinguish between distributions Dy (A) and U, for
any matrix A with success 1 — o(1). By Theorem 3.1
this in turns implies that Dy (A) is computationally dis-
tinguishable from either Dy41(A) or Dg_1(A), which
contradicts to Conjecture 2, because Proposition 2.2
also holds for Average LIN-SAT problem.m

4.3. Matrix Rigidity

Recall that for (0 — 1)-matrix M its rigidity Rz (r)
is the minimal number of entries of M that have to
be changed to reduce its rank below r. Consider the
following approximation problem.
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Problem 8 (Approximating Matrix Rigidity)
e INPUT: Parameters m, ¢,6 > 0.
e YES INSTANCE: Any m x m matrix M for which

Rar(em) < m!Te

e NO INSTANCE: A random m X m matrix M.

Theorem 4.3 Conjecture 2 implies the hardness of
Problem 8 with success 1/n*1),

Proof. Choose n = em and denote k = m!'*9. We use
the result of Theorem 3.1, which implies that in the
assumption of Conjecture 2 it is computationally hard
to distinguish distributions Uy, and Dy (A), for at least
one m X n matrix A for every n. For t = 0..m define
a random matrix M* = (M;|Ma|...|M,,) whose first ¢
columns M; are chosen independently with distribution
Dy (A) and last m — ¢ columns are chosen uniformly at
random. As a corollary of Theorem 3.1 we get

Proposition 4.2 Conjecture 2 implies that for any
t =1..(m—1) it is computationally hard to distinguish
Mt and Mt+1.

Indeed, since the distribution Dy (A) as well as U,,
is samplable if an algorithm can distinguish M; and
M1 then it can also distinguish Dy (A) and U,,.

Lemma 4.3 Ry, (em) < m'*° with probability one.

Proof. Every column in M, can be represented as
a sum of a vector in Im(A4) and a vector of weight k.
Thus we can flip km entries in M,,, to decrease its rank
to dim(Im(A)) = em.m

By Proposition 2.1 it is hard to distinguish My and
M,,,. The former is the completely random matrix, the
latter by Lemma 4.3 has low rigidity. Theorem 4.3 is
proved.m

4.4. Two public-key criptosystems

We have seen in Section 3 that any of our conjec-
tures implies the existence of a simple pseudorandom
generator. Below we give two constructions of another
cryptographic primitive: public key criptosystem. Very
informally, this primitive is a function fs(z) which is
hard to invert on average without knowledge of the
“secret” s, but easy to invert given s. The first cryp-
tosystem is easier to analyze, however it encodes only
a single bit. The second system can encode up to Q(n)
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bits. Both systems are secure unless Conjecture 3 is
false.

Cryptosystem 1. Let k =n'/27¢, m = 2n.

Generation of public/private keys.

Generate a random m xn (0—1)-matrix A. Generate a
random vector b € {0,1}™ within distance k from the
image of A: b = Ax + e, where x ~ U,, and e € (7,?)
is a random vector of weight k. Let A4; = (b|A) be
m x (n 4+ 1) matrix that results from A by adding the
column b.

The public key is the matrix A;. The private key is the
pair (44, e).

Encryption.
The encryption of one is a uniform random vector &' ~
UTTL'
The encryption of zero is a random vector £° generated
as

=y+e,

where y is a random element of the dual code with
parity check matrix AT (i.e. y €y Ker(AT)) and ¢’ €
(ZL) is a random vector of weight k.

Decryption.
For a vector £ € {0,1}™ let § = eT¢. If § is 0 then
output zero. Otherwise output one.

The correctness and security of this cryptosystem
are provided by the following theorem.

Theorem 4.4
Part 1. The decryption algorithm returns zero on the
encrypted zero-message with probability 1 — o(1). It re-

turns one on the encrypted one-message with probabil-
ity 1/2.

Part 2. Conjecture 8 implies that the distributions of
(€Y, A1) and (€9, A1) are computationally indistinguish-
able.

Before we give the proof of this theorem we note that
one can stretch out the length of messages arbitrarily
as well as to decrease the error in the decryption using
the standard Shannon theory of error correction over
the noisy channel.

Proof.

Part 1. Obviously, the probability that e7¢! = 0 is
exactly 1/2. To estimate the probability that e?'¢? = 0
notice that any vector y in Ker(AT) satisfies ey = 0
since e belongs to the span of the rows of A?. Thus
for €2 = y + ¢’ holds

6T£0 _ €T(y+€/) — €T€/.

8

Both vectors e, ¢/ have weight k. The probability that
they have a common one is less than (1—k/n)* = o(1).

Part 2. Let us introduce intermediate random variables
Ay ey {0,1y*(+1) and €0 = § 4+ &, where § ey
Ker(/il) and ¢ €y (ZL)

Theorem 3.1 and Conjecture 3 imply that distribu-
tions of A; and Al are computationally indistinguish-
able, hence the distributions of (£°, A;) and (€9, A;)
are indistinguishable too. On the other hand, the ker-
nel of A; as any linear space can be specified as an
image of linear operator B so 50 is chosen as

@ =B.z+¢,

where B is a random m x (m —n — 1) matrix, z €y
{0,1}m "L and & € (') is a random vector of weight
k. Once again we apply Theorem 3.1 and Conjecture 3
to conclude that it is computationally hard to distin-
guish (€9, A1) and (¢!, A;). Finally, it is hard to dis-
tinguish (£!, A1) and (€', A1) because A; and A; are
computationally indistinguishable. The theorem now
follows by Proposition 2.1.m

Cryptosystem 2. Let m = 2n, k = n'/?2~¢ and
H € {0,1}/19%m he a parity check matrix of any
asymptotically good error correcting code for which
there exists an efficient decoding algorithm.

Generation of public/private keys.

Choose a random m x n (0 — 1)-matrix A. Choose a
random n x m (0 — 1)-matrix X and a random m x m
matrix F, in which every row contains exactly k ones.
Let M = AX 4+ E. Repeat this procedure until M is not
degenerate. Denote by V = Ker(ATMTfl) NKer(H),
let r = dim(V'), assume w.l.o.g. that r is even. Choose
a random partition

V=Val,
s.t. dim(Vp) = dim(Va) = r/2.

The public key is (M, A, Vi, Va).
(M’A7‘/17‘/2’E)'

The private key is

Encryption.

We identify the messages of length r/2 (clearly r is
linear in n) with vectors in V. To encode a message
choose the corresponding vy € Vy and compute

E(vo) = MT ™ (vo +v1) + ¢,

where ¢’ € (7') is a random vector of weight k and

v €y V1.

Decryption
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To decrypt the vector &, compute
v=ET¢.

Apply the efficient decoding algorithm for H to find
the nearest codeword v to v. OQutput the projection of
v onto Vj as the decrypted message.

Theorem 4.5

Part 1. The decryption of the second cryptosystem is
correct w.h.p.

Part 2. Conjecture 3 implies that the second cryptosys-
tem is secure against the passive attack in the sense
that for any two distinct messages vy # vi the distri-
butions of

(f(vé)a M; Aa VOa Vl) and (6(1}3)7 M7A7 %7 ‘/1)

are computationally indistinguishable.

sequence that do not belong to the image of pseudo-
random generator (cf. [ABRWO00]).

Finally, by the analogy with Tseitin tautologies for
propositional calculus, one can define Pseudo-Tseitin
tautologies, which state that a given linear system is
unsatisfiable in the strong sense: there is no satisfiable
subsystem that contains almost all linear equations.
Formalized as in [ABRWO00] Pscudo-Tseitin tautologies
may be a curious candidate for proving lower bounds
in propositional calculus.
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