The Multiplicative Weights Update Method: a Meta Algorithm and Applications

Sanjeev Arora* Elad Hazan Satyen Kale

Abstract

Algorithms in varied fields use the idea of maintaining a distribution over a certain set and use the multiplicative update rule to iteratively change these weights. Their analysis are usually very similar and rely on an exponential potential function.

We present a simple meta algorithm that unifies these disparate algorithms and drives them as simple instantiations of the meta algorithm.

1 Introduction

Algorithms in varied fields work as follows: a distribution is maintained on a certain set, and at each step the probability assigned to i is multiplied or divided by $(1 + \epsilon C(i))$ where $C(i)$ is some kind of “payoff” for element i. (Rescaling may be needed to ensure that the new values form a distribution.) Some examples include: the Ada Boost algorithm in machine learning [FS97]; algorithms for game playing studied in economics (see below), the Plotkin-Shmoys-Tardos algorithm for packing and covering LPs [PST91], and its improvements in the case of flow problems by Young, Garg-Konneman, and Fleischer [You95, GK98, Fle00]; Impagliazzo’s proof of the Yao XOR lemma [Imp95], etc. The analysis of the running time uses a potential function argument and the final running time is proportional to $1/\epsilon^2$.

It has been clear to most researchers that these results are very similar, see for instance, Khandekar’s PhD thesis [Kha04]. Here we point out that these are all instances of the same (more general) algorithm. This meta algorithm is a generalization of Littlestone and Warmuth’s weighted majority algorithm from learning theory [LW94]. (A similar algorithm has been independently rediscovered in many other fields; see below.) The advantage of deriving the above algorithms from the same meta algorithm is that this highlights their commonalities as well as their differences. To give an example, the algorithms of Garg-Könemann [GK98] were felt to be quite different from those of Plotkin-Shmoys-Tardos. In our framework, it is found to be a clever trick for “width reduction” in the PST framework (see Section 3.3).

We feel that our meta algorithm and its analysis are simple and useful enough that they should be viewed as a basic tool taught to all algorithms students together with divide-and-conquer, dynamic programming, random sampling, and the like.

This is chiefly a survey paper. It introduces the main algorithm, gives a few variants (chiefly having to do with the range in which the payoffs lie), and surveys the most important applications—often with complete proofs. A forthcoming paper will also describe some new applications (to semidefinite programming) that the authors have discovered.

*This project supported by David and Lucile Packard Fellowship and NSF grant CCR-0205594. Address for all authors: Computer Science Dept, 35 Olden St, Princeton NJ 08540.
Related work. Multiplicative update algorithms were proposed in game theory in the early fifties [BvN50, Bro51, Rob51]. Following Brown [Bro51], this algorithm was called “Fictitious Play”: at each step each player observes actions taken by his opponent in previous stages, updates his beliefs about his opponents’ strategies, and chooses myopic pure best responses against these beliefs. This simple idea (which was shown to lead to optimal solutions in the limit) led to many subfields of economics, including Arrow-Debreu General Equilibrium theory and more recently, evolutionary game theory. Grigoriadis and Khachiyan [GK95] showed how a randomized variant of “Fictitious Play” can solve matrix game efficiently.

The multiplicative update rule (and the exponential potential function) were rediscovered in Computational Geometry in the late 1980s [CW89] and several applications in geometry are described in Chazelle [Cha00] (p. 6, and p. 124). See also our Section 3.10, which also mentions some more recent applications to geometric embeddings of finite metric spaces.

The weighted majority algorithm as well as more sophisticated versions have been independently discovered in operations research and statistical decision making in the context of the On-line decision problem; see the surveys of Cover [Cov96], Foster and Vohra [FV99], and also Blum [Blu98] who includes applications of weighted majority to machine learning. A notable algorithm, which is different from but related to our framework, was developed by Hannan in the fifties [Han57]. Kalai and Vempala showed how to derive efficient algorithms via similar methods [KV03].

Within computer science, several researchers have previously noted the close relationships between multiplicative update algorithms used in different contexts. Young [You95] notes the connection between fast LP algorithms and Raghavan’s method of pessimistic estimators for derandomization of randomized rounding algorithms; see our Section 3.4. Klivans and Servedio [KS03] relate boosting algorithms in learning theory to proofs of Yao XOR Lemma; see our Section 3.5. Garg and Khandekar describe a common framework for convex optimization problems that contains Garg-Konemann and Plotkin-Shmoys-Tardos as subcases.

To the best of our knowledge our framework is the most general and arguably, the simplest. We readily acknowledge the influence of all previous papers (especially Young [You95] and Freund-Schapire [FS99]) on the development of our framework. Disclaimer: We do not claim that every algorithm designed using the multiplicative update idea fits in our framework, just that most do. Some applications in multiparty settings do not easily fit into our framework; see Section 3.8 for some examples.

1.1 The weighted majority algorithm

Let us briefly recall the weighted majority algorithm. We are trying to invest in a certain stock. For simplicity, think of its price movements as a sequence of binary events: up/down. (Below, this will be generalized to allow nonbinary events.) Each morning we try to predict whether the price will go up or down that day; if our prediction happens to be wrong we lose a dollar that day.

In making our predictions, we are allowed to watch the predictions of n “experts” (who could be arbitrarily correlated, and who may or may not know what they are talking about). The algorithm we present will be able to limit its losses to roughly the same as the best of these experts. At first sight this may seem an impossible goal, since it is not known until the end of the sequence who the best expert was, whereas the algorithm is required to make predictions all along.

The algorithm does this by maintaining a weighting of the experts. Initially all have equal weight. As time goes on, some experts are seen as making better predictions than others, and the algorithm increases their weight proportionately.
Weighted majority algorithm (slightly modified from original):

At every step \(t \), we have a weight \(w^t_i \) assigned to expert \(i \). Initially \(w^1_i = 1 \) for all \(i \). At step \(t+1 \), for each \(i \) such that expert \(i \) was found to have predicted the day’s price movement incorrectly, we set

\[
 w^{t+1}_i = (1 - \epsilon) w^t_i \quad \text{(update rule).}
\]

Our prediction for step \(t+1 \) is the opinion of a weighted majority of the experts. In other words, if the total weight of all experts predicting “up” is at least \(\sum_i w^t_i / 2 \) then we predict “up” as well and otherwise we predict “down.”

Theorem 1 After \(t \) steps, let \(m^t_i \) be the number of mistakes of expert \(i \) and \(m^t \) be the number of mistakes our algorithm has made. Then we have the following bound for every \(i \):

\[
 m^t_i \leq \frac{2 \ln n}{\epsilon} + 2(1 + \epsilon) m^t_i.
\]

In particular, this holds for \(i = \text{the best expert, i.e. having the least } m_i \).

Proof: A simple induction shows that \(w^t_i = (1 - \epsilon)^m^t_i \). Let \(\Phi^t = \sum_i w^t_i \) (“the potential function”). Thus \(\Phi^1 = n \). Each time we make a mistake, at least half the total weight decreases by a factor \(1 - \epsilon \), so the potential function decreases by a factor at least \((1 - \epsilon/2) \):

\[
 \Phi^{t+1} \leq \Phi^t \left(\frac{1}{2} + \frac{1}{2}(1 - \epsilon) \right) = \Phi^t(1 - \epsilon/2).
\]

Thus another simple induction gives \(\Phi^t \leq n(1 - \epsilon/2)^{m^t} \). Finally, since \(\Phi^t \geq w^t_i \) for all \(i \), the claimed bound follows by comparing the above two expressions and using \(-\ln(1-x) \leq x + x^2 \) for \(x < 1/2 \).

The beauty of this analysis is that it makes no assumption about the sequence of events: they could be arbitrarily correlated and could even depend upon our current weighting of the experts. In this sense, this algorithm delivers more than initially promised, and this lies at the root of why (after obvious generalization) it can give rise to the diverse algorithms mentioned earlier. In particular, the scenario where the events are chosen adversarially resembles a zero-sum game, which we consider later in section 3.1.

2 Our generalization to the Weighted Majority Algorithm

In the general setting, we still have \(n \) experts who make predictions. The set of events/outcomes may not be necessarily binary and could even be infinite. To motivate the Multiplicative Weights Update algorithm, consider the naive strategy that, at each iteration, simply picks an expert at random. The expected penalty will be that of the “average” expert. Suppose now that a few experts clearly outperform their competitors. This is easy to spot as events unfold, and so it is sensible to reward them by increasing their probability of being picked in the next round (hence the multiplicative weight update rule).

Intuitively, being in complete ignorance about the experts at the outset, we select them uniformly at random for advice. This maximum entropy starting rule reflects our ignorance. As we learn who the hot experts are and who the duds are, we lower the entropy to reflect our increased knowledge. The multiplicative weight update is our means of skewing the distribution.
Denote the set of events/outcomes by \(P \). We assume there is a matrix \(M \) such that \(M(i,j) \) is the penalty that expert \(i \) pays when the outcome is \(j \in P \). We will assume that for each expert \(i \) and each event \(j, M(i,j) \) is in the range \([-\ell, \rho] \), where \(\ell \leq \rho \). (Actually, the analysis below works even if there are two types of expert: those for which all payoffs are in the range \([-\ell, \rho] \) and those for which all penalties are in \([-\rho, \ell] \). We will call \(\rho \) the width\(^1 \). The prediction algorithm will be randomized and we desire that its expected penalty is not much worse than that of the best expert in hindsight\(^2 \).

Multiplicative Weights Update algorithm

At every step \(t \), we have a weight \(w_i^t \) assigned to expert \(i \). Initially \(w_i^1 = 1 \) for all \(i \). For each time \(t \) we associate the distribution \(D_t = \{p_1^t, p_2^t, \ldots, p_n^t\} \) on the experts where \(p_i^t = w_i^t/\sum_k w_k^t \). At step \(t \), we pick an expert according to distribution \(D_t \) and use it to make our prediction. Based on the outcome \(j^t \in P \) in round \(t \), at step \(t + 1 \), the weight of expert \(i \) is updated as follows for each \(i \):

\[
w_i^{t+1} = \begin{cases}
 w_i^t (1 - \epsilon) M(i,j^t)/\rho & \text{if } M(i,j^t) \geq 0 \\
 w_i^t (1 + \epsilon) - M(i,j^t)/\rho & \text{if } M(i,j^t) < 0
\end{cases}
\]

The expected penalty for outcome \(j^t \in P \) is \(\sum_i p_i^t M(i,j^t) = \sum_i w_i^t M(i,j^t)/\sum_i w_i^t \) which we denote by \(M(D_t, j^t) \). By linearity of expectations, the expected total loss after \(T \) rounds is \(\sum_{t=1}^T M(D_t, j^t) \). The following theorem — completely analogous to Theorem 1 — bounds this.

Theorem 2 (Main) Let \(\epsilon \leq \frac{1}{2} \). After \(T \) rounds, for any expert \(i \), we have

\[
\sum_t M(D_t, j^t) \leq \frac{\rho \ln n}{\epsilon} + (1 + \epsilon) \sum_{j \geq 0} M(i,j^t) + (1 - \epsilon) \sum_{j < 0} M(i,j^t)
\]

where the subscripts \(\geq 0 \) and \(< 0 \) refer to the rounds \(t \) where \(M(i,j^t) \) is \(\geq 0 \) and \(< 0 \) respectively.

Proof: We use the following facts, which follow immediately from the convexity of the exponential function:

\[
(1 - \epsilon)^x \leq (1 - \epsilon x) \quad \text{if } x \in [0,1] \\
(1 + \epsilon)^{-x} \leq (1 - \epsilon x) \quad \text{if } x \in [-1,0]
\]

The proof is along the lines of the earlier one, using the potential function \(\Phi^t = \sum_i w_i^t \). Since

\(^1\)The width parameter plays an important role in all previously cited papers. Following their convention, the width should be defined as \(\rho + \ell \), which is a number in \([\rho, 2\rho]\) and thus differs from our definition of width by at most a factor 2. Furthermore, in previous papers it was usually assumed that \(\ell = \rho \) but allowing these two to differ can be useful in some situations.

\(^2\)Note that this setting generalizes the binary events setting of the weighted majority algorithm as follows: the penalty matrix \(M \) has a row for each of the \(n \) experts and \(2^n \) columns, corresponding to the \(2^n \) possible penalty vectors in \(\{0,1\}^n \). For a prediction vector \((x_1, x_2, \ldots, x_n) \in \{0,1\}^n \) of the \(n \) experts, there are only 2 possible events: those corresponding to the penalty vectors \((x_1, x_2, \ldots, x_n) \) and \((1 - x_1, 1 - x_2, \ldots, 1 - x_n) \) depending on whether the outcome is 0 or 1.
Theorem 2 and dividing by T

Proof: For concreteness, we will prove the case when $\ell = 0$. Let $\delta = \rho / \epsilon\delta$.

In the analysis of some algorithms such as SET COVER (c.f. section 3.4). We proved that

$$
\Phi^T \leq \Phi^1 e^{-\epsilon \sum_i M(i,j^t) / \rho}.
$$

Furthermore, for every i,

$$
\Phi^T \geq w_i^T = (1 - \epsilon)^{\sum_{0 < t \leq n} M(i,j^t) / \rho} \cdot (1 + \epsilon)^{-\sum_{0 < t \leq n} M(i,j^t) / \rho}
$$

Now we get the desired bound by taking logarithms and using $\Phi^1 = n$, and simplifying as before. We used the facts that $\ln(\frac{1}{1 - \epsilon}) \leq \epsilon + \epsilon^2$ and $\ln(1 + \epsilon) \geq \epsilon - \epsilon^2$ for $\epsilon \leq \frac{1}{2}$. □

Remark: From the proof it is clear that the multiplicative update rule could also be used the facts that $\ln(\frac{1}{1 - \epsilon}) \leq \epsilon + \epsilon^2$ and $\ln(1 + \epsilon) \geq \epsilon - \epsilon^2$ for $\epsilon \leq \frac{1}{2}$. □

regardless of the sign of $M(i,j^t)$. Such a rule may be more practical to implement and is also used in the analysis of some algorithms such as SET COVER (c.f. section 3.4).

Corollary 3 Let $\delta > 0$ be an error parameter. Then with $\epsilon = \min\{\frac{\delta}{2\rho}, \frac{1}{2}\}$, after $T = \frac{2\rho \ln n}{\epsilon^2}$ rounds, we have the following (additive and multiplicative) bound on the average expected loss: for any expert i,

$$
\sum_t M(D^t, j^t) / T \leq \delta + (1 \pm \epsilon) \sum_t M(i,j^t) / T
$$

where the $+$ or $-$ sign depends on whether $M(i,j) \in [-\ell, \rho]$ or $[-\rho, \ell]$ respectively.

Proof: For concreteness, we will prove the case when $M(i,j) \in [-\ell, \rho]$. The other case is similar. In this case, $(1 - \epsilon) \sum_{0 < t \leq n} M(i,j^t) \leq (1 + \epsilon) \sum_{0 < t \leq n} M(i,j^t) + 2\epsilon T$. Substituting this bound in the inequality of Theorem 2 and dividing by T we have

$$
\frac{\sum_t M(D^t, j^t)}{T} \leq \frac{\rho \ln n}{\epsilon T} + 2\epsilon + (1 + \epsilon) \frac{\sum_t M(i,j^t)}{T}
$$

Choosing ϵ and T as given, we get the required bound. □

Remarks: (i) Again, we note that bound of Theorem 2 holds even if the events/outcomes could be picked by an adversary who knows our algorithm’s current distribution on experts. (ii) In Corollary 3 two subcases need to be highlighted. When $\ell = 0$ — i.e., all penalties are positive — then the running time is proportional to $\rho / \epsilon\delta$. When $\ell = -\rho$, then $\epsilon \leq \delta / 4\rho$, and the running time is proportional to ρ^2 / δ^2. This issue is at the root of the difference between algorithms for general LP and for packing-covering LP problems (see Section 3.2).

Corollary 4 Let $\delta > 0$ be an error parameter. Then with $\epsilon = \min\{\frac{\delta}{4\rho}, \frac{1}{2}\}$, after $T = \frac{16\rho^2 \ln n}{\delta^2}$ rounds, we have the following (additive) bound on the average expected loss: for any expert i,

$$
\frac{\sum_t M(D^t, j^t)}{T} \leq \delta + \frac{\sum_t M(i,j^t)}{T}
$$

Proof: For concreteness, we will prove the case when $M(i,j) \in [-\ell, \rho]$. The other case is similar. As in Corollary 3, we first derive inequality (2). We have $(1 + \epsilon) \frac{\sum_t M(i,j^t)}{T} \leq \frac{\sum_t M(i,j^t)}{T} + \epsilon \rho$, since for any j^t, $M(i,j^t) \leq \rho$. Finally, choosing ϵ and T as given, we get the required bound. □
2.1 Gains instead of losses

In some situations, the entries of the matrix M may specify gains instead of losses. Now our goal is to gain as much as possible in comparison to the gain of the best expert. We can get an algorithm for this case simply by considering the matrix $M' = -M$ instead of M.

The algorithm that results updates the weight of expert i by a factor of $(1 + \epsilon)^{M(i,j)/\rho}$, when $M(i,j) \geq 0$, and $(1 - \epsilon)^{-M(i,j)/\rho}$, when $M(i,j) < 0$. The following theorem follows directly from Theorem 2 by simply negating the quantities:

Theorem 5 After T rounds, for any expert i, we have

$$\sum_t M(D^t, j^t) \geq -\frac{\rho \ln n}{\epsilon} + (1 - \epsilon) \sum_{t \geq 0} M(i, j^t) + (1 + \epsilon) \sum_{t < 0} M(i, j^t)$$

2.2 Logarithmic loss

Variants of the multiplicative weights update algorithm can be applied to a more general setting, in which a certain loss function $L: \mathbb{R} \times \mathbb{R} \to \mathbb{R}$ is considered. The goal of the online algorithm is to minimize the average per round loss, $\frac{1}{T} \sum_t L(D^*, j^t), M(D^t, j^t))$, where D^t is the online distribution (or weights) on the experts at time t, and D^* is the optimal offline expert distribution. For some other settings for loss functions see Haussler et al [HKW98].

The logarithmic loss function $L(x, y) = \log \frac{x}{y}$ was considered for modelling the Online Portfolio Selection Problem [HSSW96]. The problem comes from finance where we have to devise a strategy to invest in n stocks which achieves almost the same wealth as the best constant rebalanced portfolio in hindsight over a certain period of time. A constant rebalanced portfolio maintains a fixed fraction of the total wealth every day in each stock. The information obtained each day is the vector of price relatives (x_1, x_2, \ldots, x_n) which gives the the factor increase in the price of each stock. Set $M(i, j^t) = x^t$. Then if D^t is the distribution of the wealth on day t, the factor increase in the total wealth is $M(D^t, j^t)$. The logarithm converts the multiplicative factor increase into an additive one.

The proof methodology of the Multiplicative Weights Update algorithm (i.e. measuring progress via a potential function which is the sum of the weights) can be carried over, with slight modifications, to the logarithmic loss function case and provides slightly better guarantees than Helmbold et al [HSSW96]. We omit the details for brevity.

3 Applications

The way to use Multiplicative Weights Update for solving computational tasks is typically as follows. Suppose the performance of the algorithm depends on satisfying certain constraints: we then let an expert represent each constraint, and the events correspond to points in the domain of interest. The penalty of the expert is made proportional to how well the corresponding constraint performs on the point represented by an event. This might seem counterintuitive, but recall that we reduce an expert’s weight depending on his penalty, and if an expert’s constraint is doing well on events so far we would like his weight to be smaller, so that the algorithm focuses on experts whose constraints aren’t doing well. With these weights, the algorithm generates a maximally adversarial event, i.e. the event whose corresponding point maximizes the expected penalty, i.e. the weighted sum of penalties. With this intuition, we can describe the following applications.
3.1 Solving zero-sum games approximately

We show how our general algorithm above can be used to approximately solve zero-sum games. (This is a duplication of the results of Freund and Schapire [FS99], who gave the same algorithm but a different proof of convergence that used KL-divergence. Furthermore, proofs of convergence were also given earlier in Economics.) Let \(\pmb{M} \) be the payoff matrix of a finite 2-player zero-sum game, so that when the row player plays strategy \(i \) and the column player plays strategy \(j \), then the payoff to the column player is \(\pmb{M}(i, j) \). We assume that \(\pmb{M}(i, j) \in [0, 1] \). We wish to approximately compute the game value, which according to von Neumann’s MinMax theorem is characterized as:

\[
\lambda^* = \min_{\pmb{D}} \max_j \pmb{M}(\pmb{D}, j) = \max_i \min_{\pmb{P}} \pmb{M}(i, \pmb{P}),
\]

where \(\pmb{D} \) (resp., \(\pmb{P} \)) varies over all distributions of rows (resp., columns) and \(j \) (resp., \(i \)) varies over all columns (resp., rows), and the notation \(\pmb{M}(\pmb{D}, j) \) denotes \(E_{i \in \pmb{D}}[\pmb{M}(i, j)] \).

Let \(\delta > 0 \) be an error parameter. We wish to approximately solve the zero-sum game up to additive error of \(\delta \), namely, find mixed row and column strategies \(\pmb{D}_{\text{final}} \) and \(\pmb{P}_{\text{final}} \) such that

\[
\lambda^* - \delta \leq \min_i \pmb{M}(i, \pmb{P}_{\text{final}}) \quad \text{and} \quad \max_j \pmb{M}(\pmb{D}_{\text{final}}, j) \leq \lambda^* + \delta.
\]

We map our general algorithm from Section 2 to this setting by making the “experts” to correspond to pure strategies of the row player. Thus a distribution on the experts corresponds to a mixed row strategy. “Events” correspond to pure strategies of the column player. The penalty to the column player is \(\lambda^* \), but a different proof of convergence that used KL-divergence. Furthermore, proofs of convergence were also given earlier in Economics.) Let \(\pmb{M} \) be the payoff matrix of a finite 2-player zero-sum game, so that when the row player plays strategy \(i \) and the column player plays strategy \(j \), then the payoff to the column player is \(\pmb{M}(i, j) \). We assume that \(\pmb{M}(i, j) \in [0, 1] \). We wish to approximately compute the game value, which according to von Neumann’s MinMax theorem is characterized as:

\[
\lambda^* = \min_{\pmb{D}} \max_j \pmb{M}(\pmb{D}, j) = \max_i \min_{\pmb{P}} \pmb{M}(i, \pmb{P}),
\]

where \(\pmb{D} \) (resp., \(\pmb{P} \)) varies over all distributions of rows (resp., columns) and \(j \) (resp., \(i \)) varies over all columns (resp., rows), and the notation \(\pmb{M}(\pmb{D}, j) \) denotes \(E_{i \in \pmb{D}}[\pmb{M}(i, j)] \).

Let \(\delta > 0 \) be an error parameter. We wish to approximately solve the zero-sum game up to additive error of \(\delta \), namely, find mixed row and column strategies \(\pmb{D}_{\text{final}} \) and \(\pmb{P}_{\text{final}} \) such that

\[
\lambda^* - \delta \leq \min_i \pmb{M}(i, \pmb{P}_{\text{final}}) \quad \text{and} \quad \max_j \pmb{M}(\pmb{D}_{\text{final}}, j) \leq \lambda^* + \delta.
\]

We map our general algorithm from Section 2 to this setting by making the “experts” to correspond to pure strategies of the row player. Thus a distribution on the experts corresponds to a mixed row strategy. “Events” correspond to pure strategies of the column player. The penalty paid by an expert \(i \) when an event \(j \) happens is \(\pmb{M}(i, j) \). The algorithmic assumption about the game is that given any distribution \(\pmb{D} \) on experts, we have an efficient way to pick the best event, namely, the pure column strategy \(j \) that maximizes \(\pmb{M}(\pmb{D}, j) \). This quantity is at least \(\lambda^* \) from the definition above.

The penalties for experts (which are the same as payoffs) lie in \([0, 1]\). We use Corollary 4 with the parameters \(\ell = 0 \) and \(w = 1 \), and we set \(\epsilon = \delta/4 \). We run the game for \(T = 16 \ln(n)/\delta^2 \) as specified by Corollary 4.

For any distribution \(\pmb{D} \) on the row strategies, we have \(\sum_i \pmb{M}(\pmb{D}, j^t) \geq \min_i \sum_i \pmb{M}(i, j^t) \). Also, for all \(t \), \(\pmb{M}(\pmb{D}^t, j^t) \geq \lambda^* \). Thus, after \(T \) rounds, we get that for any \(\pmb{D} \),

\[
\lambda^* \leq \frac{\sum_{t=1}^{T} \pmb{M}(\pmb{D}^t, j^t)}{T} \leq \delta + \min_i \left\{ \frac{\sum_{t=1}^{T} \pmb{M}(i, j^t)}{T} \right\} \leq \delta + \frac{\sum_{t=1}^{T} \pmb{M}(\pmb{D}^t, j^t)}{T}
\]

Setting \(\pmb{D} = \pmb{D}^* \) (the optimal row strategy) we have \(\pmb{M}(\pmb{D}, j) \leq \lambda^* \) for any \(j \). The inequality (6) becomes:

\[
\lambda^* \leq \frac{\sum_{t=1}^{T} \pmb{M}(\pmb{D}^t, j^t)}{T} \leq \delta + \lambda^*
\]

Thus, \(\frac{\sum_{t=1}^{T} \pmb{M}(\pmb{D}^t, j^t)}{T} \) is an (additive) \(\delta \)-approximation to \(\lambda^* \).

We set \(\pmb{D}_{\text{final}} \) to be the distribution \(\pmb{D}^t \) which has the minimum \(\pmb{M}(\pmb{D}, j^t) \) over all \(t \). We have, from (6),

\[
\pmb{M}(\pmb{D}_{\text{final}}, j^t) \leq \frac{\sum_{t=1}^{T} \pmb{M}(\pmb{D}^t, j^t)}{T} \leq \lambda^* + \delta
\]

Since \(j^t \) maximizes \(\pmb{M}(\pmb{D}^t, j) \) over all \(j \), we conclude that \(\pmb{D}_{\text{final}} \) is an approximately optimal mixed row strategy.
We set \(P_{\text{final}} \) to be the distribution which assigns to column \(j \) probability \(\frac{1}{T} \times \#(\text{times } j \text{ is played in the algorithm}) \). From (6), we have, for any row distribution \(D \),

\[
\lambda^* - \delta \leq \frac{\sum_{t=1}^{T} M(D,j^t)}{T} = M(D,P_{\text{final}})
\]

which shows that \(P_{\text{final}} \) is an approximately optimal mixed column strategy.

3.2 Plotkin, Shmoys, Tardos framework

Plotkin, Shmoys, and Tardos generalized some known flow algorithms to a framework for approximately solving fractional packing and covering problems. Their algorithm is a quantitative version of the classical Lagrangean relaxation idea, and applies also to general linear programs. Below, we derive the algorithm for general LPs and then mention the slight modification that yields better running time for packing-covering LPs. (For convenience we will discuss only covering LPs since packing LPs are treated similarly.)

The basic problem is to check the feasibility of the following linear program:

\[
Ax \geq b, \quad x \in P
\]

(7)

where \(A \) is an \(m \times n \) matrix, \(x \in \mathbb{R}^n \), and \(P \) is a convex set in \(\mathbb{R}^n \). Intuitively, the set \(P \) represents the “easy” constraints to satisfy, such as non-negativity, and \(A \) represents the “hard” constraints to satisfy. Plotkin, Shmoys and Tardos assume the existence of an oracle which solves the following feasibility problem:

\[
\exists x \in P : \quad c^T x \geq d
\]

(8)

where \(c = \sum_i p_i A_i \) and \(d = \sum_i p_i b_i \) for some distribution \(p_1, p_2, \ldots, p_m \). It is reasonable to expect such an optimization procedure to exist (indeed, such is the case for many applications) since here we only need to check the feasibility of one constraint rather than \(m \).

Using this oracle we describe an algorithm that either yields an approximately feasible solution, i.e., an \(x \in P \) such that \(A_i x \geq b_i - \delta \) for some small \(\delta > 0 \), or failing that, proves that the system is infeasible.

To map our general framework to this situation, we have an expert representing each of the \(m \) constraints. Events correspond to vectors \(x \in P \). The penalty of the expert corresponding to constraint \(i \) for event \(x \) is \(A_i x - b_i \). We assume that the oracle’s responses \(x \) satisfy \(A_i x - b_i \in [-\rho, \rho] \) for all \(i \), for some parameter \(\rho \) known to our algorithm (note: this can be “guessed” by binary search). Thus the penalties lie in \([-\rho, \rho]\). We run the Multiplicative Weights Update algorithm for \(T \) steps as in Corollary 4 using \(\epsilon = \delta/4\rho \). (Note that \(T \) is proportional to \(\rho^2 \).) Note that if \(p_1, p_2, \ldots, p_m \) is the distribution at any time, then we call the oracle with \(c = \sum_i p_i A_i \) and \(d = \sum_i p_i b_i \).

We have the following cases:

Case 1: The oracle returns a feasible \(x \) for (8) in every iteration.

Then from Corollary 4, we have, for any \(i \)

\[
\frac{\sum_{t=1}^{T} \sum_j p_j^t [A_j x^t - b_j]}{T} \leq \delta + \frac{\sum_{t=1}^{T} [A_i x^t - b_i]}{T}
\]

The LHS is \(\geq 0 \) by assumption. Then we let \(\bar{x} = \sum_i x^t/T \) be the final answer, since the previous line implies that for every row \(i \), \(A_i \bar{x} \geq b_i - \delta \). So we have an approximately feasible solution \(\bar{x} \).
Case 2: In some iteration, the oracle declares infeasibility of (8).

In this case, we conclude that the original system is infeasible. This is correct because if there were a feasible solution x, then $Ax \geq b$, and so taking the linear combination of the inequalities given by the distribution p_1, p_2, \ldots, p_m in the current iteration, we have $\sum_i p_i A_i x \geq \sum_i p_i b_i$, which means that the oracle incorrectly declared infeasibility, a contradiction.

Fractional Covering Problems: The framework is the same as above, with the crucial difference that the coefficient matrix A is such that $Ax \geq 0$ for all $x \in P$, and $b > 0$.

The algorithm will exploit this fact by using our earlier Remark that appeared after Corollary 3. We assume without loss of generality (by appropriately scaling the inequalities) that $b_i = 1$ for all rows. Let ρ be a number (known to the algorithm in advance) such that for all $x \in P$, $A_i x \in [0, \rho]$. Again, we have an expert corresponding to each of the m constraints and the events correspond to vectors $x \in P$. However, the penalty for the expert for constraint i for the event corresponding to vector x is $A_i x$ instead of $A_i x - b_i$ used above.

The rest of the analysis is unchanged, except the running time is now proportional to ρ instead of ρ^2.

Fractional Packing Problems: Fractional packing problems are essentially the same as fractional covering ones, except that the inequalities are reversed. We can obtain algorithms to test feasibility of fractional packing problems in an exactly analogous way, the only difference being, we need to have the penalty matrix specify gains instead of losses as in section 2.1.

3.3 Approximating Multicommodity Flow Problems

Multicommodity flow problems are represented by packing/covering LPs and thus can be approximately solved using the PST framework outlined above. The resulting flow algorithm is outlined below together with a brief analysis. Unfortunately, the running time depends upon the edge capacities (as opposed to the logarithm of the capacities) and thus the algorithm is not even polynomial-time. Garg and Könemann [GK98] fixed this problem with a better algorithm whose running time does not depend upon the edge capacities.

Here we derive the Garg-Könemann algorithm using our general framework. This will highlight the essential new idea, namely, a reweighting of penalties to reduce the *width* parameter. Note that algorithm is not quite the same as in [GK98] (the termination condition is slightly different) and neither is the proof.

For illustrative purposes we focus on the *maximum multicommodity flow problem*, in which we are given a set of k source-sink pairs and capacities c_e on edges, and the objective is to maximize the total flow between these pairs. The LP formulation is as follows:

$$
\max \sum_p f_p \\
\forall e : \sum_{p \ni e} f_p \leq c_e
$$

(9)

Here, f_p represents the flow on path p connecting the source-sink pairs for any of the commodities.

First we examine the algorithm one would obtain by applying our packing-covering framework (Section 3.2) in the obvious way. Suppose (by binary search) we know the value F^{opt} of the total flow in the optimum solution. Then we want to check the feasibility of the system of inequalities, $\forall e : \sum_{p \ni e} f_p \leq c_e$, where the flows come from the polytope $P = \{\sum_p f_p = F^{opt}\}$. As outlined in Section 3.2, the obvious algorithm would maintain at each step t a weight w_e^t for each edge e. The optimization routine needed at each step is to find the flow in P which minimizes...
When the game ends, for some edge e.

Analysis

The termination rule ϵ and is increased by a factor of $(1 + \epsilon)$ per unit of flow passing through e. The width is therefore automatically upperbounded by 1.

The Multiplicative Weights Update rule in this setting consists of updating the weights of all edges in path p' and leaving other weights unchanged at that step:

$$
\forall e \in p': \quad w^t_e + 1 = w^t_e \cdot (1 + \epsilon)^{c_p' / c_e}
$$

The termination rule for the algorithm is to stop when for some edge e, $w^T_e \geq 1$.

3.3.1 Analysis

When the game ends, for some edge e^*, we have $w^T_{e^*} \geq 1$. The weight of the edge e^* is initially δ and is increased by a factor of $(1 + \epsilon)^{c_e / c_{e^*}}$ for each unit of flow routed through e^*. Thus the final weight is $(1 + \epsilon)^{f_{e^*} / c_{e^*}}$, where f_{e^*} is the total amount of flow passing through e^*. Thus, we have

$$
w^T_{e^*} \geq 1 \implies \delta (1 + \epsilon)^{f_{e^*} / c_{e^*}} \geq 1 \implies \frac{f_{e^*}}{c_{e^*}} \geq \frac{\ln \frac{1}{\delta}}{\ln(1 + \epsilon)}
$$

Theorem 5 relates the total expected penalty to the total penalty incurred by edge e^*. Specifically, since the total penalty for edge e^* is f_{e^*} / c_{e^*}, we obtain:

$$
\sum_{t=1}^{T} \frac{\sum_{e \in p'} c^t_{e} \cdot w^t_e}{\sum_{e} w^t_e} \geq \frac{\ln(1 + \epsilon)}{\epsilon} \cdot \frac{f_{e^*}}{c_{e^*}} - \frac{\ln m}{\epsilon}
$$

Using inequality (10), we have

$$
\text{RHS of (11)} \geq \frac{\ln \frac{1}{\delta}}{\epsilon} - \frac{\ln m}{\epsilon} = \frac{\ln \frac{1}{\delta \epsilon}}{\epsilon}
$$

Now we claim the LHS of (11) is at most F / F^{opt}, where F is the total flow routed in all the steps. To see this, suppose the optimum flow assigns f_p^{opt} flow to path p, so that $F^{\text{opt}} = \sum_p f_p^{\text{opt}}$. For any set of edge lengths w_e / c_e, the shortest path p satisfies

$$
\sum_e \frac{w_e}{c_e} \geq \frac{\sum_{e \in p} w_e / c_e \cdot f_p^{\text{opt}}}{\sum_{e \in p} w_e / c_e} = \frac{\sum_{e \in p} w_e / c_e \cdot f_p^{\text{opt}}}{\sum_{e \in p} w_e / c_e} \geq \sum_{p'} f_{p'}^{\text{opt}} = F^{\text{opt}}.
$$
The first inequality follows because for any edge \(e \), we have \(\sum_{p' \ni e} p'^{\text{opt}} \leq c_e \). The second inequality follows from the fact that \(p \) is the shortest path with edge lengths given by \(w_e/c_e \). Therefore, the LHS of (11) is \(\leq \sum_t c_{p'^{\text{opt}}} = F/F^{\text{opt}} \), as claimed.

Thus we can conclude that

\[
\frac{F}{F^{\text{opt}}} \geq \frac{\ln \frac{1}{m\delta}}{\epsilon}.
\]

Fix any edge \(e \). It’s initial weight is \(\delta \). It’s final weight is at most \((1 + \epsilon) \) (or else it would have had weight \(\geq 1 \) in a previous step). Therefore the flow on it is at most \(\log \frac{1+\epsilon}{\delta} \). Scale down all the flow by \(\log \frac{1+\epsilon}{\delta} \) to get a feasible flow. The approximation ratio is

\[
\frac{F/((\log \frac{1+\epsilon}{\delta})^{\epsilon})}{F^{\text{opt}}} \geq \frac{\ln \frac{1}{m\delta}}{\ln \frac{1+\epsilon}{\delta}} \cdot \frac{\ln(1 + \epsilon)}{\epsilon} \geq \frac{\ln \frac{1}{m\delta}}{\ln \frac{1+\epsilon}{\delta}} \cdot (1 - \epsilon).
\]

Choosing \(\delta = (1 + \epsilon)((1 + \epsilon)m)^{-1/\epsilon} \), the bound becomes \((1 - \epsilon)^2 \).

3.3.2 Running time

Fix any edge \(e \). It can be the minimum capacity edge on a path at most \(\log \frac{1}{\delta} \) times. So within \(m \log \frac{1}{\delta} = O\left(\frac{m \log m}{\epsilon^2}\right) \) iterations, some edge must have been selected as the min capacity edge so many times, and thus its length must be \(\geq 1 \), and the game must end. Each iteration involves \(k \) shortest path computations. Recall that \(T_{sp} \) is the time needed for this. Thus, the overall running time is \(O\left(\frac{m \log m}{\epsilon^2} \cdot T_{sp}\right) \).

3.4 \(O(\log n) \)-approximation for many NP-hard problems

For many NP-hard problems, typically integer versions of packing-covering problems, one can compute a \(O(\log n) \)-approximation by solving the obvious LP relaxation and then using Raghavan-Thompson [RT87] randomized rounding. This yields a randomized algorithm; to obtain a deterministic algorithm, derandomize it using Raghavan’s [Rag86] method of pessimistic estimators.

Young [You95] has given an especially clear framework for understanding these algorithms which as a bonus also yields faster, combinatorial algorithms. He observes that one can collapse the three ideas in the algorithm above —LP solving, randomized rounding, derandomization— into a single algorithm that uses the multiplicative update rule, and does not need to solve the LP relaxation directly. (Young’s paper is titled “Randomized rounding without solving the linear program.”) At the root of Young’s algorithm is the observation that Raghavan’s pessimistic estimator is also an exponential potential function\(^3\) and the approximation algorithm only needs to drive down this potential function at each step. This is easily achieved by a multiplicative update rule algorithm.

Below, we illustrate this idea using the canonical problem in this class, SET COVER. (A similar analysis works for other problems.) Having developed the multiplicative weights framework already, we do not need to explain the intuition in terms of Chernoff bound arguments as Young did and can proceed directly to the algorithm. In fact, the algorithm can be simplified so it becomes exactly the classical greedy algorithm, and we obtain a \(\ln n \)-approximation, which is best-possible for this problem (modulo complexity-conjectures [Fei98]).

In the Set Cover problem, we are given a universe of \(n \) elements, say \(U = \{1, 2, 3, \ldots, n\} \) and a collection \(\mathcal{C} \) of subsets of \(U \) whose union equals \(U \). We are required to pick the minimum number of sets from \(\mathcal{C} \) which cover all of \(U \). Let this minimum number be denoted OPT. The Greedy

\(^3\)Recall that Raghavan’s algorithm is a derandomization of a Chernoff bound argument, and Chernoff bounds are derived using the exponential generating function \(e^{tX} \).
Algorithm picks subsets iteratively, each time choosing that set which covers the maximum number of uncovered elements.

We analyze the Greedy Algorithm in our setup as follows. Since the elements of the universe represent the constraint that the union of sets picked by the algorithm must cover each of them, we let “experts” correspond to elements in the universe, and “events” correspond to the sets $C_j \in \mathcal{C}$. The penalty of the expert corresponding to element i for the event corresponding to set C_j is $M(i, C_j) = 1$ or 0 depending on whether $i \in C_j$ or not.

We run the Multiplicative Weights Update algorithm with this setup with $\epsilon = 1$. The update rule to be used is (see the remark following the proof of Theorem 2):

$$w_t^{i+1} = w_t^i (1 - \epsilon M(i, C_j))$$

This update rule implies that elements that have been covered so far have weight 0 while all the rest have weight 1. The maximally adversarial event in this case is the set C_j which maximizes, given weights w_1, w_2, \ldots, w_n and the corresponding distribution $p_i = w_i / \sum_j w_j$,

$$\sum_i p_i M(i, C_j) = \sum_{i \in C_j} p_i$$

which is simply the set which covers the maximum number of uncovered elements. Thus, this is the Greedy Set Cover algorithm.

Note that for any distribution p_1, p_2, \ldots, p_n on the elements, we know that OPT sets cover all the weight, so one set must cover at least $1 / \text{OPT}$ fraction. So for the maximally adversarial event, we have $\max_{C_j} \sum_{i \in C_j} p_i \geq 1 / \text{OPT}$.

Thus, the change in potential for each round is:

$$\Phi^{t+1} < \Phi^t e^{-\epsilon / \text{OPT}}$$

The strict inequality holds because we always get a strictly positive penalty. Thus, the potential drops by a factor of $e^{-1 / \text{OPT}}$ every time.

We run this as long as some element has not yet been covered. We show that $T = \lceil \ln n \rceil \text{OPT}$ iterations suffice, which implies that we have a $\lceil \ln n \rceil$ approximation to OPT. We have

$$\Phi^T < \Phi^1 e^{-T / \text{OPT}} = ne^{-\lceil \ln n \rceil \text{OPT} / \text{OPT}} = ne^{-\lceil \ln n \rceil} \leq 1$$

Note that with $\epsilon = 1$, Φ^T is exactly the number of elements left uncovered after T iterations. So we conclude that all elements are covered.

3.5 Boosting

Boosting [Sch90] —combining several moderately accurate rules-of-thumb into a singly highly accurate prediction rule— is a central idea of AI today. Freund and Schapire’s AdaBoost [FS97] uses the Multiplicative Weights Update Rule and fits in our framework. Here we explain the main idea using some simplifying assumptions.

Let X be some set (domain) and are suppose we are trying to learn an unknown function (concept) $c : X \rightarrow \{0,1\}$ chosen from a concept class \mathcal{C}. Given a sequence of training examples $(x,c(x))$ where x is generated from a fixed but unknown distribution \mathcal{D} on the domain X, the learning algorithm is required to output a hypothesis $h : X \rightarrow \{0,1\}$. The error of the hypothesis is defined to be $\mathbf{E}_{x \sim \mathcal{D}}[|h(x) - c(x)|]$.

12
A strong learning algorithm is one that, for every distribution \(D \) and every \(\epsilon, \delta > 0 \), outputs with probability \(1 - \delta \) a hypothesis whose error is at most \(\epsilon \). A \(\gamma \)-weak learning algorithm for \(\gamma > 0 \) is similar, except its error is as high as \(1/2 - \gamma \). Boosting shows that if a \(\gamma \)-weak learning algorithm exists for a concept class, then a strong learning algorithm exists. (The running time of the algorithm and the number of samples may depend on \(\gamma \).

We prove this result in the so-called boosting by sampling framework, which uses a fixed training set of \(N \) examples. The idea is to repeatedly run weak learning algorithm on different distributions defined on this set. The final hypothesis has error \(\epsilon' \) under the uniform distribution on the training set, and using VC dimension theory—details omitted—one can conclude that with probability \(1 - \delta \), the error of the hypothesis over the entire domain \(X \) is \(\epsilon \) if the training set size \(N \) is appropriately chosen.

We use the Multiplicative Weights Update algorithm, but to avoid notational confusion, we use \(\alpha \) instead of \(\epsilon \) for the multiplicative update factors. The “experts” correspond to samples in the training set and “events” correspond to the set of all hypotheses that can be generated by the weak learning algorithm. If the event corresponding to the hypothesis \(h \) happens, the penalty for expert \(x \) is 1 or 0 depending on whether \(h(x) = c(x) \) or not. (Notice, we want the weight of an example to increase if the hypothesis labels it incorrectly.)

In each iteration, the algorithm presents the current distribution \(D^t \) on the examples to the weak learning algorithm, and in return obtains a hypothesis \(h^t \) whose error with respect to the distribution \(D^t \) is not more than \(1/2 - \gamma \), in other words, the expected penalty, \(M(D^t, h^t) \), in each iteration is at least \(1/2 + \gamma \). The algorithm is run for \(T \) rounds, where \(T \) will be specified shortly. The final hypothesis, \(h_{\text{final}} \), labels \(x \in X \) according to the majority vote among \(h^1(x), h^2(x), \ldots, h^T(x) \).

Let \(S \) be the set of \(x \in X \) incorrectly labelled by \(h_{\text{final}} \). The penalty for each \(x \in S \), \(\sum M(x, h^t) \) is at most \(T/2 \) since the majority vote is incorrect for it. We adopt the proof of Theorem 2 in the following manner. We have, as in the proof, \(\Phi^T \leq \Phi^1 e^{-\alpha \sum M(D^t, h^t)} \leq n e^{-\alpha T(1/2 + \gamma)} \).

Now \(\Phi^T \geq \sum_{x \in S} (1 - \alpha) \sum M(x, h^t) \geq |S|(1 - \alpha)^T/2 \geq |S|e^{-(\alpha + \alpha^2)(T/2)} \) (using \(1 - x \geq e^{-(x + x^2)} \)) for \(x < 1/2 \). Thus, we conclude that the error of \(h_{\text{final}} \) on the training set under the uniform distribution is \(|S|/n \leq e^{-\alpha(\gamma - \alpha/2)T} \). Choosing \(\alpha = \gamma \) and \(T = 2 \gamma \ln \frac{1}{\delta} \), we get that the error is \(\leq \epsilon' \) as desired.

3.6 Hardcore sets and XOR Lemma

A function \(f : \{0,1\}^n \rightarrow \{0,1\} \) is \(\epsilon \)-strongly hard for circuits of size \(C \) if for every circuit \(C \) of size at most \(S \),

\[
\Pr_x[C(x) = f(x)] \leq \frac{1}{2} + \epsilon.
\]

It is \(\gamma \)-weakly hard on the other hand if

\[
\Pr_x[C(x) = f(x)] \leq 1 - \gamma.
\]

Yao’s XOR Lemma [Yao82] shows that if \(f \) is \(\gamma \)-weakly hard against circuits of size \(S \) then \(f^{\oplus k} : \{0,1\}^{nk} \rightarrow \{0,1\} \) is \(\epsilon + (1 - \gamma)^k \)-strongly hard for circuits of size \(S \epsilon^{2\gamma^2}/8 \).

The original proofs were difficult but in the 1990s Impagliazzo [Imp95] suggested a simpler proof that as a byproduct proves an interesting fact about weakly hard functions: there is a reasonably large subset of inputs on which the function behaves like a strongly hard function! This subset is called a hard core set. Klivans and Servedio [KS03] observed that Impagliazzo’s proof is a version of boosting. Phrased in our setting, experts correspond to inputs. At each step the algorithm maintains a distribution on experts. Events correspond to circuits of size \(S \epsilon^{2\gamma^2}/8 \) that predict \(f \).
with probability at least $1 - \gamma$ on the current distribution. (We are simplifying a little; see [KS03] for details.)

3.7 Connection to Chernoff bounds

Chernoff bounds show that the sum of bounded independent random variables X_1, X_2, \ldots, X_n is sharply concentrated about its mean. They are proved by applying the standard Markov’s inequality to the variable $e^{t\sum_i X_i}$. As pointed out in Young [You95], this technique has formal similarities to the multiplicative update rule. If we imagine the values of X_1, X_2, \ldots, X_n being revealed sequentially, then the value of the “potential” $e^{t\sum_i X_i}$ may be seen as being multiplied by e^{tX_i} at the ith step. Assuming $tX_i \ll 1$ this multiplication factor is approximately $(1 + tX_i)$. As Young showed, this formal similarity can be used to design more efficient approximation algorithms for integer packing-cover problems where the original algorithms used randomized rounding (see Section 3.4).

3.8 Multiplicative update rules in network congestion control

The multiplicative update framework is usefully viewed as a feedback mechanism in several situations; e.g. fictitious play in economics that was discussed earlier. A similar view is also useful in congestion control in flow networks. For example, the congestion control in the classic TCP/IP protocol is the multiplicative decrease, additive increase rule, which expects senders to additively increase their send rate until the network gets congested, and then multiplicatively decrease their send rate by a half. It is easy to show that this algorithm quickly converges to allocating equal bandwidth for all the senders; in fact, for n senders, convergence within error ϵ occurs in $\log(\frac{n}{\epsilon})$ steps of multiplicative decrease, additive increase.

This can be seen as follows. For convenience, let the total bandwidth be 1. Consider the time at which the network is at full capacity, and the senders reduce their transmit speeds by half. At this point, only 1/2 bandwidth is used. Observe that the subsequent additive increase part can be done away with; since all senders increase their transmit speeds at the same rate, all that is accomplished by the additive increase step after a multiplicative decrease step is to assign an extra bandwidth of $\frac{1}{2n}$ to every sender so that the network is again full. Thus, if initially the sender has bandwidth x, then after T steps of multiplicative decrease, additive increase, the bandwidth for the sender is given by

$$
\left(\frac{\left(\frac{x}{2} + \frac{1}{2n}\right)}{2} \frac{1}{2} + \frac{1}{2n}\right) \frac{1}{2} = \frac{x}{2^T} + \frac{1}{2n} \left(1 + \frac{1}{2} + \cdots + \frac{1}{2^{T-1}}\right) = \frac{x - \frac{1}{n}}{2^T} + \frac{1}{2n}
$$

After $T \geq \log(\frac{n}{\epsilon})$ steps, all senders have bandwidth within $(1 \pm \epsilon)\frac{1}{n}$.

More advanced protocols have also been designed, and sometimes analysed using a utility framework; see the survey [LPD02]. This multiparty analysis doesn’t seem to fit into our multiplicative update framework, though it certainly seems related.

Within theoretical computer science, a distributed flow algorithm of Awerbuch and Leighton [AL94] also uses a variant of the multiplicative update rule, but its analysis again does not exactly fit into our framework.

3.9 Approximately Solving certain Semidefinite Programs

Klein and Lu [KL96] use the multiplicative weights framework to derive a more efficient 0.878-approximation algorithm for MAX-CUT than the original SDP-based method in Goemans-Williamson
The main idea in Klein-Lu is to approximately solve the MAX-CUT SDP. However, their idea does work very well for other SDPs. We have used our multiplicative weights framework to design efficient algorithms for SDP relaxations of many other problems. These are described in another forthcoming paper.

3.10 Multiplicative weight algorithms in geometry

The multiplicative weight idea has been used several times in computational geometry. Chazelle [Cha00] (p. 6) describes the main idea, which is essentially the connection between derandomization of Chernoff bound arguments and the exponential potential function noted in Section 3.7.

The geometric applications consist of derandomizing the obvious randomized algorithm by using a deterministic construction of some kind of small set cover or low-discrepancy set. Formally, the analysis is similar to our analysis of the Set Cover algorithm in Section 3.4. Clarkson used this idea to give a deterministic algorithm for Linear Programming [Cla88]. Following Clarkson, Bronnimann and Goodrich use similar methods to find Set Covers for hyper-graphs with small VC dimension [BG94].

Recently, multiplicative weights arguments were also used in context of geometric embeddings of finite metric spaces. The approximation algorithm for sparsest cut in Arora et al. [ARV] involves a “Structure Theorem” about metric spaces of negative type. This theorem says that in an n-point metric space of negative type in which the average interpoint distance is $\Omega(1)$, there are two sets S, T of size $\Omega(n)$ such that the distance between each $i \in S, j \in T$ is $\Omega(1/\sqrt{\log n})$. Chawla et al. [CGR05] noted that this can be viewed as an embedding into ℓ_1 that preserves the “average” pair of distance $\Omega(1)$ up to $\sqrt{\log n}$ factor. They used the multiplicative update idea to construct an embedding (which can be viewed as a probability distribution on $O(\log n)$ ARV-style embeddings) in which every distance of $\Omega(1)$ distorts by at most $O(\sqrt{\log n})$ factor. Using a similar idea for distance scales other than 1 and combining the resulting embeddings using the ideas of Krauthgamer et al. [KLMN04] they obtained an embedding of the negative type metric into l_1 in which every internode distance distorts by at most a factor $O(\log^{3/4} n)$. Recently Arora et al. [ALN] gave a more complicated construction to improve the distortion bound to $O(\log(n) \log \log n)$. As a consequence, they obtain a $O(\sqrt{\log n} \log \log n)$-approximation for non-uniform sparsest cut, thus almost matching the $O(\sqrt{\log n})$ bound for uniform sparsest cut from [ARV].

4 Lowerbounds

Can our analysis of the Multiplicative Weights Update algorithm be improved? This section shows that the answer is “No,” at least when the “width” parameter is not too large. Proving a lowerbound for larger values of width is an open problem.

Recall that our MW update algorithm specializes to a host of known algorithms, and therefore lowerbounds known for those specialized settings (e.g., Littlestone and Warmuth [LW94], Klein and Young [KY99], Freund and Shapire [FS99]) also carry over to our MW update algorithm. These lowerbounds show that at least $\Omega(\log n)$ iterations are required to obtain an ϵ-approximation. Now we sketch a better $\Omega(\frac{\log n}{\epsilon^2})$ lowerbound when the payoffs can be negative.

We prove the lowerbound in the expert-event prediction framework described in Section 2, where the experts are trying to maximize their gain. Events are revealed sequentially and remain unknown to the algorithm until revealed. The idea is to use random payoffs; this is similar to Klein and Young [KY99].
Let $M \in \{+1, -1\}^{n \times m}$ be the payoff matrix where there are n experts and m events. Define

$$V(M) = \max_{D} \min_{j} M(D, j)$$

where the minimization is over all distributions D on experts (note here that we are working with gains instead of losses, as in subsection 2.1). Let \mathcal{D}_M be the distribution on the experts that achieves this payoff $V(M)$. Note that by definition of $V(M)$, for every distribution D on the experts, there exists an event j for which the expected gain is at most $V(M)$.

The main technical theorem we prove is:

Theorem 6 For any $n \in \mathbb{Z}^+$, let $p = \Omega(\frac{1}{n^{1/9}})$, $m = \tilde{O}(n^{0.5})$. Let T be any number $\leq \frac{\log n}{p^2 \epsilon^2}$. Then there exists a payoff matrix $M \in \{\pm 1\}^{n \times m}$ for which $V(M) = \Omega(p)$ and the following holds:

For every subset of T events, there exists a distribution on the experts such that the minimal expected payoff over these T events is greater then $V(M)(1 + \epsilon)$.

Take the M from Theorem 6, scaled by a factor of $\frac{1}{2p}$, and consider this new payoff matrix. Since all entries of M were 1 in absolute value before the scaling, the width is bounded by $\rho = O(\frac{1}{p})$.

We note here that the Multiplicative Weights Update algorithm takes $T = O\left(\frac{\rho^2 \log n}{\epsilon^2}\right)$ rounds to get a payoff within a factor of $(1 + \epsilon)^{-1}$ of the payoff achieved by the best expert: this follows by using Corollary 3 with $\delta = \frac{\epsilon}{8} \cdot \frac{1}{2p} V(M) = \Omega(\epsilon)$ and using the fact that the best expert achieves an average payoff of at least $\frac{1}{2p} V(M)$.

The desired lowerbound is a simple corollary of Theorem 6. We show that if the number of rounds $T = o\left(\frac{\rho^2 \log n}{\epsilon^2}\right)$ then no prediction algorithm can achieve total payoff within a factor of $(1 + \epsilon)^{-1}$ of the payoff achieved by the best expert. In each round, the adversary picks a new event such that the payoff for the current distribution on experts is at most $\frac{1}{2p} V(M)$. Thus after T rounds the algorithm’s gain is at most $\frac{1}{2p} V(M) T$.

Now consider the submatrix of $M_{-\epsilon}$ consisting of the T columns revealed. According to Theorem 6, there exists a distribution over the experts, $\mathcal{D}_{M_{-\epsilon}}^*$, that achieves an expected gain larger then $\frac{1}{2p} V(M) \cdot (1 + \epsilon)$ for each of the T events. Therefore, the gain of an offline algorithm which uses the fixed distribution $\mathcal{D}_{M_{-\epsilon}}^*$ in every iteration is at least $\frac{1}{2p} V(M) T (1 + \epsilon)$. The gain of the best expert for these T events is only larger.

To finish, we prove Theorem 6. The proof shows that a random payoff matrix $M \in \{+1, -1\}^{n \times m}$ satisfies the required properties with high probability. Each entry of M is a binomial random variable, chosen independently to be ± 1 with probabilities $\frac{1}{2} + p, \frac{1}{2} - p$ correspondingly.

In order to prove the required property, we prove an upper bound on $V(M)$ and a lower bound for $V(B)$ for every payoff submatrix $B \subseteq M$ of size $n \times T$. For both cases we use estimates for the tails of the binomial distribution. For the upper bound on $V(M)$, let us consider the uniform distribution on the experts. The payoffs for each event separately are tightly concentrated, and we use the Chernoff tail estimate to bound the deviations.

Claim 1 With probability at least $1 - o(1)$, we have $V(M) = O(2p(1 + \sqrt{\frac{\log m}{pm}}))$ and $V(M) = \Omega(p)$.

Proof: Consider the uniform distribution on the experts. The expected gain for any event is $\mu = 2p$. Using the Chernoff bounds, we can bound the probability that any event j produces a total gain much larger the expected gain.

$$\Pr \left[\frac{1}{n} \sum_{j} M(i, j) - \mu \geq t \mu \right] \leq e^{-t^2 \mu n}$$
Plugging in \(t = O(\sqrt{\ln m / pm}) \) and using the union bound over all \(m \) events, we obtain that with very high probability all events occur a gain of at most \(2p(1+t) \). The lower bound on \(V(M) \) is obtained similarly. \(\square \)

Let us now proceed to bound \(V(B) \) from below for all submatrices \(B \subseteq M \) of size \(n \times T \). The idea is again to observe the tail of the binomial distribution, but this time to bound the deviations from below (and the deviations will be larger then before since we consider a smaller number of random variables).

As for the parameters, we fix \(\epsilon \) later (think of it as \(O(p) \)), and let \(T = \frac{\ln n}{p \epsilon^2} \). We assume \(T \) is small enough such that \(T^2 \log m = o(n) \) (this is consistent with the parameters of Theorem 6).

Claim 2 With probability at least \(1 - o(1) \) it holds for all \(B \) that \(V(B) \geq 2p(1+\epsilon) \) for some \(\epsilon = \omega(\sqrt{\log m / pm}) \).

Proof: Consider certain expert \(k \in [n] \). Denote by \(P_k \) the number of successful predictions of expert \(k \) on the events of \(B \) (which is equal to the number of positive entries in row \(k \) of \(B \)). The expected value of \(P_k \) is naturally \(T(1/2 + p) \). Using a lower bound on the tail of the binomial distribution, which essentially matches the Chernoff upper bounds, we have

\[
\Pr \left[P_k \geq (1+\nu)(1/2 + p)T \right] \geq e^{-\Omega(T\nu^2)}
\]

By our choice of \(T \) we have \(\epsilon = \frac{\sqrt{\log n}}{p\nu T} \). Take \(\nu = \bar{\epsilon}p \) and set \(\bar{\epsilon} = \sqrt{\frac{\log(n/2p)}{p^2 \nu T}} \), and the above probability becomes \(\frac{2r}{n} \). Let \(r = T^2 \log m = o(n) \) (recall we assume that \(m, n \) are such that \(T^2 \log m = o(n) \)).

Call any expert for which \(P_k \geq (1+\nu)(1/2 + p)T \) a good expert. Then by our choice of \(\bar{\epsilon} \), the probability that a certain expert is good is at least \(\frac{2r}{n} \), and every expert has independent performance. The expected number of good experts is \(2r \). Because of the tight concentration around the mean, we can ensure, with high probability, that for every choice of \(B \) there are \(r \) good experts. Specifically, the probability that there exists a submatrix \(B \) that does not have at least \(r \) good experts is bounded by \(e^{-8r} \cdot (\frac{m}{T})^r \). By our choice of \(r \) this probability is \(o(1) \). So we assume that \(B \) has at least \(r \) good experts.

We now lower bound \(V(B) \). Let \(C \) be the \(r \times T \) payoff sub-matrix of \(B \) restricted to the \(r \) good experts of \(B \). Naturally \(V(C) \leq V(B) \), and hence it suffices to bound \(V(C) \) from below. For this, we use the von Neumann min-max theorem, which states:

\[
V(C) = \max_D \min_{j \in [T]} C(D, j) = \min_P \max_{i \in [r]} C(i, P)
\]

(12)

Here, \(P \) is a distribution on the events (i.e. columns) of \(C \), and \(C(i, P) = \sum_j C(i, j)P(j) \).

For the role of \(P \) in the equation above, consider the uniform distribution on the \(T \) events of \(C \). For any event of \(C \), the gain incurred by a random good expert is \(+1\) with probability \(\geq \frac{1}{2} + p + \frac{1}{2} \nu \) and \(-1\) with probability \(\leq \frac{1}{2} - p - \frac{1}{2} \nu \), since all the experts of \(C \) are good, and is independent from the other experts (according to the construction of \(M \)). The expected gain for any expert is thus at least \((2p + \nu)r\). Using the Chernoff bound for each event \(j \) separately, we have:

\[
\Pr \left[\left(\frac{1}{r} \sum_i C(i, j) - (2p + \nu) \right) \geq \xi \right] \leq e^{-r\xi^2}
\]
Set $\xi = O(\sqrt{\frac{T \ln m}{r}}) = O(\sqrt{\frac{1}{T}}) = o(\nu)$. This implies that

$$\Pr \left[\frac{1}{r} \sum_{i} C(i, j) \leq \Omega(2p + \nu) \right] \leq e^{-\Omega(T \log m)}$$

Taking the union bound over all events, $\Pr[V(C) \leq \Omega(2p + \nu)] \leq Te^{-\Omega(T \log m)}$. And another union bound over all $\binom{m}{T} \leq m^T$ sub matrices B of M, the probability that there are r good experts and $V(B) \geq V(C) = \Omega(2p + \nu) = \Omega(2p(1 + \epsilon))$ is $1 - o(1)$.

In addition, notice that for sufficiently large m:

$$\epsilon = \Omega(\bar{\epsilon}) = \Omega(\sqrt{\frac{\log(n/2r)}{p^2T}}) = \Omega(\sqrt{\frac{\log n}{p^2T}}) = \omega(\sqrt{\frac{\log m}{pn}})$$

Theorem 6 now follows from Claims 1 and 2.

References

