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Abstract
Algorithms in varied fields use the idea of maintaining a distribution over a certain set and

use the multiplicative update rule to iteratively change these weights. Their analysis are usually
very similar and rely on an exponential potential function.

We present a simple meta algorithm that unifies these disparate algorithms and drives them
as simple instantiations of the meta algorithm.

1 Introduction

Algorithms in varied fields work as follows: a distribution is maintained on a certain set, and
at each step the probability assigned to i is multiplied or divided by (1 + εC(i)) where C(i) is
some kind of “payoff” for element i. (Rescaling may be needed to ensure that the new values
form a distribution.) Some examples include: the Ada Boost algorithm in machine learning [FS97];
algorithms for game playing studied in economics (see below), the Plotkin-Shmoys-Tardos algorithm
for packing and covering LPs [PST91], and its improvements in the case of flow problems by Young,
Garg-Konneman, and Fleischer [You95, GK98, Fle00]; Impagliazzo’s proof of the Yao XOR lemma
[Imp95], etc. The analysis of the running time uses a potential function argument and the final
running time is proportional to 1/ε2.

It has been clear to most researchers that these results are very similar, see for instance, Khan-
dekar’s PhD thesis [Kha04]. Here we point out that these are all instances of the same (more
general) algorithm. This meta algorithm is a generalization of Littlestone and Warmuth’s weighted
majority algorithm from learning theory [LW94]. (A similar algorithm has been independently
rediscovered in many other fields; see below.) The advantage of deriving the above algorithms from
the same meta algorithm is that this highlights their commonalities as well as their differences.
To give an example, the algorithms of Garg-Konemann [GK98] were felt to be quite different from
those of Plotkin-Shmoys-Tardos. In our framework, it is found to be a clever trick for “width
reduction” in the PST framework (see Section 3.3).

We feel that our meta algorithm and its analysis are simple and useful enough that they should
be viewed as a basic tool taught to all algorithms students together with divide-and-conquer,
dynamic programming, random sampling, and the like.

This is chiefly a survey paper. It introduces the main algorithm, gives a few variants (chiefly
having to do with the range in which the payoffs lie), and surveys the most important applications
—often with complete proofs. A forthcoming paper will also describe some new applications (to
semidefinite programming) that the authors have discovered.

∗This project supported by David and Lucile Packard Fellowship and NSF grant CCR-0205594. Address for all
authors: Computer Science Dept, 35 Olden St, Princeton NJ 08540.
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Related work. Mutliplicative update algorithms were proposed in game theory in the early
fifties [BvN50, Bro51, Rob51]. Following Brown [Bro51], this algorithm was called “Fictitious
Play”: at each step each player observes actions taken by his opponent in previous stages, updates
his beliefs about his opponents’ strategies, and chooses myopic pure best responses against these
beliefs. This simple idea (which was shown to lead to optimal solutions in the limit) led to many
subfields of economics, including Arrow-Debreu General Equilibrium theory and more recently,
evolutionary game theory. Grigoriadis and Khachiyan [GK95] showed how a randomized variant
of “Fictitious Play” can solve matrix game efficiently.

The multiplicative update rule (and the exponential potential function) were rediscovered in
Computational Geometry in the late 1980s [CW89] and several applications in geometry are de-
scribed in Chazelle [Cha00] (p. 6, and p. 124). See also our Section 3.10, which also mentions some
more recent applications to geometric embeddings of finite metric spaces.

The weighted majority algorithm as well as more sophisticated versions have been independently
discovered in operations research and statistical decision making in the the context of the On-line
decision problem; see the surveys of Cover [Cov96], Foster and Vohra [FV99], and also Blum [Blu98]
who includes applications of weighted majority to machine learning. A notable algorithm, which
is different from but related to our framework, was developed by Hannan in the fifties [Han57].
Kalai and Vempala showed how to derive efficient algorithms via similar methods [KV03].

Within computer science, several researchers have previously noted the close relationships be-
tween multiplicative update algorithms used in different contexts. Young [You95] notes the con-
nection between fast LP algorithms and Raghavan’s method of pessimistic estimators for deran-
domization of randomized rounding algorithms; see our Section 3.4. Klivans and Servedio [KS03]
relate boosting algorithms in learning theory to proofs of Yao XOR Lemma; see our Section 3.5.
Garg and Khandekar describe a common framework for convex optimization problems that contains
Garg-Konemann and Plotkin-Shmoys-Tardos as subcases.

To the best of our knowledge our framework is the most general and arguably, the simplest.
We readily acknowledge the influence of all previous papers (especially Young [You95] and Freund-
Schapire [FS99]) on the development of our framework. Disclaimer: We do not claim that every
algorithm designed using the multiplicative update idea fits in our framework, just that most do.
Some applications in multiparty settings do not easily fit into our framework; see Section 3.8 for
some examples.

1.1 The weighted majority algorithm

Let us briefly recall the weighted majority algorithm. We are trying to invest in a certain stock.
For simplicity, think of its price movements as a sequence of binary events: up/down. (Below, this
will be generalized to allow nonbinary events.) Each morning we try to predict whether the price
will go up or down that day; if our prediction happens to be wrong we lose a dollar that day.

In making our predictions, we are allowed to watch the predictions of n “experts” (who could be
arbitrarily correlated, and who may or may not know what they are talking about). The algorithm
we present will be able to limit its losses to roughly the same as the best of these experts. At first
sight this may seem an impossible goal, since it is not known until the end of the sequence who the
best expert was, whereas the algorithm is required to make predictions all along.

The algorithm does this by maintaining a weighting of the experts. Initially all have equal
weight. As time goes on, some experts are seen as making better predictions than others, and the
algorithm increases their weight proportionately.
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Weighted majority algorithm (slightly modified from original):

At every step t, we have a weight wt
i assigned to expert i. Initially w1

i = 1 for all i.
At step t + 1, for each i such that expert i was found to have predicted the day’s price
movement incorrectly, we set

wt+1
i = (1− ε)wt

i (update rule). (1)

Our prediction for step t + 1 is the opinion of a weighted majority of the experts. In
other words, if the total weight of all experts predicting “up” is at least

∑
i w

t
i/2 then we

predict “up” as well and otherwise we predict “down.”

Theorem 1 After t steps, let mt
i be the number of mistakes of expert i and mt be the number of

mistakes our algorithm has made. Then we have the following bound for every i:

mt ≤ 2 ln n

ε
+ 2(1 + ε)mt

i.

In particular, this holds for i = the best expert, i.e. having the least mi.

Proof: A simple induction shows that wt
i = (1− ε)mt

i . Let Φt =
∑

i w
t
i (“the potential function”).

Thus Φ1 = n. Each time we make a mistake, at least half the total weight decreases by a factor
1− ε, so the potential function decreases by a factor at least (1− ε/2):

Φt+1 ≤ Φt

(
1
2

+
1
2
(1− ε)

)
= Φt(1− ε/2).

Thus another simple induction gives Φt ≤ n(1− ε/2)mt
. Finally, since Φt

i ≥ wt
i for all i, the claimed

bound follows by comparing the above two expressions and using − ln(1− x) ≤ x + x2 for x < 1/2.
2

The beauty of this analysis is that it makes no assumption about the sequence of events: they
could be arbitrarily correlated and could even depend upon our current weighting of the experts.
In this sense, this algorithm delivers more than initially promised, and this lies at the root of
why (after obvious generalization) it can give rise to the diverse algorithms mentioned earlier. In
particular, the scenario where the events are chosen adversarially resembles a zero-sum game, which
we consider later in section 3.1.

2 Our generalization to the Weighted Majority Algorithm

In the general setting, we still have n experts who make predictions. The set of events/outcomes
may not be necessarily binary and could even be infinite. To motivate the Multiplicative Weights
Update algorithm, consider the naive strategy that, at each iteration, simply picks an expert at
random. The expected penalty will be that of the ”average” expert. Suppose now that a few
experts clearly outperform their competitors. This is easy to spot as events unfold, and so it is
sensible to reward them by increasing their probability of being picked in the next round (hence
the multiplicative weight update rule).

Intuitively, being in complete ignorance about the experts at the outset, we select them uni-
formly at random for advice. This maximum entropy starting rule reflects our ignorance. As we
learn who the hot experts are and who the duds are, we lower the entropy to reflect our increased
knowledge. The multiplicative weight update is our means of skewing the distribution.
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Denote the set of events/outcomes by P. We assume there is a matrix M such that M(i, j) is
the penalty that expert i pays when the outcome is j ∈ P. We will assume that for each expert i
and each event j, M(i, j) is in the range [−`, ρ], where ` ≤ ρ. (Actually, the analysis below works
even if there are two types of expert: those for which all payoffs are in the range [−`, ρ] and those
for which all penalties are in [−ρ, `].) We will call ρ the width1. The prediction algorithm will be
randomized and we desire that its expected penalty is not much worse than that of the best expert
in hindsight2.

Multiplicative Weights Update algorithm

At every step t, we have a weight wt
i assigned to expert i. Initially w1

i = 1 for all i.
For each time t we associate the distribution Dt = {pt

1, p
t
2, . . . , p

t
n} on the experts where

pt
i = wt

i/
∑

k wt
k. At step t, we pick an expert according to distribution Dt and use it to

make our prediction. Based on the outcome jt ∈ P in round t, at step t + 1, the weight
of expert i is updated as follows for each i:

wt+1
i =

{
wt

i(1− ε)M(i,jt)/ρ if M(i, jt) ≥ 0
wt

i(1 + ε)−M(i,jt)/ρ if M(i, jt) < 0

The expected penalty for outcome jt ∈ P is
∑

i p
t
iM(i, jt) =

∑
i w

t
iM(i, jt)/

∑
i w

t
i which

we denote by M(Dt, jt). By linearity of expectations, the expected total loss after T rounds is∑T
t=1 M(Dt, jt). The following theorem —completely analogous to Theorem 1— bounds this.

Theorem 2 (Main) Let ε ≤ 1
2 . After T rounds, for any expert i, we have∑

t

M(Dt, jt) ≤ ρ lnn

ε
+ (1 + ε)

∑
≥0

M(i, jt) + (1− ε)
∑
<0

M(i, jt)

where the subscripts ≥ 0 and < 0 refer to the rounds t where M(i, jt) is ≥ 0 and < 0 respectively.

Proof: We use the following facts, which follow immediately from the convexity of the exponential
function:

(1− ε)x ≤ (1− εx) if x ∈ [0, 1]
(1 + ε)−x ≤ (1− εx) if x ∈ [−1, 0]

The proof is along the lines of the earlier one, using the potential function Φt =
∑

i w
t
i . Since

1The width parameter plays an important role in all previously cited papers. Following their convention, the width
should be defined as ρ + `, which is a number in [ρ, 2ρ] and thus differs from our definition of width by at most a
factor 2. Furthermore, in previous papers it was usually assumed that ` = ρ but allowing these two to differ can be
useful in some situations.

2Note that this setting generalizes the binary events setting of the weighted majority algorithm as follows: the
penalty matrix M has a row for each of the n experts and 2n columns, corresponding to the 2n possible penalty
vectors in {0, 1}n. For a prediction vector 〈x1, x2, . . . , xn〉 ∈ {0, 1}n of the n experts, there are only 2 possible events:
those corresponding to the penalty vectors 〈x1, x2, . . . , xn〉 and 〈1− x1, 1− x2, . . . , 1− xn〉 depending on whether the
outcome is 0 or 1.
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M(i, jt)/ρ ∈ [−1, 1], using the facts above we have,

Φt+1 =
∑

i

wt+1
i =

∑
i: M(i,jt)≥0

wt
i(1− ε)M(i,jt)/ρ +

∑
i: M(i,jt)<0

wt
i(1 + ε)−M(i,jt)/ρ

≤
∑

i

wt
i(1− εM(i, jt)/ρ) = Φt − εΦt

ρ

∑
i

pt
iM(i, jt)

= Φt(1− εM(Dt, jt)/ρ) ≤ Φte−εM(Dt,jt)/ρ,

where we used the fact that pt
i = wt

i/Φt by definition. After T rounds, we have ΦT ≤ Φ1e−ε
P

t M(Dt,xt)/ρ.
Furthermore, for every i,

ΦT ≥ wT
i = (1− ε)

P
≥0 M(i,jt)/ρ · (1 + ε)−

P
<0 M(i,jt)/ρ

Now we get the desired bound by taking logarithms and using Φ1 = n, and simplifying as before.We
used the facts that ln( 1

1−ε) ≤ ε + ε2 and ln(1 + ε) ≥ ε− ε2 for ε ≤ 1
2 . 2

Remark: From the proof it is clear that the multiplicative update rule could also be

wt+1
i = wt

i(1− εM(i, jt))

regardless of the sign of M(i, jt). Such a rule may be more practical to implement and is also used
in the analysis of some algorithms such as SET COVER (c.f. section 3.4).

Corollary 3 Let δ > 0 be an error parameter. Then with ε ≤ min{ δ
4` ,

1
2}, after T = 2ρ ln(n)

εδ
rounds, we have the following (additive and multiplicative) bound on the average expected loss: for
any expert i, ∑

t M(Dt, jt)
T

≤ δ + (1± ε)
∑

t M(i, jt)
T

where the + or − sign depends on whether M(i, j) ∈ [−`, ρ] or [−ρ, `] respectively.

Proof: For concreteness, we will prove the case when M(i, j) ∈ [−`, ρ]. The other case is similar.
In this case, (1 − ε)

∑
<0 M(i, jt) ≤ (1 + ε)

∑
<0 M(i, jt) + 2ε`T . Substituting this bound in the

inequality of Theorem 2 and dividing by T we have∑
t M(Dt, jt)

T
≤ ρ lnn

εT
+ 2ε` + (1 + ε)

∑
t M(i, jt)

T
(2)

Choosing ε and T as given, we get the required bound. 2

Remarks: (i) Again, we note that bound of Theorem 2 holds even if the events/outcomes could
be picked by an adversary who knows our algorithm’s current distribution on experts. (ii) In
Corollary 3 two subcases need to be highlighted. When ` = 0 —i.e., all penalties are positive—
then the running time is proportional to ρ/εδ. When ` = −ρ, then ε ≤ δ/4ρ, and the running time
is proportional to ρ2/δ2. This issue is at the root of the difference between algorithms for general
LP and for packing-covering LP problems (see Section 3.2).

Corollary 4 Let δ > 0 be an error parameter. Then with ε = min{ δ
4ρ , 1

2}, after T = 16ρ2 ln(n)
δ2

rounds, we have the following (additive) bound on the average expected loss: for any expert i,∑
t M(Dt, jt)

T
≤ δ +

∑
t M(i, jt)

T

Proof: For concreteness, we will prove the case when M(i, j) ∈ [−`, ρ]. The other case is similar.
As in Corollary 3, we first derive inequality (2). We have (1 + ε)

P
t M(i,jt)

T ≤
P

t M(i,jt)
T + ερ, since

for any jt, M(i, jt) ≤ ρ. Finally, choosing ε and T as given, we get the required bound. 2
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2.1 Gains instead of losses

In some situations, the entries of the matrix M may specify gains instead of losses. Now our goal is
to gain as much as possible in comparison to the gain of the best expert. We can get an algorithm
for this case simply by considering the matrix M′ = −M instead of M.

The algorithm that results updates the weight of expert i by a factor of (1 + ε)M(i,j)/ρ, when
M(i, j) ≥ 0, and (1 − ε)−M(i,j)/ρ, when M(i, j) < 0. The following theorem follows directly from
Theorem 2 by simply negating the quantities:

Theorem 5 After T rounds, for any expert i, we have∑
t

M(Dt, jt) ≥ −ρ lnn

ε
+ (1− ε)

∑
≥0

M(i, jt) + (1 + ε)
∑
<0

M(i, jt)

2.2 Logarithmic loss

Variants of the multiplicative weights update algorithm can be applied to a more general setting,
in which a certain loss function L : R × R → R is considered. The goal of the online algorithm
is to minimize the average per round loss, 1

T

∑
t L(M(D∗, jt),M(Dt, jt)), where Dt is the online

distribution (or weights) on the experts at time t, and D∗ is the optimal offline expert distribution.
For some other settings for loss functions see Haussler et al [HKW98].

The logarithmic loss function L(x, y) = log x
y was considered for modelling the Online Portfolio

Selection Problem [HSSW96]. The problem comes from finance where we have to devise a strategy
to invest in n stocks which achieves almost the same wealth as the best constant rebalanced portfolio
in hindsight over a certain period of time. A constant rebalanced portfolio maintains a fixed fraction
of the total wealth every day in each stock. The information obtained each day is the vector of
price relatives 〈x1, x2, . . . , xn〉 which gives the the factor increase in the price of each stock. Set
M(i, jt) = xt. Then if Dt is the distribution of the wealth on day t, the factor increase in the total
wealth is M(Dt, jt). The logarithm converts the multiplicative factor increase into an additive one.

The proof methodology of the Multiplicative Weights Update algorithm (i.e. measuring progress
via a potential function which is the sum of the weights) can be carried over, with slight modifica-
tions, to the logarithmic loss function case and provides slightly better guarantees than Helmbold
et al [HSSW96]. We omit the details for brevity.

3 Applications

The way to use Multiplicative Weights Update for solving computational tasks is typically as
follows. Suppose the performance of the algorithm depends on satisfying certain constraints: we
then let an expert represent each constraint, and the events correspond to points in the domain of
interest. The penalty of the expert is made proportional to how well the corresponding constraint
performs on the point represented by an event. This might seem counterintuitive, but recall that
we reduce an expert’s weight depending on his penalty, and if an expert’s constraint is doing well on
events so far we would like his weight to be smaller, so that the algorithm focuses on experts whose
constraints aren’t doing well. With these weights, the algorithm generates a maximally adversarial
event, i.e. the event whose corresponding point maximizes the expected penalty, i.e. the weighted
sum of penalties. With this intuition, we can describe the following applications.
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3.1 Solving zero-sum games approximately

We show how our general algorithm above can be used to approximately solve zero-sum games.
(This is a duplication of the results of Freund and Schapire [FS99], who gave the same algorithm
but a different proof of convergence that used KL-divergence. Furthermore, proofs of convergence
were also given earlier in Economics.) Let M be the payoff matrix of a finite 2-player zero-sum
game, so that when the row player plays strategy i and the column player plays strategy j, then the
payoff to the column player is M(i, j). We assume that M(i, j) ∈ [0, 1]. We wish to approximately
compute the game value, which according to von Neumann’s MinMax theorem is characterized as:

λ∗ = min
D

max
j

M(D, j) = max
P

min
i

M(i,P), (3)

where D (resp., P) varies over all distributions of rows (resp., columns) and j (resp., i) varies over
all columns (resp., rows), and the notation M(D, j) denotes Ei∈D[M(i, j)].

Let δ > 0 be an error parameter. We wish to approximately solve the zero-sum game up to
additive error of δ, namely, find mixed row and column strategies Dfinal and Pfinal such that

λ∗ − δ ≤ min
i

M(i,Pfinal) (4)

max
j

M(Dfinal, j) ≤ λ∗ + δ. (5)

We map our general algorithm from Section 2 to this setting by making the “experts” to
correspond to pure strategies of the row player. Thus a distribution on the experts corresponds to
a mixed row strategy. “Events” correspond to pure strategies of the column player. The penalty
paid by an expert i when an event j happens is M(i, j). The algorithmic assumption about the
game is that given any distribution D on experts, we have an efficient way to pick the best event,
namely, the pure column strategy j that maximizes M(D, j). This quantity is at least λ∗ from the
definition above.

The penalties for experts (which are the same as payoffs) lie in [0, 1]. We use Corollary 4 with
the parameters ` = 0 and w = 1, and we set ε = δ/4. We run the game for T = 16 ln(n)/δ2 as
specified by Corollary 4.

For any distribution D on the row strategies, we have
∑

t M(D, jt) ≥ mini
∑

t M(i, jt). Also,
for all t, M(Dt, jt) ≥ λ∗. Thus, after T rounds, we get that for any D,

λ∗ ≤
∑T

t=1 M(Dt, jt)
T

≤ δ + min
i

{∑T
t=1 M(i, jt)

T

}
≤ δ +

∑T
t=1 M(D, jt)

T
(6)

Setting D = D∗ (the optimal row strategy) we have M(D, j) ≤ λ∗ for any j. The inequality (6)
becomes:

λ∗ ≤
∑T

t=1 M(Dt, jt)
T

≤ δ + λ∗

Thus,
PT

t=1 M(Dt,jt)
T is an (additive) δ-approximation to λ∗.

We set Dfinal to be the distribution Dt which has the minimum M(D, jt) over all t. We have,
from (6),

M(Dfinal, j
t) ≤

∑T
t=1 M(Dt, jt)

T
≤ λ∗ + δ

Since jt maximizes M(Dt, j) over all j, we conclude that Dfinal is an approximately optimal mixed
row strategy.
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We set Pfinal to be the distribution which assigns to column j probability 1
T × #(times j is

played in the algorithm). From (6), we have, for any row distribution D,

λ∗ − δ ≤
∑T

t=1 M(D, jt)
T

= M(D,Pfinal)

which shows that Pfinal is an approximately optimal mixed column strategy.

3.2 Plotkin, Shmoys, Tardos framework

Plotkin, Shmoys, and Tardos generalized some known flow algorithms to a framework for approxi-
mately solving fractional packing and covering problems. Their algorithm is a quantitative version
of the classical Lagrangean relaxation idea, and applies also to general linear programs. Below, we
derive the algorithm for general LPs and then mention the slight modification that yields better
running time for packing-covering LPs. (For convenience we will discuss only covering LPs since
packing LPs are treated similarly.)

The basic problem is to check the feasibility of the following linear program:

Ax ≥ b, x ∈ P (7)

where A is an m× n matrix, x ∈ Rn, and P is a convex set in Rn. Intuitively, the set P represents
the “easy” constraints to satisfy, such as non-negativity, and A represents the “hard” constraints
to satisfy. Plotkin, Shmoys and Tardos assume the existence of an oracle which solves the following
feasibility problem:

∃?x ∈ P : cT x ≥ d (8)

where c =
∑

i piAi and d = pibi for some distribution p1, p2, . . . , pm. It is reasonable to expect such
an optimization procedure to exist (indeed, such is the case for many applications) since here we
only need to check the feasibility of one constraint rather than m.

Using this oracle we describe an algorithm that either yields an approximately feasible solution,
i.e., an x ∈ P such that Aix ≥ bi − δ for some small δ > 0, or failing that, proves that the system
is infeasible.

To map our general framework to this situation, we have an expert representing each of the
m constraints. Events correspond to vectors x ∈ P . The penalty of the expert corresponding to
constraint i for event x is Aix−bi. We assume that the oracle’s responses x satisfy Aix−bi ∈ [−ρ, ρ]
for all i, for some parameter ρ known to our algorithm (note: this can be “guessed” by binary
search). Thus the penalties lie in [−ρ, ρ]. We run the Multiplicative Weights Update algorithm
for T steps as in Corollary 4 using ε = δ/4ρ. (Note that T is proportional to ρ2.) Note that
if p1, p2, . . . , pm is the distribution at any time, then we call the oracle with c =

∑
i piAi and

d =
∑

i pibi.
We have the following cases:

Case 1: The oracle returns a feasible x for (8) in every iteration.
Then from Corollary 4, we have, for any i∑T

t=1

∑
j pt

j [Ajx
t − bj ]

T
≤ δ +

∑T
t=1[Aix

t − bi]
T

The LHS is ≥ 0 by assumption. Then we let x̄ =
∑

t xt/T be the final answer, since the previous
line implies that for every row i, Aix̄ ≥ bi − δ. So we have an approximately feasible solution x̄.
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Case 2: In some iteration, the oracle declares infeasibility of (8).
In this case, we conclude that the original system is infeasible. This is correct because if there were
a feasible solution x, then Ax ≥ b, and so taking the linear combination of the inequalities given by
the distribution p1, p2, . . . , pm in the current iteration, we have

∑
i piAix ≥

∑
i pibi, which means

that the oracle incorrectly declared infeasibility, a contradiction.

Fractional Covering Problems: The framework is the same as above, with the crucial
difference that the coefficient matrix A is such that Ax ≥ 0 for all x ∈ P , and b > 0.

The algorithm will exploit this fact by using our earlier Remark that appeared after Corollary 3.
We assume withough loss of generality (by appropriately scaling the inequalities) that bi = 1 for all
rows. Let ρ be a number (known to the algorithm in advance) such that for all x ∈ P , Aix ∈ [0, ρ].
Again, we have an expert corresponding to each of the m constraints and the events correspond to
vectors x ∈ P . However, the penalty for the expert for constraint i for the event corresponding to
vector x is Aix instead of Aix− bi used above.

The rest of the analysis is unchanged, except the running time is now proportional to ρ instead
of ρ2.

Fractional Packing Problems: Fractional packing problems are essentially the same as
fractional covering ones, except that the inequalities are reversed. We can obtain algorithms to test
feasibility of fractional packing problems in an exactly analogous way, the only difference being, we
need to have the penalty matrix specify gains instead of losses as in section 2.1.

3.3 Approximating Multicommodity Flow Problems

Multicommodity flow problems are represented by packing/covering LPs and thus can be approx-
imately solved using the PST framework outlined above. The resulting flow algorithm is outlined
below together with a brief analysis. Unfortunately, the running time depends upon the edge
capacities (as opposed to the logarithm of the capacities) and thus the algorithm is not even
polynomial-time. Garg and Könemann [GK98] fixed this problem with a better algorithm whose
running time does not depend upon the edge capacities.

Here we derive the Garg-Könemann algorithm using our general framework. This will highlight
the essential new idea, namely, a reweighting of penalties to reduce the width parameter. Note that
algorithm is not quite the same as in [GK98] (the termination condition is slightly different) and
neither is the proof.

For illustrative purposes we focus on the maximum multicommodity flow problem, in which we
are given a set of k source-sink pairs and capacities ce on edges, and the objective is to maximize
the total flow between these pairs. The LP formulation is as follows:

max
∑

p

fp

∀e :
∑
p3e

fp ≤ ce (9)

Here, fp represents the flow on path p connecting the source-sink pairs for any of the commodities.
First we examine the algorithm one would obtain by applying our packing-covering framework

(Section 3.2) in the obvious way. Suppose (by binary search) we know the value F opt of the total
flow in the optimum solution. Then we want to check the feasibility of the system of inequal-
ities, ∀e :

∑
p3e fp ≤ ce, where the flows come from the polytope P = {

∑
p fp = F opt}. As

outlined in Section 3.2, the obvious algorithm would maintain at each step t a weight wt
e for each

edge e. The optimization routine needed at each step is to find the flow in P which minimizes

9



∑
e wt

e

∑
p3e fp/ce =

∑
p fp

∑
e∈p wt

e/ce. This is minimized by a flow that is supported on a single
path, namely, the shortest path pt between a source-sink pair in the graph where edge e has length
wt

e/ce. Thus an “event” corresponds to this path pt and consists of passing a flow F opt on this
path. (Note that the final flow will be an average of the flows in each event, and hence will also
have value F opt.) Penalties for the experts/edges are defined as in Section 3.2.

Unfortunately the width parameter is ρ = maxf̄∈P maxe
∑

p3e fp/ce = F opt/cmin where cmin is
the capacity of the minimum capacity edge in the graph. Thus the algorithm requires T = ρ ln(n)/ε2

iterations. The overall running time is Õ(F optTsp/cmin) where Tsp ≤ O(mk) is the time needed to
compute k shortest paths.

Now we describe the Garg-Könemann modification. It continues to maintain weights wt
e for

every edge e, where initially, w1
e = δ for all e, where δ will be specified later. The events correspond

to paths, as before. However, instead of routing the same flow F opt at each time step, the event
consists of routing only as much flows as is allowed by the minimum capacity edge on the path.
In other words, the “event” at time t is a flow of value cpt on path pt, where cpt is the minimum
capacity of an edge on the path pt. The penalty incurred by edge e is M(e, pt) = cpt/ce. (In other
words, a penalty of 1/ce per unit of flow passing through e.) The width is therefore automatically
upperbounded by 1.

The Multiplicative Weights Update rule in this setting consists of updating the weights of all
edges in path pt and leaving other weights unchanged at that step:

∀e ∈ pt : wt+1
e = wt

e(1 + ε)cpt/ce

The termination rule for the algorithm is to stop when for some edge e, wT
e ≥ 1.

3.3.1 Analysis

When the game ends, for some edge e∗, we have wT
e∗ ≥ 1. The weight of the edge e∗ is initially δ

and is increased by a factor of (1 + ε)1/ce∗ for each unit of flow routed through e∗. Thus the final
weight is (1 + ε)fe∗/ce∗ , where fe∗ is the total amount of flow passing through e∗. Thus, we have

wT
e∗ ≥ 1 =⇒ δ(1 + ε)fe∗/ce∗ ≥ 1 =⇒ fe∗

ce∗
≥

ln 1
δ

ln(1 + ε)
(10)

Theorem 5 relates the total expected penalty to the total penalty incurred by edge e∗. Specifically,
since the total penalty for edge e∗ is fe∗/ce∗ we obtain:

T∑
t=1

∑
e∈pt

cpt

ce
· wt

e∑
e wt

e

≥ ln(1 + ε)
ε

· fe∗

ce∗
− lnm

ε
(11)

Using inequality (10), we have

RHS of (11) ≥
ln 1

δ

ε
− lnm

ε
=

ln 1
mδ

ε

Now we claim the LHS of (11) is at most F/F opt, where F is the total flow routed in all the
steps. To see this, suppose the optimum flow assigns fopt

p flow to path p, so that F opt =
∑

p fopt
p .

For any set of edge lengths we/ce, the shortest path p satisfies

∑
e we∑

e∈p
we
ce

≥
∑

e we ·
∑

p′3e

fopt

p′
ce∑

e∈p
we
ce

=

∑
p′ f

opt
p′ ·

∑
e∈p′

we
ce∑

e∈p
we
ce

≥
∑
p′

fopt
p′ = F opt.

10



The first inequality follows because for any edge e, we have
∑

p′3e fopt
p′ ≤ ce. The second inequality

follows from the fact that p is the shortest path with edge lengths given by we/ce. Therefore, the
LHS of (11) is ≤

∑
t cpt/F opt = F/F opt, as claimed.

Thus we can conclude that
F

F opt
≥

ln 1
mδ

ε

Fix any edge e. It’s initial weight is δ. It’s final weight is at most (1+ ε) (or else it would have had
weight ≥ 1 in a previous step). Therefore the flow on it is at most log1+ε

1+ε
δ . Scale down all the

flow by log1+ε
1+ε
δ to get a feasible flow. The approximation ratio is

F/(log1+ε
1+ε
δ )

F opt
≥

ln 1
mδ

ln 1+ε
δ

· ln(1 + ε)
ε

≥
ln 1

mδ

ln 1+ε
δ

· (1− ε)

Choosing δ = (1 + ε)((1 + ε)m)−1/ε, the bound becomes (1− ε)2.

3.3.2 Running time

Fix any edge e. It can be the minimum capacity edge on a path at most log1+ε
1
δ times. So within

m log1+ε
1
δ = O(m log m

ε2
) iterations, some edge must have been selected as the min capacity edge so

many times, and thus its length must be ≥ 1, and the game must end. Each iteration involves k
shortest path computations. Recall that Tsp is the time needed for this. Thus, the overall running
time is O(m log m

ε2
· Tsp).

3.4 O(log n)-approximation for many NP-hard problems

For many NP-hard problems, typically integer versions of packing-covering problems, one can
compute a O(log n)-approximation by solving the obvious LP relaxation and then using Raghavan-
Thompson [RT87] randomized rounding. This yields a randomized algorithm; to obtain a deter-
ministic algorithm, derandomize it using Raghavan’s [Rag86] method of pessimistic estimators.

Young [You95] has given an especially clear framework for understanding these algorithms which
as a bonus also yields faster, combinatorial algorithms. He observes that one can collapse the three
ideas in the algorithm above —LP solving, randomized rounding, derandomization— into a single
algorithm that uses the multiplicative update rule, and does not need to solve the LP relaxation
directly. (Young’s paper is titled “Randomized rounding without solving the linear program.”) At
the root of Young’s algorithm is the observation that Raghavan’s pessimistic estimator is also an
exponential potential function3 and the approximation algorithm only needs to drive down this
potential function at each step. This is easily achieved by a multiplicative update rule algorithm.

Below, we illustrate this idea using the canonical problem in this class, SET COVER. (A similar
analysis works for other problems.) Having developed the multiplicative weights framework already,
we do not need to explain the intuition in terms of Chernoff bound arguments as Young did and
can proceed directly to the algorithm. In fact, the algorithm can be simplified so it becomes exactly
the classical greedy algorithm, and we obtain a lnn-approximation, which is best-possible for this
problem (modulo complexity-conjectures [Fei98]).

In the Set Cover problem, we are given a universe of n elements, say U = {1, 2, 3, . . . , n} and a
collection C of subsets of U whose union equals U . We are required to pick the minimum number
of sets from C which cover all of U . Let this minimum number be denoted OPT. The Greedy

3Recall that Raghavan’s algorithm is a derandomization of a Chernoff bound argument, and Chernoff bounds are
derived using the exponential generating function etX .
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Algorithm picks subsets iteratively, each time choosing that set which covers the maximum number
of uncovered elements.

We analyze the Greedy Algorithm in our setup as follows. Since the elements of the universe
represent the constraint that the union of sets picked by the algorithm must cover each of them, we
let “experts” correspond to elements in the universe, and “events” correspond to the sets Cj ∈ C.
The penalty of the expert corresponding to element i for the event corresponding to set Cj is
M(i, Cj) = 1 or 0 depending on whether i ∈ Cj or not.

We run the Multiplicative Weights Update algorithm with this setup with ε = 1. The update
rule to be used is (see the remark following the proof of Theorem 2):

wt+1
i = wt

i(1− εM(i, Cj))

This update rule implies that elements that have been covered so far have weight 0 while all the
rest have weight 1. The maximally adversarial event in this case is the set Cj which maximizes,
given weights w1, w2, . . . , wn and the corresponding distribution pi = wi/

∑
j wj ,∑

i

piM(i, Cj) =
∑
i∈Cj

pi

which is simply the set which covers the maximum number of uncovered elements. Thus, this is
the Greedy Set Cover algorithm.

Note that for any distribution p1, p2, . . . , pn on the elements, we know that OPT sets cover all
the weight, so one set must cover at least 1/OPT fraction. So for the maximally adversarial event,
we have maxCj

∑
i∈Cj

pi ≥ 1/OPT.
Thus, the change in potential for each round is:

Φt+1 < Φte−ε/OPT

The strict inequality holds because we always get a strictly positive penalty. Thus, the potential
drops by a factor of e−1/OPT every time.

We run this as long as some element has not yet been covered. We show that T = dlnneOPT
iterations suffice, which implies that we have a dlnne approximation to OPT. We have

ΦT < Φ1e−T/OPT = ne−dln neOPT/OPT = ne−dln ne ≤ 1

Note that with ε = 1, ΦT is exactly the number of elements left uncovered after T iterations. So
we conclude that all elements are covered.

3.5 Boosting

Boosting [Sch90] —combining several moderately accurate rules-of-thumb into a singly highly ac-
curate prediction rule— is a central idea of AI today. Freund and Schapire’s AdaBoost [FS97] uses
the Multiplicative Weights Update Rule and fits in our framework. Here we explain the main idea
using some simplifying assumptions.

Let X be some set (domain) and are suppose we are trying to learn an unknown function
(concept) c : X → {0, 1} chosen from a concept class C. Given a sequence of training examples
(x, c(x)) where x is generated from a fixed but unknown distribution D on the domain X, the
learning algorithm is required to output a hypothesis h : X → {0, 1}. The error of the hypothesis
is defined to be Ex∼D[|h(x)− c(x)|].

12



A strong learning algorithm is one that, for every distribution D and every ε, δ > 0, outputs
with probability 1 − δ a hypothesis whose error is at most ε. A γ-weak learning algorithm for
γ > 0 is similar, except its error is as high as 1/2 − γ. Boosting shows that if a γ-weak learning
algorithm exists for a concept class, then a strong learning algorithm exists. (The running time of
the algorithm and the number of samples may depend on γ.)

We prove this result in the so-called boosting by sampling framework, which uses a fixed training
set of N examples. The idea is to repeatedly run weak learning algorithm on different distributions
defined on this set. The final hypothesis has error ε′ under the uniform distribution on the training
set, and using VC dimension theory —details omitted— one can conclude that with probability
1 − δ, the error of the hypothesis over the entire domain X is ε if the training set size N is
appropriately chosen.

We use the Multiplicative Weights Update algorithm, but to avoid notational confusion, we use
α instead of ε for the multiplicative update factors. The “experts” correspond to samples in the
training set and “events” correspond to the the set of all hypotheses that can be generated by the
weak learning algorithm. If the event corresponding to the hypothesis h happens, the penalty for
expert x is 1 or 0 depending on whether h(x) = c(x) or not. (Notice, we want the weight of an
example to increase if the hypothesis labels it incorrectly.)

In each iteration, the algorithm presents the current distribution Dt on the examples to the
weak learning algorithm, and in return obtains a hypothesis ht whose error with respect to the
distribution Dt is not more than 1/2− γ, in other words, the expected penalty, M(Dt, ht), in each
iteration is at least 1/2+γ. The algorithm is run for T rounds, where T will be specified shortly. The
final hypothesis, hfinal, labels x ∈ X according to the majority vote among h1(x), h2(x), . . . , hT (x).

Let S be the set of x ∈ X incorrectly labelled by hfinal. The penalty for each x ∈ S,
∑

t M(x, ht)
is at most T/2 since the majority vote is incorrect for it. We adapt the proof of Theorem 2
in the following manner. We have, as in the proof, ΦT ≤ Φ1e−α

P
t M(Dt,ht) ≤ ne−αT (1/2+γ).

Now ΦT ≥
∑

x∈S(1 − α)
P

t M(x,ht) ≥ |S|(1 − α)T/2 ≥ |S|e−(α+α2)(T/2) (using (1 − x) ≥ e−(x+x2)

for x < 1/2). Thus, we conclude that the error of hfinal on the training set under the uniform
distribution is |S|

n ≤ e−α(γ−α/2)T . Choosing α = γ and T = 2
γ2 ln 1

ε′ , we get that the error is ≤ ε′

as desired.

3.6 Hardcore sets and XOR Lemma

A function f : {0, 1}n → {0, 1} is ε-strongly hard for circuits of size S if for every circuit C of size
at most S,

Pr
x

[C(x) = f(x)] ≤ 1
2

+ ε.

It is γ-weakly hard on the other hand if

Pr
x

[C(x) = f(x)] ≤ 1− γ.

Yao’s XOR Lemma [Yao82] shows that if f is γ-weakly hard against circuits of size S then
f⊕k : {0, 1}nk → {0, 1} is ε + (1− γ)k-strongly hard for circuits of size Sε2γ2/8.

The original proofs were difficult but in the 1990s Impagliazzo [Imp95] suggested a simpler proof
that as a byproduct proves an interesting fact about weakly hard functions: there is a reasonably
large subset of inputs on which the function behaves like a strongly hard function! This subset is
called a hard core set. Klivans and Servedio [KS03] observed that Impagliazzo’s proof is a version
of boosting. Phrased in our setting, experts correspond to inputs. At each step the algorithm
maintains a distribution on experts. Events correspond to circuits of size Sε2γ2/8 that predict f
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with probability at least 1− γ on the current distribution. (We are simplifying a little; see [KS03]
for details.)

3.7 Connection to Chernoff bounds

Chernoff bounds show that the sum of bounded independent random variables X1, X2, . . . , Xn

is sharply concentrated about its mean. They are proved by applying the standard Markov’s
inequality to the variable et(

P
i Xi). As pointed out in Young [You95], this technique has formal

similarities to the multiplicative update rule. If we imagine the values of X1, X2, . . . , Xn being
revealed sequentially, then the value of the “potential” et(

P
i Xi) may be seen as being multiplied by

etXi at the ith step. Assuming tXi � 1 this multiplication factor is approximately (1 + tXi). As
Young showed, this formal similarity can be used to design more efficient approximation algorithms
for integer packing-cover problems where the original algorithms used randomized rounding (see
Section 3.4).

3.8 Multiplicative update rules in network congestion control

The multiplicative update framework is usefully viewed as a feedback mechanism in several situa-
tions; e.g. fictitious play in economics that was discussed earlier. A similar view is also useful in
congestion control in flow networks. For example, the congestion control in the classic TCP/IP
protocol is the multiplicative decrease, additive increase rule, which expects senders to additively
increase their send rate until the network gets congested, and then multiplicatively decrease their
send rate by a half. It is easy to show that this algorithm quickly converges to allocating equal
bandwidth for all the senders; in fact, for n senders, convergence within error ε occurs in log(n

ε )
steps of multiplicative decrease, additive increase.

This can be seen as follows. For convenience, let the total bandwidth be 1. Consider the time
at which the network is at full capacity, and the senders reduce their transmit speeds by half. At
this point, only 1/2 bandwidth is used. Observe that the subsequent additive increase part can
be done away with; since all senders increase their transmit speeds at the same rate, all that is
accomplished by the additive increase step after a multiplicative decrease step is to assign an extra
bandwidth of 1

2n to every sender so that the network is again full. Thus, if initially the sender has
bandwidth x, then after T steps of multiplicative decrease, additive increase, the bandwidth for
the sender is given by(

. . .

((
x · 1

2
+

1
2n

)
· 1
2

+
1
2n

)
. . .

)
· 1
2

+
1
2n︸ ︷︷ ︸

T

=
x

2T
+

1
2n

(
1 +

1
2

+ · · · 1
2T−1

)
=

(x− 1
n)

2T
+

1
n

After T ≥ log(n
ε ) steps, all senders have bandwidth within (1± ε) 1

n .
More advanced protocols have also been designed, and sometimes analysed using a utility frame-

work; see the survey [LPD02]. This multiparty analysis doesn’t seem to fit into our multiplicative
update framework, though it certainly seems related.

Within theoretical computer science, a distributed flow algorithm of Awerbuch and Leighton [AL94]
also uses a variant of the multiplicative update rule, but its analysis again does not exactly fit into
our framework.

3.9 Approximately Solving certain Semidefinite Programs

Klein and Lu [KL96] use the multiplicative weights framework to derive a more efficient 0.878-
approximation algorithm for MAX-CUT than the original SDP-based method in Goemans-Williamson
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[GW95]. The main idea in Klein-Lu is to approximately solve the MAX-CUT SDP. However, their
idea does work very well for other SDPs. We have used our multiplicative weights framework to
design efficient algorithms for SDP relaxations of many other problems. These are described in
another forthcoming paper.

3.10 Multiplicative weight algorithms in geometry

The multiplicative weight idea has been used several times in computational geometry. Chazelle [Cha00]
(p. 6) describes the main idea, which is essentially the connection between derandomization of Cher-
noff bound arguments and the exponential potential function noted in Section 3.7.

The geometric applications consist of derandomizing the obvious randomized algorithm by using
a deterministic construction of some kind of small set cover or low-discrepancy set. Formally,
the analysis is similar to our analysis of the Set Cover algorithm in Section 3.4. Clarkson used
this idea to give a deterministic algorithm for Linear Programming [Cla88]. Following Clarkson,
Bronnimann and Goodrich use similar methods to find Set Covers for hyper-graphs with small VC
dimension [BG94].

Recently, multiplicative weights arguments were also used in context of geometric embeddings
of finite metric spaces. The approximation algorithm for sparsest cut in Arora et al. [ARV] involves
a “Structure Theorem” about metric spaces of negative type. This theorem says that in an n-point
metric space of negative type in which the average interpoint distance is Ω(1), there are two sets
S, T of size Ω(n) such that the distance between each i ∈ S, j ∈ T is Ω(1/

√
log n). Chawla et

al. [CGR05] noted that this can be viewed as an embedding into `1 that preserves the “average”
pair of distance Ω(1) up to

√
log n factor. They used the multiplicative update idea to construct an

embedding (which can be viewed as a probability distribution on O(log n) ARV-style embeddings) in
which every distance of Ω(1) distorts by at most O(

√
log n) factor. Using a similar idea for distance

scales other than 1 and combining the resulting embeddings using the ideas of Krauthgamer et
al. [KLMN04] they obtained an embedding of the negative type metric into l1 in which every
internode distance distorts by at most a factor O(log3/4 n). Recently Arora et al. [ALN] gave
a more complicated construction to improve the distortion bound to O(

√
log(n) log log n). As a

consequence, they obtain a O(
√

log(n) log log n)-approximation for non-uniform sparsest cut, thus
almost matching the O(

√
log n) bound for uniform sparsest cut from [ARV].

4 Lowerbounds

Can our analysis of the Multiplicative Weights Update algorithm be improved? This section shows
that the answer is “No,” at least when the “width” parameter is not too large. Proving a lowerbound
for larger values of width is an open problem.

Recall that our MW update algorithm specializes to a host of known algorithms, and therefore
lowerbounds known for those specialized settings (e.g., Littlestone and Warmuth [LW94], Klein and
Young [KY99], Freund and Shapire [FS99]) also carry over to our MW update algorithm. These
lowerbounds show that at least Ω(ρ log n

ε2
) iterations are required to obtain an ε-approximation. Now

we sketch a better Ω(ρ2 log n
ε2

) lowerbound when the payoffs can be negative.
We prove the lowerbound in the expert-event prediction framework described in Section 2,

where the experts are trying to maximize their gain. Events are revealed sequentially and remain
unknown to the algorithm until revealed. The idea is to use random payoffs; this is similar to Klein
and Young [KY99].
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Let M ∈ {+1,−1}n×m be the payoff matrix where there are n experts and m events. Define

V (M) = max
D

min
j∈[m]

M(D, j)

where the minimization is over all distributions D on experts (note here that we are working with
gains instead of losses, as in subsection 2.1). Let D∗

M be the distribution on the experts that achieves
this payoff V (M). Note that by definition of V (M), for every distribution D on the experts, there
exists an event j for which the expected gain is at most V (M).

The main technical theorem we prove is:

Theorem 6 For any n ∈ Z+, let p = Ω( 1
n1/8 ), m = Õ(n0.5). Let T be any number ≤ log n

p2ε2
. Then

there exists a payoff matrix M ∈ {±1}n×m for which V (M) = Ω(p) and the following holds:
For every subset of T events, there exists a distribution on the experts such that the minimal

expected payoff over these T events is greater then V (M)(1 + ε).

Take the M from Theorem 6, scaled by a factor of 1
2p , and consider this new payoff matrix.

Since all entries of M were 1 in absolute value before the scaling, the width is bounded by ρ = O(1
p).

We note here that the Multiplicative Weights Update algorithm takes T = O(ρ2 log n
ε2

) rounds to
get a payoff within a factor of (1 + ε)−1 of the payoff achieved by the best expert: this follows by
using Corollary 3 with δ = ε

2 ·
1
2pV (M) = Ω(ε) and using the fact that the best expert achieves an

average payoff of at least 1
2pV (M).

The desired lowerbound is a simple corollary of Theorem 6. We show that if the number of
rounds T = o(ρ2 log n

ε2
) then no prediction algorithm can achieve total payoff within a factor of

(1 + ε)−1 of the payoff achieved by the best expert. In each round, the adversary picks a new
event such that the payoff for the current distribution on experts is at most 1

2pV (M). Thus after
T rounds the algorithm’s gain is at most 1

2pV (M)T .
Now consider the submatrix of M− consisting of the T columns revealed. According to The-

orem 6, there exists a distribution over the experts, D∗
M−

, that achieves an expected gain larger
then 1

2pV (M) · (1 + ε) for each of the T events. Therefore, the gain of an offline algorithm which
uses the fixed distribution D∗

M−
in every iteration is at least 1

2pV (M)T (1+ ε). The gain of the best
expert for these T events is only larger.

To finish, we prove Theorem 6. The proof shows that a random payoff matrix M ∈ {+1,−1}n×m

satisfies the required properties with high probability. Each entry of M is a binomial random
variable, chosen independently to be ±1 with probabilities 1

2 + p, 1
2 − p correspondingly.

In order to prove the required property, we prove an upper bound on V (M) and a lower bound
for V (B) for every payoff submatrix B ⊆ M of size n × T . For both cases we use estimates for
the tails of the binomial distribution. For the upper bound on V (M), let us consider the uniform
distribution on the experts. The payoffs for each event separately are tightly concentrated, and we
use the Chernoff tail estimate to bound the deviations.

Claim 1 With probability at least 1−o(1), we have V (M) = O(2p(1+
√

log m
pn )) and V (M) = Ω(p).

Proof: Consider the uniform distribution on the experts. The expected gain for any event is
µ = 2p. Using the Chernoff bounds, we can bound the probability that any event j produces a
total gain much larger the expected gain.

Pr

 1
n

∑
j

M(i, j)− µ ≥ tµ

 ≤ e−t2µn
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Plugging in t = O(
√

ln m
pn ) and using the union bound over all m events, we obtain that with very

high probability all events occur a gain of at most 2p(1+ t). The lower bound on V (M) is obtained
similarly. 2

Let us now proceed to bound V (B) from below for all submatrices B ⊆ M of size n× T . The
idea is again to observe the tail of the binomial distribution, but this time to bound the deviations
from below (and the deviations will be larger then before since we consider a smaller number of
random variables).

As for the parameters, we fix ε later (think of it as O(p)), and let T = log n
p2ε2

. We assume T is
small enough such that T 2 log m = o(n) (this is consistent with the parameters of Theorem 6).

Claim 2 With probability at least 1 − o(1) it holds for all B that V (B) ≥ 2p(1 + ε) for some

ε = ω(
√

log m
pn ).

Proof: Consider certain expert k ∈ [n]. Denote by Pk the number of successful predictions of
expert k on the events of B (which is equal to the number of positive entries in row k of B).
The expected value of Pk is naturally T (1

2 + p). Using a lower bound on the tail of the binomial
distribution, which essentially matches the Chernoff upper bounds, we have

Pr
[
Pk ≥ (1 + ν)(

1
2

+ p)T
]
≥ e−Ω(Tν2)

By our choice of T we have ε =
√

log n

p
√

T
. Take ν = ε̄p and set ε̄ =

√
log(n/2r)

p2T
, and the above probability

becomes 2r
n . Let r = T 2 log m = o(n) (recall we assume that m,n are such that T 2 log m = o(n)).

Call any expert for which Pk ≥ (1 + ν)(1
2 + p)T a good expert. Then by our choice of ε̄,

the probability that a certain expert is good is at least 2r
n , and every expert has independent

performance. The expected number of good experts is 2r. Because of the tight concentration
around the mean, we can ensure, with high probability, that for every choice of B there are r good
experts. Specifically, the probability that there exists a submatrix B that does not have at least r
good experts is bounded by e−8r ·

(
m
T

)
. By our choice of r this probability is o(1). So we assume

that B has at least r good experts.

We now lower bound V (B). Let C be the r×T payoff sub-matrix of B restricted to the r good
experts of B. Naturally V (C) ≤ V (B), and hence it suffices to bound V (C) from below. For this,
we use the von Neumann min-max theorem, which states:

V (C) = max
D

min
j∈[T ]

C(D, j) = min
P

max
i∈[r]

C(i,P) (12)

Here, P is a distribution on the events (i.e. columns) of C, and C(i,P) =
∑

j C(i, j)P(j).
For the role of P in the equation above, consider the uniform distribution on the T events of C.

For any event of C, the gain incurred by a random good expert is +1 with probability ≥ 1
2 +p+ 1

2ν
and −1 with probability ≤ 1

2 −p− 1
2ν, since all the experts of C are good, and is independent from

the other experts (according to the construction of M). The expected gain for any expert is thus
at least (2p + ν)r. Using the Chernoff bound for each event j separately, we have:

Pr

[(
1
r

∑
i

C(i, j)− (2p + ν)

)
≥ ξ

]
≤ e−rξ2
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Set ξ = O(
√

T ln m
r ) = O(

√
1
T ) = o(ν). This implies that

Pr

[
1
r

∑
i

C(i, j) ≤ Ω(2p + ν)

]
≤ e−Ω(T log m)

Taking the union bound over all events, Pr[V (C) ≤ Ω(2p + ν)] ≤ Te−Ω(T log m). And another
union bound over all

(
m
T

)
≤ mT sub matrices B of M, the probability that there are r good experts

and V (B) ≥ V (C) = Ω(2p + ν) = Ω(2p(1 + ε)) is 1− o(1).
In addition, notice that for sufficiently large m:

ε = Ω(ε̄) = Ω(

√
log(n/2r)

p2T
) = Ω(

√
log n

p2T
) = ω(

√
log m

pn
)

2

Theorem 6 now follows from Claims 1 and 2.
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