
Comput. complex. 8 (1999), 1 – 20
1016-3328/99/010001–20 $ 1.50+0.20/0

c© Birkhäuser Verlag, Basel 1999

computational complexity

SYMMETRIC APPROXIMATION
ARGUMENTS FOR MONOTONE LOWER

BOUNDS WITHOUT SUNFLOWERS

Christer Berg

Staffan Ulfberg

Abstract. We propose a symmetric version of Razborov’s method of
approximation to prove lower bounds for monotone circuit complex-
ity. Traditionally, only DNF formulas have been used as approximators,
whereas we use both CNF and DNF formulas. As a consequence we
no longer need the Sunflower Lemma that has been essential for the
method of approximation. The new approximation argument corres-
ponds to Haken’s recent method for proving lower bounds for monotone
circuit complexity (counting bottlenecks) in a natural way.

We provide lower bounds for the BMS problem introduced by Haken,
Andreev’s polynomial problem, and for Clique. The exponential bounds
obtained are the same as those previously best known for the respective
problems.
Key words. Circuit complexity; lower bounds; monotone circuits.
Subject classifications. 68Q25.

1. Introduction

The difficulty of proving super-linear lower bounds for general circuit complex-
ity has led to the study of various restrictions of this computational model. One
of these is monotone circuits, i.e., only AND gates and OR gates are allowed.
Since many important problems in complexity theory are monotone, this com-
putational model seems to be a natural one. Examples of monotone graph
problems are Clique, Vertex cover, and Hamiltonian path, which are all NP-
complete. However, for a long time there had been no stronger lower bounds
for monotone than for general circuits; the best one was only 4n (by Tieken-
heinrich (1984)). A major breakthrough came in 1985, when Razborov (1985)
invented the method of approximation. It allowed him to prove a super-
polynomial lower bound, as he showed that Clique requires monotone circuits of
size nΩ(logn). Shortly thereafter, Andreev (1985) applied Razborov’s technique

2 Berg & Ulfberg cc 8 (1999)

to another function and was thereby able to prove an exponential lower bound.
Later, both these results were improved by Alon and Boppana (1987), and in
particular, they were the first to prove an exponential lower bound for Clique.
For a nice exposition of this result, see Section 4 in the survey by Boppana and
Sipser (1990).

The idea behind the approximation method is the following. The output of
each gate in a given circuit is approximated by a function, the approximator for
that gate. The goal is to find a set of approximator functions with the following
properties. For every gate in the circuit, the approximator should introduce
but a few errors. Also, the approximator for the output gate should differ from
the function computed by the circuit for many input values. If this goal is
accomplished, we will have proved that the circuit must be large, since errors
in the approximator for the output gate must emerge from the approximation
of some gate in the circuit.

In 1995, Haken (1995) proposed a new method for proving lower bounds
for the size of monotone circuits, which he called “Bottleneck counting”. He
demonstrated the method for a graph problem that resembles Clique. Instead
of trying to approximate the behavior of the circuit, he defined a function µ
which maps input graphs to gates of the circuit. To prove that the circuit
contains many gates, he then showed that on the one hand the total number
of graphs mapped by µ is large, but on the other hand, only a few graphs are
being mapped to each gate.

One purpose of this paper is to show that Haken’s approach to lower bounds
is in fact an approximation argument in disguise: it can be turned into an
approximation argument by using approximators, which for a gate e, introduce
errors for exactly those inputs that are mapped to e by Haken’s function µ.
The approximation version of Haken’s proof is in Section 5.

It is of course nice that Haken’s method of bottleneck counting works in es-
sentially the same way as Razborov’s approximation method, but unfortunately
this leads to the conclusion that it cannot be used to prove lower bounds better
than Ω(n2) for general circuits. The reason for this is, as Razborov showed, that
the method of approximation will not work very well for general circuits (1989).

Pudlák (1997) extended Razborov’s approximation method to hold for cir-
cuits consisting of bounded fan-in gates computing monotone real functions.
The corresponding extension of Haken’s method was made by Haken and
Cook (1996). Based on Haken’s idea, Jukna (1997) was able to derive a general
criterion for lower bounds that holds for both monotone boolean and monotone
real circuits. Wigderson independently discovered that Haken’s method can be
turned into an approximation argument, and he also noted that this holds

cc 8 (1999) Symmetric Approximation Arguments 3

for the extension made by Haken and Cook. The extension to real monotone
circuits can be found in Section 4.6 of Berg (1997).

Another purpose of the paper is to make the approximation method simpler
and more symmetric. Our approximation argument, which is derived from the
translation of Haken’s proof, differs from that of Razborov in that we use two
approximator functions for each gate. Razborov used only one approximator
function which is a monotone depth two circuit. Out of the two possibilities
for the form of such circuits, a disjunction of conjunctions or the other way
around, Razborov chose the former.

In this paper, however, we do not make this choice at all since we use two
approximator functions for each gate—one for each of the two possible forms.
This seems like a natural thing to do, and one consequence is that we do not
have to use the Sunflower Lemma by Erdős and Rado (1960). The Sunflower
Lemma is traditionally used to reduce the size of approximator functions while
not reducing their approximation qualities too much. The fact that we do
not need this lemma is somewhat surprising since it is a central part in earlier
approximation results. Although we are unable to improve the bounds obtained
by Alon and Boppana, this approach leads to shorter and, to our thinking,
simpler proofs.

Note that while most of the known lower bounds obtained using the method
of approximation may benefit from being reformulated in this way, it is not clear
that all of them do. We do not, for example, know how to present Razborov’s
super-polynomial lower bound for perfect matching (which implies that mono-
tone circuits are strictly less powerful than non-monotone) using CNF and DNF
approximators.

1.1. Recent work. Ideas from the bottleneck counting argument were also
used by Amano and Maruoka (1996) to develop approximators similar to the
ones presented in this paper. They used the approximators to prove lower
bounds for Clique and Andreev’s polynomial problem.

Simon and Tsai (1997) showed that the bottleneck counting argument is
actually equivalent to the method of approximation. They provided a proof of
the fact that errors in the approximation method correspond to mapped inputs
in bottleneck counting.

2. Definitions

A monotone circuit Ψ is a boolean circuit with AND gates (∧) and OR gates
(∨), but without NOT gates. We let all gates have arbitrary fan-in and fan-out,

4 Berg & Ulfberg cc 8 (1999)

and measure the size of a circuit, size(Ψ), by the number of gates contained
therein.

The monotone functions, for which we provide lower bounds, are all graph
problems. An input graph on n vertices is represented in a standard way: as(
n
2

)
variables xi,j whose value is 1 if the edge (i, j) exists.
The output of a gate e in Ψ when the input x is applied to the circuit is

denoted by e(x). Let the output gate be eo so that the circuit Ψ computes the
boolean function eo(x).

Our proofs are based on the method of approximation which was invented
by Razborov (1985). It involves the use of a boolean function to approximate
the output of every gate in a given circuit. The approximator functions used
by Razborov, Andreev (1985), and Alon and Boppana (1987) are all monotone
DNF formulas.

The proofs in this paper, however, are influenced by the work of Haken
(1995), and every gate e in a circuit Ψ is approximated by two functions fD

and fC
e , the approximators for the gate e. The approximator fD has the form

C1∨C2∨. . .∨Ct, where Ci is a conjunction of limited size: all conjunctions have
less than c distinct literals. The approximator fC

e has the formD1∧D2∧. . .∧Ds,
where Di is a disjunction containing less than d distinct literals. (Notice that
we put no explicit restriction on the numbers s and t.)

The following characteristics of the approximator functions fD and fC
e are

essential to the proof.

1. The approximators fD
eo(x) and fC

eo(x) fail to correctly represent the output
of Ψ for many inputs x.

2. For every gate e, the number of inputs for which the approximators in-
troduce errors (measured in a specific way) is small.

For every x for which the approximators for eo fail, the error must have
been introduced in at least one of the gates in Ψ. We can therefore draw the
conclusion that Ψ contains many gates.

For convenience, we consider the inputs to the circuit as being gates them-
selves, and for an input variable xi,j, we simply define fD

xi,j
= fC

xi,j
= xi,j. We

also define empty disjunctions to have the value 0, and empty conjunctions to
have the value 1.

Definition 1. For a gate e and an input x for which e(x) = eo(x), we say that
the approximator fD fails for x if fD(x) 6= e(x), and that the approximator fC

e

fails for x, if fC
e (x) 6= e(x).

cc 8 (1999) Symmetric Approximation Arguments 5

If either fD or fC
e fails for x, we say that the approximators for the gate e

fail for the input x.

A central notion of the proofs is counting the number of errors that are
introduced in the gates of Ψ. This is defined as follows.

Definition 2. An approximator, fD or fC
e , is said to introduce an error for

the input x if it fails on the input x, but none of the approximators for the
input gates to e fail for the input x.

If either fD or fC
e introduces an error for the input x, we say that the

approximators for the gate e introduce an error for the input x.

We now describe how an ∧ gate e is approximated, assuming that its input
gates are already approximated by fD

e1
, fD
e2
, . . . , fD

em and fC
e1
, fC
e2
, . . . , fC

em. The
approximator fC

e is simply defined as

fC
e =

m∧
i=1

fC
ei

=
s∧
i=1

Di,

in which all disjunctions still have length at most d. If none of fC
e1
, fC
e2
, . . . , fC

em

fails for the input x, neither will fC
e , so the approximator fC

e introduces no
errors.

The approximator fD should be a disjunction of conjunctions; it is formed
by converting fC

e into the form
t∨
i=1

Ci.

The standard way of doing this is to form a conjunction Ci for every possible
way of picking one literal from each disjunction Di in fC

e . All conjunctions
that have at least c distinct literals are then discarded, which means that long
conjunctions are approximated by the constant 0.

In the proofs to follow, we need to establish upper bounds for the number of
errors introduced when forming fD from fC

e . To get as good bounds as possible,
we have to be more careful when forming fD (so that more conjunctions get
shorter than c). We will shortly describe the process we actually use in detail.

Returning to the definitions of fD and fC
e , we note that fD is produced

from fC
e , which, in turn, is constructed from the approximators fC

ei
of the input

gates. Thus, when approximating an ∧ gate, we do not use the approximators
fD
ei

for the input gates.

6 Berg & Ulfberg cc 8 (1999)

The approximator functions for an ∨ gate e are formed analogously. We
construct fD from the approximators fD

ei
of the input gates; this introduces no

errors. The disjunction of conjunctions is then converted into a conjunction
of disjunctions, and disjunctions with at least d distinct literals are discarded
(they are in effect approximated by the constant 1). Notice that the way the
approximators are constructed, we have fD ≤ fC

e for all gates e.
We now end this section by describing the details involved when converting

fC
e to fD in an ∧ gate (this part is analogous for ∨ gates as well).

A set of conjunctions is formed which have the property that at least one
of them is satisfied if and only if all disjunctions in fC

e are satisfied. The
approximator fD is then formed from all resulting conjunctions shorter than c.

The rewriting process can be viewed as the construction of a tree: Each
edge in the tree is labeled by a literal. For every node v in the tree, we define
a corresponding conjunction that is formed by all literals on the path from the
root to v. At the root we create one labeled edge to a new child for each of the
literals in the first disjunction. We say that we have expanded D1 under the
root.

Suppose w is a leaf that was created while expanding Di, and that C is
the conjunction corresponding to w. Then, D1, . . . ,Di are all satisfied if C is
satisfied. We now take care of Di+1.

First consider the case when C is satisfied. In this case, we know that
for all accepting instances of the problem, at least one of the literals in Di+1,
say xu,v, must be satisfied as well. (This happens if Di+1 contains a literal in
common with C, but it could also happen in some other situations if there are
restrictions on the possible inputs.) We then make only one new child under w
for the literal xu,v and skip the rest of Di+1. This results in fewer leaves in the
tree and therefore fewer conjunctions. Otherwise, we expand the disjunction
Di+1 under w.

The result is that if the conjunction corresponding to one of the new children
is satisfied, so is Di+1. Conversely, if all of D1, . . . ,Di+1 are satisfied, there is
a node on depth i+ 1 in the tree whose corresponding conjunction is satisfied.

When there are no more leaves for which there are remaining disjunctions
to expand, we are done, and we get one conjunction for each leaf in the tree.
Leaves whose corresponding conjunctions have at least c distinct literals are
then removed, which is why fD may make an error for some inputs.

Note that such inputs are always accepted by some conjunction (correspond-
ing to a node in the tree) that has exactly c distinct literals, and bounding the
number of such conjunctions is the reason for constructing the tree. By count-
ing the number of inputs accepted by each conjunction, we can get an upper

cc 8 (1999) Symmetric Approximation Arguments 7

bound for the number of errors introduced by fD.

3. The proof method

Although they differ in details, the basic strategy for the proofs is the same
in the following sections. In this section we therefore describe the strategy by
giving generic versions of the theorem, and of the lemmas that are used in the
proof of the theorem.

The generic theorem and lemmas contain various unspecified entities, such
as numerical functions α, β, and γ. The outline can be turned into an actual
proof of an actual theorem by specifying these entities (and checking their
required properties).

Let MGP(n) be a monotone language on graphs with n input variables
(which indicate the presence or absence of edges). For some function h(n), we
want to prove the following.

Generic Theorem. The monotone circuit complexity for MGP(n) is at
least h(n).

Generic proof. Suppose we are given a circuit Ψ that correctly decides
MGP(n). In order to prove that Ψ must consist of at least h(n) gates, we
study two subsets of the possible input graphs: the positive test graphs, which
are subsets of the graphs in MGP(n), and the negative test graphs, which are
subsets of the graphs not in MGP(n). Let γ1(n) be the number of positive test
graphs and γ0(n) the number of negative test graphs.

Instead of directly proving that a circuit that decides MGP(n) must be
large, we prove that a circuit that separates the positive and negative test
graphs from each other must be large; choosing the test graphs in a suitable
way is of course essential.

We start by showing that the approximators for the output gate of Ψ fail
for most inputs.

Generic Lemma A. At the output gate eo, the approximators either fail for
all negative test graphs, or they fail for at least half of the positive test graphs.

Generic proof. Assume that the approximators do not fail for all negative
test graphs; otherwise there is nothing to prove. Hence, there exists a negative
test graph b, such that fC

eo(b) = 0, which implies that fC
eo contains a disjunction

D. Furthermore, for all positive test graphs g on which fC
eo is correct, we must

have D(g) = 1. Since D contains less than d distinct literals, we can bound the
fraction of positive test graphs for which fC

eo = 1 by multiplying the fraction of

8 Berg & Ulfberg cc 8 (1999)

positive test graphs for which any specific edge is present with d. A suitable
choice of d proves the lemma. �

The next objective is to bound the number of inputs for which the approx-
imators introduce errors at a single gate. Assume e is an ∧ gate. In this case
fC
e introduces no errors at all, and hence, we need only study fD. Also, since
fD ≤ fC

e , no errors are ever introduced for negative test graphs in ∧ gates. The
next two lemmas introduce the functions α and β as bounds for the number of
errors introduced in a single ∧ and ∨ gate, respectively.

Generic Lemma B. At an ∧ gate e, the approximator fD introduces an error
for at most α(n, c, d) positive test graphs.

Generic proof. To prove the lemma, we give an upper bound on the number
of positive test graphs g such that C(g) = 1 (g is accepted by C), where C is
any conjunction with c distinct literals corresponding to a node in the tree that
represents the rewriting process.

For each node in the tree that has more than one child, the number of chil-
dren is bounded by d, and descending to such a child always adds a distinct
literal to the corresponding conjunction. There are therefore at most dc con-
junctions with exactly c distinct literals. It remains to find out the number of
positive test graphs accepted by each such conjunction.

This is easily done if the edges in the positive test graphs are present in-
dependently from each other (as is the case in the lower bound for Andreev’s
polynomial problem in Section 4). If the problems are specified in terms of
vertices (e.g., the BMS problem in Section 5 and Clique in Section 6), we have
to be a bit more careful since edges are not independent in the natural test
graphs for these problems. Actually, in the proofs for these specific problems,
we do not limit the number of distinct literals in conjunctions, but introduce
another more natural measurement of their size.

The lemma should now follow from multiplying the number of conjunctions
that have c distinct literals by the number of inputs accepted by each such
conjunction. �

The following lemma is analogous, and it is proved by bounding the number
of errors introduced on negative test graphs when fC

e is formed from fD.

Generic Lemma C. At an ∨ gate e, the approximator fC
e introduces an error

for at most β(n, c, d) negative test graphs.

To finish the proof of the generic theorem, we need to consider the two cases

cc 8 (1999) Symmetric Approximation Arguments 9

from Generic Lemma A. First, if the approximators fail for all negative test
graphs, Generic Lemma C implies that size(Ψ) ≥ γ0(n)/β(n, c, d). Otherwise,
the approximators fail for at least half of the positive test graphs, and then
Generic Lemma B implies that size(Ψ) ≥ γ1(n)/(2α(n, c, d)). So if h(n) is less
than both these values, it bounds MGP(n) as claimed in the Generic Theorem.
�

4. Andreev’s polynomial problem

The best lower bound for the size of monotone circuits computing any monotone
function was proved by Alon and Boppana (1987). The function for which this
bound was obtained was the same that Andreev (1985) used when he was the
first to prove an exponential lower bound for a monotone problem.

We are given a bipartite graph G = (U, V,E) with vertex sets U = GF[q]
and V = GF[q], where q is a prime power. The problem POLY(q, s) is to decide
whether there exists a polynomial p over GF[q] of degree at most s − 1, such
that ∀i ∈ U : (i, p(i)) ∈ E.

Theorem 3 (Alon and Boppana (1987)). The monotone circuit com-
plexity for POLY(q, s) is qΩ(s) when s ≤ 1

2

√
q/ ln q.

Proof. We first define the set of positive test graphs used in the proof. There
are qs different polynomials of degree at most s− 1, each of which corresponds
to a positive test graph in a natural way: the polynomial p defines a test graph
with the edges E = {(i, p(i)) | i ∈ U}.

The negative test graphs are constructed randomly, by having each possible
edge appear with probability 1 − ε for ε = (2s ln q)/q. Notice that this con-
struction may result in all possible bipartite graphs on 2q vertices; therefore
we need the following lemma.

Lemma 4. The probability that a negative test graph is in POLY(q, s) is at
most q−s.

Proof. The probability that the q specific edges that correspond to a certain
polynomial are present in a randomly chosen negative test graph is (1−ε)q. So
the probability that the edges corresponding to at least one of the qs possible
polynomials are present in a random graph is at most

qs(1− ε)q ≤ qse−εq = qsq−2s = q−s. �

We choose the parameters c = s and d = q2/3/2.

10 Berg & Ulfberg cc 8 (1999)

Lemma 5 (Specialization of Generic Lemma A). At the output gate
eo, we either have that the approximator fC

eo is identically 1, or that the ap-
proximators for eo fail for at least half of the positive test graphs.

Proof. If fC
eo is identically 1, we are in the first case. Otherwise, there

is a graph b such that fC
eo(b) = 0, and hence there is a disjunction D in fC

eo.
There are qs−1 positive test graphs that contain every specific edge, since fixing
an edge is equivalent to fixing the value of a polynomial at one point. Thus,
there are at most dqs−1 = qs−1/3/2 positive test graphs that contain at least
one edge from D. Hence D (and therefore also fC

eo) is 1 for at most a fraction
qs−1/3/(2qs) = q−1/3/2 of the positive test graphs. �

Lemma 6 (Specialization of Generic Lemma B). At an ∧ gate e, fD in-
troduces an error for at most dc positive test graphs.

Proof. When rewriting fC
e to fD, we can form at most dc conjunctions

that contain c distinct literals, and for the current function, each removed
conjunction introduces an error on at most one positive test graph. This follows
since c = s and since a polynomial of degree s− 1 is completely specified by s
function points. �

Lemma 7 (Specialization of Generic Lemma C). At an ∨ gate e, the
probability that fC

e introduces an error for a random negative test graph is at
most (cε)d.

Proof. We bound the probability of an error being introduced for a random
negative test graph by multiplying the number of disjunctions with d distinct
literals, cd, by the probability that the d literals are 0 in one disjunction, which
is εd. �

Notice that, in particular, the upper bound in the lemma holds for the
number of errors introduced for negative test graphs that are not in the lan-
guage POLY(q, s).

To prove the theorem, we have to consider the two cases from Lemma 5.
If the approximators fail for at least half of the positive test graphs, we use
Lemma 6 which states that the number of errors introduced in a single ∧ gate
is at most dc, and to get

size(Ψ) ≥ qs

2dc
=

2sqs/3

2
∈ qΩ(s).

cc 8 (1999) Symmetric Approximation Arguments 11

If, on the other hand, the approximator fC
eo is identically 1, the approximat-

ors for eo fail for a random negative test graph with probability 1− q−s ≥ 1/2
by Lemma 4. The probability of introducing an error in a single ∨ gate is at
most (cε)d; thus

size(Ψ) ≥ 1
2(cε)d

=
1
2

(
q

2s2 ln q

)q2/3/2
=

1
2

2q
2/3/2 ∈ qΩ(s). �

5. Broken Mosquito Screens

The Broken Mosquito Screens (BMS) problem was introduced by Haken (1995)
to illustrate how to count bottlenecks to show that monotone P 6= NP. In this
section we show that the same result can be obtained using our approximator
formalism.

Haken defines the BMS problem for graphs with m2−2 vertices as the prob-
lem of distinguishing good and bad graphs from each other. Graphs containing
m − 1 cliques of size m and one clique of size m − 2 (but no other edges) are
good; graphs containing m−1 independent sets of size m and one independent
set of size m − 2 but all other edges are bad. Hence, by taking the dual of
a good graph (i.e., inverting all the input bits), we get a bad graph. Notice
that not all graphs are either good or bad, but the definition can be extended
to include all graphs. Haken shows that a monotone circuit that distinguishes
good graphs from bad must be large.

We use the following extended definition of the BMS problem.

Definition 8. Instances of BMS(m) are graphs with m2−2 vertices (m > 2).
A graph is in the language BMS(m) if there exists a partition of the vertices
into m − 1 sets of size m and one of size m − 2, so that each of these subsets
forms a clique.

Using this definition, it is easy to see that the BMS problem is monotone
and in NP.

Theorem 9 (Haken (1995)). The monotone circuit complexity for BMS(m)
is 2Ω(

√
m).

Proof. We let the set of positive test graphs G for the BMS problem be
all graphs with m2 − 2 vertices that contain m − 1 cliques of size m and one

12 Berg & Ulfberg cc 8 (1999)

clique of size m− 2, but no other edges. The set of negative test graphs B is
all graphs on m2−2 vertices that contain m−1 independent sets of size m and
one independent set of size m− 2, and where all other edges are present. Our
positive and negative test graphs correspond to Haken’s good and bad graphs
respectively.

Clearly, all positive test graphs are in the BMS language. Negative test
graphs are not in the BMS language since they contain only m − 2 cliques of
size m.

Next we count the number of test graphs. Counting the number of positive
test graphs is the same as counting the number of ways that a set of m2 − 2
elements can be partitioned into m− 1 sets containing m elements and one set
containing m− 2 elements. We get

|G| = (m2 − 2)!
(m!)(m−1)(m− 2)!(m− 1)!

, (1)

and by duality |B| = |G|.
For each conjunction and disjunction, let a graph correspond to it in the

natural way: for every literal, include the corresponding edge in the graph.
Suppose we want to determine whether a positive test graph satisfies a con-

junction C. This is the case when the graph corresponding to C is a subgraph
of the positive test graph. Therefore, we only have to know how the vertices
of the graph corresponding to C are divided into connected components to
determine what positive test graphs are accepted by C.

In this section we do not limit the length of conjunctions and disjunctions
by their number of literals, but instead we define their size by m2−2 minus the
number of connected components in their corresponding graphs, and require
that their size be less than c and d respectively.

We choose c = d = b
√
mc (since c = d we only use c), i.e., the graphs

corresponding to the conjunctions and disjunctions in the approximators have
more than m2 − 2 − b√mc connected components. Note that, implicitly, the
number of literals in conjunctions and disjunctions is bounded by c2/2 ≤ m/2.

Lemma 10 (Specialization of Generic Lemma A). At the output gate
eo, the approximators either fail for all negative test graphs, or they fail for at
least half of the positive test graphs.

Proof. If the approximator fC
eo for the output gate fails for all the graphs

in B, we are in the first case. Otherwise, let b ∈ B be a graph for which the
approximator does not fail at eo.

cc 8 (1999) Symmetric Approximation Arguments 13

Since fC
eo(b) = 0, there is a disjunction D in fC

eo, and as noted above, this
disjunction contains less than c2/2 ≤ m/2 literals.

The fraction of graphs in G that contain a specific one of these literals is
less than 1/m, which can be seen as follows.

A graph in G has (m−1)
(
m
2

)
+
(
m−2

2

)
edges out of the possible

(
m2−2

2

)
ones.

Since all edges are equally likely, this means that a specific edge appears in a
fraction

(m− 1)
(
m
2

)
+
(
m−2

2

)(
m2−2

2

) <
1
m

of the graphs in G. Thus, the fraction of G that contains at least one of the
m/2 literals in D is at most 1/2. So, for at least half of all g ∈ G, we have that
D(g) = 0, and therefore also that fC

eo(g) = 0. �
Next, we establish an upper bound for the number of test graphs for which

the approximators introduce an error at a single gate.

Lemma 11 (Specialization of Generic Lemma B). At an ∧ gate e, the
approximator fD introduces an error for at most

m4c(m2 − 2− 2c)!
2c(m!)(m−1)(m− 2)!(m− 1)!

(2)

positive test graphs.

Proof. We introduce errors on positive test graphs by removing conjunctions
whose corresponding graphs contain at most m2−2−c connected components.
When counting the number of positive test graphs for which an error is intro-
duced, we consider different orderings of the vertices within the partitions and
the order of the partitions as different graphs, and in the end we divide by the
same denominator as in (1).

When building the tree, let w be the node that was created while expanding
the disjunction Di, and let C be the conjunction corresponding to w.

Consider the case in which Di+1 contains a literal xu,v for which both end-
points are in the same connected component in the graph corresponding to C.
Then, we create only one single child under w and label the edge xu,v. In this
case, we know that xu,v is satisfied if C is, so dropping all other children does
not introduce errors for any positive test graphs. Clearly, ignoring the creation
of some children never introduces errors for negative test graphs.

Otherwise, w gets less than c2/2 children, since each disjunction contains
less than c2/2 literals. In this case, the number of connected components

14 Berg & Ulfberg cc 8 (1999)

decreases by one for the children, so we will make c such expansions before
we reach a node where the graph for the corresponding conjunction contains
m2−2−c connected components. Therefore, there are at most (c2/2)c ≤ mc/2c

such conjunctions.
We now count the number of inputs accepted by a single conjunction whose

corresponding graph H contains m2 − 2 − c connected components. Let a
denote the number of vertices in H that are part of connected components
with more than one vertex. It follows that the number of isolated vertices in H
is m2 − 2− a, and that the number of connected components in H with more
than one vertex is a− c.

To get an upper bound for the number of positive test graphs that are
compatible with H, we count as follows. Each connected component in H with
more than one vertex must go into one of the m partitions, which makes at
most ma−c choices. Then, each vertex in those connected components can be
placed in at most m ways each within the partition. Lastly, the remaining
m2− 2− a vertices can be placed freely in (m2− 2− a)! ways. To sum up, the
total number of choices is at most

ma−cma(m2 − 2− a)! = m2a−c(m2 − 2− a)!,

which is increasing with a. Since the graph H contains a − c connected com-
ponents with more than one vertex, the total number a of vertices in such
components is at most 2c. This follows since the number of connected com-
ponents with more than one vertex is at most c. So an upper bound for the
number of choices is

m3c(m2 − 2− 2c)!.

Multiplying the maximum number of conjunctions whose corresponding
graphs contain m2 − 2 − c connected components by the maximum number
of inputs accepted by each, and finally, dividing by the same denominator as
in (1), yields the lemma. �

The proof of the lemma above differs slightly from the corresponding proof
by Haken. The reason for this is that we make a construction of the approxim-
ator for an ∧ gate from the approximators for the input gates, whereas Haken
only proves the existence of a set of short conjunctions that describe the gate
well enough.

Because of the duality of the test graphs and since c = d, the following
lemma can be proved analogously to the previous one.

cc 8 (1999) Symmetric Approximation Arguments 15

Lemma 12 (Specialization of Generic Lemma C). At an ∨ gate e, the
number negative test graphs for which the approximator fC

e introduces an error
is bounded by (2).

We now consider the two cases from Lemma 10. Either the approximators
for the output gate eo fail for at least half the positive test graphs, or they fail
for all negative test graphs. Since |G| = |B|, and since we have the bound (2)
for the maximum number of errors introduced in a single gate, the minimum
size of Ψ is

2c(m2 − 2)!
2m4c(m2 − 2− 2c)!

.

If we expand this expression, we get

size(Ψ) ≥ 2c
(m2 − 2) · · · (m2 − 2− 2c+ 1)

2m4c

≥ 2c

2
(m2 − 2− 2c+ 1)2c

(m2)2c

=
2b
√
mc

2

(
m2 − 2b

√
mc − 1

m2

)2b√mc

∈ 2Ω(
√
m). �

6. Clique

In this section we prove that deciding whether a graph on n vertices contains
any complete subgraph of size m (the problem CLIQUE(m,n)) requires mono-
tone circuits of exponential size.

Theorem 13 (Alon and Boppana (1987)). The monotone circuit complex-
ity for CLIQUE(m,n) is 2Ω(

√
m) when m ≤ n2/3.

Proof. Let the positive test graphs be all possible graphs on n vertices with
a clique of size m and no other edges. This makes

(
n
m

)
positive test graphs. We

make one negative test graph for each possible coloring of the n vertices, using
m−1 colors by connecting vertices of different colors by edges. Note that some
colorings result in the same graph, but we treat them as different for counting
purposes and get (m− 1)n negative test graphs.

As in the proof of the BMS problem, we define the size of disjunctions by
n minus the number of connected components in their corresponding graphs,
and require that their size be less than d.

16 Berg & Ulfberg cc 8 (1999)

For the conjunctions, however, we introduce a new notation of size that
counts the number of vertices they touch. The number of vertices that a con-
junction touches is the number of different vertices to which any of the edges
connect. A conjunction is required to touch fewer than c vertices.

Choose c = b√mc, so that conjunctions touch less than b√mc vertices.
Implicitly, the number of literals in conjunctions is bounded by c2/2 ≤ m/2.

Let d = bn/(8m)c so that the graphs corresponding to disjunctions have
more than n − bn/(8m)c connected components; this implies that they touch
less than 2d ≤ n/(4m) vertices.

Lemma 14 (Specialization of Generic Lemma A). At the output gate
eo, the approximators either fail for all negative test graphs, or they fail for at
least half of the positive test graphs.

Proof. Assume that there is a negative test graph b such that fC
eo(b) = 0

(otherwise we are already done). Then there is a disjunction D in fC
eo, and we

show that this disjunction can be 1 for at most half of the positive test graphs.
A necessary condition for D to be 1 on a positive test graph g is that one

of the vertices it touches is in the clique of g. Since any given vertex is part of
the clique in a fraction m/n of the positive test graphs, a collection of at most
n/(8m) vertices has a vertex in common with less than half the positive test
graphs. �

Lemma 15 (Specialization of Generic Lemma B). At an ∧ gate e, the
approximator fD introduces an error for at most(

n− c
m− c

)(n

2m

)c
positive test graphs.

Proof. When building the tree, let w be the node that was created while
expanding the disjunction Di, and let C be the conjunction corresponding to w.

Consider the case in which Di+1 contains a literal xu,v for which both end-
points are already touched by C. Then a positive test graph that satisfies C
also satisfies Di+1, so we only create one single child under w containing xu,v.
Otherwise, Di+1 contains a mix of literals, for some, none of the two endpoints
are touched by C, and for some, one endpoint is touched by C.

First, consider the literals that have one endpoint that is already touched
by C; they all have another endpoint that is not touched by C. For each such

cc 8 (1999) Symmetric Approximation Arguments 17

endpoint, arbitrarily select one of the literals that connects to the endpoint,
and form one child for it. The reason that we may disregard some literals from
consideration is that two conjunctions that touch the same vertices will accept
the same positive test graphs. The total number of children created this way
is less than 2d, since Di+1 touches at most 2d vertices.

For the literals that connect to two vertices that are not touched by C, we
first select one of their endpoints in some arbitrary way and create a child for it;
however, we do not label the edges to these children. At most 2d such children
are created. Then, we create less than 2d children under each of these children
for the other endpoint, and the edges down to these children are labeled by
literals.

The way we have constructed the tree implies that no node has more than
4d = n/(2m) children, and when descending to a child from a node with more
than one child, the number of vertices touched by the corresponding conjunc-
tion increases by 1. Therefore, there are at most (n/(2m))c conjunctions touch-
ing c vertices.

The number of positive test graphs accepted by a single conjunction touch-
ing c vertices is the number of ways to choose the remaining m− c vertices for
the clique out of the total remaining n− c vertices, which is

(
n−c
m−c
)
.

Finally, the lemma follows from multiplying the bound for the number of
conjunctions touching c vertices by the maximum number of inputs they may
accept. �

Lemma 16 (Specialization of Generic Lemma C). At an ∨ gate e, the
approximator fC

e introduces an error at most (m/2)d(m − 1)n−d negative test
graphs.

Proof. We start by bounding the number of disjunctions corresponding
to nodes in the tree, whose corresponding graphs contain n − d connected
components.

When building the tree, let w be the node that was created while expanding
the conjunction Ci, and let D be the disjunction corresponding to w.

Consider the case that Ci+1 contains a literal xu,v for which both endpoints
are in the same connected component in the graph corresponding to D. Then
a negative test graph that falsifies D also falsifies Ci+1, since u and v must have
the same color. It is therefore enough to create only one single child under w
and label the edge xu,v.

Otherwise, w gets at most m/2 children, since each conjunction contains at
most m/2 literals. In this case, the number of connected components decreases

18 Berg & Ulfberg cc 8 (1999)

by one for the children, so we will make d such expansions before we reach
a node for which the graph for the corresponding disjunction contains n −
d connected components. In all, there can hence be at most (m/2)d such
disjunctions.

It remains to count the number of negative test graphs rejected by a single
disjunction, whose corresponding graph H contains n − d connected compon-
ents. The negative test graphs that are rejected by such a disjunction are those
that use only one color within each connected component, and their number is
(m− 1)n−d.

Multiplying the number of disjunctions whose corresponding graphs contain
n−d connected components by the number of negative test graphs rejected by
each yields the bound in the lemma. �

We now determine the lower bound for the circuit size. There are two cases
to consider: either fD

eo fails on at least half the positive test graphs, so that

size(Ψ) ≥
(
n
m

)
2
(
n−c
m−c
) (

n
2m

)c
=

1
2
n! (m− c)!
(n− c)!m!

(2m)c

nc

≥ 1
2

2c
(n− c)c
mc

mc

nc

∈ 2Ω(
√
m),

or the approximators fail for all negative test graphs, so that

size(Ψ) ≥ (m− 1)n

(m− 1)n−d(m/2)d

= 2d
(
m− 1
m

)d
∈ 2Ω(n/m).

Since 2Ω(
√
m) ⊆ 2Ω(n/m) for m ≤ n2/3, the theorem follows. �

Acknowledgment

We thank Johan H̊astad for helpful discussions and comments on earlier ver-
sions of this paper.

cc 8 (1999) Symmetric Approximation Arguments 19

References

Noga Alon and Ravi B. Boppana, The monotone circuit complexity of boolean
functions. Combinatorica 7 (1987), 1–22.

Kazuyuki Amano and Akira Maruoka, Potential of the approximation method.
In Proc. 37th Ann. IEEE Symp. Found. Comput. Sci., 1996, 431–440.

Alexander E. Andreev, On a method for obtaining lower bounds for the com-
plexity of individual monotone functions. Sov. Math. Dokl. 31 (1985), 530–534.

Christer Berg, On Oracles and Circuits—Topics in Computational Complexity.
PhD thesis, Royal Institute of Technology, KTH, Stockholm, Sweden, 1997.

Ravi B. Boppana and Michael Sipser, The complexity of finite functions. In
Handbook of theoretical computer science, ed. Jan van Leeuwen, vol. A, Al-
gorithms and complexity, 757–804. Elsevier/MIT Press, 1990.

Paul Erdős and Richard Rado, Intersection theorems for systems of sets. J.
London Math. Soc. 35 (1960), 85–90.

Armin Haken, Counting bottlenecks to show monotone P 6= NP. In Proc. 36th
Ann. IEEE Symp. Found. Comput. Sci., 1995, 36–40.

Armin Haken and Stephen Cook, An exponential lower bound for the size of
monotone real circuits. Submitted to J. Comput. System Sci., 1996.

Stasys Jukna, Finite limits and monotone computations over the reals. In Twelfth
Annual IEEE Conference on Computational Complexity, 1997.

Pavel Pudlák, Lower bounds for resolution and cutting planes proofs and mono-
tone computations. J. Symbolic Logic, to appear (1997).

Alexander A. Razborov, Lower bounds on the monotone complexity of some
boolean functions. Sov. Math. Dokl. 31 (1985), 354–357.

Alexander A. Razborov, On the method of approximations. In Proc. Twenty-
first Ann. ACM Symp. Theor. Comput., 1989, 167–176.

Janos Simon and Shi-Chun Tsai, A note on the bottleneck counting argument.
In Twelfth Annual IEEE Conference on Computational Complexity, 1997.

Jürgen Tiekenheinrich, A 4n lower bound on the monotone network complexity
of a one-output boolean function. Inform. Process. Lett. 18 (1984), 201–202.

20 Berg & Ulfberg cc 8 (1999)

Manuscript received 16 July 1996

Christer Berg

Royal Institute of Technology
S-100 44 Stockholm, SWEDEN
berg@nada.kth.se

Staffan Ulfberg

Royal Institute of Technology
S-100 44 Stockholm, SWEDEN
staffanu@nada.kth.se

