CS 2429 - Foundations of Communication Complexity Lecture #5: Fall, 2014
CS 2429 - Foundations of Communication Complexity
Lecturer: Toniann Pitassi

1 Applications of Communication Complexity

There are many applications of communication complexity. In our survey article, ”The Story of
Set Disjointness” we give many applications via reductions to set disjointness (both 2-party as well
as NOF model). Applications discussed in our survey article:

1.) Streaming

2.) Data Structures

3.) Circuit Complexity

4.) Proof Complexity

5.) Game Theory

(1.)
(2.)
(3.)
(4.)
()
(6.)

6.) Quantum Computation

Below we discuss another application that is different than above. The essential difference
is that it relies on the communication complexity of computing a certain relation, rather than a
function.

1.1 Circuit Depth via Communication Complexity

In order to get circuit lower bounds, we need to extend our notion of 2-party communication
complexity so that it can compute relations.

Definition A relation Risasubset RC X xY x Z

Given a relation R the cc problem associated with R follows:
Alice gets x € X
Bob gets y € Y
Alice and Bob must both compute (and output) some z s.t. (z,y,z) € R

A protocol for relations is the same as a protocol for functions, in each step it must specifiy
which party sends a message and the value of that message.

Note that for a given relation there may be more than on z satisfying the above property, Alice
and Bob only need to give one such z. In general, lower bounds are harder to prove for relations
as we need to show it is hard for Alice and Bob to compute any z.

Definition For any boolean function f : {0,1}" — {0,1} and X = f~1(1), Y = f~1(0). We define
Ry C X xY x{1,2,...n} to be the associated relation where,

o Ry = {(z,y,i)|lr € X,y €Y, xz; # yi}

CS 2429 - Foundations of Communication Complexity Lecture #5: Fall, 2014

Ry is the set of all (x,y,i) where f(z) =1, f(y) = 0 and = and y differ on bit ¢. Similarly if f is
monotone then

o My C X xY x{1,2,..n} is the set of all (x,y,7) such that x € X, y € Y and x; =1, y; = 0.

(Recall that for a monotone boolean function f, f(x) = 1 implies that for all 2’ where z; > z; on
every i, 2’ is also a 1 of the function.)

Communication complexity lower bounds on M} give bounds on monotone circuit depth of f
and lower bounds on Ry give circuit depth bounds for general circuits.

Let d(f) and d™°motone(f) denote the min depth of a circuit computing f over A, V, -, and the
min depth of a monotone circuit computing f over A, V respectively. In both cases the circuits
must have bounded fan-in.

Theorem 1 (Karchmer and Widerson '80s)
1. For every boolean function f:{0,1}" — {0,1}, cc(Ry) = d(f)
2. For f monotone, cc(My) = d™mometone(f).

For formulas it is known that 24/) = formula-size(f) so proving lower bounds on communication
complexity of relations is also equivalent to proving formula size lower bounds.

It is a major open problem to get even super log-depth lower bounds for the general case. But
for the monotone case the method above has been used to show that NC? . ~~+ NC‘L
for all i [see Theorem 2 and 3].

Proof of Theorem 1 “=7”

Let C be a circuit for f, depth(C') = d. We can assume that all the negations in the circuit
are at the leaves. (If not, the negations can be pushed to the leaves without affecting depth in any
circuit by repeated application of DeMorgan’s laws.)

We want to use the circuit to obtain a protocol for R;.

The protocol will involve Alice and Bob taking a particular path down the circuit with Alice,
deciding the branch to take at OR gates and Bob deciding at AND gates. As long as the two
parties maintain the invariant that at each subnode v Cy(x) = 1 while C,(y) = 0 then the leaf
reached is a bit ¢ where x; # y;.

The protocol follows:
Starting from the top of the circuit, for each each node v with children vy, vg
if the gate is an OR Alice says 0 if C,, () = 1 and 1 otherwise.
if the gate is an AN D Bob says 0 C,, (y) = 1 and 1 otherwise.
At the end of the exchange, both Alice and bob recurse on vy, if the message sent was 0 and vg
if the message sent was 1.

Clearly at the top of the circuit, for any inputs (x,y), C(x) # C(y). Suppose at some point
during the protocol Alice and Bob are at some inner node v where C,(z) # Cy(y).

CS 2429 - Foundations of Communication Complexity Lecture #5: Fall, 2014

Case 1 v is an or node.

Then C,(y) = 0 implies that both C,, (y) and C,(y) are also 0. By choosing the subcircuit for
which her input evaluates to 1, Alice ensures that the recursion continues on a subcircuit where
the two inputs differ.

Case 2 v is an and node.

Likewise, Cy(z) =1 = C,, () = Cy,(x) = 1 so by choosing the subcircuit for which his input
evaluates to 0 Bob can also maintain the above invariant.

By induction, when the protocol reaches a leaf, both A and B know an i at which their inputs
differ. The total number of bits sent is bounded by the depth of the circuit. If C' was monotone
the same protocol reaches a left where x; = 1.

Example
/OR\
/AND\ /OR\

AND

>
>
P

x1 x2 x1 x3 x3 ch x4 OR

x2 x3

Suppose Alice and Bob have inputs (01101) and (01010) respectively. Then on the circuit above
the sequence of bits sent would be.
Alice : 0 (go right)
Bob : 1(go left)
Alice : 0 (go left)
At which point they reach x3 a bit on which they differ.

Proof of Theorem 1 “<”
Given a protocol for Ry we can construct a circuit computing f of bounded depth.
Consider a protocol tree T' for Ry. Convert T into a circuit as follows:

1. For each node where the message is sent by Alice, replace the node with an OR gate

2. For each node where the message is sent by Bob, replace the node with an AN D gate

3. At each leaf of the protocol tree, with associated monochromatic rectangle A x B and input
bit 4
Claim Exactly one of the following hold

CS 2429 - Foundations of Communication Complexity Lecture #5: Fall, 2014

(a) Vae Aya;=1and VB e B, 3, =0
(b) Va € A, a; =0and VB € B, 5; =1

Assign the leaves in case (a) to be z; and and the leaves in case (b) to be Z;.

Given the claim we can prove by induction that the circuit thus constructed calculates f(z).

Proof of Claim
Let a € A, a; = 0. Then for every 5 € B, ; = ¢ which in turn implies that Va € A, a; = 0.

2 Monotone Circuit Lower Bounds

For the rest of this lecture, we will how how to prove monotone depth circuit lower bounds. We will
loosely follow the paper ”Communication Lower Bounds via Critical Block Sensitivity” by Goos
and Pitassi.

We first give a brief history of monotone circuit depth lower bounds. The first lower bounds
were due to Razborov, who proved that any circuit for clique requires exponential-size circuits.
In particular this implies a n® depth lower bound, showing that monotone P is not equal to
monotone NP. Later, Karchmer-Wigderson introduced the connection (equivalence) mentioned
above between circuit depth and communication complexity, and using this technique they proved
that the st-connectivity function requires monotone depth O(logn)?, thus separating monotone
NC! from monotone NC?. Raz and McKenzie then showed that for every i, monotone NC" is not
equal to monotone NC*+1,

Both Karchmer-Wigderson as well as Raz-McKenzie give rather complicated arguments. In
another paper by Raz and Wigderson, it is shown that the depth of any monotone circuit for
matching is n® via a reduction to set disjointness. Today and next lecture we will present a
technique that will give the best monotone depth lower bounds known (depth n/logn) as well as
separating NC! from NC*T'. We use many ideas from Raz-McKenzie as well as new ideas.

The high level overview of our proof is as follows. First, we will switch gears and define a
different kind of search problem, that we will call a CNF search problem, as well as a ”lifted” CNF
search problem. The lifted CNF search problem is a communication complexity problem. Secondly,
we will show that from a lifted CNF search problem, one can define a related monotone function,
such that lower bounds on the communication complexity of the lifted CNF search problem imply
lower bounds on the related monotone function.

Then we will show how to prove lower bounds for lifted CNF search problems via a reduction
to set disjointness.

2.1 CNF search problems and lifted CNF search problems

Let F' be an unsatisfiable CNF formula over variables z1,..., z,. The search problem associated
with F'; S(F) is the following problem: the input is an assignment 7 to z1, ..., zn,, and the output
should be a clause C; € F' that is falsified by 7.

A hard CNF search problem, intuitively, will be one where we have to look at many variables
in order to pinpoint a clause that is false. For now, we can think of decision tree complexity
as a good intuitive measure of hardness. (Although our actual measure of hardness will be a

CS 2429 - Foundations of Communication Complexity Lecture #5: Fall, 2014

more complicated measure called criticial block sensitivity.) As a simple example, suppose that
F = (21 V a2)(—x1 V x2)(—x2)F’, where F' is a conjunction of clauses. In this case, F' is ”easy”
because by just looking at variables x1 and x5, we can always find a violated clause. On the other
hand, for other unsatisfiable formulas, this will not be the case, and in the worst case we may have
to look at linearly many of the variables in order to find a clause that is made false.

Looking ahead, we will want to find a k-CNF unsatisfiable formula, or a kCSP unsatisfiable
formula that is hard. One example is the Tseitin formulas. Let G be an undirected k-regular graph
on n vertices, where n is odd. Then Fg is a kCSP whose variables are the underlying edges of G.
The constraints of Fz are as follows. For every vertex v in G, we have a constraint that specifies
that the mod 2 sum of the edges incident with v is odd. Since G has an odd number of vertices,
there are an odd number of constraints, and thus the formula Fi; is unsatisiable. (Each constraint
corresponds to a parity equation; adding all parity equations together mod 2, we get 0 = 1 since
every edge occurs exactly twice on the left-side, and since there are an odd number of constraints
the right-side will be 1.) If G is highly expanding (highly connected), then Fg will be a hard
unsatisfiable kCSP in the sense that the decision tree complexity of the search problem associated
with F will be large (and so will the critical block sensitivity) as we will see later.

Given an unsatisfiable kCNF or kCSP F' over z1,...,2,, we now define a lifted CNF search
problem as follows. Let g : {0,1}¢ x {0,1}¢ — {0,1} be a function (to be defined later). We refer
to g as a ”"gadget” and you should think of ¢ as very small. When ¢ = 2, g is a boolean function of
4 bits. Alice’s input will be x1, ..., x,, n = cm, where we will think of x as being divided up into
m blocks, each of size c¢. Similarly Bob’s input willbe y1, ..., yn, again where we think of y as being
divided up into m blocks, each of size c. The lifted search problem is: given an assignment «, 8 to
x and y respectiviely, solve S(F) on input 23 = g(z!,y'), 20 = g(z2,9?), ..., 2m = g(z™,y™), where
z',y* denotes the " block of variables in x,y respectively. We denote this problem by S(F)og".

The idea is that if we start with a CNF search problem F' of high decision tree complexity, in the
lifted search problem as long as g is a good gadget, we will be forcing the players to communicate
some bits in order to learn any one z; value, and thus, the communication complexity of the lifted
problem should roughly correspond to the decision tree complexity of the (unlifted) CNF search
problem.

We will now show that lower bounds for a lifted CNF search problem imply depth lower bounds
for a corresponding monotone function, as desired.

Theorem 2 Let g : X xY — {0,1} be a two-party gadget, |X| = 2%,|Y| = 2°, and let F be
an unsatisfiable kCSP on m variables and m' constraints. There is an explicit construction of a
monotone function f :{0,1}™ — {0,1} on n = m'2% inputs such that the monotone circuit depth
of [is lower bounded by the (deterministic) communication cmplexity of S(F)og™.

Proof

We start by defining f. Each of its n input coordinates will be indexed by a pair (C,l) where
C' is a constraint of F' and [is a labelling of the Alice-variables in C'. (That is, for each variable z;
in C, [specifies a value from X.)

For a given assignment to the inputs of f (an assignment to the variables vc;), f is 1 if and
only if there is a global labelling [of all of the underlying variables z; such that for each constraint
C, VG ljvars(C) = L.

This function is clearly monotone. Now we want to show how to reduce the search problem
S(F)og™ to the monotone KW-game for f. To this end, let (x,y) be an input to the search problem

CS 2429 - Foundations of Communication Complexity Lecture #5: Fall, 2014

S(f)og™. Alice (using x) computes an assignment o € f~1(1) to the underlying variables of f as
follows:

Given her assignment to all of the X-variables, she sets the corresponding variables vc; to true.

Bob (using y) computes an assignment 3 € f~1(0) to the underlying varibles of f as follows:
Variable vc; is set to 1 by Bob if and only if under the assignment given by [to Alice’s half of
the variables underlying C', and under the assignment given by y to Bob’s half of the variables
underlying C' the constraint C' is satisfied. Since F' is unsatisfiable, there is no global labelling
satisfying all of the constraints, so y will be a 0-input of f.

Now Alice and Bob run a protocol for the KW-game on x and y described above. The output
of the protocol will be some variable v, that is 1 in Alice’s instance but 0 in Bob’s instance.
Because Alice’s 1 instance was constructed so that for each constraint ¢ exactly one coordinate of
the form (C,-) is 1, we must have that [is the restriction of = to the variables of C'. On the other
hand, Bob’s construction of the 0 instance tells us that C' is not satisfied when Alice’s half of the
assignment comes from x and Bob’s half of the assignment comes from y. Thus we have found a
violated constraint C' for the original search problem.

Intuitively, a l-assignment for f is specified by a value to all of Alice’s half of the variables
x: she sets v, to true if the labelling [is the value specified by her half of the variables. A
0-assignment for f is specified by a value for all of Bob’s half of the variables y: He looks at each
variable v, and sets it to 1 if under the assignment specified by [to Alice’s half of the variables,
and using y for Bob’s half, makes C true. We know that there is no z,y pair that will satisfy all
clauses so there must be some clause that is violated, and therefore there is no global assignment
— hence Bob’s assignment to the v, variables will be a 0-assignment.

Solving the KW search problem for f thus finds a variable v, that they give different values
to, and this corresponds to a constraint C' that was falsified by their original assignment x, y.

