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Lecturer: Toniann Pitassi

1 Randomized Communication Complexity

1.1 Definitions

A (private coin) randomized protocol is a protocol where Alice and Bob have access to random
strings rA and rB, respectively. These two strings are chosen independently, according to some
probability distribution. We can classify randomized protocols by considering different types of
error:

• zero-error protocol P:
∀x, y Pr

rA,rB
[P(x, rA, y, rB) = f(x, y)] = 1

• ε-error protocol P:
∀x, y Pr

rA,rB
[P(x, rA, y, rB) = f(x, y)] ≥ 1− ε

• one-sided ε-error protocol P:

∀x, y : f(x, y) = 0⇒ PrrA,rB [P(x, rA, y, rB) = 0] = 1
f(x, y) = 1⇒ PrrA,rB [P(x, rA, y, rB) = 1] ≥ 1− ε

Due to randomization, the number of bits exchanged may differ in different executions of the
protocol on the same input (x, y). So, there are two natural choices for measuring the running time
of a randomized protocol:

• The worst case running time P on input (x, y) is the maximum number of bits communicated
over all choices of the random strings rA and rB. The worst case cost of P is the maximum,
over all inputs (x, y), of the worst case running time of P on (x, y).

• The average case running time P on input (x, y) is the expected number of bits communicated
over all choices of the random strings rA and rB. The average case cost of P is the maximum,
over all inputs (x, y), of the average case running time of P on (x, y).

So, for a function f : X × Y → {0, 1}, we define the following complexity measures. All of these
definitions are for private coin protocols.

• R0(f) is the minimum average case cost of a randomized protocol that computes f with zero
error.

• For 0 < ε < 1
2 , Rε(f) is the minimum worst case cost of a randomized protocol that computes

f with error ε.

• For 0 < ε < 1, R1
ε (f) is the minimum worst case cost of a randomized protocol that computes

f with one-sided error ε.
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These lead naturally to the following complexity classes:

• ZPP cc = {f | R0(f) ∈ O(polylog(n))}

• BPP cc = {f | Rε(f) ∈ O(polylog(n))}

• RP cc = {f | R1
ε (f) ∈ O(polylog(n))}

Analogous definitions hold in a public coin model, that is, a model where both Alice and Bob see
the results of a single series of random coin flips. A randomized protocol in the public coin model
can be viewed as a distribution of deterministic protocols, that is, Alice and Bob choose together a
string r (according to a probability distribution Π, and independently of x and y) and then follow
the deterministic protocol Pr. The success probability of a public coin protocol on input (x, y)
is the probability of choosing a deterministic protocol, according to the probability distribution
Π, that computes f(x, y) correctly. We use the same complexity measures as in the private coin

model, but add a superscript ‘pub’, i.e., Rpub0 (f), Rpubε (f), R1 pub
ε (f). We have previously seen the

following facts:

• Rpubε (f) ≤ Rε(f)

• for every δ > 0 and every ε > 0, Rε+δ(f) ≤ Rpubε (f) +O(log n+ log δ−1)

1.2 Distributional Complexity

Let µ be a probability distribution overX×Y , X = {0, 1}n, Y = {0, 1}n. The (µ, ε)-distributional
communication complexity of f , Dµ

ε (f), is the cost of the best deterministic protocol that gives the
correct answer for f on at least a (1− ε) fraction of all inputs in X × Y , weighted by µ.

Theorem 1 Rpubε (f) = maxµD
µ
ε (f)

Proof First, we show that Rpubε (f) ≥ maxµD
µ
ε (f). Let P be a randomized public coin protocol

with worst-case cost Rpubε (f) that computes f with success probability at least 1− ε for every input
(x, y). Therefore, if Π is the probability distribution of P’s public coin flips,

Pr
r∈Π,(x,y)∈(X×Y )µ

(Pr(x, y) = f(x, y)) ≥ 1− ε

By a counting argument, there exists a fixed choice of public coin flips r′ such that

Pr
(x,y)∈(X×Y )µ

(Pr′(x, y) = f(x, y)) ≥ 1− ε

Thus, Pr′ is a deterministic protocol that gives the correct answer for f on at least a 1− ε fraction
of all inputs in X × Y , weighted by µ. So, Rpubε (f) ≥ cost(Pr′) ≥ maxµD

µ
ε (f).

Next, we show that Rpubε (f) ≤ maxµD
µ
ε (f). Let c = maxµD

µ
ε (f).
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1.2.1 Minimax Theorem

We will show this direction of the theorem by an application of Von Neumann’s Minimax Theorem.
In a two-player, zero-sum game, there are two players, P1 and P2. P1 has a finite set A =
{a1, . . . , am} of pure strategies, and P2 has a finite set of pure strategies, B = {b1, . . . , bn}. Each
player has a utility for each pair (ai, bj) of actions. The utility for P1 is denoted by U1(ai, bj) and
the utility for P2 is denoted by U2(ai, bj). It is a zero-sum game if for all i, j U1(ai, bj) = −U2(ai, bj).
In our case, for each (ai, bj), one of the players will win and the other one will lose.

Each player can use a mixed strategy by creating a probability mass function and playing each
pure strategy with a fixed probability. Let pi denote the probability that P1 plays action ai and
let qj denote the probability that P2 plays action bj . Since p and q are probabilities, we have that
each pi, qj ≥ 0, and the sum of the pi’s is 1, and the sum of the qj ’s is 1. A mixed strategy for P1
will be denoted by p, and similarly q denotes a mixed strategy for P2. For each mixed strategy
pair (p, q), the payoff M(p, q) is defined to be

m∑
i=1

n∑
j=1

piM(ai, bj)qj .

When P1 uses pure strategy ai and P2 uses mixed strategy q, then M(ai, q) =
∑n

j=1M(ai, bj)qj ,
and analogously for M(p, bj). We let P and Q denote the set of all mixed strategies available to
player 1 and 2 respectively. Player P1’s objective is to select a mixed strategy p ∈ P soas to
maximize minqM(p, q), and at the same time P2’s objective is to select a mixed strategy q ∈ Q
soas to minimize maxpM(p, q).

The Minimax theorem states that for every two-person zero-sum game, there exists an equilib-
rium strategy. That is there exists a value v such that

maxpminqM(p, q) = minqmaxpM(p, q)

In other words, in every two-person zero-sum game with finite strategies, there exists a value
v and a mixed strategy for each player such that: (a) given Player 2’s strategy, the best payoff for
Player 1 is v, and (b) given Player 1’s strategy, the best payoff for Player 2 is −v.

In our context, we define a two-player zero-sum game as follows:

• P1 (the protocol designer): his pure strategies are all c-bit deterministic protocols P∇, one
for each choice of coin flips. His mixed strategies are all randomized protocols, P , (each of
which is a distribution over the deterministic protocols).

• P2 (the adversary): her pure strategies are all inputs (x, y). Her mixed strategies are all
distributions µ over the inputs.

• P1 has payoff 1 if Pr(x, y) = f(x, y) and -1 otherwise. That is, the designer (P1) wins the
game iff this protocol is correct on (x, y), and otherwise P2 wins.

We are given as our assumption that for all distributions µ over inputs (x, y), there exists a
pure strategy (a protocol) P such that the probability of a win is at least 1− ε. This means that
MinµMaxPM(µ, P ) ≥ 1− ε. (Since for each choice of µ, there is a fixed strategy Pr that achieves
payoff 1−ε, so no matter what µ we choose, the designer will be able to come up with a protocol that
wins 1−ε of the time. Now by the Minimax theorem, this means that MaxPMinµM(µ, P ) ≥ 1−ε.
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From this it follows that there is a randomized strategy P such that for all fixed (x, y), the payoff
is at least 1− ε.

Theorem 1 is useful because, for any choice of µ, a lower bound for Dµ
ε gives a lower bound on

Rpubε (f).

Definition A distribution µ over X × Y is a product distribution if µ(x, y) = µX(x) · µY (y) for
some distributions µX over X and µY over Y . Let R[ ](f) = maxµD

µ(f), where the maximum is
taken over all product distributions µ.

Exercise: Prove that R
[ ]
ε (DISJ) = O(

√
n log n). On the other hand, show that Rε(DISJ) = Θ(n).

Sherstov showed a separation between product and non-product distributional complexity by
proving the existence of a function f such that R[ ](f) = Θ(1) but Rε(f) = Θ(n).

2 Lower Bounds for Randomized Protocols: Discrepancy

We now consider a technique for proving lower bounds for Dµ
ε . It consists of finding an upper

bound for the size of rectangles in Mf that are “almost” monochromatic. If we can prove that all
such rectangles for a given function f are small, then we need a lot of rectangles to “cover” the
function.

Definition Let f : X × Y → {0, 1} be a function, R be any rectangle, and µ be a probability
distribution on X × Y .

Discµ(R) = |µ(R ∩ f−1(1))− µ(R ∩ f−1(0)|.

The discrepancy of f under µ is the maximum over all possible rectangles:

Discµ(f) = maxRDiscµ(R).

If f has small discrepancy it means (informally) that all large rectangles are roughly balanced.
Consider a deterministic protocol that partitions the input space into rectangles R1, . . . , R2c .

And suppose it has success probability 2/3 with respect to µ. The best thing that the protocol
can do if it has to give one output ai for all inputs in the rectangle Ri is to set ai to the bit
value with the highest weight in that rectangle. This contributes µ(Ri ∩ f−1(ai)) to the success
probability and µ(Ri∩f−1(1−ai)) to the failure probability. Thus the overall success probability is∑

i µ(Ri ∩ f−1(ai)) and the overall error probability is
∑

i µ(Ri ∩ f−1(1− ai)). Since the difference
between these two has to be at least 2/3− 1/3 = 1/3, we have
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1/3 ≤
2c∑
i=1

µ(Ri ∩ f−1(ai))−
2c∑
i=1

µ(Ri ∩ f−1(1− ai)) (1)

≤
2c∑
i=1

|µ(Ri ∩ f−1(ai))− µ(Ri ∩ f−1(1− ai))| (2)

=

2c∑
i=1

Discµ(Ri) (3)

≤ 2cDiscµ(f). (4)

This gives a lower bound on communication: c ≥ log(1/3Discµ(f)). To get a lower bound for
randomized protocols, it suffices to find a distribution µ such that Discµ(f) is small.

We have proved

Theorem 2 For every distribution µ, Rµ(f) ≥ log(1/3Discµ(f)).

We now demonstrate how to prove a lower bound for the inner product (IP) function by
calculating the discrepancy of IP according to the uniform distribution. Before we prove this
result, we will study the communication matrix for the IP function for n = 3 to get some intuition.
We will actually switch things a little bit and analyze the matrix whose (x, y) entry is (−1)x·y. This
is just the communication matrix for IP, with 0’s replaced by 1’s and 1’s replaced by -1’s. With
this switch of basis, The associated IP matrices are the Hadamard matrices. Hadamard matrices
are defined to be square matrices where each entry is either +1 or −1 and such that all pairs of
rows are mutually orthogonal.

The IP matrix, Hn, for n = 3 looks like this:

1 1 1 1 1 1 1 1
1 -1 1 -1 1 -1 1 -1
1 1 -1 -1 1 1 -1 -1
1 -1 -1 1 1 -1 -1 1
1 1 1 1 -1 -1 -1 -1
1 -1 1 -1 -1 1 -1 1
1 1 -1 -1 -1 -1 1 1
1 -1 -1 1 -1 1 1 -1

More generally H0 = [1] and Hn is built from Hn−1 as follows: the lower right quadrant of Hn

is equal to −Hn−1 and the other three quadrants are equal to Hn−1.
The following facts are easy to prove about Hn:

• Every pair of rows is orthogonal, and therefore H2
n = N · I.

• We can interpret the rows as parity functions

• The matrix is symmetric about the diagonal

• The eigenvectors form an orthonormal basis. (That is < vi, vj >= 0 for all i 6= j, and v2
i = 1

for all i.)
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• The only eigenvalues of Hn are +/−
√
N .

We want to find the eigenvalues of the Hadamard matrices, as claimed in the last bullet point
above. Recall these are defined by the following recursive construction:

H0 = [1], Hn+1 =

[
Hn Hn

Hn −Hn

]
.

Lemma 3 For each n, H2
n = HHT = 2nI2n.

Proof The proof is by induction. Since H0 = I1, the lemma is correct for n = 0.
Given that H2

n = 2nI, we can calculate H2
n+1 explicitly:

H2
n+1 =

[
Hn Hn

Hn −Hn

2
]

=

[
H2
n +H2

n H2
n −H2

n

H2
n −H2

n H2
n +H2

n

]
=

[
2n+1I2n 0

0 2n+1I2n

]
= 2n+1I2n+1 .

Corollary 4 The eigenvalues of Hn are all ±2n/2.

Proof
By the above lemma, for all v, vHHT = 2nv and therefore 2n is the only eigenvector of HHT .

Thus, the only eigenvectors of H are ±2n/2.

We denote the discrepancy of f (with respect to the uniform distribution) and a rectangle A×B
by disc(f,A×B). All our results can be generalized to arbitrary distributions by multiplying each
entry of Mf by the probability of the corresponding cell.

Recall that Boolean functions can be considered as taking values in either {0, 1} or {+1,−1}.
In this section, we will use the ±1 convention when describing the matrices and rectangles.

We use the notation 1A for the characteristic vector of A, which contains 1 in positions corre-
sponding to the elements of A, and 0’s elsewhere.

2.1 The Eigenvalue Method

The eigenvalue method upper bounds the discrepancy using the maximal eigenvalue of Mf .

Lemma 5 (Eigenvalue Bound) Let f be a symmetric Boolean function, i.e. f(x, y) = f(y, x).
Then

disc(f,A×B) ≤ 2−2nλmax

√
|A| · |B|,

where n = |x| = |y| is the input size, and λmax is the largest eigenvalue of the symmetric matrixMf .

Proof Since Mf is symmetric, its eigenvectors vi form an orthonormal basis for Rn. Denote by λi
the eigenvalue corresponding to vi, so that Mfvi = λivi.

Expand the characteristic vectors of A and B in this basis:

1A =
∑

αivi, 1B =
∑

βivi
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Putting these expansions into the definition of discrepancy, we are almost done. Since 22ndisc(f,A×
B) is equal to the absolute value of the difference between the number of 1’s and the number of
0’s in A×B, we have:

22ndisc(f,A×B) =
∣∣1ATMf1B

∣∣
=

∣∣∣∣(∑αivi

)T (∑
βiλivi

)∣∣∣∣
=
∣∣∣∑αiβiλi

∣∣∣ ≤ λmax

∣∣∣∑αiβi

∣∣∣ .
Note that

∑
α2
i = ‖1A‖2 = |A| by Parseval’s identity. (Parseval’s identity relates the values

of the Fourier coefficients to the values of the function. Namely, it states that for any function
f : {0, 1}n → R, the sum of the squares of the Fourier coefficients of f is equal to f2. Note that
in our case we have not normalized. If we had normalized – so that the Fourier coefficients were
normalized, then the sum of the squares of the Fouerier coefficients of f would be equal to E[f2].)

and similarly
∑
β2
i = |B|. The lemma follows from an application of Cauchy-Schwarz:

22ndisc(f,A×B) ≤ λmax

∣∣∣∑αiβi

∣∣∣
≤ λmax

√∑
α2
i

√∑
β2
i = λmax

√
|A| · |B|.

We are now ready to prove Lindsey’s Lemma which gives a bound on the disrepancy of the
inner product function:

Lemma 6 (Lindsey’s Lemma) 22ndisc(IPn, A×B) ≤
√

2n|A| · |B|.
Here IPn(x, y) =

∑
xiyi (mod 2).

Proof The matrix corresponding to IPn is Hn. We have shown that λmax(Hn) = 2n/2, and so the
lemma follows by the Eigenvalue Bound.

We are now ready to prove the following theorem.

Theorem 7 Rcc(IP ) = Ω(n)

By Lindsey’s Lemma, discrepancy is maximized when |A| = |B| = 2n, and this gives disc(IPn, A×
B) ≤ 23n/22−2n = 2−n/2. Thus R(IPn) ≥ log(1/3disc(IPn)) = log(2n/2/3) = Ω(n).
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