CS 2429 - Foundations of Communication Complexity

Lecturer: Mika Göös

1 The Clique vs. Independent Set Problem

The *Clique vs. Independent Set* (CIS) is a problem in two-player communication complexity. The CIS game is played on an undirected n vertex graph G = (V, E) that is known to both the players Alice and Bob. As input, Alice gets a set $C \subseteq V$ that spans a clique in G while Bob holds an independent set $I \subseteq V$. The objective is to decide whether $C \cap I = \emptyset$, i.e., compute the value

$$\operatorname{CIS}_G(C, I) := |C \cap I|.$$

Thus, the CIS problem is a highly structured special case of the disjointness problem; for example, we always have that $\text{CIS}_G(C, I) \in \{0, 1\}$.

Interestingly, for many graphs G the deterministic communication complexity $D(\text{CIS}_G)$ is not well-understood; in this note we explain why the CIS problem is important and survey some of the known results.

2 Original Motivation

The CIS problem was first defined in a seminal work of Yannakakis [11] that studies the minimum number of linear inequalities that are needed to *express* the feasible polytope $F \subseteq \mathbb{R}^n$ of a combinatorial optimization problem.

Example Denote by $x_S \in \{0,1\}^V$ the characteristic vector of a subset $S \subseteq V$. The vertex packing polytope $F \subseteq \mathbb{R}^n$ of G is the convex hull of the points x_I where $I \subseteq V$ is an independent set.

Here, a linear program on variables $x_1, \ldots, x_n, y_1, \ldots, y_m$ expresses F if the feasible set of the program projects onto F as we ignore the variables y_1, \ldots, y_m . Whenever one can express the polytope F as a polynomial sized LP (sometimes called an *extended formulation* for F), one can solve linear optimization problems on F in polynomial time using any of the polynomial-time LP solvers. However, in [11] it was shown that many NP-hard optimisation problems do not admit such polynomial-size extended formulations.

The connection to communication complexity is the following. First, define the non-negative rank, $rk^+(A)$, of a non-negative real $n \times n$ matrix A as the minimum r such that A can be written as PQ, where P and Q are non-negative and of dimensions $n \times r$ and $r \times n$, respectively. (Non-negative rank is a slippery concept: it is not obvious that $rk^+(A)$ is even computable [2], and determining it exactly is NP-hard [10].)

If A is a boolean matrix, we can bound $rk^+(A)$ from below in terms of the non-deterministic communication complexity of A:

Proposition 1 $N^1(A) \leq \log rk^+(A)$.

This follows because every non-negative factorization A = PQ gives us a non-deterministic cover of the 1-entries of A: the *i*-th rectangle in the cover is defined by the non-zero entries in the *i*-th column of P and the *i*-th row of Q.

Yannakakis [11, Thm 3] characterised the minimum size of an LP expressing a polytope F as the non-negative rank of a certain *slack matrix* related to F. In case of the vertex packing polytope above, the communication matrix of CIS_G appears in connection to this slack matrix. In particular, superlogarithmic lower bounds on the communication complexity of CIS_G imply superpolynomial lower bounds on the size of extended formulations for the vertex packing polytope.

3 Unambiguous Covers

If $C \cap I \neq \emptyset$, it is easy to prove this fact by non-deterministically guessing the unique vertex in the intersection; this yields a non-deterministic protocol having complexity

$$N^1(\operatorname{CIS}_G) = O(\log n)$$

What is interesting about this protocol is that the *yes*-certificate is *unambiguous* in that there is at most one *yes*-certificate for any input pair (C, I). In terms of the communication matrix of CIS_G this protocol corresponds to a *non-overlapping* cover of the 1-entries of CIS_G .

By analogy, in classical complexity theory the class UP (unambiguous polynomial-time) consists of problems that can be solved by an NP machine where every *yes*-instance has exactly one accepting computation path [1].

In the following, we will argue that, in a certain sense,

The CIS problem is complete for UP.

Suppose A is any boolean communication matrix that admits a non-overlapping cover of its 1-entries by rectangles R_1, \ldots, R_n . We show how this can be converted into a CIS instance, which we call CIS_A: The vertices of the underlying graph correspond to the rectangles R_1, \ldots, R_n , and we let R_i and R_j be connected by an edge iff R_i and R_j intersect in rows. Now, the input for the communication problem defined by A is given by a pair (a, b) where a indexes a row and b a column of A. In case of the CIS_A instance this corresponds to Alice being given the clique $C_a = \{R_i : R_i \text{ intersects row } a\}$ and Bob being given the independent set $I_b = \{R_i : R_i \text{ intersects column } b\}$. By inspecting the construction we have that $\text{CIS}_A(C_a, I_b) = A_{ab}$. This proves the following theorem.

Theorem 2 $D(A) \leq D(\text{CIS}_A)$.

4 Basic Bounds

Yannakakis gave the following upper bound for any G, which is still the best one known.

Theorem 3 ([11]) $D(\text{CIS}_G) = O(\log^2 n).$

The proof of Theorem 3 is very similar to the " $\mathsf{P} = \mathsf{NP} \cap \mathsf{coNP}$ " type result that we saw in lecture 2 which states that $D(f) \leq O(N^0(f)N^1(f))$; note how this upper bound is small only if *both* the 0-entries and 1-entries have small covers. By contrast, Theorems 2 and 3 above capture a " $\mathsf{P} = \mathsf{UP}$ " type result where only the 1-entries are required to have small non-overlapping covers.

Proof [of Theorem 3] We describe an $O(\log^2 n)$ protocol for CIS_G . The protocol performs a binary search for the intersection. It proceeds in $O(\log n)$ rounds where each round involves $O(\log n)$ bits of communication.

At the start of a round

Alice checks whether her clique C contains a node v with $\deg(v) < n/2$. Bob checks whether his independent set I contains a node u with $\deg(u) \ge n/2$.

Alice and Bob communicate their findings by exchanging the names $(\log n \text{ bits})$ of the nodes v and u if such were found.

If both of the players fail at finding a node satisfying the above, this proves that $C \cap I = \emptyset$ and the protocol concludes (with output 0). Otherwise, suppose Alice finds a node v with $\deg(v) < n/2$ (the case of Bob finding an u is analogous). In this case we must have that $C \subseteq \Gamma(v)$, where $\Gamma(v)$ is the (inclusive) neighbourhood of v. Thus, both Alice and Bob can reduce the size of the problem from n to n/2 by executing the next round recursively on the subgraph induced on the vertices $\Gamma(v)$.

The bound $D(f) \leq O(N^0(f)N^1(f))$ is known to be tight as is demonstrated by the problem $\text{DISJ}_{\log n}$, i.e., the disjointness problem where the inputs are $\log n$ sized subsets of $\{1, \ldots, n\}$ [7, Example 2.12]. By contrast, Theorem 3—the best existing upper bound—is not known to be tight!

Indeed, the trivial lower bound $D(CIS_G) \ge \log n$ follows from considering the case |C| = |I| = 1, i.e., the *equality* function. Currently, the only non-trivial lower bound for a specific G is

$$D(\operatorname{CIS}_G) \ge (2 - o(1)) \log n$$

given by Kushilevitz et al. [6]. Interestingly, this lower bound necessarily requires methods stronger than the common *partition bound*: the authors show that for their choice of G, CIS_G has a monochromatic partition of size $C^D(\operatorname{CIS}_G) = O(n)$ which yields only $D(\operatorname{CIS}_G) \ge \log C^D(\operatorname{CIS}_G) =$ $\log n + O(1)$.

5 Recent Progress

Kushilevitz and Weinreb [8, 9] have recently studied special cases and relaxations of the CIS problem. In [9] they consider the deterministic communication complexity of the *promise* version of $\text{DISJ}_{\log n}$ where the input sets have at most one element in common. This setting models the CIS_G problem on *random* graphs G since random graphs have maximum cliques and maximum independent sets of size $\Theta(\log n)$ with high probability. Here, they obtain a near-tight lower bound of

$$D(\text{Promise-DISJ}_{\log n}) = \Omega(\log^2 n / \mathsf{polylog}(\log n)).$$

In [8] they study the CIS problem in case |C| = |I| = 2, i.e., Alice gets an edge as input and Bob gets a non-edge. For these restricted problems one always has the trivial bounds $\log n \leq D(\text{CIS}_G) \leq 2\log n$. They use the Karchmer–Wigderson [5] approach to circuit depth to show that proving lower bounds larger than $\log n$ for explicit graphs G requires proving lower bounds on "graph complexity" (see, e.g., Jukna [4, §1.7]). They argue that this might explain part of the difficulty of obtaining non-trivial lower bounds for the unrestricted CIS problem. The CIS problem is also related to the so-called Alon–Saks–Seymour conjecture in graph theory. Recently, this conjecture was disproved [3] implying a lower bound for the *non-deterministic* complexity $N^0(\text{CIS}_G) = N^1(\overline{\text{CIS}}_G) \geq \frac{6}{5} \log n$, where $\overline{\text{CIS}}_G$ is the function $1 - \text{CIS}_G$.

References

- [1] S. AARONSON, G. KUPERBERG, AND C. GRANADE, Complexity zoo. http://qwiki. stanford.edu/index.php/Complexity_Zoo, Oct. 2012.
- [2] J. E. COHEN AND U. G. ROTHBLUM, Nonnegative ranks, decompositions, and factorizations of nonnegative matrices, Linear Algebra and its Applications, 190 (1993), pp. 149 – 168.
- [3] H. HUANG AND B. SUDAKOV, A counterexample to the Alon-Saks-Seymour conjecture and related problems, Combinatorica, 32 (2012), pp. 205–219.
- [4] S. JUKNA, Boolean Function Complexity: Advances and Frontiers, vol. 27 of Algorithms and Combinatorics, Springer, 2012.
- [5] M. KARCHMER AND A. WIGDERSON, Monotone circuits for connectivity require superlogarithmic depth, in STOC, 1988, pp. 539–550.
- [6] E. KUSHILEVITZ, N. LINIAL, AND R. OSTROVSKY, The linear-array conjecture in communication complexity is false, Combinatorica, 19 (1999), pp. 241–254.
- [7] E. KUSHILEVITZ AND N. NISAN, *Communication Complexity*, Cambridge University Press, 1997.
- [8] E. KUSHILEVITZ AND E. WEINREB, The communication complexity of set-disjointness with small sets and 0-1 intersection, in FOCS, 2009, pp. 63–72.
- [9] —, On the complexity of communication complexity, in STOC, 2009, pp. 465–474.
- [10] S. A. VAVASIS, On the complexity of nonnegative matrix factorization, SIAM J. on Optimization, 20 (2009), pp. 1364–1377.
- [11] M. YANNAKAKIS, Expressing combinatorial optimization problems by linear programs, J. Comput. Syst. Sci., 43 (1991), pp. 441–466.