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1 The Clique vs. Independent Set Problem

The Clique vs. Independent Set (CIS) is a problem in two-player communication complexity. The
CIS game is played on an undirected n vertex graph G = (V,E) that is known to both the players
Alice and Bob. As input, Alice gets a set C ⊆ V that spans a clique in G while Bob holds an
independent set I ⊆ V . The objective is to decide whether C ∩ I = ∅, i.e., compute the value

CISG(C, I) := |C ∩ I|.

Thus, the CIS problem is a highly structured special case of the disjointness problem; for example,
we always have that CISG(C, I) ∈ {0, 1}.

Interestingly, for many graphs G the deterministic communication complexity D(CISG) is not
well-understood; in this note we explain why the CIS problem is important and survey some of the
known results.

2 Original Motivation

The CIS problem was first defined in a seminal work of Yannakakis [11] that studies the mini-
mum number of linear inequalities that are needed to express the feasible polytope F ⊆ Rn of a
combinatorial optimization problem.

Example Denote by xS ∈ {0, 1}V the characteristic vector of a subset S ⊆ V . The vertex packing
polytope F ⊆ Rn of G is the convex hull of the points xI where I ⊆ V is an independent set.

Here, a linear program on variables x1, . . . , xn, y1, . . . , ym expresses F if the feasible set of the
program projects onto F as we ignore the variables y1, . . . , ym. Whenever one can express the
polytope F as a polynomial sized LP (sometimes called an extended formulation for F ), one can
solve linear optimization problems on F in polynomial time using any of the polynomial-time LP
solvers. However, in [11] it was shown that many NP-hard optimisation problems do not admit
such polynomial-size extended formulations.

The connection to communication complexity is the following. First, define the non-negative
rank, rk+(A), of a non-negative real n×n matrix A as the minimum r such that A can be written as
PQ, where P and Q are non-negative and of dimensions n×r and r×n, respectively. (Non-negative
rank is a slippery concept: it is not obvious that rk+(A) is even computable [2], and determining
it exactly is NP-hard [10].)

If A is a boolean matrix, we can bound rk+(A) from below in terms of the non-deterministic
communication complexity of A:
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Proposition 1 N1(A) ≤ log rk+(A).

This follows because every non-negative factorization A = PQ gives us a non-deterministic cover
of the 1-entries of A: the i-th rectangle in the cover is defined by the non-zero entries in the i-th
column of P and the i-th row of Q.

Yannakakis [11, Thm 3] characterised the minimum size of an LP expressing a polytope F as
the non-negative rank of a certain slack matrix related to F . In case of the vertex packing polytope
above, the communication matrix of CISG appears in connection to this slack matrix. In particular,
superlogarithmic lower bounds on the communication complexity of CISG imply superpolynomial
lower bounds on the size of extended formulations for the vertex packing polytope.

3 Unambiguous Covers

If C ∩ I 6= ∅, it is easy to prove this fact by non-deterministically guessing the unique vertex in
the intersection; this yields a non-deterministic protocol having complexity

N1(CISG) = O(log n).

What is interesting about this protocol is that the yes-certificate is unambiguous in that there is at
most one yes-certificate for any input pair (C, I). In terms of the communication matrix of CISG
this protocol corresponds to a non-overlapping cover of the 1-entries of CISG.

By analogy, in classical complexity theory the class UP (unambiguous polynomial-time) consists
of problems that can be solved by an NP machine where every yes-instance has exactly one accepting
computation path [1].

In the following, we will argue that, in a certain sense,

The CIS problem is complete for UP.

Suppose A is any boolean communication matrix that admits a non-overlapping cover of its
1-entries by rectangles R1, . . . , Rn. We show how this can be converted into a CIS instance, which
we call CISA: The vertices of the underlying graph correspond to the rectangles R1, . . . , Rn, and
we let Ri and Rj be connected by an edge iff Ri and Rj intersect in rows. Now, the input for the
communication problem defined by A is given by a pair (a, b) where a indexes a row and b a column
of A. In case of the CISA instance this corresponds to Alice being given the clique Ca = {Ri :
Ri intersects row a} and Bob being given the independent set Ib = {Ri : Ri intersects column b}.
By inspecting the construction we have that CISA(Ca, Ib) = Aab. This proves the following theorem.

Theorem 2 D(A) ≤ D(CISA).

4 Basic Bounds

Yannakakis gave the following upper bound for any G, which is still the best one known.

Theorem 3 ([11]) D(CISG) = O(log2 n).

The proof of Theorem 3 is very similar to the “P = NP∩ coNP” type result that we saw in lecture
2 which states that D(f) ≤ O(N0(f)N1(f)); note how this upper bound is small only if both the
0-entries and 1-entries have small covers. By contrast, Theorems 2 and 3 above capture a “P = UP”
type result where only the 1-entries are required to have small non-overlapping covers.
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Proof [of Theorem 3] We describe an O(log2 n) protocol for CISG. The protocol performs a binary
search for the intersection. It proceeds in O(log n) rounds where each round involves O(log n) bits
of communication.

At the start of a round

Alice checks whether her clique C contains a node v with deg(v) < n/2.
Bob checks whether his independent set I contains a node u with deg(u) ≥ n/2.

Alice and Bob communicate their findings by exchanging the names (log n bits) of the nodes v and
u if such were found.

If both of the players fail at finding a node satisfying the above, this proves that C ∩ I = ∅ and
the protocol concludes (with output 0). Otherwise, suppose Alice finds a node v with deg(v) < n/2
(the case of Bob finding an u is analogous). In this case we must have that C ⊆ Γ(v), where Γ(v)
is the (inclusive) neighbourhood of v. Thus, both Alice and Bob can reduce the size of the problem
from n to n/2 by executing the next round recursively on the subgraph induced on the vertices
Γ(v).

The bound D(f) ≤ O(N0(f)N1(f)) is known to be tight as is demonstrated by the problem
DISJlogn, i.e., the disjointness problem where the inputs are log n sized subsets of {1, . . . , n} [7,
Example 2.12]. By contrast, Theorem 3—the best existing upper bound—is not known to be tight!

Indeed, the trivial lower bound D(CISG) ≥ log n follows from considering the case |C| = |I| = 1,
i.e., the equality function. Currently, the only non-trivial lower bound for a specific G is

D(CISG) ≥ (2− o(1)) log n

given by Kushilevitz et al. [6]. Interestingly, this lower bound necessarily requires methods stronger
than the common partition bound : the authors show that for their choice of G, CISG has a
monochromatic partition of size CD(CISG) = O(n) which yields only D(CISG) ≥ logCD(CISG) =
log n + O(1).

5 Recent Progress

Kushilevitz and Weinreb [8, 9] have recently studied special cases and relaxations of the CIS prob-
lem. In [9] they consider the deterministic communication complexity of the promise version of
DISJlogn where the input sets have at most one element in common. This setting models the CISG
problem on random graphs G since random graphs have maximum cliques and maximum inde-
pendent sets of size Θ(log n) with high probability. Here, they obtain a near-tight lower bound
of

D(Promise-DISJlogn) = Ω(log2 n/polylog(log n)).

In [8] they study the CIS problem in case |C| = |I| = 2, i.e., Alice gets an edge as input and
Bob gets a non-edge. For these restricted problems one always has the trivial bounds log n ≤
D(CISG) ≤ 2 log n. They use the Karchmer–Wigderson [5] approach to circuit depth to show that
proving lower bounds larger than log n for explicit graphs G requires proving lower bounds on
“graph complexity” (see, e.g., Jukna [4, §1.7]). They argue that this might explain part of the
difficulty of obtaining non-trivial lower bounds for the unrestricted CIS problem.
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The CIS problem is also related to the so-called Alon–Saks–Seymour conjecture in graph the-
ory. Recently, this conjecture was disproved [3] implying a lower bound for the non-deterministic
complexity N0(CISG) = N1(CISG) ≥ 6

5 log n, where CISG is the function 1− CISG.
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