
The BNS-Chung Criterion for Multi-Party

Communication Complexity

Ran Raz

ranraz@wisdom.weizmann.ac.il

Department of Applied Mathematics

Weizmann Institute

Rehovot 76100, ISRAEL

Abstract

The \Number on the Forehead" model of multi-party communication complexity

was �rst suggested by Chandra, Furst and Lipton. The best known lower bound, for

an explicit function (in this model), is a lower bound of 
(n=2

k

), where n is the size of

the input of each player, and k is the number of players (�rst proved by Babai, Nisan

and Szegedy). This lower bound has many applications in complexity theory. Proving

a better lower bound, for an explicit function, is a major open problem. Based on the

result of BNS, Chung gave a su�cient criterion for a function to have large multi-party-

communication-complexity (up to 
(n=2

k

)). In this paper, we use some of the ideas of

BNS, and Chung, together with some new ideas, resulting in a new (easier and more

modular) proof for the results of BNS and Chung. This gives a simpler way to prove

lower bounds for the multi-party-communication-complexity of a function.

1 Multi-Party Communication Complexity

Multi-party communication complexity was �rst introduced by Chandra, Furst and Lipton

[CFL], as a generalization of Yao's standard 2-parties communication model [Yao1]. In the

k-parties model, we have k �nite sets X

1

; : : : ; X

k

, and a function f : X

1

� � � � � X

k

!

f�1; 1g. We assume w.l.o.g. that X

1

= � � � = X

k

= f0; 1g

n

. We have k players of unlimited

computational power, who wish to compute the value of f on the input (x

1

; : : : ; x

k

) 2 X

1

�

� � � � X

k

. The problem is that each one of the k players can see only k � 1 of the input

variables x

1

; : : : ; x

k

. Player i can see all the input variables except x

i

(considered to be \on

his forehead"). Moreover, initially Player i has no information about x

i

. The players share

a blackboard were they can exchange messages according to a protocol. The blackboard is

viewed by all players. In each step, one player writes one bit on the blackboard (i.e. sends

one bit of information about the input variables that he can see, to all the other players). In

the end, they all have to know the value of f(x

1

; : : : ; x

k

).
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A strategy for the k players describes (in each step): 1) A way for the players to agree

on a player that will speak in this step (this decision is based only on the messages already

transmitted - so it is a function from the set of all possible messages to the set f1; : : : ; kg).

2) A way for this player to send one bit of information (based on the input variables that he

can see, and on all the messages already transmitted).

A protocol for f is a strategy for the k players, such that after the last step they all

know the value of f(x

1

; : : : ; x

k

) (w.l.o.g. assume that the last symbol written on the board

is the value f(x

1

; : : : ; x

k

)). The maximum number of steps in the protocol is called the

communication complexity of the protocol (where the maximum is taken over all the possible

inputs). The deterministic k-parties communication complexity of f , C(f), is the minimal

communication complexity of a deterministic protocol for f . The probabilistic case di�ers

from the deterministic case in allowing the protocol to depend on ips of a coin (so the

functions of the strategy may be probabilistic), and in allowing the protocol to make mistakes

(in computing the value of f(x

1

; : : : ; x

k

)). We say that the probability of error of a probabilistic

protocol is � if for every input f(x

1

; : : : ; x

k

), the protocol makes a mistake with probability

at most �. Denote by C

�

(f) the probabilistic k-parties communication complexity of f , with

probability of error �. We use here the public coin model of probabilistic communication

complexity, i.e., the players share a common random string.

Multi-party communication complexity was studied in several papers, and was found to be

relevant for many other complexity issues (such as, circuit complexity and derandomization,

see for example [BNS, NW]). A major open problem is to prove a super-poly-logarithmic

lower bound, for the k-parties communication complexity of an explicit function f , where

the number of parties, k, is super-poly-logarithmic. Due to the results of [HG, Yao2], this

will prove that the function f is not in the circuit-complexity-class ACC, which is a major

open problem in circuit complexity. These results and others (e.g. [BNS, NW]) motivate

the research for new lower bounds in the area, as well as understanding better the existing

ones. For an excellent survey of communication complexity, and multi-party communication

complexity see [KN].

The best known lower bound for the k-parties communication complexity of an explicit

function f , due to [BNS], gives a non-trivial lower bound for k up to logn. In this paper, we

try to supply a better understanding of this lower bound.

2 Cylinder Intersections

Denote the space X

1

� � � � � X

k

by

�

X. Let � be the uniform probability distribution over

�

X. A function g, de�ned on

�

X, is called cylindrical in the i-th dimension i� it doesn't

depend on x

i

. A subset T �

�

X is called a cylinder in the i-th dimension i� its characteristic

function is cylindrical in the i-th dimension. That is, a subset T is a cylinder i� for every

(x

1

; :::; x

i

; :::; x

k

) 2 T and every x

0

i

2 X

i

, we have (x

1

; :::; x

0

i

; :::; x

k

) 2 T . A subset T �

�

X is

called a cylinder intersection i� it can be represented as T =

T

k

i=1

T

i

, where T

i

is a cylinder

in the i-th dimension. The discrepancy of f on the cylinder intersection T , Disc

T

(f), is
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de�ned by

Disc

T

(f) = j�f~x : ~x 2 T; f(~x) = 1g � �f~x : ~x 2 T; f(~x) = �1gj :

The discrepancy of f is de�ned by

Disc(f) = max

T

Disc

T

(f);

where the maximum is taken over all cylinder intersections T .

Many known lower bounds for the probabilistic communication complexity of functions

are proved by proving an upper bound for Disc(f). The connection between Disc(f), and the

communication complexity of f is given by the following lemma:

Lemma 2.1 8f :

�

X ! f�1; 1g

C

1

2

��

(f) = 
 (log

2

(�=Disc(f))) :

Proof (sketch):

The proof for the lemma is by a standard argument. Since it was used and proved many times

before, and since it is not hard, we will give here just a short sketch that gives the main idea.

For details see [BNS, KN].

Let P be the best probabilistic communication protocol for f . Let c be the maximal

number of steps in P . Let r be the random string of P . Fix the random string r. The

important fact is that given the �rst d bits communicated by the players, the (d + 1)

th

bit

of communication, (transmitted by one of the players), must be de�ned (as a function of

the input) by a cylindrical function (because this bit doesn't depend on (at least) one of the

coordinates of the input, (x

1

; : : : ; x

k

), as the player doesn't see this coordinate). Therefore, it

is not too hard to observe that the protocol P de�nes (in a natural way) a partition of the set

of all possible inputs, into at most 2

c

cylinder intersections. On every two inputs contained in

the same cylinder intersection (of this partition), the observed behavior of the protocol is the

same (i.e. an observer who cannot see the inputs, but can see all the messages transmitted,

and can see which player sends which message will not be able to distinguish between di�erent

inputs in the same cylinder intersection of the partition). Also, on every two inputs contained

in the same cylinder intersection, the protocol gives the same output. So, for each one of these

cylinder intersections the output is constant. On average (on r), this output should be equal

to the value of f , with probability of at least 1=2 + �.

Take an average r, and an average cylinder intersection T (in the corresponding partition).

�(T ) is around 2

�c

, and since the output of the protocol on T is constant, and agrees with f

with probability of around 1=2+�, the discrepancy, Disc

T

(f), is around 2�2

�c

. Since Disc

T

(f)

is (by de�nition) smaller than Disc(f), the claims follows. 2

The previous lemma is very useful. However, it doesn't give immediate lower bounds for

the k-parties communication complexity, because for k > 2, Disc(f) is very hard to compute,

or to estimate, or even to bound from above. Bounding Disc(f) is the important part of any

lower bound proof using the previous lemma.
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3 The BNS-Chung Criterion

A cube D is de�ned to be a multi-set D = fa

1

; b

1

g�fa

2

; b

2

g� � � �� fa

k

; b

k

g, where for all i :

a

i

; b

i

2 X

i

(not necessarily distinct). Denote by D the family of all cubes D. We choose D 2 D

at random according to the uniform distribution. This can be done by choosing 8i : a

i

; b

i

2 X

i

according to the uniform distribution. For the cube D = fa

1

; b

1

g � fa

2

; b

2

g � � � � � fa

k

; b

k

g,

de�ne its sign, S

f

(D), to be

S

f

(D) =

Y

d

1

2fa

1

;b

1

g

Y

d

2

2fa

2

;b

2

g

� � �

Y

d

k

2fa

k

;b

k

g

f(d

1

; : : : ; d

k

):

Clearly, the function S

f

: D ! f�1; 1g gives 1 i� the number of elements in D on which f

evaluates to 1 is even. De�ne

E(f) = E

D

[S

f

(D)] ;

where E

D

denotes the expectation over the random variable D.

The following two theorems were �rst proved in [Chu]. The theorems are a generalization

of the lower bound proved in [BNS], and the proofs are closely related.

Theorem 3.1 8f :

�

X ! f�1; 1g

C

1

2

��

(f) = 


�

2

�k

log

2

(1=E(f)) + log

2

�

�

:

Proof:

The proof follows as a conclusion of Lemma 2.1, and Theorem 3.2 stated below. 2

The theorem is very useful because E is a much simpler object than the probabilistic (or

deterministic) communication complexity. For many functions f , it is very easy to compute

E(f) exactly. In [CT], E(f) was computed for some explicit functions, resulting in lower

bounds of the type 
(n=c

k

) for the multi-party communication complexity of these functions.

Note that these bounds are the best possible by Theorem 3.1, and that always for k > 1,

E(f) 6= 0. It is very interesting that for k � logn, E(f) is natural in the sense of [RR].

That is, E(f) can be computed in a polynomial time in the number of possible inputs for f

(i.e., exponential time in the length of the input), and Theorem 3.1 gives a lower bound for a

random function.

Theorem 3.2 8f :

�

X ! f�1; 1g

E(f) � Disc(f)

2

k

:

This is the main theorem. In this paper we give a new proof for this theorem.

4 E(h), and �(h)

We will �rst prove a lemma that gives a lower bound for E(h), for any function h :

�

X !

f�1; 1g. This lemma doesn't talk about discrepancy at all. The connection to discrepancy

(and therefore to communication complexity) is given only in the next section.
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De�ne

�(h) = E

~x2

�

X

[h(~x)];

where E denotes the expectation over the uniform distribution �.

Lemma 4.1 8h :

�

X ! f�1; 1g

E(h) � j�(h)j

2

k

:

Proof:

E(h) = E

D

[S

h

(D)] = E

a

1

;b

1

2X

1

� � �E

a

k

;b

k

2X

k

Y

d

1

2fa

1

;b

1

g

� � �

Y

d

k

2fa

k

;b

k

g

h(d

1

; : : : ; d

k

):

For any function g, de�ned on X

k

, we have

E

a

k

;b

k

2X

k

[g(a

k

)g(b

k

)] = (E

a

k

2X

k

[g(a

k

)]) � (E

b

k

2X

k

[g(b

k

)]) = (E

x

k

2X

k

[g(x

k

)])

2

:

For �xed a

1

; b

1

; : : : ; a

k�1

; b

k�1

, take

g(x

k

) =

Y

d

1

2fa

1

;b

1

g

� � �

Y

d

k�1

2fa

k�1

;b

k�1

g

h(d

1

; : : : ; d

k�1

; x

k

)

to get

E(h) = E

a

1

;b

1

2X

1

� � �E

a

k�1

;b

k�1

2X

k�1

0

@

E

x

k

2X

k

Y

d

1

2fa

1

;b

1

g

� � �

Y

d

k�1

2fa

k�1

;b

k�1

g

h(d

1

; : : : ; d

k�1

; x

k

)

1

A

2

:

By the Cauchy-Schwartz inequality, for any random variable z, E[z

2

] � (Ez)

2

. Therefore

E(h) �

0

@

E

a

1

;b

1

2X

1

� � �E

a

k�1

;b

k�1

2X

k�1

E

x

k

2X

k

Y

d

1

2fa

1

;b

1

g

� � �

Y

d

k�1

2fa

k�1

;b

k�1

g

h(d

1

; : : : ; d

k�1

; x

k

)

1

A

2

=

0

@

E

x

k

2X

k

E

a

1

;b

1

2X

1

� � �E

a

k�1

;b

k�1

2X

k�1

Y

d

1

2fa

1

;b

1

g

� � �

Y

d

k�1

2fa

k�1

;b

k�1

g

h(d

1

; : : : ; d

k�1

; x

k

)

1

A

2

:

Repeat the same argument k times to get

E(h) � (E

x

k

2X

k

� � �E

x

1

2X

1

h(x

1

; : : : ; x

k

))

2

k

= j�(h)j

2

k

:

2
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5 The Connection to Discrepancy and Communication

Complexity

In this section, we will prove that for every f :

�

X ! f�1; 1g there exists h :

�

X ! f�1; 1g,

with E(h) = E(f), and j�(h)j � Disc(f). This will connect E(f) to the discrepancy of f (and

therefore also to the communication complexity of f). Theorem 3.2 will then follow. First we

need the following two claims:

Claim 5.1 8f; g :

�

X ! f�1; 1g, if g is cylindrical then

E(fg) = E(f);

(where fg is the product of f and g, i.e fg(x) = f(x)g(x)).

Proof:

By the de�nition of the sign function, for every cube D: S

fg

(D) = S

f

(D)S

g

(D). W.l.o.g.

assume that g doesn't depend on x

k

. Then 8d

1

; : : : ; d

k�1

; a

k

; b

k

we have g(d

1

; : : : ; d

k�1

; a

k

) =

g(d

1

; : : : ; d

k�1

; b

k

). Therefore, g gets the value 1 on an even number of elements of D. There-

fore S

g

(D) = 1, and we get S

fg

(D) = S

f

(D). Since this is true for every cube D, we get

E(fg) = E(f): 2

Claim 5.2 8f :

�

X ! f�1; 1g, and 8g

1

; : : : ; g

k

:

�

X ! f�1; 1g, if g

1

; : : : ; g

k

are cylindrical

then

E(fg

1

g

2

� � � g

k

) = E(f):

Proof:

Immediate from the previous claim. 2

Lemma 5.1 8f :

�

X ! f�1; 1g there exists h :

�

X ! f�1; 1g, with E(h) = E(f), and

j�(h)j � Disc(f).

Proof:

Take a cylinder intersection T =

T

k

i=1

T

i

, with Disc

T

(f) = Disc(f). For every 1 � i � k,

de�ne g

i

:

�

X ! f�1; 1g, as a random variable, in the following way: with probability 1=2, g

i

is the constant function 1, and with probability 1=2, g

i

(~x) gives the value 1 on all the elements

~x 2 T

i

, and �1 otherwise. Then for ~x 2 T

i

, g

i

(~x) = 1 with probability 1, and for ~x 62 T

i

,

g

i

(~x) = 1 with probability 1=2, and g

i

(~x) = �1 with probability 1=2.

De�ne g = g

1

g

2

� � �g

k

. Then for ~x 2 T , g(~x) = 1 with probability 1, and for ~x 62 T ,

g(~x) = 1 with probability 1=2, and g(~x) = �1 with probability 1=2 (this is true because ~x 62 T

i� for some i, ~x 62 T

i

, and because the functions g

i

are independent of each other). Thus for

~x 2 T , E

g

[g(~x)] = 1, and for ~x 62 T , E

g

[g(~x)] = 0. Thus E

g

[g(~x)] is the characteristic function

of the set T .

The lemma will follow by taking h = fg. First, since E

g

[g(~x)] is the characteristic function

of T , we have

jE

g

�(fg)j = jE

g

E

~x

[f(~x)g(~x)]j = jE

~x

E

g

[f(~x)g(~x)]j = jE

~x

[f(~x)E

g

[g(~x)]]j

6



= j�f~x : ~x 2 T; f(~x) = 1g � �f~x : ~x 2 T; f(~x) = �1gj = Disc

T

(f);

and by convexity

E

g

j�(fg)j � jE

g

�(fg)j = Disc

T

(f) = Disc(f):

At the other hand, since g

1

; : : : ; g

k

are cylindrical, we have by the previous claim

E(fg) = E(f):

Therefore with non-zero probability j�(fg)j � Disc(f), and E(fg) = E(f). So, if we set

h = fg the lemma will hold for h. 2

Proof of Theorem 3.2:

The theorem follows immediately as a consequence of the previous two lemmas. Take h from

Lemma 5.1. Then by Lemma 4.1, and Lemma 5.1 we have

E(f) = E(h) � j�(h)j

2

k

� Disc(f)

2

k

:

2

6 Example: Matrix Multiplication

Some examples for lower bounds of the type 
(n=c

k

) on the multi-party communication com-

plexity of explicit functions f were given in [BNS, Chu, CT]. Here we give a new example for

a function that has not been analyzed before.

Let X = f0; 1g

n�n

be the set of all boolean matrices of size n�n. Think of the elements of

X as matrices over the �eld GF [2]. For x

1

2 X

1

; x

2

2 X

2

; : : : ; x

k

2 X

k

, denote by x

1

�x

2

� � �x

k

the product of x

1

; : : : ; x

k

, as matrices over the �eld GF [2]. De�ne

F (x

1

; x

2

; : : : ; x

k

) = (x

1

� x

2

� � �x

k

)

1;1

;

i.e. the element in the �rst line and the �rst column of the product x

1

�x

2

� � �x

k

. Obviously F

is linear in each one of its input variables. To be consistent with the previous notations (i.e.

to get a function to the range f�1; 1g), de�ne

f(x

1

; x

2

; : : : ; x

k

) = �1

F (x

1

;x

2

;:::;x

k

)

:

Clearly, we can also write f as

f(x

1

; x

2

; : : : ; x

k

) = 1� 2F (x

1

; x

2

; : : : ; x

k

):

For every cube D = fa

1

; b

1

g � fa

2

; b

2

g � � � � � fa

k

; b

k

g, the sign S

f

(D) satis�es

S

f

(D) =

Y

d

1

2fa

1

;b

1

g

Y

d

2

2fa

2

;b

2

g

� � �

Y

d

k

2fa

k

;b

k

g

f(d

1

; : : : ; d

k

)

7



= �1

L

d

1

2fa

1

;b

1

g

L

d

2

2fa

2

;b

2

g

���

L

d

k

2fa

k

;b

k

g

F (d

1

;:::;d

k

)

;

where � denotes addition over GF [2]. By the linearity of F in each of its input variables, we

have

S

f

(D) = �1

F (a

1

�b

1

;a

2

�b

2

;:::;a

k

�b

k

)

= 1� 2F (a

1

� b

1

; a

2

� b

2

; : : : ; a

k

� b

k

);

where a

i

� b

i

denotes the sum of these two matrices over GF [2]. If we choose D at random,

according to the uniform distribution then (a

1

� b

1

; a

2

� b

2

; : : : ; a

k

� b

k

) is a random variable

uniformly distributed over X

1

� � � � �X

k

. Therefore

E(f) = E

D

[S

f

(D)] = E

D

[1� 2F (a

1

� b

1

; a

2

� b

2

; : : : ; a

k

� b

k

)]

= E

~x

[1� 2F (x

1

; x

2

; : : : ; x

k

)] = E

~x

[f(x

1

; x

2

; : : : ; x

k

)] = �(f):

To estimate �(f), let (x

1

; x

2

; : : : ; x

k

) be a random variable, uniformly distributed over

X

1

� � � � �X

k

. For 1 � d � k, denote by E

d

the following event: fthe �rst line of the matrix

x

1

� x

2

� � �x

d

is all 0g . Denote p

d

= Prob(E

d

). Since E

1

is determined by x

1

and since x

1

is

uniformly distributed, we have p

1

= Prob(E

1

) = 2

�n

. Clearly we also have Prob(E

d+1

jE

d

) =

1. Also, since x

d+1

is uniformly distributed Prob(E

d+1

j:E

d

) = 2

�n

. Therefore, for 1 � d < k,

p

d+1

= p

d

+ (1� p

d

)2

�n

� p

d

+ 2

�n

;

and by induction, for 1 � d � k,

p

d

� d2

�n

:

If E

k�1

occurs then F (x

1

; x

2

; : : : ; x

k

) is always 0 (and therefore f(x

1

; x

2

; : : : ; x

k

) is always 1).

Otherwise, since x

k

is uniformly distributed, F (x

1

; x

2

; : : : ; x

k

) is uniformly distributed over

f0; 1g (and therefore f(x

1

; x

2

; : : : ; x

k

) is uniformly distributed over f�1; 1g). Therefore,

E(f) = �(f) = p

k�1

� (k � 1)2

�n

:

By Theorem 3.1, we get

C

1

4

(f) = 
(n=2

k

):

We believe that this lower bound is not tight, and that f is an example for a hard function

even when k is much larger than logn.
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