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Abstract

We survey several techniques for proving lower bounds in Boolean,
algebraic, and communication complexity based on certain linear alge-
braic approaches. The common theme among these approaches is to
study robustness measures of matrix rank that capture the complex-
ity in a given model. Suitably strong lower bounds on such robustness
functions of explicit matrices lead to important consequences in the
corresponding circuit or communication models. Many of the linear
algebraic problems arising from these approaches are independently
interesting mathematical challenges.



1
Introduction

1.1 Scope

Understanding the inherent computational complexity of problems
is of fundamental importance in mathematics and theoretical com-
puter science. While rapid progress has been made on upper bounds
(algorithms), progress on lower bounds on the complexity of explicit
problems has remained slow despite intense efforts over several decades.
As is natural with typical impossibility results, lower bound questions
are hard mathematical problems and hence are unlikely to be resolved
by ad hoc attacks. Instead, techniques based on mathematical notions
that capture computational complexity are necessary.

This paper surveys some approaches based on linear algebra to
proving lower bounds on computational complexity. Linear algebraic
methods are extensively used in the study of algorithms and complexity.
Our focus here is on their applications to lower bounds in various
models of circuits and communication complexity. We further consider
mainly classical — as opposed to quantum — models of computation.
Linear algebra plays an obviously pervasive role in the study of quan-
tum complexity. Indeed, some of the techniques studied in this paper
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1.2 Matrix Rigidity 3

have natural extensions to quantum models. However, to keep the scope
of this survey narrow enough to limit its length, we restrict ourselves
to classical models. Even within classical complexity theory, we do not
touch upon several applications where linear algebra plays a critical
role, most notably techniques related to spectra of graphs and coding
theory. Our choice of topics is centered around the theme of deriving
complexity lower bounds from lower bounds on ranks of matrices or
dimensions of subspaces — often after the matrices or the subspaces
are altered in various ways. Such a theme occurs in several contexts in
complexity theory. The rough overall approach in this theme consists of
(i) distilling a rank robustness or a dimension criterion to solve a lower
bound problem in complexity, (ii) developing techniques to solve such
linear algebraic problems, and (iii) exploring the consequent implica-
tions to complexity lower bounds.

In the remaining sub-sections of this section, we give a brief intro-
duction and preview of the material to be presented in detail in the
later sections.

1.2 Matrix Rigidity

The most classical notion of rank robustness is matrix rigidity. The
rigidity of a matrix A for target rank r is the minimum Hamming
distance between A and a matrix of rank at most r. Valiant [98]
introduced this notion to define a criterion for proving superlinear size
lower bounds on linear circuits of logarithmic depth. Linear circuits are
algebraic circuits consisting only of gates that compute linear combi-
nations of their inputs. This is a natural model for computing linear
transformations. Given the ubiquitous role linear transformations play
in computing, understanding the inherent complexity of explicit linear
transformations is important. For example, a fascinating open ques-
tion is whether the Fourier transform requires a superlinear number of
arithmetic operations. Furthermore, no superlinear lower bounds are
known on the algebraic circuit complexity of any explicit function of
constant degree, even when the circuit depth is restricted to be loga-
rithmic. Thus, a superlinear lower bound on the size of a log-depth
linear circuit computing an explicit linear transformation would be
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significant. Valiant showed that if the rigidity of an n × n matrix A

for target rank εn is at least n1+δ for positive constants ε and δ,
then a linear circuit of log-depth computing the linear transforma-
tion x �→ Ax must have superlinear number of edges. Hence, proving
sufficiently strong lower bounds on the rigidity of explicit matrices
would yield important consequences in complexity theory. However,
the best known lower bound on the rigidity of an explicit matrix is
only Ω

(
n2

r log n
r

)
[31, 56, 93] for target rank r. This bound is known

for several explicit matrices, including the Fourier transform matrix of
a prime order. Using certain algebraic dimension arguments, rigidity
lower bounds of Ω(n2) (for target rank r = εn for a constant ε > 0) are
proved in [59] for the matrices whose entries are square roots of distinct
primes and for matrices whose entries are primitive roots of unity of
the first n2 prime orders. While these matrices are mathematically suc-
cinct enough to describe, they are not explicit enough since their entries
live in number fields of exponentially large dimensions. In Section 2,
we study the notion of rigidity and its application to lower bounds on
linear circuits. We will give several lower bound proofs on the rigidity
of various matrices and the implied circuit lower bounds. We will also
review two notions of a geometric flavor [70] that are similar to rigidity
and have applications to circuit lower bounds.

1.3 Spectral Techniques

Several rank robustness functions similar to rigidity have been defined
in the literature and applied to derive lower bounds in complexity the-
ory. In Section 3, we discuss several such variations. The simplest of
them considers the �2-norm of changes needed to reduce the rank of
a given matrix to a target rank (notions considered in Section 3 are
defined over R or C). This measure of rank robustness is effectively
related to the singular values of the matrix and hence lower bounds
are easily proved using spectral techniques [57]. Using spectral tech-
niques, we can also prove lower bounds on the rigidity (in the sense of
Valiant) of certain matrices. The most notable of these is an Hadamard
matrix [26, 42], for which a lower bound of Ω(n2/r) is known. Spectrum
of a matrix is also related to values of its sub-determinants (volumes).
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Lower bounds on these measures imply lower bounds on linear circuits
(over C) with bounded coefficients, i.e., the coefficients in the linear
combinations computed by the gates in such a circuit are bounded by
a constant. Algebraic circuits over C with bounded coefficients is a
realistic restricted model of computation since real computers can only
use arithmetic operations with bounded precision in a given step. Sev-
eral lower bound results have been proved in the models of bounded
coefficients [22, 24, 57, 69, 75, 83]. Indeed, a classical result in [65]
gives an Ω(n log n) lower bound on the size of a linear circuit with
bounded coefficients (with no restriction on depth) computing the
Fourier transform. In a more recent development, Raz [83] proved a
remarkable lower bound of Ω(n2 log n) on n × n matrix multiplication
in the model of bilinear circuits with bounded coefficients. Raz defines
a geometric variant of �2-rigidity and uses spectral techniques to prove
lower bounds on the linear circuits obtained when one of the matrices
in the input to a bilinear circuit performing matrix multiplication is
fixed. Subsequently, Bürgisser and Lotz [22] proved lower bounds on
several bilinear transformations using spectral and volume techniques.
We will describe these results as well in Section 3.

1.4 Sign-Rank

In Section 4, we study a rank robustness notion called the sign-rank of
a matrix with ±1 entries. The sign-rank of a matrix A is the minimum
rank of a real matrix each of whose entries agrees in sign with the corre-
sponding entry of A. In other words, by making sign-preserving changes
to A (changes are allowed to all entries of A), its rank cannot be brought
down below its sign-rank. This notion was first introduced by Paturi
and Simon [71] in the context of unbounded error probabilistic com-
munication complexity. Proving nontrivial, i.e., superlogarithmic, lower
bounds on sign ranks of explicit matrices remained a long-standing open
question until Forster [28] achieved a breakthrough by proving that the
sign-rank of an n × n Hadamard matrix is at least

√
n. Interestingly,

Forster’s result and subsequent techniques for proving lower bounds
on sign-rank rely on spectral techniques. Forster also considers the
notion of margin complexity from learning theory and uses the same
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techniques to prove lower bounds on margin complexity. Recent results
in [53, 54, 55], give new insights into sign-rank, margin complexity, and
discrepancy of sign matrices by studying them all in the framework of
factorization norms of operators. This general approach reveals several
connections among the various complexity measures of sign matrices
and led to exciting new techniques to prove lower bounds on them. In
particular, they show that the discrepancy and the margin of a sign
matrix are within a constant factor of each other. Lower bounds on
sign-rank, margin complexity, and discrepancy are immensely useful in
proving lower bounds in a variety of models such as communication
complexity, circuit complexity, and learning theory. We will discuss
several such applications in Section 4. Very recently, Razborov and
Sherstov [88] proved a very interesting lower bound on the sign-rank
of a matrix constructed from a Boolean function in AC0. As an imme-
diate consequence, they show that Σcc

2 (the communication complexity
analog of the complexity class Σ2) is not contained in the communica-
tion complexity class UPP defined by [71]. This solves a long-standing
open question [5] in two-party communication complexity. The sign-
rank lower bound of [88] also has interesting consequences to lower
bounds on circuit complexity and learning theory. Their result combines
Forster’s main argument with a number of novel techniques including
the use of the pattern matrix method [90]. These techniques usher in
exciting new developments and are likely to find more applications.

1.5 Communication Complexity

Ever since Mehlhorn and Schmidt [63] proved the fundamental result
that the log-rank of a 0–1 matrix is a lower bound on the two-party
communication complexity of the associated Boolean function, the
relation between rank, and more generally rank robustness, and com-
munication complexity has been widely investigated and exploited. Yet,
the most basic question of whether log-rank and communication com-
plexity are polynomially related to each other is still open (this is also
known as the log-rank conjecture). In this conjecture, rank over R is
considered. We begin Section 5 by discussing what is known about this
conjecture. Nisan and Wigderson [68] exhibit a Boolean matrix with
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communication complexity at least (log-rank)α, where α ≈ log3 6. They
also show that, to prove that the communication complexity of every
{0,1}-matrix is bounded above by some polynomial function of log-rank
of the matrix, it suffices to show that every {0,1}-matrix of rank r

contains a sufficiently large submatrix of rank at most, say r/4. On
the other hand, Nisan and Wigderson [68] succeed in showing that
low rank matrices have high discrepancy (under the uniform distribu-
tion) using spectral arguments. Proving upper bounds on discrepancy
is a common and very useful method to prove lower bounds on prob-
abilistic communication complexity. In the result mentioned earlier,
Linial et al. [53] show that discrepancy (under any distribution) is at
least Ω(r−1/2) for any rank-r {0,1}-matrix. The proof of this bound
uses connections among discrepancy, rank, and factorization norms
of matrices discussed in Section 4. Strengthening these connections,
Linial and Shraibman [54] prove general lower bounds on the bounded
error probabilistic and quantum communication complexity of a sign
matrix in terms of a factorization norm, called the γα

2 -norm, of the
matrix. As we noted before, the log-sign-rank of a matrix is essentially
equal to the unbounded error communication complexity of the matrix.
We will also see that the communication complexity analog of PP is
characterized by margin complexity. Thus rank robustness measures
such as sign-rank and γ2-norm of sign matrices yield lower bounds,
sometimes even characterizations, of probabilistic communication com-
plexity. Babai et al. [5] defined two-party communication complexity
analogs of traditional complexity classes such as Σk, PH, PSPACE, etc.
While analogs of low complexity classes such as P, NP, Co–NP, and
BPP were all separated from each other in two-party communication
complexity, questions such as PH versus PSPACE, Σ2 vs. PH are still
open. In [84] and [57], it was shown that sufficiently strong lower bounds
on rigidity (over finite fields) and a variant of rigidity (over reals) with
bounds on changes would separate PH and PSPACE in communica-
tion complexity. As mentioned before, a recent result in [88] separates
Σcc

2 from UPP by proving a strong lower bound on the sign-rank of an
AC0-function. We conclude that lower bounds on rank and rank robust-
ness have significant consequences to various lower bound questions in
two-party communication complexity.
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1.6 Graph Complexity

Graph complexity was introduced by Pudlák et al. [79]. In this model,
a graph — typically bipartite — on a vertex set V is constructed by
starting from a family of basic graphs, e.g., complete bipartite graphs,
on V and using the elementary operations of union and intersection on
edge sets. The model of graph complexity is a common generalization
of Boolean circuit and two-party communication complexity. In par-
ticular, proving sufficiently strong lower bounds on the complexity of
explicit bipartite graphs would imply lower bounds on formula size com-
plexity, branching program size, and two-party communication com-
plexity of Boolean functions. Naturally, proving lower bounds in models
of graph complexity is even harder than proving lower bounds in cir-
cuit and communication complexity models. However, graph–theoretic
formulations of lower bound questions have the potential to lead to
new insights. In particular, such formulations involving linear algebraic
representations of graphs have led to new approaches to proving lower
bounds on branching program size, formula size, and separation ques-
tions in two-party communication complexity. In Section 6, we review
such approaches. A linear algebraic representation of a graph places
a vector, or more generally a subspace, at each vertex of the graph
such that the adjacency relations among vertices can be expressed,
or implied, in terms of orthogonality or intersection properties of the
associated subspaces. The lowest dimension in which such a represen-
tation can be realized for a given graph is the parameter of interest.
Such representations have been extensively studied, e.g., in the context
of the Shannon capacity of a graph [61], Colin de Verdière’s invari-
ant of graphs [45], etc. These and many similar combinatorial-linear
algebraic problems are not only of inherent mathematical interest, but
also have found numerous applications in algorithms and complexity. In
Section 6, we define the affine and projective representations of graphs
and pose questions about the lowest dimensions in which explicit graphs
can be realized by such representations. Unfortunately, only weak lower
bounds — Ω(logn) for n × n explicit bipartite graphs — are known
on these dimensions. Lower bounds exceeding Ω(log3n) on the affine
dimension of explicit graphs are needed to derive new lower bounds on
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the formula size of explicit Boolean functions. Pudlák and Rödl [76]
showed that a lower bound on the projective dimension of a bipar-
tite graph implies a lower bound on the branching program size of
the associated Boolean function. In relating formula size of bipartite
graphs (thereby deriving lower bounds on the associated Boolean func-
tions) to affine dimension, Razborov [85] developed an elegant approach
based on rectangle covers of matrices closely related to communication
complexity. A rank robustness parameter (given a partially specified
matrix, what is the minimum rank of a full matrix that completes it)
plays a central role in establishing this connection. This same parameter
and the underlying techniques are also used in characterizing the size
of span programs in Section 7. Nontrivial lower bounds are known on
graph complexity when we restrict the model to be of depth-3 graph for-
mulas. In this case, building on polynomial approximations of the OR
function and Forster’s lower bound on the sign-rank of an Hadamard
matrix, we show [58] Ω̃(log3n) lower bounds on the depth-3 complexity
of explicit bipartite graphs.

1.7 Span Programs

Karchmer and Wigderson [41] introduced a linear algebraic model of
computation called span programs. A span program associates a sub-
space with each of the 2n literals of an n variable Boolean function.
The result of its computation on a given input x is 1 if and only a
fixed nonzero vector, e.g., the all 1’s vector, is in the span of the sub-
spaces “activated” by x. The sum of the dimensions of the subspaces is
the size of the span program. Proving lower bounds on span program
size of explicit Boolean functions is a challenging research direction
since such results imply lower bounds on Boolean formulas, symmet-
ric branching programs, algebraic proof systems, and secret sharing
schemes. The model of span programs realizes the fusion method for
proving circuit lower bounds [103]. Currently, superpolynomial lower
bounds are known only on monotone span programs. Monotone span
programs are more powerful than monotone Boolean circuits [6]. Hence,
proving lower bounds on monotone span programs is more challenging.
Early results in this area include a combinatorial criterion on certain
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bipartite graphs that led to Ω(n5/2) monotone size lower bounds [9].
Subsequently, Babai et al. [6] proved the first superpolynomial mono-
tone lower bound of nΩ(logn/ log logn) exploiting the criterion from [9]
but using Paley-type graphs. The most striking result to date on span
program size is by Gál [32] who proves a characterization of span pro-
gram size in terms of a rank robustness measure originally introduced
by Razborov [85] and referred to above in Section 1.6 and discussed
in Section 6. Specializing this characterization to the monotone situa-
tion and using previously known lower bounds on the rank robustness
measure of certain matrices derived from Paley-type bipartite graphs
[85], Gál proved the best known lower bound of nΩ(logn) on monotone
span programs. We discuss Gál’s characterization and her lower bound
in Section 7.



2
Matrix Rigidity

2.1 Motivation

Matrix rigidity was introduced by Valiant [98]; a similar notion was
used, independently, by Grigoriev [34].

Definition 2.1. The rigidity of a matrix A over a field F, denoted
RF

A(r), is the least number of entries of A that must be changed in
order to reduce the rank of A to a value at most r:

RF
A(r) := min{|C| : rankF(A + C) ≤ r},

where |C| denotes the number of nonzero entries of C.
When the field of definition is clear from the context, we often omit

the superscript F.

Intuitively, the rigidity of A for target rank r is the Hamming distance
between A and the set of all matrices of rank at most r.

It is easy to see that for any n × n matrix A over any field, RF
A(r) ≤

(n − r)2. Valiant [98] also showed that for “almost all” n × n matri-
ces A, RF

A(r) = (n − r)2 if F is infinite and RF
A(r) = Ω((n − r)2/ logn)

11
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if F is finite. What do we mean by “almost all” matrices over an infi-
nite field? It is a Zariski open set, i.e., the complement of the solution
set of a finite system of polynomial equations. Over a finite field it is
interpreted in the usual counting sense, i.e., the fraction of matrices in
the set goes to 1 as n→ ∞.

The main challenge about rigidity is to prove nontrivial lower
bounds for explicit matrices. Specifically, Valiant posed the following
question:

Open Question 2.1. Find an explicit infinite sequence of matrices
{An} such that RF

An
(εn) ≥ n1+δ, where An ∈ Fn×n for all n in an infi-

nite subset of N and ε,δ > 0 are constants.

A digression on explicitness: The challenge of constructing “explicit” objects with “nice”

properties is a familiar one in several fields such as combinatorics, computer science, and

coding theory. Examples include expander graphs, hard Boolean functions, and good error-

correcting codes. Often a random object is easily shown to be nice and the challenge is

to give explicit constructions of objects that are at least approximately nice. Informally,

explicitness refers to an algorithmic description of an infinite sequence of nice objects of

increasing size. In our context, we may define {An} to be explicit if for each n in the

index set, given 1 ≤ i, j ≤ n, there is a Boolean circuit of size polynomial in1 n to construct

An(i, j). If we want uniform constructibility, we may also insist that testing membership

of a natural number in the index set and a construction of the relevant circuit itself be

efficiently doable. We also remark that sometimes we say an explicit object (as in a hard

function, a good code or a rigid matrix) when we really mean an infinite family of them;

the usage refers to a “generic” object from an infinite sequence parameterized by “size” n.

Also by abuse of notation, we sometimes abbreviate {An} by A. End of digression.

Why should we care about rigid matrices? Strong lower bounds on
the rigidity of explicit matrices will lead to significant breakthroughs in
complexity theory. In particular, Valiant proved that if RF

A(εn) ≥ n1+δ,
then the linear transformation defined by A cannot be computed by
arithmetic circuits of O(n) size and O(log n) depth in which each
gate computes a linear combination of its inputs. Computing linear

1 A stronger definition would be to require a circuit of size polylog(n). But poly(n) size
explicitness is already a challenge.
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transformations is a basic computational task. Many fundamental prob-
lems such as computing the Fourier transform, polynomial evaluation
and interpolation, computing prefix sums and encoding/decoding linear
error-correcting codes involve computation of linear transformations.
Computation of bilinear transformations, such as matrix multiplica-
tion, is closely related to the computation of linear transformations [8].
Proving a superlinear lower bound in a general model on any explicit
linear transformation will thus be a big step forward in algebraic com-
plexity. For example, a proof that RF

A(εn) ≥ n1+δ, where A is the
Fourier transform matrix (A = (ζij)0≤i,j≤n−1, where ζ is a primitive
nth root of unity) would show that there can be no “ultra-fast Fourier
transform” algorithm running in O(n) time. Recall that the current
best algorithm — the Fast Fourier Transform (FFT) algorithm — uses
linear circuits of size O(n logn) and depth O(logn).

We now describe the model of linear circuits and Valiant’s result
relating rigidity to linear circuit complexity.

Definition 2.2. A linear circuit over a field F is a directed acyclic graph
L in which each directed edge is labeled by a nonzero element of F. If g
is a gate with in-coming edges labeled by λ1, . . . ,λk from gates g1, . . . ,gk,
then g computes v(g) := λ1v(g1) + · · · + λkv(gk), where v(gi) ∈ F is the
value computed at gate gi.

Suppose L has n input gates (nodes with no in-coming edges) and
m output gates (including nodes with no out-going edges). If we denote
by y1, . . . ,ym ∈ F the values computed at the output gates of L starting
with the values x1, . . . ,xn ∈ F at the input gates, then we will have
y = ALx, where AL ∈ Fm×n; in other words, the circuit L computes
the linear transformation given by the matrix AL.

The size of a linear circuit L is defined to be the number of edges
in L. The depth of L is defined to be the length of a longest path from
an input node to an output node in L. When depth of L is Ω(logn),
we assume that each of its internal nodes (gates) has in-degree (fan-in)
exactly 2; otherwise, the in-degree is at least 2.

The model of linear circuits is a natural model of computation
for computing linear transformations. Furthermore, at the expense
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of constant factors in size complexity, any arithmetic circuit com-
puting a linear transformation over C can be turned into a linear
circuit [20, Theorem 13.1]. It is trivial to see that any linear trans-
formation Fn → Fn can be computed by a linear circuit of size O(n2)
and depth O(logn). It is a major challenge in complexity theory to
prove superlinear lower bounds on the size of linear circuits, even of
logarithmic depth, computing explicit linear transformations. In his
seminal result [98], Valiant proved a criterion for such a complexity
lower bound in terms of matrix rigidity.

Theorem 2.1. Suppose the linear transformation x �→ Ax is computed
by a linear circuit of size s and depth d in which each gate has fan-in
two. Then, for any t > 1,

RA

(
s log t
logd

)
≤ 2O(d/t) · n. (2.1)

In particular, if RA(εn) ≥ n1+δ for some constants ε,δ > 0, then any
linear circuit of logarithmic depth computing x �→ Ax must have size
Ω(n log logn).

Proof. Proof of this theorem depends on a classical graph–theoretic
lemma [27].

Lemma 2.2. Let G = (V,E) be a directed acyclic graph in which all
(directed) paths are of length at most d. Then by removing at most
|E|/ logd edges, we can ensure that all paths in the remaining graph
have length at most d/2.

For simplicity, let us assume that d and t are powers of 2. By repeatedly
applying the above lemma log t times, we can identify a set T of edges
from the circuit graph G such that (i) |T | ≤ s log t/ logd and (ii) after
removing T from the circuit, all paths in the remaining circuit graph
G′ have length at most d/t. Let V ′ be the “tails” of the edges in T

and let b1, . . . , b|V ′| be the linear forms (in the inputs xi) computed at
the gates in V ′. In the left-over graph G′, any given output node is
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reachable from at most 2d/t input nodes since in G′ all paths are of
length at most d/t.

A linear form ai computed at an output node i is now a linear
combination of the removed “intermediate” nodes bk, 1 ≤ k ≤ |V ′|, and
at most 2d/t variables. Identifying a linear form with the corresponding
(row) vector in Fn, we see

ai =
|V ′|∑
k=1

βikbk + ci, 1 ≤ i ≤ n,

where βik ∈ F and ci ∈ Fn has at most 2d/t nonzero entries. In matrix
notation,

A = B1B2 + C = B + C, (2.2)

where B1 = (βik) ∈ Fn×|V ′| and B2 has bk, 1 ≤ k ≤ |V ′|, as its rows.
Clearly, rank(B) ≤ |V ′| ≤ |T | ≤ s log t/ logd and each row of C has at
most 2d/t entries and hence |C| ≤ n2d/t. It follows that by changing at
most n2d/t entries, the rank of A can be reduced to a value at most
s log t/ logd. This proves the theorem.

In addition to the original motivation above, rigidity and many
similar matrix functions that measure the “robustness” of the rank
function have been discovered to have applications in several other
models of computation such as communication complexity, branching
programs, span programs, and threshold circuits. Since rigidity-like
functions appear to be so fundamental, several researchers [28, 29,
31, 56, 58, 74, 77, 80, 81, 84, 93] studied this topic and explored its
connections to other problems in complexity theory, algebra, and com-
binatorics. By now, many such connections have been discovered.

2.2 Explicit Lower Bounds

Many candidate matrices are conjectured to have rigidity as high
as in Valiant’s question. Examples include Fourier transform matri-
ces, Hadamard matrices, Cauchy matrices, Vandermonde matrices,
incidence matrices of projective planes, etc. Despite intense efforts by
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several researchers, Valiant’s question still remains unsolved. The best
known lower bound is RF

A(r) = Ω
(

n2

r log n
r

)
proved for various matrices

by Friedman [31] and Shokhrollahi et al. [93]; note that this bound
reduces to a trivial Ω(n) when r = εn. We present below the proof
from [93]. This proof yields the best known lower bounds for both
finite and infinite fields. We will use ideas from the proof in [31], which
seem to work only for finite fields, in Section 2.6 in the context of
Paturi–Pudlák dimensions.

We will use the following lemma from extremal graph theory about
the Zarankiewicz problem [16, Section IV.2, Theorem 10].

Lemma 2.3. Let G be an n × n bipartite graph. If G does not con-
tain Ks,s (complete bipartite graph with s vertices on either side) as a
subgraph, then the number of edges in G is at most

(s − 1)1/s(n − s + 1)n1−1/s + (s − 1)n.

Lemma 2.4. Let r ≥ log2n. If fewer than

n(n − r)
2(r + 1)

log
n

r

changes are made to an n × n matrix A, then some (r + 1) × (r + 1)
submatrix of A remains untouched.

Proof. Think of A as an n × n bipartite graph with unchanged entries
as edges. Then this bipartite graph has at least

n2 − n(n − r)
2(r + 1)

log
n

r

edges. It is easy to check that, for log2n ≤ r, this quantity is more than
the bound from Lemma 2.3 with s = r + 1. Thus, the graph must have
Kr+1,r+1 as a subgraph. This means the corresponding (r + 1) × (r +
1) submatrix remains untouched.
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This lemma can be applied to prove rigidity lower bounds for
matrices in which all submatrices of sufficiently large size are
nonsingular. We prove some of these bounds below. For simplicity in
these bounds, we assume r ≤ n/2 and replace n(n − r) in Lemma 2.4
by n2/2.

Theorem 2.5. Let F be a field containing at least 2n elements and let
x1, . . . ,xn, and y1, . . . ,yn be 2n distinct elements such that (xi + yj) 	= 0
for any i, j. Then, the Cauchy matrix C, given by C :=

(
1/xi + yj

)n
i,j=1,

has the rigidity lower bound

RC(r) ≥ n2

4(r + 1)
log

n

r

for log2n ≤ r ≤ n/2.

Proof. It is well-known and easy to prove that the determinant of the
Cauchy matrix C is given by

det C =

∏
i<j(xi − xj)

∏
i<j(yi − yj)∏

i,j(xi + yj)
.

Clearly, a t × t submatrix of a Cauchy matrix is itself a Cauchy matrix.
Hence, all submatrices of all sizes of C are nonsingular. If fewer than
(n2/4(r + 1)) log n

r elements of C are changed, then, by Lemma 2.4,
at least one (r + 1) × (r + 1) submatrix remains unchanged. It follows
that the altered matrix has rank at least (r + 1). Thus to bring the
rank of C down to at most r, at least (n2/4(r + 1)) log n

r of its entries
must be changed.

Next, we show that matrices with rigidity Ω(n2

r log n
r ) can be

constructed from asymptotically good error correcting codes. The well-
known Tsfasman–Vlăduţ–Zink (TVZ) bound on algebraic geometry
codes allows us to construct the appropriate codes.

Theorem 2.6. Let q be the square of a prime. Then for every rate R,
there exists an infinite sequence [nt,kt, rt]t=1,2,... of codes over Fq such
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that the asymptotic rate limt→∞kt/nt is R and the asymptotic relative
distance limt→∞ dt/nt is δ such that

R + δ ≥ 1 − 1√
q − 1

.

We will choose R = 1/2 in the above theorem. This gives us,
for infinitely many n, a [2n,n,d] code with d ≥ (1 − ε)n, where
ε := 2/(

√
q − 1). A generator matrix for such a code is a 2n × n matrix

over Fq and can be brought into the standard form G = [I | A], where
I is the n × n identity matrix and A is an n × n matrix over Fq.

Theorem 2.7. Let A be an n × n matrix over Fq obtained from a
generator matrix of a [2n,n,(1 − ε)n] code as described above. Then,
for εn ≤ r ≤ n/4,

RA(r) ≥ n2

8(r + 1)
log

n

(2r + 1)
.

Proof. Let s := r + 1. We first claim that every 2s × 2s submatrix of
A must have a rank of at least s. Suppose not, and consider a 2s ×
2s matrix with s dependent rows. Then, a linear combination of the
corresponding s rows of G = [I | A] yield a code word of weight s + n −
2s = n − s ≤ (1 − ε)n − 1. However, this contradicts that the code has
minimum distance (1 − ε)n.

It follows that unless the changes hit every 2s × 2s submatrix of A,
we cannot reduce the rank of A to ≤ r. By Lemma 2.4, there must be
at least n2

8s log n
2s−1 changes for log2n ≤ 2s ≤ n/2 to hit every 2s × 2s

submatrix. Since s = r + 1, the claimed rigidity lower bound on A must
hold.

We next consider the Fourier transform matrix.

Theorem 2.8. Let F = (ωij)n−1
i,j=0, where ω is a primitive nth root of

unity. Then, as n ranges over all prime numbers and log2n ≤ r ≤ n/2,

RF (r) ≥ n2

4(r + 1)
log

n

r
.
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Proof. It is well-known that all submatrices of all orders of the Fourier
transform matrix of a prime order (character table of Z/pZ) are non-
singular; a more recent proof can be found in [96]. Thus, the same proof
as that of Theorem 2.5 gives the claimed lower bound.

Remark 2.1. The main step in the above proof, that all minors of the
Vandermonde determinant

∣∣ωij
∣∣ are nonzero, was originally proved by

Chebotarëv2 in 1926. Since then, several different proofs of this result
appeared; see [96] for some of the references. Tao’s proof seems to be
the most accessible.

Note that the Fourier transform matrix is a Vandermonde matrix.
We also have the following theorem, where instead of powers of ω we
use distinct positive reals.

Theorem 2.9. Let G = (aj−1
i )i,j=1,n, where aij are distinct positive

reals. Then, for log2 n ≤ r ≤ n/2,

RG(r) ≥ n2

4(r + 1)
log

n

r
.

Proof. The same proof as above also works using the classical fact that
any submatrix of such a matrix is also nonsingular (Descartes rule of
signs; (see, e.g., [73, Part V, Section 1, Problem 36]).

With no conditions on its generators, Shparlinsky (see [56]) proved
an Ω(n2/r) lower bound for a Vandermonde matrix.

Theorem 2.10. Let V = (xj−1
i )n

i,j=1 be a Vandermonde matrix
with distinct xi over any sufficiently large field. Then, RV (r) ≥
(n − r)2/(r + 1).

Proof. For a given r, let s := RV (r) be the minimum number of
changes made to V so that the altered matrix has rank at most r.

2 For a fascinating historical account of this and other results by Chebotarëv, see [94].
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By an averaging argument, we can select r + 1 consecutive columns,
k, . . . ,k + r, 1 ≤ k ≤ n − r, such that the total number of changes in
these columns is at most s(r + 1)/(n − r). Ignore any row that has a
change in these columns. That gives us n − s(r + 1)/(n − r) rows with
no changes in the columns k, . . . ,k + r; let’s call these the “good” rows.
Since the altered matrix has rank at most r, the columns k, . . . ,k + r are
linearly dependent, say, with coefficients αk, . . . ,αk+r, not all of which
are zero. This means that the polynomial

∑r
t=0αk+tX

t has at least
n − s(r + 1)/(n − r) roots, namely, the xi from V that correspond to
the good rows selected above. But, this polynomial can have at most r
roots. Thus,

r ≥ n − s(r + 1)
(n − r)

.

This gives RV (r) = s ≥ (n − r)2/(r + 1) and the theorem is
proved.

Another family of explicit matrices conjectured to be highly rigid
is that of Hadamard matrices. The best known lower bound on the
rigidity of an Hadamard matrix is Ω(n2/r) and was first proved by
Kashin and Razborov [42]. Recently, a much simpler proof of the same
bound for the family of Sylvester-type Hadamard matrices is given by
Midrijānis [64]. Recall that a Sylvester matrix Sk ∈ {−1,+1}2k×2k

is
recursively defined by

S1 =
[
1 1
1 −1

]
, Sk =

[
Sk−1 Sk−1

Sk−1 −Sk−1

]
. (2.3)

Theorem 2.11. Let n := 2k and Sk be the n × n Sylvester-type
Hadamard matrix. Then, for r a power of 2, RSk

(r) ≥ n2/4r.

Proof. Let r = 2t−1 for t ≥ 1. Note that if we divide the rows and
columns of Sk into (continuous) intervals of length 2r = 2t each, then we
get a tiling of Sk by n2/4r2 submatrices each of which is ±Sk−t. It fol-
lows that each of these submatrices is nonsingular. Now, suppose there
are less than n2/4r changes made to Sk. Then, at least one of the sub-
matrices in the above tiling must have fewer than r entries. Since this is
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originally a 2r × 2r full-rank submatrix, the altered submatrix has rank
more than r because each change can reduce the rank by at most 1.

In Section 3, we will see a proof of the same bound for a generalized
Hadamard matrix using spectral techniques (cf. [26, Theorem 3.8]).

2.2.1 Limitations of the Combinatorial Proof Techniques

As illustrated by the proofs above, proofs of the best known lower
bounds on rigidity of explicit matrices follow essentially the same strat-
egy and consist of two steps: (1) all (or most) square submatrices of
these matrices have full- (or close to full) rank; (2) if the number of
changes is too small, then one such submatrix remains untouched. We
observe [56] that both steps of this approach are severely limited in
answering Open Question 2.1.

Any proof relying on the second step in the above strategy, i.e, using
an untouched submatrix of rank Ω(r), is incapable of producing a lower
bound better than Ω

(
n2

r log n
r

)
. Indeed, using Lovász’s result [60] relat-

ing fractional and integral vertex covers of a hypergraph, we can show
that the bound in Lemma 2.4 is asymptotically tight. Specifically, con-
sider the hypergraph whose vertices are the entries of an n × n matrix
and hyperedges are all (r + 1) × (r + 1) submatrices. The degree d of
this hypergraph is

(
n−1

r

)2
. By regularity, the fractional cover number

t∗ of this hypergraph is
(

n
r+1

)2
/
(
n−1

r

)2
= n2/(r + 1)2. Lovasz’s bound

(greedy algorithm) gives that for the size of an integral cover t, we
have t ≤ t∗(lnd + 1). Such an integral cover clearly intersects every
(r + 1) × (r + 1) submatrix. Hence,

n2

(r + 1)2

(
1 +
(
n − 1
r

)2
)

= O

(
n2

r + 1
log

n

r

)
changes suffice.

The best bound provable by the first step of the above approach is
limited by linear size superconcentrators (of logarithmic depth). Valiant
himself constructed integer matrices in which all submatrices of all
sizes are nonsingular and yet having a rigidity of at most n1+o(1) to
reduce the rank to O(n). Recall that a superconcentrator is a graph
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G = (V,E) with n inputs X ⊆ V and n outputs Y ⊆ V such that for
all subsets S ⊆ X, |S| = k, and all subsets T ⊆ Y , |T | = k, there are
k vertex-disjoint paths from S to T . A remarkable result in [72] gives
superconcentrators with |E| = O(n) and depth O(logn).

Theorem 2.12. There exist an n × n matrices A with integer entries
such that all submatrices of A of all sizes are nonsingular, and yet
RA(r) = n1+o(1) for r = εn for any ε > 0.

Proof. Let G be a superconcentrator with cn edges, input nodes
x1, . . . ,xn and output nodes y1, . . . ,yn. Let the vertices of G be v1, . . . ,vm

in topological order. The fan-in (in-degree) of each vi is 2. We will define
the matrix A by defining a linear circuit computing the linear trans-
formation x �→ Ax from the graph G. We will identify each vertex with
the linear form in x1, . . . ,xn computed at that vertex. It is helpful to
think of the circuit as given by a (2n + m) × nmatrix with the columns
indexed by the xj , the first n rows labeled by the xi, the last n rows by
the yi, and the remaining m rows by vi. Each row gives a vector in Cn

associated to the linear form in the xi computed at the corresponding
node. Thus, in the first n rows, we have the identity matrix whereas
the last n rows give us the desired matrix A.

We define the rows of this matrix inductively. Suppose u1 and u2 are
already defined and are inputs to a node v. We define the coefficients
α and β at the node v so the gate computes v = αu1 + βu2. Choose α
and β as follows: for all r-tuples of xj and all linear forms w1, . . . ,wr−1

already constructed, whenever {u1,w1, . . . ,wr−1} and {u2,w1, . . . ,wr−1}
are sets of linearly independent forms when restricted to xj1 , . . . ,xjr ,
{αu1 + βu2,w1, . . . ,wr−1} is also a linearly independent set of linear
forms when restricted to xj1 , . . . ,xjr .

Let det(vi1 , . . . ,vir ;xj1 , . . . ,xjr) denote the determinant of the sub-
matrix indexed by the rows vi1 , . . . ,vir and columns xj1 , . . . ,xjr . Then
by linearity,

det(v,w1, . . . ,wr−1;xj1 , . . . ,xjr)

= αdet(u1,w1, . . . ,wr−1;xj1 , . . . ,xjr)

+βdet(u2,w1, . . . ,wr−1;xj1 , . . . ,xjr).
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If the two determinants on the right-hand side are nonzero, there is a
unique value for the ratio α : β that is forbidden by the requirement
that the left-hand side determinant is nonzero. It follows that for every
choice of w1, . . . ,wr−1 and xj1 , . . . ,xjr , at most one choice of the ratio
α : β is forbidden in defining the coefficients α and β in the gate v =
αu1 + βu2. Since there are only finitely many choices for the wi’s and
the xj ’s, we conclude we can always find integer values for α and β so
the condition above is satisfied at v.

By the superconcentrator property of G, from any set of r inputs
xj1 , . . . ,xjr to any set of r outputs yi1 , . . . ,yir , there are r vertex-joint
paths. By considering sets of r parallel nodes at successive levels, we can
see by induction that the sub-determinant given by the corresponding
rows and the xj ’s is nonsingular. We conclude that all submatrices of all
orders are nonsingular in the matrix A. Since the graph of the circuit is
of linear size, we can apply the graph–theoretic argument in the proof
of Theorem 2.1 to express A as A = B + C such that for any ε > 0,
rank(B) ≤ εn and |C| ≤ n · 2log1−δ n for some δ = δ(ε) > 0. It follows
that RA(εn) = n1+o(1) for any ε > 0.

2.3 Sparse Factorizations and Constant Depth Circuits

Since strong lower bounds on rigidity seem to be difficult to obtain,
a natural approach is to study restricted variants of the problem. We
discuss one such combinatorial restriction in this section and some
others later.

For a matrix A, define

w2(A) := min{|B| + |C| : A = BC},

where the minimum is taken over all matrix pairs B and C such that
A = BC. Recall that |B| + |C| is the total number of nonzero entries
in B and C.

Note that w2(A) captures the minimum size of a depth-2 linear
circuit computing the linear transformation is given by A. We can
naturally generalize this definition to wk and use it to prove lower
bounds on depth-k linear circuits. In fact, we will do so in Section 3
(cf. Lemma 3.14 and Theorem 3.15) for the restricted model of bounded
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coefficient linear circuits. However, explicit lower bounds on wk have
not yet been used successfully to prove strong superlinear, i.e., n1+δ,
lower bounds on constant depth linear circuits in general.

As usual, it is easy to see that for almost n × n matrices A,
w2(A) = Ω(n2/ logn), and the challenge is to find explicit A for
which w2(A) ≥ n1+δ can be proved. The best known lower bound is
Ω(n log2n/ log logn) and follows from the tight lower bound on depth-2
superconcentrators [82]. This lower bound holds for any matrix in
which every square submatrix is nonsingular: examples include the
Cauchy matrix A = (1/(xi + yj)) where xi and yj are all distinct and
Fourier transform matrices of prime order (cf. Theorems 2.5 and 2.8).
Pudlák [74] shows how to derive a lower bound on w2(A) from a very
strong lower bound on RA(r) for r in a suitable range.

We note that in the proof of the lower bound on w2(A) using the
lower bound on depth-2 superconcentrators, only connectivity proper-
ties of the factorization A = BC are used; associate a depth-2 graph
with A = BC with inputs being column indices of A (= column indices
of C), outputs being row indices of A (= row indices of B), and the
middle being the column indices of B (= row indices of C) and note
that nonsingularity of a square submatrix AST of A implies that |S|
vertex-disjoint paths must exist between S and T (Menger’s theorem).
Since the lower bound of [82] is tight for depth-2 superconcentrators,
this approach cannot yield better lower bounds on w2(A). This is sim-
ilar to the limitation that exists even for the original rigidity problem
as discussed in Section 2.2.1.

2.4 Rigidity Lower Bounds Using Algebraic Dimensions

We observed in the last two subsections that some commonly used
approaches to the rigidity problem face certain fundamental limi-
tations: we call this the barrier of purely combinatorial approaches
since the proof techniques essentially use only the connectivity
(superconcentrator-like) properties and combinatorial structure of sub-
matrices of the candidate matrices appealing very little to their alge-
braic structure. We believe that any stronger lower bound proof on
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rigidity will have to penetrate this barrier by delving deeper into the
algebraic structure of the candidate matrices.

In this subsection, we look at such an attempt. We can prove much
stronger, even quadratic, lower bounds on the rigidity of some com-
plex matrices by exploiting algebraic independence (in a limited sense)
among their entries. In particular, we will prove a lower bound of
RV (r) = Ω(n2) for r ≤ ε

√
n, on the rigidity of Vandermonde matrices

V = (xj−1
i )1≤i,j≤n with algebraically independent xi [56]. We will also

prove [59] that RA(εn) = Ω(n2) for two matrix families: (i) A = (√pjk)
and (ii) A = (e2πi/pjk), where pjk are the first n2 primes. These bounds
hold over C. These bounds break through the combinatorial barriers
mentioned above. The result for Vandermondes provides a natural n-
dimensional manifold in the space of all n × n matrices with Ω(n2)
rigidity for nonconstant r. The results for (√pjk) and (e2πi/pjk) are the
first quadratic lower bounds known on the rigidity of a non-generic
matrix over any field for rank bound Ω(n).

The proof for (√pjk) uses an algebraic dimension concept intro-
duced by Shoup and Smolensky [91] (SS-dimension, for short). To prove
the rigidity lower bound on (e2πi/pjk), we use a higher degree generaliza-
tion of the SS-dimension. The SS-dimension was used in [91] to derive
superlinear lower bounds on linear circuits of depths up to poly(log n)
for linear transformations defined by a Vandermonde matrix and its
inverse. In their Vandermonde matrix V = (xj−1

i ), the xi are either
algebraically independent transcendentals or superincreasing integers
(xi = 2ni

). We note that Shoup and Smolensky prove these superlin-
ear lower bounds directly, without appealing to or proving any rigidity
bounds on their matrices.

More generally, algebraic dimension arguments involving square
roots of primes and roots of unity of prime orders have been used in the
literature to replace generic or random elements to fool “low-degree”
computations. They have been used to construct specific polynomials
that are hard to compute [7, 20, 52]. Square roots of primes are also
used to define hard instances (Swinnerton–Dyer polynomials) for cer-
tain polynomial factorization algorithms [101, Section 15.3]. Rational
approximations of square roots of primes are used in [25], to reduce ran-
domness in polynomial identity testing based on the Schwartz–Zippel
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Lemma. This approach is extended in [23] to prove that the square
roots of any set of rationals independent over squares (i. e., linearly
independent in the F2-space Q∗/Q∗2) can be used in place of square
roots of primes. The approach in [25] is generalized in [51] using square
roots of irreducible polynomials to be applicable over arbitrary fields —
in particular over finite fields.

2.4.1 The Shoup–Smolensky Dimensions

In this subsection, we define the various SS-dimensions we use and
prove some preliminary lemmas relating them to matrix rank. Shoup
and Smolensky originally used Definition 2.3 in [91].

Let p be a nonnegative integer, P = (a1, . . . ,ap) a sequence of
elements (ai ∈ C), and t ≥ 0.

Definition 2.3. The restricted SS-dimension of degree t of P over Q,
denoted by Dt(P ), is the rank over Q of the set of all the

(
p
t

)
products∏t

j=1aij , where 1 ≤ i1 < i2 < · · · < it ≤ p.

Definition 2.4. The unrestricted SS-dimension of degree t of P

over Q, denoted by D∗
t (P ), is the rank over Q of the set of all the(

p+t−1
t

)
products

∏t
j=1aij , where 1 ≤ i1 ≤ i2 ≤ ·· · ≤ it ≤ p.

So, in both definitions we take t-term products of elements of P ; in the
restricted case, repeated entries are not permitted.

The following inequalities are immediate.

Dt(P ) ≤ D∗
t (P ) (2.4)

Dt(P ) ≤
(p
t

)
(2.5)

D∗
t (P ) ≤

(
p + t − 1

t

)
. (2.6)

Let now Q = (b1, . . . , bq) and PQ = (aibj : i = 1, . . . ,p; j = 1, . . . , q). The
following is immediate.
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Observation 2.13.

D∗
t (PQ) ≤ D∗

t (P )D∗
t (Q). (2.7)

(Note that the analogous statement for the restricted SS-dimension is
false for all t ≥ 2.)

We define the SS-dimensions Dt(A) and D∗
t (A) of a k × � matrix A

over C as the corresponding dimensions of the list (in some order) of
the k� entries of the matrix.

Even though it is immaterial in what order we list the k� entries of
a matrix, simple inequalities link the SS-dimensions to matrix multi-
plication and matrix rank.

The following is an immediate consequence of Observation 2.13.

Observation 2.14. Let A and B be matrices over C such that the
product AB is defined. Then,

D∗
t (AB) ≤ D∗

t (A)D∗
t (B). (2.8)

Corollary 2.15. If the k × � matrix A has rank r (over C, its field of
definition), then

D∗
t (A) ≤

(
kr + t − 1

t

)(
�r + t − 1

t

)
. (2.9)

We indicate the proof. A can be written as A = BC, where B is a
k × r matrix and C an r × � matrix over C. Hence, a combination of
Observation 2.14 and the trivial bound (2.6) yields the result.

Remark 2.2. By noting that one of the factors, B or C, can be taken
to contain an r × r identity submatrix, it is possible to slightly improve
the bound (2.9) to

(
kr+t−1

t

)(
�r−r2+t

t

)
.
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Definition 2.5. Let P = (a1, . . . ,am) be a sequence of complex
numbers and T ⊆ Nm be a set of vectors of nonnegative integers. The
generalized SS-dimension DT (P ) is defined to be the rank over Q of
the set of monomials

∏m
i=1a

ei
i , where e := (e1, . . . ,em) ∈ T :

DT (P ) := dim

〈
m∏

i=1

aei
i : e ∈ T

〉
Q

. (2.10)

Note that we obtain Dt(P ) by letting T = {e :
∑
ei = t and ei ≤ 1}

and we obtain D∗
t (P ) by letting T = {e :

∑
ei = t}.

We will also use the following special case of DT (P ).
Let t = (t1, . . . , tm) be a vector of nonnegative integers. We define

Dt(P ) by letting T consists of vectors whose ith coordinate is at most ti:

Dt(P ) := dim

〈
m∏

i=1

aei
i : 0 ≤ ei ≤ ti

〉
Q

. (2.11)

Notation: For a vector t, let

σ(t) =
m∑

i=1

ti, and π(t) =
m∏

i=1

(ti + 1).

Note that, in general, DT (P ) ≤ |T | and, in particular, Dt(P ) ≤ π(t).
The weaker upper bound Dt(P ) ≤ (|P |+σ(t)

σ(t)

)
is sometimes useful as in

the following lemma, i.e., analogous to Corollary 2.15.

Lemma 2.16. If a k × � matrix A has rank at most r, then

Dt(A) ≤
(
kr + σ(t)
σ(t)

)(
�r + σ(t)
σ(t)

)
.

2.4.2 Quadratic Lower Bounds on Rigidity

The first application of SS-dimension that we prove is a quadratic lower
bound on the rigidity of a generic Vandermonde matrix when the target
rank is O(

√
n).
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Theorem 2.17. Let V = (xj−1
i )1≤i,j≤n be a Vandermonde matrix,

where the xi are algebraically independent over Q. Then

RV (r) ≥ n(n − c · r2)
2

,

where c > 0 is an absolute constant.
In particular, there exists an ε > 0 such that for every r ≤ ε

√
n,

RV (r) ≥ n2/4.

Proof. Let C be a matrix with the smallest number of nonzero entries
such that V − C has rank r. Thus, RV (r) = |C|, number of nonzero
entries of C.

Denote by si the number of changes in the ith row of V . Let s
denote the average of the si, s := (s1 + · · · + sn)/n. Thus, |C| = n · s.

There must be at least n/2 rows of V with no more than 2s changes
in each of those rows. Fix n/2 such rows and call them “good” rows.
(The factor of 2 here is not optimal; see Remark 2.3.)

We claim that

Dn/2(V − C) ≥ (n − 2s)n/2. (2.12)

To prove this claim, consider the products formed by taking uncha-
nged entries of good rows, one entry per row. They are of the form
xj1

i1
xj2

i2
· · ·xjt

it
, where i1, . . . , it are good rows and each jk has at least

(n − 2s) possibilities. By the algebraic independence of the xi, these
products are linearly independent over Q. Hence, the claim follows.

Since V − C has rank r, Corollary 2.15 gives an upper bound on
DV −C :

Dt(V − C) ≤
(
nr + t

t

)2

. (2.13)

Combining (2.12) and (2.13), we get,

(n − 2s)n/2 ≤
(
nr + n/2
n/2

)2

.
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Since
(
n
k

) ≤ (ne/k)k, (n − 2s)n/2 ≤
(

(nr + n/2)e
n/2

)2·n/2

.

Hence, (n − 2s) ≤ ((1 + 2r)e)2

≤ c · r2, for some constant c>0.

This gives us, s ≥ (n − c · r2)
2

.

Since RV (r) = |C| = n · s, we have proved the theorem.

Remark 2.3. The bound of Theorem 2.17 can be improved by a con-
stant factor with a more careful choice of the parameters. Indeed,
as pointed out by Tom Hayes (private communication), by selecting
t ≈ (

√
2ern)2/3 in the proof above, it can be shown that RV (r) ≥

n2 − O(n5/3r2/3).

Theorem 2.18. Let A be an n × n matrix over C and 0 ≤ r ≤ n.
Suppose, Dnr(A) =

(
n2

nr

)
, i. e., all products of nr distinct entries of A

are linearly independent over Q. Then,

RA(r) ≥ n(n − 16r). (2.14)

Proof. Let C be a matrix such that RA(r) = wt(C) and rank
(A − C) ≤ r. By Corollary 2.15, we have

Dt(A − C) ≤ D∗
t (A − C) ≤

(
nr + t

t

)2

. (2.15)

In order to obtain a lower bound on Dt(A − C), let us consider all
t-wise products of elements of A not affected by C. By assumption,
these (as well as the products of all other t-tuples from A) are linearly
independent over Q; therefore,

Dt(A − C) ≥
(
n2 − wt(C)

t

)
. (2.16)
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Set t = nr and combine inequalities (2.15) and (2.16). We use the
inequality

(
n
k

) ≥ (n/k)k.(
n2 − wt(C)

nr

)
≤
(

2nr
nr

)2

(
n2 − wt(C)

nr

)nr

≤ (22nr
)2 = 16nr

wt(C) ≥ n2 − 16nr.

We conclude that RA(r) ≥ n(n − 16r).

Corollary 2.19. Let P =
(√
pij

)
, where pij are distinct primes for

1 ≤ i, j ≤ n. Then, RP (r) ≥ n(n − 16r).
In particular, RP (n/17) ≥ n2/17.

To obtain Corollary 2.19, we combine Theorem 2.18 with the fol-
lowing result cf. ([12, 4, Ex. 2.1.41]). An integer is square-free if it is
not divisible by the square of any prime number.

Theorem 2.20. The square roots of all positive square-free integers
are linearly independent over Q. In particular, for distinct primes
p1, . . . ,pm, [Q(

√
p1, . . . ,

√
pm) : Q] = 2m.

The next rigidity lower bound uses the Generalized SS-dimension.

Theorem 2.21. Let

Z :=
(
e2πi/pjk

)
1≤j,k≤n

,

where pjk are the first n2 distinct primes. Then, for 0 ≤ r ≤ n, we have

RZ(r) ≥ n(n − 9r),

assuming n is sufficiently large.
In particular, RZ(n/10) ≥ n2/10.
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Proof. Let C be a matrix such that wt(C) = RZ(r) and
rank(Z − C) ≤ r.

Let m := n2 − wt(C) be the number of entries of Z “untouched” by
C and p1, . . . ,pm be the corresponding primes. Let

P := (e2πi/p1 , . . . ,e2πi/pm) and

t := (p1 − 1, . . . ,pm − 1).

We will consider Dt(P ). To get a lower bound, we use the following
facts.

Lemma 2.22. [Q(e2πi/n) : Q] = ϕ(n).

For a proof of this lemma, see, e.g., [50, Ch VI, Theorem 3.1].

Lemma 2.23. Q(e2πi/a1 , . . . ,e2πi/am) = Q(e2πi/ lcm(a1,...,am)).

This lemma is easy to prove.
It follows that

Dt(P ) = [Q(e2πi/p1 , . . . ,e2πi/pm) : Q] = ϕ(p1 · · · · · pm) =
m∏

i=1

(pi − 1).

(2.17)
On the other hand, the elements of P are entries of the matrix

Z − C of rank at most r. Thus, by Lemma 2.16, we have the upper
bound

Dt(P ) ≤
(
nr + σ(t)

nr

)2

. (2.18)

Since
∏m

i=1(pi − 1) ≥m! and σ(t) =
∑m

i=1(pi − 1) = O(mn2 logn),
and using the inequality

(
a
b

) ≤ ab, we obtain from (2.17) and (2.18),

m! ≤ Dt(P ) ≤ (nr + O(mn2 logn))2nr. (2.19)

Since nr,m ≤ n2, after taking logarithms of the above inequality,
we obtain m logm ≤ c2nr logn for some constant c2 > 0. Since RA(r) ≤
(n − r)2 in general, we note thatm = n2 − RZ(r) ≥ 2nr − r2 ≥ 2n − 1
for 1 ≤ r ≤ n. Using this in the last inequality, we have m ≤ 9nr
assuming n is sufficiently large.
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2.5 Quadratic Lower Bounds on Linear Circuits

Combining Corollary 2.19 or Theorem 2.21 with Theorem 2.1, we get
the following circuit lower bound.

Theorem 2.24. Let A =
(√
pjk

)
or A =

(
e2πi/pjk

)
, where pjk are the

first n2 primes for 1 ≤ j,k ≤ n. Then, any linear circuit of logarithmic
depth computing x �→ Ax must have size Ω(n log logn).

We will now see that using the SS-dimension, we can obtain
quadratic lower bounds on linear circuits significantly improving those
in Theorem 2.24 via Valiant’s criterion. Indeed, such lower bounds were
already proved by Lickteig [52]. Nevertheless, we present a proof of the
circuit lower bound using the generalized SS-dimension since we feel it
is simple, intuitive, and fits well within the framework of rigidity.

The following lemma generalizes an inequality from [91] on SS-
dimension.

Lemma 2.25. Let L be a linear circuit over C computing the linear
transformation x �→ Ax. Let s denote the size and d denote the depth
of L. Define s̄ := s/d. For a set T ⊆ Nn2

, define σ(T ) := maxt∈T
∑n2

i=1 ti
and let DT (A) be as in Definition 2.5. Then,

DT (A) ≤
(
s̄ + σ(T )

s̄

)d

. (2.20)

Proof. Let (a1, . . . ,am) be the sequence of entries of the matrix A in
some order, where m := n2. By abuse of notation, we use A to also
denote this sequence. We want to estimate the Q-linear dimension
spanned by monomials of the form ae1

1 · · ·aem
m , where e ∈ T .

Arrange the circuit L into d levels, where a gate g is at level k if
the longest path to g from an input has k edges; the input nodes are
at level 0. For 1 ≤ k ≤ d, let Lk denote the set of labels on the edges
that feed into gates at level k. Our first observation is that an entry
a := aij of the matrix A is equal to the sum of labels of all the paths
from input j to output i, where the label of a path is defined to be
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the product of all the labels on its edges. Here and below, we suppress
many subscripts for brevity. The intended summation ranges should be
clear from the context. Thus, we have

a =
∑

p

λ1 · · ·λd,

where the sum ranges over all paths p from input j to output i and
λk ∈ Lk ∪ {1} are “labels” on edges of the path p. We include 1 here,
since an edge may not go between two consecutive levels and hence 1
may be used as λk for the “skipped” k. Hence, a monomial in the a’s
is given by

m∏
i=1

aei
i =

m∏
i=1

∑
pi

(λi1 · · ·λid)ei

=
∑

(λe1
11 · · ·λem

m1) · · ·(λe1
1d · · ·λem

md).

Note that each monomial λe1
1k · · ·λem

mk has labels from Lk ∪ {1} and
may have repetitions. Since e ∈ T , we may thus view it as a monomial
of total degree at most σ(T ) on |Lk| variables. Let sk = |Lk|. There
are at most

(
sk+σ(T )

sk

)
such monomials. Hence, each monomial

∏m
i=1a

ei
i

in our space is an integer linear combination of products of d such
monomials from Lk for 1 ≤ k ≤ d. It follows that

DT (A) ≤
d∏

k=1

(
sk + σ(T )

sk

)

≤
 1

d

∑d
k=1 sk + σ(T )

1
d

∑d
k=1 sk

d

,

where the last inequality is a consequence of the log-concavity of f(x) =(
x+c
x

)
. Since s = size(L) =

∑d
k=1 sk, we have proved the claim.

Corollary 2.26. Let Z :=
(
e2πi/pjk

)n
j,k=1 where pjk are the first n2

primes. Then, any arithmetic circuit computing the linear transforma-
tion x �→ Zx must have size Ω(n2).
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Proof. Let m := n2. We will apply the special case Dt(Z) of DT (Z)
with t = (p1 − 1, . . . ,pm − 1). From the proof of Theorem 2.21, we know
that DT (Z) ≥m!. On the other hand, σ(T ) = σ(t) =

∑m
i=1(pi − 1) =

Θ(m2 logm). Since s ≤ n2 always, we have s̄� σ(T ) and the easy esti-
mate

(
s̄+σ(t)

s̄

) ≤ (2σ(T ))s̄. Using these in (2.20), we get

m! ≤ (2σ(T ))s̄d ≤ (c · m2 logm)s.

Taking logarithms on both sides of this inequality, we obtain s =
Ω(m) = Ω(n2).

Corollary 2.27. Let P =
(√
pij

)
, where pij are distinct prime inte-

gers. Then, any arithmetic circuit computing x �→ Px must have size
Ω(n2/ logn).

Proof. Let m := n2. Let T := {(e1, . . . ,em) : 0 ≤ ei ≤ 1}. From Theo-
rem 2.20, DT (P ) = 2m. Since σ(T ) = m ≥ s, we obtain from (2.20),

2m ≤ (2m)s̄d = (2m)s.

Taking logarithms proves the claim.

The lower bounds in the corollaries above do not depend on
the depth of the circuits. However, Shoup and Smolensky [91] exploit
the dependence of (their special case of) inequality (2.20) on depth
to derive lower bounds of Ω(dn1+1/d) for d ≤ logn, and Ω(n logn/
(logd − log logn)) for larger d, for Vandermonde matrices with alge-
braically independent generators.

2.6 Paturi–Pudlák Dimensions

Paturi and Pudlák [70] introduced certain dimensions of a subspace
(which we call here inner and outer dimensions) that refine the notion
of rigidity. They may give rise to new techniques to prove lower bounds
on linear circuits.

A vector v ∈ Fn is said to be s-sparse if the number of nonzero
coordinates in v (often denoted wt(v) or |v|) is at most s.

Let V ⊆ Fn be a subspace, where dim V = m.
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Definition 2.6. The inner dimension dV (s) for sparsity parameter s
of V is the dimension of the largest subspace of V that can be generated
by s-sparse vectors. In other words,

dV (s) := max{dim(U ∩ V ) :

U ⊆ Fn has an s-sparse basis anddimU ≤ dimV }.

Definition 2.7. The outer dimension DV (s) for sparsity parameter s
of V is the dimension of the smallest subspace W that contains V and
that can be generated by s-sparse vectors. In other words,

DV (s) := min{dimW : W has an s-sparse basis and V ⊆W}.

Given a matrix A ∈ Fm×n, we let 〈A〉 to denote the row-space of A.
Note that 〈A〉 is a subspace of Fn of dimension at most m. By abuse of
notation, we denote d〈A〉(s) and D〈A〉(s) simply by dA(s) and DA(s).

To relate inner dimension to rigidity, we define the following version
of rigidity of a matrix when the changes are counted on a per row basis.

ρA(s) := min{rank(A − C) : Each row of C is s-sparse}.
Clearly, if ρA(s) ≤ r, then RA(r) ≤ ns. But lower bounds on ρA(s)

are sufficient to prove lower bounds on linear circuits via Valiant’s
criterion.

Lemma 2.28. For A ∈ Fm×n,

ρA(s) ≥ rankA − dA(s).

Proof. Let C be a matrix achieving ρA(s), so rank(A − C) = ρA(s) and
each row of C has at most s nonzero entries.

Trivially, 〈C〉 + 〈A〉 = 〈C〉 + 〈A − C〉.
Considering the left-hand side,

dim(〈C〉 + 〈A〉) = dim〈A〉 + dim〈C〉 − dim(〈A〉 ∩ 〈C〉).
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Considering the right-hand side,

dim(〈C〉 + 〈A − C〉) ≤ dim〈C〉 + dim〈A − C〉 = dim〈C〉 + ρA(s).

Thus, we have dim〈A〉 − dim(〈A〉 ∩ 〈C〉) ≤ ρA(s). Since dim〈A〉 =
rank(A) and dA(s) ≥ dim(〈A〉 ∩ 〈C〉), we are done.

Lemma 2.29. For any finite-dimensional subspace V ,

dV (s) + DV (s) ≥ 2dimV.

Proof. Let D := DV (s) and d := dV (s). Let W ⊇ V be an optimal
subspace realizing DV (s) with a sparse basis {w1, . . . ,wD}. Consider
the subspace U ⊆W with the basis {w1, . . . ,wm}, where m = dimV .
Clearly, U + V ⊆W and dim(U ∩ V ) ≤ d. Hence,

D ≥ dim(U + V ) = dimU + dimV − dim(U ∩ V ) ≥ 2m − d.

While there seems to be no obvious relation between DA(s) and
rigidity, we can use DA(s) directly to prove lower bounds on log-depth
linear circuits using a proof technique similar to that of Theorem 2.1.

Theorem 2.30. Suppose, the linear transformation x �→ Ax for A ∈
Fn×n is computed by a linear circuit of size L and depth k. Then, there
exists a constant c > 1 such that for any integer t > 0,

DA(ck/t) ≤ n +
L log t
logk

.

In particular, if, for some constant ε > 0, DA(nε) ≥ n + ω(n/ log logn),
then x �→ Ax cannot be computed by log-depth linear circuits of
size O(n).

Paturi and Pudlák use a counting argument to show that for a
random m-dimensional subspace V of Fn, where F is finite, |F| = q,

DV (s) ≥ n

(
1 − s logq n

m

)
,

with high probability.
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The proof of Theorem 2.17 actually yields a lower bound of ρV (s) =
Ω(

√
n − s) for a generic Vandermonde matrix. However, no nontrivial

upper (lower) bounds on d (D) of a generic Vandermonde matrix are
currently known.

In the following theorem, we use codes over F2 to prove nontrivial
lower (upper) bounds on DV (s) (dV (s)). It can be easily generalized to
codes over an arbitrary finite field Fq in an obvious way (the constants
depend on q).

Theorem 2.31. Let C be an [n,k,d] linear code over F2. Then, for
s ≤ d/2,

DC(s) ≥ k +
d

2s
log
(

2sk
d

)
, and (2.21)

dC(s) ≤ k − d

2s
log
(

2sk
d

)
. (2.22)

Proof. The proof is based on the following main claim: there exists a
[DC(s),k,d/s] code B. Consider a space W of dimension D := DC(s)
containing C and having an s-sparse basis {w1, . . . ,wD}. Every vector
x ∈ C is a linear combination of vectors from W , i.e., there is a y ∈ FD

(unique since wi are a basis) such that x =
∑D

i=1 yiwi. Let B be the
set of all such y for all x ∈ C. Clearly, B is a subspace of dimension k.
We note that the minimum weight of a nonzero vector in B is at least
d/s and this will prove the claim. Indeed, let y∗ be a minimum weight
nonzero vector in B and let x∗ =

∑D
i=1 y

∗
iwi. Since wi are linearly inde-

pendent, x∗ 	= 0 and by the property of C, x∗ is of weight at least d.
Since each wi has weight at most s, at least d/s of the coordinates y∗

i

must be nonzero.
We apply the sphere packing bound for the code B. The Hamming

balls of radius d/2s around vectors in B must be nonintersecting and
hence their union must contain at most 2D vectors:

2k

d/2s∑
j=0

(
D

j

)
≤ 2D.
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Let Λ(D,d/2s) :=
∑d/2s

j=0
(
D
j

)
denote the volume of a Hamming ball

of radius d/2s in FD
2 . Then, we conclude from the above that D ≥

k + log2 Λ(D,d/2s). Since Λ(D,d/2s) ≥ ( D
d/2s

) ≥ ( k
d/2s

) ≥ (2sk/d)d/2s,
(2.21) follows.

The bound on dC(s) in (2.22) is proved using similar argument. Let
U be a k-dimensional subspace realizing dC(s). Thus, dim(U ∩ C) =
dC(s). Similar to the claim above, we can show that C contains a
[k,dC(s),d/s] code B′. Applying the sphere packing bound to B′, we
have

2dC(s)Λ(k,d/2s) ≤ 2k.

Simplifying as before, we obtain (2.22).

Friedman uses (2.22) to prove the first nontrivial lower bound on the
rigidity of a matrix over a finite field. Note that we proved essentially
the same lower bound in Theorem 2.7.

Corollary 2.32. Let A ∈ Fk×n be the generator matrix of an asymp-
totically good error correcting code C. Then, for 0 < r < k/2,

RA(r) = Ω
(
n2

r
log

n

r

)
.

Proof. Since C is asymptotically good, we know that k = Ω(n)
and the minimum distance d of C is also Ω(n). Thus, it follows
from (2.22) that dC(s) ≤ k − (d/2s) log(2ks/d). From Lemma 2.28,
ρA(s) ≥ k − dC(s) ≥ (d/2s) log(2ks/d) = Ω(n logs/s). In other words,
s = Ω

(
n
r log n

r

)
changes must be made in each row to reduce rank of A

to be at most r. Thus, RA(r) ≥ ks = Ω
(

n2

r log n
r

)
.



3
Spectral Methods to Study Rank Robustness

As mentioned before, many functions similar to rigidity have several
applications in complexity theory. To encompass this broad range of
applications, it is helpful to think of rank robustness in general. By
changing the nature of changes or by changing the definition of distance
between a given matrix and the set of low-rank matrices, we get various
notions of rank robustness. For example, when the matrix is over R

or C, we may consider �2-distance (instead of Hamming distance as
in the original definition of rigidity) or we may consider only sign-
preserving changes. Many results [21, 28, 29, 42, 55, 57, 58, 75, 83]
successfully use such notions of rank robustness to derive lower bound
results in various models. We discuss some of them in this section and
the next.

The “nonsmoothness” of Hamming distance seems to make it
difficult to attack the general rigidity problem using well-studied math-
ematical properties of matrices. On the other hand, several smoother
variants of rigidity, e.g., �2-Rig,Rig,msv,Vol, studied in this section,
seem to be easier to get a handle on using classical techniques from
matrix analysis [13, 33, 95]. In particular, these robustness functions
of matrix rank are easily bounded, or even characterized, in terms of

40
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the singular values of a matrix. More importantly, all these functions
are very useful in deriving interesting lower bounds on computational
complexity. Significant applications of this approach are lower bounds
on the bounded coefficient complexity of linear and bilinear transfor-
mations, e.g., Fourier transform and matrix multiplication.

3.1 Singular Value Decomposition

We begin by recalling some basic facts about singular values of a com-
plex matrix and state an important variational inequality about them.

Definition 3.1. Let A ∈ Cm×n. Then,

• The Frobenius norm of A is

‖A‖F :=

∑
i,j

|aij |2
1/2

.

• The Spectral norm of A, ‖A‖2, usually denoted ‖A‖, is
defined by

‖A‖ := max
x 
=0

‖Ax‖
‖x‖ ,

where ‖v‖ = v∗v for v ∈ Cn.

• The ith Singular value, σi(A), is defined by

σi(A) =
√
λi(AA∗), 1 ≤ i ≤ min{m,n},

where λi(AA∗) denotes the ith largest eigenvalue of AA∗.

Fact 3.1. Let A ∈ Cm×n. Then, there exist unitary matrices U ∈
Cm×m and V ∈ Cn×n such that

U∗AV = diag(σ1, . . . ,σp), where p = min{m,n}.
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A proof of this fact can be found in [33, Section 2.5].
The Courant–Fischer minimax theorem gives a characterization of

singular values.

Fact 3.2. For i = 1, . . . ,min{m,n},

σi(A) = max
dim(S)=i

min
0 
=x∈S

‖Ax‖
‖x‖ = min

dim(T )=n−i+1
max

0 
=x∈T

‖Ax‖
‖x‖ ,

where S ranges over all i-dimensional subspaces and T ranges over all
(n − i + 1)-dimensional subspaces of Cn.

Clearly, rank, Frobenius norm, and spectral norm of A are invariant
under unitary transformations. Thus, Facts 3.1 and 3.2 imply the fol-
lowing.

Fact 3.3. Let A ∈ Cn×n. Then,

(1) rank(A) = r if and only if

σ1(A) ≥ ·· · ≥ σr(A) > σr+1(A) = · · · = σn(A) = 0.

(2) ‖A‖2
F = σ2

1(A) + · · · + σ2
n(A).

(3) ‖A‖ = σ1(A).

The following important inequality [38] is often useful.

Theorem 3.4 (Hoffman-Wielandt Inequality). Let A and B be
matrices in Cn×n. Then,

n∑
i=1

[σi(A) − σi(B)]2 ≤ ‖A − B‖2
F .

Hoffman and Wielandt [38] prove their result for eigenvalues of
normal matrices using the Birkhoff–von Neumann characterization of
doubly stochastic matrices. The theorem for singular values as stated
here can be found in [33, Section 8.3].
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3.2 Variants of Rigidity

We will first consider two variants of the rigidity function based on the
�2-distance to low-rank matrices.

Definition 3.2. Let A ∈ Cn×n and θ ≥ 0.

• �2 variant of rigidity: This is a variant of rigidity that
measures the �2-norm of changes.

�2-Rig2
A(r) := min

B

∑
i,j

|aij − bij |2 : rank(B) ≤ r

 .
• Bounded changes variant of rigidity: This is a restricted vari-

ant of rigidity where the changes are bounded in absolute
value by θ.

RA(r,θ) := min
B

{|A − B| : rank(B) ≤ r, ∀i, j |ai,j − bij | ≤ θ}.

Recall that |C| denotes the number of nonzero entries of the
matrix C.

We can immediately characterize �2-Rig in terms of singular values.

Lemma 3.5. For any matrix A ∈ Cn×n,

�2-Rig2
A(r) =

n∑
i=r+1

σi(A)2.

Proof. The lower bound is immediate from the Hoffman-Wielandt
inequality, but it can also be proved directly.

Let B be a matrix achieving the minimum in the definition of
�2-Rig2

A(r). LetN0 denote the null space of B. Choose a unit vector ν0 ∈
N0 that achieves max0 
=x∈N0

‖Ax‖
‖x‖ . By Fact 3.2, since dim(N0) = n − r,

σ2
r+1(A) ≤ ‖Aν0‖2. Continuing for i = 1, . . . ,(n − r − 1), let Ni := {x ∈
Ni−1 : x ⊥ ν0, . . . ,x ⊥ νi−1}. Choose νi to be a unit vector in Ni
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that achieves max0 
=x∈Ni

‖Ax‖
‖x‖ . Since dim(Ni) = n − r − i, by Fact 3.2,

σ2
r+i+1(A) ≤ ‖Aνi‖2. By orthonormality of ν0, . . . ,νn−r−1 and since
Bνi = 0 for 0 ≤ i ≤ (n − r − 1), it follows that

‖A − B‖2
F ≥

n−r−1∑
i=0

‖(A − B)νi‖2 =
n−r−1∑

i=0

‖Aνi‖2 ≥
n−r−1∑

i=0

σ2
r+1+i(A).

Equality follows by considering the rank r matrix B :=∑r
i=1σi(A)ui · v∗

i , where ui and v∗
i are the i-th column and the i-th

row of U∗ and V , respectively, in Fact 3.1.

We will prove a lower bound on RA(r,θ) for a specific matrix in the
next subsection.

The following lemma gives a useful lower bound on the rank of a
submatrix in terms of the spectral norm.

Lemma 3.6. For any submatrix B of a matrix A, rank(B) ≥
‖B‖2

F /‖A‖2.

Proof. From Fact 3.3, rank(B) ≥ ‖B‖2
F /‖B‖2. Since B is a submatrix

of A, ‖B‖ ≤ ‖A‖.

Using Hoffman–Wielandt inequality, we can prove a generalization
of the above lemma.

Lemma 3.7. Let A,B ∈ Cn×n. Then,

rank(B) ≥ �〈A,B〉
‖A‖‖B‖ ,

where 〈A,B〉 := Tr(AB∗) and �x denotes the real part of a complex
number x.

Proof. Using Theorem 3.4,

‖A − B‖2
F ≥

n∑
i=1

(σi(A) − σi(B))2
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= ‖A‖2
F + ‖B‖2

F − 2
n∑

i=1

σi(A)σi(B),

using Fact 3.3(ii)

≥ ‖A‖2
F + ‖B‖2

F − 2 rank(B)‖A‖‖B‖,
using Fact 3.3(i) and (iii).

Observe that for any matrix M , ‖M‖2
F = Tr(MM∗).

Using this in the last inequality above, we get

2 rank(B)‖A‖‖B‖ ≥ ‖A‖2
F + ‖B‖2

F − ‖A − B‖2
F

= Tr(AB∗) + Tr(BA∗)

= 2 �Tr(AB∗),

and the lemma is proved.

3.2.1 Lower Bounds for a Generalized Hadamard Matrix

We now prove lower bounds on the three variants of rigidity for a
“Generalized Hadamard Matrix.”

Definition 3.3. An n × n complex matrix H is called a Generalized
Hadamard matrix if (i) |hij | = 1 for all 1 ≤ i, j ≤ n, and (ii)HH∗ = nIn,
where H∗ is the conjugate transpose of H and In is the n × n identity
matrix.

Two important example of a generalized Hadamard matrix are
(i) the Sylvester type Hadamard matrix (defined in (2.3)), and (ii) the
Fourier transform matrix (see Theorem 2.8).

We note that for a generalized Hadamard matrix H, σi(H) =
√
n

for all i,1 ≤ i ≤ n.
We first prove a lower bound on the rigidity of a generalized

Hadamard matrix. This proof is from [26].

Theorem 3.8. For any generalized n × n Hadamard matrix H,

RH(r) ≥ n2

4r
.



46 Spectral Methods to Study Rank Robustness

Proof. Let R be the minimum number of changes that brought the rank
of H down to r. By a simple averaging argument, we can find 2r rows
of H that contain a total of at most 2rR/n changes. If n ≤ 2rR/n, then
R ≥ n2/2r and we are done. Hence, we can assume that n − 2rR/n > 0.
Consider the (n − 2rR/n) columns that contain no changes in the
above set of rows. We thus get a 2r × (n − 2rR/n) submatrix B that
contains no changes and hence is a submatrix of H. By definition of R,
this submatrix must have rank at most r. Applying Lemma 3.6, we
get r ≥ rank(B) ≥ 2r(n − 2rR/n)/n, since ‖B‖2

F is exactly the num-
ber entries in B. Rearranging this inequality, we get R ≥ n2/4r.

Remark 3.1. Kashin and Razborov [42] also use spectral methods
to prove an Ω(n2/r) lower bound on the rigidity of a generalized
Hadamard matrix. The essential claim in their paper is that a random
k × k submatrix of a generalized Hadamard matrix has rank Ω(k).

Corollary 3.9. (to Lemma 3.5) For a generalized Hadamard
matrix H, �2-Rig2

H(r) = n(n − r).

Lemma 3.10. For a generalized Hadamard matrix H,

RH(r,θ) ≥ n2(n − r)
(θ + 1)(2n + r(θ − 1))

.

In particular,

(1) If r(θ − 1) ≤ n, then RH(r,θ) ≥ n(n − r)/3(θ + 1).
(2) If r(θ − 1) ≥ n, then RH(r,θ) ≥ n2(n − r)/3r(θ2 − 1).

Proof. We will apply the Hoffman–Wielandt inequality (or the argu-
ment from the proof of Lemma 3.5) to H and a scaled version βB of
the altered matrix B. Since rank(B) ≤ r, σi(B) = 0 for all i > r. Thus,

‖H − βB‖2
F ≥

n∑
i=r+1

σ2
i (H) = n(n − r).
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On the other hand, denoting the number of changes, i.e., wt(H − B),
by R,

‖H − βB‖2
F = ‖(1 − β)H − β(B − H)‖2

F

≤ (1 − β)2(n2 − R) + (1 + βθ)2R

= (1 − β)2n2 + R
[
(1 + βθ)2 − (1 − β)2

]
,

where the inequality above follows from β ≥ 0 (which we can assume
w.l.o.g.) and |bij − hij | ≤ θ.

Combining this upper bound with the lower bound ‖H − βB‖2
F ≥

n(n − r),

R ≥ n(n − r) − (1 − β)2n2

(1 + βθ)2 − (1 − β)2
.

Choosing β = r/n and manipulating, we get

R ≥ n2(n − r)
(θ + 1)(2n + r(θ − 1))

.

Now, (1) and (2) simply follow from this inequality using r(θ − 1) ≤ n

and r(θ − 1) ≥ n, respectively.

Remark 3.2.

• de Wolf [26] proves a lower bound very similar to the one in
the lemma above using quantum arguments. As he observes,
this bound captures the bound from [57] as (1) and the bound
from [42] as (2).

• Pudlák [75] uses determinantal arguments to give a general
lower bound, for r ≤ n/2,

RA(r,θ) ≥ (n − r)
( |det(A)|

rr/2

)2/(n−r)

θ−O(1).

In particular, he gets a bound of RH(r,θ) ≥ θ−O(1)n(n − r)
for a generalized Hadamard matrix. However, Razborov [86]
explains how to obtain Pudlák’s bound using the Hoffman–
Wielandt inequality.
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3.2.2 Geometric Variants of Rigidity

Raz [83] defines a geometric rigidity, given below, that is somewhat
similar to �2-rigidity (Definition 3.2). He uses bounds on this function
in his remarkable superlinear lower bound on matrix multiplication in
the model of bilinear circuits with bounded coefficients. Subsequently,
Bürgisser and Lotz [21] use the same function to prove superlinear lower
bounds for cyclic convolution, polynomial multiplication, and polyno-
mial division with remainder in the same model.

Definition 3.4. For a matrix A ∈ Cm×n,

Rigr(A) := min
dimV =r

max
1≤i≤n

dist(ai,V ),

where ai ∈ Cm denotes the ith column of A and dist(x,V ) :=
minv∈V ‖x − v‖ is the �2-norm in Cm. The minimum is taken over all
r-dimensional subspaces of Cm.

Geometrically, if we think of A as a set of n points in Cm, then
Rigr(A) seeks to minimize the maximum distance of a point in A from
an r-dimensional subspace. For this reason, we often refer to Rigr(A)
as the geometric rigidity of A.

We first observe that Rigr(A) and �2-rigidity we discussed before
are related as follows.

Lemma 3.11. For A ∈ Cm×n and for 1 ≤ r ≤m,

�2-RigA(r) ≥ Rigr(A) ≥ �2-RigA(r)√
n

.

Proof. First, we prove the right-hand side inequality.
Let V be an r-dimensional subspace achieving Rigr(A). Let P ∗P

the projection matrix for V , i.e., for a ∈ Cm, P ∗Pa gives the projec-
tion of a onto V . Note that P is an r × m matrix and that dist(a,V ) =
‖a − P ∗Pa‖. Now, define B := P ∗PA, i.e., columns of B are projec-
tions of columns of A onto V . Clearly, B ∈ Cm×n and, furthermore,
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rankB ≤ r. Hence,

�2-Rig2
A(r) ≤ ‖A − B‖2

F

=
n∑

i=1

‖ai − P ∗Pai‖2
2

≤ nmax
i

dist2(ai,V )

= nRig2
r(A).

To prove the left-hand side inequality, let B be a matrix achieving
�2-RigA(r), i.e., �2-Rig2

A(r) = ‖A − B‖2
F and rankB ≤ r. Now, let V

be an r-dimensional subspace containing the column space of B. Note
that dist(ai,V ) ≤ dist(ai, bi) = ‖ai − bi‖. Hence, we have

�2-Rig2
A(r) =

n∑
i=1

‖ai − bi‖2
2

≥
n∑

i=1

dist2(ai,V )

≥ max
i

dist2(ai,V )

≥ Rig2
r(A).

Corollary 3.12. For a generalized Hadamard matrix H, Rigr(H) ≥√
n − r.

The “volume” of a matrix was earlier used by Morgenstern [65] for
proving lower bounds for the Fourier transform. The following definition
from [21] is useful in generalizing Morgenstern’s technique.

Definition 3.5. For a matrix A ∈ Cm×n and an integer r,1 ≤ r ≤m,

(1) The r-volume Volr(A) of A is defined by

Volr(A) := max
|I|=r

det(A∗
IAI)1/2,

where the maximum is taken over all subsets I ⊆ [n] of r
columns of A and AI denotes the submatrix of A consisting of
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columns indexed by I. Note that det(A∗
IAI)1/2 is the volume

of the parallelepiped defined by the columns of AI .
(2) The rth mean square volume of A, msvr(A) is defined by

msvr(A) :=

∑
|I|=r

det(A∗
IAI)

1/2

,

where I and AI are as in (1) above.

Remark 3.3. The nice property of msvr(A) defined in (2) above is
that it is a unitarily invariant norm of a matrix A. In particular, it is
well-known [13] that

msv2
r(A) = er(σ2

1(A), . . . ,σ2
m(A)),

where er is the rth elementary symmetric polynomial in m variables.

The next lemma connects Volr(A) and Rigr(A):

Lemma 3.13.

Volr(A) ≥ (Rigr(A))r.

Proof. We will pick columns v1, . . . ,vr from A as follows. Pick
v1 to be a column with the largest length, i.e., that maximizes
|a∗

i ai|. In general, pick vi that maximizes the distance, among
the columns of A, to the subspace 〈v1, . . . ,vi−1〉. Clearly, a lower
bound on Volr(A) is obtained by considering the submatrix of A
given by v1, . . . ,vr. The corresponding determinant is at least ‖v′

1‖2 ·
‖v′

2‖2 · · ·‖v′
r‖2, where vi − v′

i is the projection of vi onto 〈v1, . . . ,vi−1〉
and hence ‖v′

i‖ = dist(vi,〈v1, . . . ,vi−1〉). By our choice of vi, ‖v′
i‖ ≥

dist(vi+1,〈v1, . . . ,vi−1〉) ≥ dist(vi+1,〈v1, . . . ,vi〉) = ‖v′
i+1‖. We conclude

that Volr(A) ≥ (‖v′
r‖)r.

On the other hand, consider the r-dimensional subspace V =
〈v1, . . . ,vr〉. Clearly, Rigr(A) ≤ dist(ai,V ). By the choice of vi again,
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and imagining continuing the selection for one more step, we note that
dist(ai,V ) ≤ ‖v′

r+1‖ ≤ ‖v′
r‖. Hence, we have Rigr(A) ≤ ‖v′

r‖.
It follows that Volr(A) ≥ (‖v′

r‖)r ≥ (Rigr(A))r proving the
lemma.

3.3 Bounded Coefficient Complexity of Linear
Transformations

In studying the complexity of algebraic problems such as computing
linear/bilinear transformations, polynomial evaluation/interpolation,
counting the number of arithmetic steps (addition, multiplication, etc.)
is a natural mathematical measure. In particular, this model allows
multiplications by arbitrary scalars in the ground field (e.g., num-
bers of arbitrary value and precision if working over R or C). But,
as Morgenstern [65] and Chazelle [24] have observed, many practical
algorithms for computing linear transformations such as FFT do not
use multiplications by scalars of unbounded value. This implies that in
the underlying linear circuits, the coefficients used at each gate com-
puting a linear transformation are bounded by a constant. Morgenstern
introduced the model of bounded coefficients and showed that any lin-
ear circuit with bounded coefficients computing the Fourier transform
must have size Ω(n logn). Since then, several authors [24, 57, 67, 75]
have studied bounded coefficient complexity of linear transformations.
In the same vein, bounded coefficient complexity of bilinear transfor-
mations has been studied in [21] (cf. Section 3.4) and [83].

Morgenstern used determinantal arguments to prove an Ω(n logn)
lower bound on the bounded coefficient complexity of the Fourier
transform. We will give a more general proof of the statement based
on [83]. We will also give a proof due to Pudlák which also uses bounds
on the determinant, but in a different way from Morgenstern. His
proof has the nice feature that it gives the strongest bounds known to
date on constant depth circuits as well. The main lemma for his result
is the following.

Lemma 3.14. Let A ∈ Cn×n. Suppose, A = A1 · · ·Ak (note: we place
no restrictions on the dimensions of the Ai except for the obvious ones
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for the multiplications to make sense). Then,

|det(A)| ≤
(‖A1‖2

F

n

)n/2

· · ·
(‖Ak‖2

F

n

)n/2

.

Proof. The proof is by induction on k. The base case k = 1 fol-
lows from Hadamard inequality and the AM-GM inequality. So, con-
sider k > 1 and assume that A1 ∈ Cn×� and A2 ∈ C�×�′

, where w.l.o.g.
� ≥ n (if � < n, then A is singular and there is nothing to prove).
Furthermore, the rows of A1 must be linearly independent. There
exists a unitary matrix Q ∈ C�×� that maps the span of rows of A1

into the span 〈e1, . . . ,en〉. Let B1 := A1Q and B2 := Q∗A2. Clearly,
A = B1 · B2 · · ·Ak. Since the columns n + 1, . . . , � of B1 are all 0’s (by
definition of Q), we can retain the above equality if we replace rows
n + 1, . . . , � of B2 by all 0’s rows. It follows that A = B′

1 · B′
2 · · ·Ak,

where B′
1 (B′

2) is the n × n (n × �′) matrix obtained by omitting the
last � − n columns (rows) from B1 (B2). By applying the induction
hypothesis to B′

2 · · ·Ak, we obtain the upper bound

|det(B′
2 · · ·Ak)| ≤

(‖B′
2‖2

F

n

)n/2

· · ·
(‖Ak‖2

F

n

)n/2

.

Also from Hadamard inequality and the AM-GM inequality,
|det(B′

1)| ≤
(‖B′

1‖2
F /n
)n/2. Combining these inequalities with the

facts that det(A) = det(B′
1)det(B′

2 · · ·Ak), ‖A1‖2
F = ‖B1‖2

F = ‖B′
1‖2

F ,
and ‖A2‖2

F = ‖B2‖2
F ≤ ‖B′

2‖2
F , we complete the proof of the

lemma.

In a synchronous circuit, edges go from a given level only to the
next, i.e., all paths from inputs to outputs have the same length. Thus,
a synchronous linear circuit may be expressed as a product of as many
matrices as its depth. Pudlák [75] proves the following.

Theorem 3.15. The number of edges S in any synchronous depth-d
linear circuit over C using coefficients bounded in absolute value by c
computing the linear transformation x �→ Ax given by A ∈ Cn×n must
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satisfy

S ≥ c−2dn|det(A)|2/dn.

In particular, for a generalized Hadamard matrix H, we get alower
bound of c−2dn1+1/d.

Remark 3.4. When the depth is O(logn), this gives an Ω(n logn)
lower bound, when restricted to synchronous circuits, for a general-
ized Hadamard matrix and in particular for the Fourier transform.
This matches, asymptotically when c is a constant, the best known
algorithm for computing the Fourier transform in the bounded coeffi-
cient model of linear circuits of logarithmic depth. The proof of Mor-
genstern, discussed later, however, gives a much better lower bound of
logdet(A)/ log2c with no assumptions on the depth.

Proof. A depth-d synchronous circuit can be viewed as consisting of d
layers of intermediate nodes with �i nodes on level i (inputs at level
0, outputs at level d). The edges from level i to level i + 1 define an
�i × �i+1 matrix Ai+1, where �0 = �d = n. We thus have A = A1 · · ·Ad.
We apply Lemma 3.14 to this factorization of A. Now, note that if si

is the number of edges from level i − 1 to level i, then, ‖Ai‖2
F ≤ sic

2.
Using this in Lemma 3.14, we get

|det(A)| ≤
(
c2ds1 · · ·sd

nd

)n/2

≤
(
c2

n

)dn/2(
s1 + · · · + sd

d

)dn/2

≤
(
c2S

dn

)dn/2

.

Here, we used the that S = s1 + · · · + sd. The theorem readily follows
from this last inequality.

The bound from the theorem is minimized (as a function of d) for
d = 2lndetA/n and we get the following.
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Corollary 3.16. Any synchronous linear circuit with coefficients
bounded by c computing the linear transformation x �→ Ax must have
at least 2e lndetA/c2 edges.

Both Raz [83] and Bürgisser and Lotz [21] also generalize the classi-
cal determinant-based technique [65] for proving lower bounds on linear
circuits with bounded coefficients and express the lower bound in terms
of the rigidity functions given in Definition 3.5.

Theorem 3.17. Let C be a linear circuit with coefficients bounded by
θ ≥ 1, computing a linear transformation x �→ A∗x. Then, for 1 ≤ r ≤ n,

(1) size(C) = Ω(log2θ Volr(A)).
(2) size(C) = log2θ msvr(A) − O(n).

Proof. Let s := size(C). Sort the gates of C in a topological order and
let gi denote the ith gate in this order where g−n+1, . . . ,g0 are the input
nodes and g1, . . . ,gs are the linear gates such that gi = λi1gi1 + λi2gi2

with i1, i2 < i in this order. Each gi clearly computes a linear combina-
tion zi := v∗

i x of the inputs x ∈ Cn. We will slightly abuse the notation
and let C denote the matrix in Cn×(s+n) whose ith column is vi. By
induction on j, we prove that Volr(Cj) ≤ (2θ)j for the submatrix Cj

given by the first n + j columns of C. Since A is a submatrix of C, we
have Volr(C) ≥ Volr(A) and we are done.

In the base case, j = 0, we have the identity matrix and the claim is
trivial. For j > 0, let us observe that vj = λkvk + λlvl for k, l < j and
|λk|, |λl| ≤ 1. We claim that Volr(Cj) ≤ 2θVolr(Cj−1). Let BI denote
a submatrix of Cj given by the r columns indexed by elements of
a set I ⊆ [n], |I| = r, such that Vol2r(Cj) = det(B∗

IBI). We will show
that det(B∗

IBI) ≤ 4θ2 Vol2r(Cj−1). If j 	∈ I, then by induction hypothe-
sis, det(B∗

IBI) ≤ Vol2r(Cj−1). So, assume j ∈ I and let vj = αu + βw,
where u = vk and w = vl for k, l < j.

Let P (Q) be the same as BI except that the column vj of BI is
replaced by u (w, respectively). Then, it is easy to see by linearity of
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the determinant that

det(B∗
IBI) = α∗αdet(P ∗P ) + α∗βdet(P ∗Q)

+αβ∗ det(Q∗P ) + β∗βdet(Q∗Q).

The first and the fourth determinants are clearly upper bounded
by Vol2r(Cj−1) since u and w are columns of Cj−1. The third and
fourth determinants are conjugates of each other. We observe that
|det(P ∗Q)| ≤ max{|det(P ∗P )|, |det(Q∗Q)|}. In fact det(P ∗Q) = u∗w×
(an expression involving determinant polynomials in v∗

svt for s, t < j).
Now, |u∗w| ≤ max{‖u‖2,‖w‖2}. Since each of the scalars in front of the
four determinants in the above formula is bounded in absolute value by
θ2, we conclude that |det(B∗

IBI)| ≤ 4θ2 max{|det(P ∗P )|, |det(Q∗Q)|}
which by induction hypothesis is bounded above by 4θ2 Vol2r(Cj−1).

It follows that Volr(C) ≤ (2θ)size(C). Since Volr(A) ≤ Volr(C), we
have proved (1).

The bound in (2) follows from observing that(
n
r

)−1
msv2

r(A) ≤ Vol2r(A) ≤ msv2
r(A).

Combining Theorem 3.17, Lemma 3.13, and Remark 3.3, we obtain
the following lower bound in terms of Rig and singular values of A,
generalizing the classical lower bound due to Morgenstern [65].

Corollary 3.18. Let C be a linear circuit (no restrictions on depth)
using coefficients bounded above in absolute value by θ ≥ 1. If C
computes the linear transformation x �→ Ax for A ∈ Cm×n, then, for
1 ≤ r ≤ n,

(1) size(C) ≥ r log2θ Rigr(A).
(2) size(C) ≥ 1

2 log2θ(er(σ2
1(A), . . . ,σ2

n(A))) − O(n).

In particular, if A is a generalized Hadamard matrix, size(C) =
Ω(n logn).
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3.4 Bounded Coefficient Complexity of some Bilinear
Transformations

In the previous subsections, we saw how rigidity-like functions can be
used to prove lower bounds on linear circuits. In this subsection, we
see applications of these functions to lower bounds on bilinear cir-
cuits. The first such application was discovered by Raz [83] who proved
a remarkable lower bound of Ω(n2 logn) for multiplying two n × n

matrices in the model of bounded coefficient bilinear circuits. Subse-
quently, Bürgisser and Lotz [21] followed a similar approach to prove
lower bounds on convolution, polynomial multiplication, and polyno-
mial division with remainder.

Definition 3.6. A bilinear circuit over a field F on two disjoint sets of
variables X and Y works as follows:

(1) A linear part computes linear forms Li(X) and L′
j(Y ) in the

variables X and Y , respectively.
(2) A bilinear part uses multiplication gates to compute products

Li(X) ∗ L′
j(Y ) for i and j.

(3) Another linear part computes linear forms on the outputs of
the multiplication gates.

In this section, we will only consider bilinear circuits over C.
A bilinear circuit with bounded coefficients uses scalars bounded

in absolute value by 1 in all scalar multiplications in the linear parts
above. Note that the only nonscalar multiplications used are in the
second part.

3.4.1 Bounded Coefficient Complexity of Matrix
Multiplication

Note that given matrices X and Y , the product XY is a bilinear trans-
formation of (X,Y ). Hence, it can be computed by a bilinear circuit.
On the other hand, every arithmetic circuit computing a bilinear trans-
formation over an infinite field can be simulated by a bilinear circuit
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with at most a constant factor of loss in complexity [20]. This reduction
also preserves the property of using bounded coefficients.

Before giving the technical details of the proof, we give an intuitive
overview of Raz’s proof. Let B(X,Y ) be a bilinear circuit with bounded
coefficients computing the matrix product XY . Let L(X) = (Li(X))
and L′(Y ) = (L′

j(Y )) be the linear transformations computed in the
first part. Note that L and L′ are linear transformations on n2 vari-
ables X and Y , respectively. If Rigr(L′) (or Rigr(L)) is at least nε for
r = Ω(n2), then we obtain an Ω(n2 logn) lower bound on the linear part
itself by Corollary 3.18 and we are done. Hence, we may assume that
Rigr(L′) is no more than nε for some small constant ε > 0. Raz uses this
to show the existence of a matrix Y such that: (i) Rigr(Y ) = Ω(

√
n)

for r = Ω(n), and (ii) ∀j, |L′
j(Y )| ≤ O(nε log n) for 0 < ε < 1. To see the

crucial role of this matrix, observe that if we fix Y , the circuit B com-
putes a linear transformation on the matrix X and in fact becomes a
linear circuit BY . Moreover, it is easy to see that the linear transforma-
tion computed by this circuit is given by I ⊗ Y and a lower bound on
Rigr(Y ) from (i) implies one on Rignr(I ⊗ Y ). So, if BY were to involve
only bounded coefficients, then we could use the results of the previous
subsection to derive a lower bound on size(BY ) and hence on size(B).
However, even though B uses bounded coefficients, its restriction BY in
general need not use bounded coefficients since the values L′

j(Y ) used
by the multiplication gates in B (which become the scalars used in BY

when we fix Y ) can be unbounded. Here, Raz employs a neat trick
using (ii). First, note that multiplication by a scalar θ can be replaced
by O(logθ) additions followed by multiplication by a scalar of absolute
value at most 1. This by itself, however, cannot be directly applied since
we will have to do this for all multiplication gates which might be as
many as the size of B itself. Instead, Raz does the following: Let θ be
the maximum (in absolute value) among all the scalars |L′

j(Y )| to be
multiplied. Replace the scalar multiplication by L′

j(Y ) at the inputs to
the third part with a multiplication by L′

j(Y )/θ, which is now bounded
by 1 in absolute value. Now, (effectively) multiply each of the outputs
(there are only n2 of them) by the scalar θ using O(logθ) additions and
a multiplication by a scalar of value at most 1. Since θ = O(nε logn),
this increases the size of the resulting circuit by at most c1n2 logn for
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some constant c1 > 0. If we can show that the linear circuit BY is of
size at least c2n2 logn for some constant c2 > c1, then we can conclude
that the circuit B must have size at least (c2 − c1)n2 logn, thus proving
the main lower bound. By choosing the parameters judiciously, we can
achieve this goal.

Theorem 3.19. Let C be a bounded coefficient bilinear cir-
cuit computing the multiplication of two matrices in Cn×n. Then,
size(C) = Ω(n2 logn).

Proof. We use the notation L and L′ as above. For some constants ε1
and ε to be determined later, if Rigε1n2(L′) ≥ nε, then by Corollary 3.18,
we obtain that the linear part on Y itself is of size at least εε1n2 logn and
we are done. Hence, we may henceforth assume that Rigε1n2(L′) < nε.
Let c1 := ε1ε.

Referring ahead to Lemma 3.20, we know that in this case, there
exists a Y ∈ Cn×n such that

(1) For all 1 ≤ j ≤ k, |L′
j(Y )| ≤ δnε logn for some δ that depends

on ε, ε1.
(2) For constants ε3 and α, Rigε3n(Y ) ≥ α

√
n.

Fix the second input to C to be the matrix Y given by Lemma 3.20.
The multiplication gates in the middle layer now become scalar mul-
tiplications by L′

j(Y ) of the linear forms Li(X) of the variable matrix
X. Let θj := L′

j(Y ) for 1 ≤ j ≤ k and θ := maxj |θj |. Replace each
scalar multiplication by θj with one by θj/θ. Then, multiply each
output of the circuit by θ where this is accomplished by at most
logθ + 1 repeated additions and a final multiplication by a scalar of
absolute value at most 1. Let C ′ be the resulting circuit. Clearly,
C ′ is a linear circuit equivalent to C restricted to the fixed second
matrix Y . Moreover, C ′ uses scalar multiplications bounded in abso-
lute value by 1. It is easy to see that C ′ computes a linear trans-
formation on X ∈ Cn2

given by the matrix I ⊗ Y ∈ Cn2×n2
. Finally,

since there are n2 outputs and, by (1), θ ≤ δnε logn, size(C ′) is
bounded above by size(C) + n2(2 logθ + 3) ≤ size(C) + c3n

2 logn for a
constant c3.
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Our goal is now reduced to proving a lower bound on the linear
circuit C ′. It is easy to see that Volr·n(I ⊗ Y ) ≥ (Volr(Y ))n. By (2), and
Lemma 3.13, Volr(Y ) ≥ (α

√
n)r for r = ε3n. Hence, Volε3n2(I ⊗ Y ) ≥

(α
√
n)ε3n2

. Finally, by Theorem 3.17,

size(C ′) ≥ logVolε3n2(I ⊗ Y ) ≥ ε3n
2 log(α

√
n) ≥ c4n

2 logn,

for a constant c4.
By choosing the parameters, we can ensure that c4 > c3.

It follows that size(C) ≥ size(C ′) − c3n
2 logn ≥ cn2 logn.

Lemma 3.20. Let L′
1, . . . ,L

′
k be linear forms on Cn2

as above and
L′ ∈ Cn2×k be the matrix with L′

j as its columns. Fix parameters ε,
ε1, c1 and c2. Then, there exists a matrix Y ∈ Cn×n (also viewed as a
vector in Cn2

) such that

(1) For each j, 1 ≤ j ≤ k,

|L′
j(Y )| ≤ c1 Rigεn2(L′)

√
2lnk + 4.

(2)

Rigε1n(Y ) ≥ c2
√
n.

Proof. Let R := Rigεn2(L′). This means there exists a subspace V ⊂
Cn2

such that for all j, dist(L′
j ,V ) ≤ R. Let V ⊥ be the orthogonal

complement of V . Let L′
j,V and L′

j,V ⊥ be the projections of the vector
L′

j on V and V ⊥, respectively. It follows that ‖L′
j,V ⊥‖ ≤ R for all j.

We prove the existence of Y through a probabilistic argument.
Choose a matrix W ∈ Cn×n by picking each entry independently from
the Gaussian distribution with expectation 0 and variance 1, denoted
N(0,1). Let W = WV + WV ⊥ be the decomposition of W by project-
ing along V and V ⊥. We define Y := WV ⊥ , to be the projection of W
on V ⊥.

Note that L′
j(Y ) = 〈L′

j ,Y 〉 when treating L′
j as a vector in Cn2

.
Since Y ∈ V ⊥,

〈L′
j ,Y 〉 = 〈L′

j,V ⊥ ,Y 〉 = 〈L′
j,V ⊥ ,W 〉.
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It is well-known that if independent random variables Xi are dis-
tributed according to N(µi,σ

2
i ), then

∑t
i=1λiXi is distributed accord-

ing to N(
∑

iλiµi,
∑

iλ
2
iσ

2
i ) and that if X is distributed according to

N(µ,σ2), then

Pr[|X − µ| > θσ] <

√
2
π

e−θ2/2

θ
.

Since entries of W are independently distributed according
to N(0,1), it follows that 〈L′

j,V ⊥ ,W 〉 is distributed according to
N(0,‖L′

j,V ⊥‖2). Recall that ‖L′
j,V ⊥‖ ≤ R. Hence,

Pr[|〈L′
j,V ⊥ ,W 〉| > R

√
2lnk + 4] <

√
1

π(lnk + 2)
e−2

k
.

The above holds for each j, 1 ≤ j ≤ k. Hence, we will have
|〈L′

j,V ⊥ ,W 〉| ≤ R
√

2lnk + 4 for all j with probability 1 − e−2√
π(lnk+2)

=

1 − o(1). Thus, a matrix Y satisfying (1) exists with probability
1 − o(1).

Toward proving (2), we first recall the well-known fact [92] that
σ1(W ) converges to 2

√
n almost surely. Hence, with probability

1 − o(1), σ1(W ) ≤ (2 + ε)
√
n, for a small enough ε > 0.

Secondly, we recall that if Xi ∼ N(0,1), 1 ≤ i ≤m, are i.i.d. random
variables, then Q =

∑m
i X

2
i is distributed according to the chi-square

density with m degrees of freedom: f(x,m) = 2−m/2

Γ(m/2)x
m/2−1 exp(−x/2).

In particular, Q has expectation m, variance 2m, and moment generat-
ing function MQ(t) = E[etQ](1 − 2t)−m/2 for 2t < 1. Moreover, in the
limit, Q approaches normal distribution . Hence, Pr[Q < (1 − δ)m] < ε

for suitable ε and δ. It follows that ‖W‖2
F ≥ (1 − δ)n2 with high

probability.
By Lemma 3.5 and Fact 3.3

�2-Rig2
r(W ) ≥

n∑
i=r+1

σ2
i (W ) = ‖W‖2

F −
r∑

i=1

σ2
i (W ).

By the above estimates, with high probability ‖W‖2
F ≥ (1 − δ)n2 and

σ1(W ) ≤ (2 + ε)
√
n. For r ≤ cn for sufficiently small c, we then have,

with high probability, �2-Rig2
r(W ) ≥ (1 − δ)n2 − c(2 + ε)2n2 ≥ c′1n2.
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Now, we use Lemma 3.11 to conclude that Rigr(W ) ≥
�2-Rigr(W )/

√
n ≥ c1

√
n.

We still have to prove a lower bound on Rigr(Y ). Recalling
W = Y + WV , we note that for any rank-r matrix D, ‖Y − D‖F ≥
‖W − D‖F − ‖W − Y ‖F = ‖W − D‖F − ‖WV ‖F . We will show
that, with high probability, ‖WV ‖2

F ≤ (1 + ε)dim(V )n ≤ c′2n2 when
dim(V ) ≤ r = cn for sufficiently small r. This will prove that
‖Y − D‖F ≥ c1n − c2n = c3n and by Lemma 3.11, Rigr(Y ) ≥ c3

√
n.

Since (1) and (2) each holds with high probability(say, more than
3/4 each), we have shown that a matrix Y satisfying both (1) and (2)
exists.

It remains to observe that ‖WV ‖2
F is at most (1 + ε)rn with high

probability. Note that WV is a projection of the Gaussian matrix
W onto V . By choosing an orthonormal basis for V , we can ensure
that each entry of WV is a linear combination of Gaussian variables
according to N(0,1) by a unit vector, i.e., by λi where

∑
iλ

2
i = 1.

Thus, WV is a collection of rn variables according to N(0,1). By the
same arguments that we used for W , we conclude that ‖WV ‖2

F has
the chi-square distribution with rn degrees of freedom with mean
rn and variance 2rn, and hence with high probability is at most
(1 + ε)rn.

3.4.2 Bounded Coefficient Complexity of Convolution

Bürgisser and Lotz [22] prove superlinear lower bounds on the bounded
coefficient complexity of the bilinear forms defined by (cyclic) con-
volution, polynomial multiplication, and polynomial division with
remainder.

Definition 3.7. Let a = (a0, . . . ,an−1) and b = (b0, . . . , bn−1) be vectors
in Cn. The cyclic convolution c of a and b is defined by

ck =
∑

i+j=k mod n

aibj , 0 ≤ k ≤ n − 1.

Clearly, cyclic convolution is a bilinear form Cn × Cn → Cn. Convolu-
tion of a and b is often denoted by a ∗ b.
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If f =
∑n−1

i=0 aix
i and g =

∑n−1
j=0 bjx

j are polynomials with a and b

as coefficient vectors, then c gives the coefficients of the product h (also
called convolution) of f and g in the ring C[X]/(Xn − 1).

The lower bounds on polynomial multiplication and division will be
consequences, via well-known reductions, from those on convolution.
The overall structure of the proof for convolution is similar to the one
in Section 3.4.1 for matrix multiplication, so we will be terse.

Note that if we fix a, the convolution a ∗ b is just the linear trans-
formation Ab given by the circulant matrix

A := circ(a) :=


a0 a1 · · · an−1

an−1 a0 · · · an−2

· · · · · · · · · · · ·
a1 a2 · · · a0


Consider a bilinear circuit computing a ∗ b. Let the first part (cf.

Definition 3.6) compute linear forms Li(a), 1 ≤ i ≤ k, in a. Fix r,
1 ≤ r ≤ n. Let Rign−r(L1, . . . ,Lk) =: R.

We will fix a (by a probabilistic argument) to satisfy the following
two properties:

(1) ∀i,1 ≤ i ≤ k,, |Li(a)| ≤ R
√

2lnk + 4.
(2) For this a, the bounded coefficient linear circuit complexity

of x �→ Ax, where A is the circulant matrix defined above is
at least (1/2)(n − r) logn − cn for some constant c.

Given such an a, we can argue as in the proof of Theorem 3.19 and
obtain the following:

Theorem 3.21. The bounded coefficient bilinear complexity of con-
volution is at least (1/12)n logn − O(n log logn).

To prove the existence of a satisfying (1) and (2), let V ⊆ Cn be an
n/2-dimensional subspace achieving Rign/2(L1, . . . ,Lk) = R and V ⊥ be
its orthogonal complement. As before we will pick a to be a standard
Gaussian random vector in V ⊥.
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Lemma 3.22. Let a ∈ Cn be a standard Gaussian vector from V ⊥ of
dimension r chosen as above. Let C be a linear circuit with bounded
coefficients computing x �→ Ax, where A is the circulant matrix given
by a. Then,

Pr
[
size(C) ≥ 1

2
r logr − cr

]
>

1
2
,

where c ≈ 3.73.1

Proof. We will derive a lower bound on the mean square r-volume,
msvr(A), of the circulant matrix A and use (ii) of Theorem 3.17.

Let D = (ζij)n−1
i,j=0, where ζ = exp(2πi/n) is a primitive nth root of

unity, be the Discrete Fourier Transform (DFT) matrix. Recall that
the eigenvalues of A are given by the Fourier transform Da of the
sequence a. In particular, AD = diag(λ0, . . . ,λn−1)D, where λ = Da.
Since 1√

n
D is a unitary matrix, AA∗ = diag(λ2

0, . . . ,λ
2
n−1) and it follows

that |λi| are the singular values of A. Hence

msv2
r(A) =

∑
|I|=r

∏
i∈I

|λi|2. (3.1)

Let α :=(1/
√
n)λ = (1/

√
n)Da. So, msv2

r(A) = nr
∑

|I|=r

∏
i∈I |αi|2.

Since a is a standard Gaussian vector from V ⊥ and (1/
√
n)D is uni-

tary, α is also a standard Gaussian vector in some subspace U of the
same dimension r. We now use a deviation inequality for the products
of squares of Gaussian random variables. We skip the proof and refer
the reader to [22].

Lemma 3.23. Let Z = (Z1, . . . ,Zr) be a centered Gaussian vector
in Cr. Let Σr := (E[ZiZj ])1≤i,j≤r be the covariance matrix of Z. Let

1 The value of c is computed from the expectations of logX2 and log2(X2 + Y 2), where X
and Y are independent standard normal random variables. We refer to [22] for details.
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δ (≈ 0.02) be a fixed a constant.2 Then,

E[|Z1|2 · · · |Zr|2] ≥ detΣr, (3.2)

Pr[|Z1|2 · · · |Zr|2 ≥ δr detΣr] >
1
2
. (3.3)

Since α is a standard Gaussian vector in the subspace U , there
exists an orthonormal basis b1, . . . , br ∈ Cn such that α = Bβ, where
B ∈ Cn×r with bi as columns and β ∈ Cr is a vector of independent
standard Gaussian random variables. For I ⊆ [n], |I| = r, let us denote
αI = (αi)i∈I . We then have αI = BIβ, where BI is the (square)
submatrix given by rows with indices in I. Furthermore, the covari-
ance matrix ΣI = E[αIα

∗
I ] = BIB

∗
I by the independence of βi. Thus,

detΣI = |detBI |2.
By the Binet–Cauchy formula,

detBB∗ =
∑
|I|=r

detBI detB∗
I =
∑
|I|=r

|detBI |2.

But BB∗ = (〈bi, b∗j 〉)1≤i,j≤r and bi are orthonormal. Hence,
detBB∗ = det(〈bi, b∗j 〉) = 1. It follows that

∑
|I|=r |detBI |2 = 1. Hence,

there must exist an I, |I| = r such that detΣI = |detB|2 ≥ (nr)−1.
We apply Lemma 3.23 to αI for such an I and conclude that
Pr[
∏

i∈I |αi|2 ≥ δr
(
n
r

)−1] > 1/2.
In particular, we now obtain from (3.1), that the circulant matrix

A has, with probability at least 1/2,

msv2
r(A) ≥ nrδr

(
n
r

)−1 ≥
(
δr

e

)r

,

using the inequality
(
n
r

) ≤ (en/r)r.
Finally, using Theorem 3.17 and that δ is a constant, we con-

clude that size(C) ≥ (1/2)r logr − cr for a suitable constant c with
probability at least 1/2.

2 The value of δ again arises from considerations alluded to in footnote 1.



4
Sign-Rank and Other Complexity Measures

of Sign Matrices

In Sections 2 and 3, we considered rigidity and other robustness
measures for arbitrary matrices over a field. But in applications to
several lower bound problems, we need to consider robustness mea-
sures of Boolean matrices (entries being 0–1 or ±1). By considering
a ±1-matrix (also called a sign matrix) over R, several complexity
measures have been defined in the literature and lower/upper bounds
on such measures are used to derive interesting consequences in com-
plexity theory. Such measures include sign-rank, margin complexity,
discrepancy, etc., and the applications include communication com-
plexity, learning complexity, Boolean and threshold circuit complex-
ity and so on. In this section, we study complexity measures of sign
matrices and several of their applications. In Section 5, we focus on
applications of various measures of Boolean matrices to communication
complexity.

4.1 Sign-Rank

Let us begin with the definition.

65
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Definition 4.1. For A ∈ {−1,+1}m×n,

sign-rank(A) := min{rank(B) : ∀i, j sign(bij) = aij}.
Thus sign-rank(A) measures the robustness of the rank of A under
sign-preserving changes (every entry is allowed to be changed).

The sign-rank of a matrix has the following elegant geometric
interpretation.

Definition 4.2. Two sets of vectors X = {x1, . . . ,xm} and Y =
{y1, . . . ,yn} with xi,yj ∈ Rd are said to realize the matrix A ∈
{−1,+1}m×n in dimension d if ∀i, j sign(〈xi,yj〉) = aij .

The pair (X,Y ) is also called a d-dimensional linear arrangement
for matrix A.

It is easy to see that sign-rank(A) is exactly equal to the minimum
dimension d of a realization of A. By thinking of A as the incidence
matrix of a set system (rows correspond to elements of a universe,
columns to subsets, and an element is in a subset iff the corresponding
entry is a −1), this is very closely related to a problem about geometric
realizations of set systems as defined in [71] and [2]. In such a real-
ization, the elements of the universe are represented by points xi ∈ Rd

and the sets in the set system by hyperplanes through the origin given
by their normal vectors yj ∈ Rd. The ith element is in the jth set if
and only if the corresponding vector xi is on the “positive” side of the
hyperplane with normal yj . The goal is to realize a given set system in
as small a dimension d as possible.

The definition of sign-rank first appeared (with the geometric inter-
pretation) in the paper by Paturi and Simon [71] who introduced
the model of unbounded error probabilistic communication complexity
and showed that the amount of communication to compute a func-
tion f : {0,1}t × {0,1}t → {0,1} in this model is exactly captured by
sign-rank(Af ), where Af (x,y) = (−1)f(x,y).

Unlike in many cases, it is not even clear that almost all matri-
ces have high sign-rank. Alon et al. [2] prove the non-trivial result that
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sign-rank(A) = Θ(n) for almost all A ∈ {−1,+1}n×n. Their proof relies
on results from real algebraic geometry, e.g., by Warren [102], on the
number of sign patterns of a set of polynomials; a simple linear alge-
braic proof of Warren’s theorem can be found in [89]. Since then, find-
ing an explicit matrix with sign-rank more than logarithmic remained
a challenge. Then, Forster [28] achieved a breakthrough by proving
that any n × n Hadamard matrix must have sign-rank at least Ω(

√
n).

Forster’s lower bound implies asymptotically optimal lower bounds on
the communication complexity of the inner product mod-2 function
in the Paturi–Simon model and also upper bounds on maximal mar-
gins of hyperplane classifiers in learning theory. His lower bound and
some of its generalizations are also applied [29] to derive lower bounds
on threshold circuits of depth-2 and OBDD’s. These applications are
discussed in detail in Section 4.5.

4.2 Forster’s Lower Bound

Let xi,yj ∈ Rd be a minimal dimensional realization of the matrix A.
We begin with two simple observations: (i) we can assume w.l.o.g. that
xi and yj are unit vectors in Rd, and (ii) since ∀i, j sign(〈xi,yj〉) = aij

is an open condition, we can assume w.l.o.g. that the vectors xi (and
yj) are in general position, i.e., any d of them are linearly independent.

We will make use of the following linear algebraic lemma. We defer
its proof to Section 4.2.1.

Lemma 4.1. Let X = {x1, . . . ,xm} be vectors in Rd in general posi-
tion. Then, there is a nonsingular transformation B of Rd such that
x̃i := Bxi/‖Bxi‖ satisfy

m∑
i=1

x̃ix̃i
T =

m

d
Id.

We observe that in any realization of A by xi,yj , we can replace
them w.l.o.g. by x̃i as given in Lemma 4.1 and ỹj defined by ỹj :=
(BT )−1yj/‖(BT )−1yj‖. Indeed,

sign〈x̃i, ỹj〉 = sign〈Bxi,(BT )−1yj〉 = sign〈xi,yj〉.
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Hence, we can assume, w.l.o.g., that the xi are nicely balanced in
the sense that they satisfy

m∑
i=1

xixi
T =

m

d
Id. (4.1)

Theorem 4.2. For A ∈ {−1,+1}m×n, sign-rank(A) ≥ √
mn/‖A‖. In

other words, the minimum dimension A can be realized in is at least√
mn/‖A‖.

Proof. Let xi,yj ∈ Rd be vectors in a minimal dimensional realization
of A. Let Hj be the hyperplane passing through the origin in Rd with
yj as its normal vector. Let Pi be the point in Rd given by xi.

We are interested in bounding the quantity

D :=
n∑

j=1

(
m∑

i=1

dist(Pi,Hj)

)2

=
n∑

j=1

(
m∑

i=1

|〈xi,yj〉|
)2

.

As discussed above, w.l.o.g., we can assume that the xi and the yj

are unit vectors in general position and that the xi satisfy (4.1).
Fix a j. Now,

m∑
i=1

|〈xi,yj〉| ≥
m∑

i=1

(〈xi,yj〉)2 since xi,yj are unit vectors.

=
m∑

i=1

yT
j xix

T
i yj = yT

j

(
m∑

i=1

xix
T
i

)
yj

= yT
j

mId
d
yj by (4.1)

=
m

d
yT

j Idyj =
m

d
.

It follows that D ≥ nm2/d2. We will next show that D ≤m‖A‖2.
Combining these two bounds, we obtain that d ≥mn/‖A‖ and the
theorem is proved.

Since xi and yj realize A, |〈xi,yj〉| = aij〈xi,yj〉. Hence, for any j,
m∑

i=1

|〈xi,yj〉| =
m∑

i=1

aij〈xi,yj〉 =

〈
yj ,

m∑
i=1

aijxi

〉
≤
∥∥∥∥∥

m∑
i=1

aijxi

∥∥∥∥∥ ,
by Cauchy–Schwartz, since yj is a unit vector.
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Thus,

D ≤
n∑

j=1

∥∥∥∥∥
m∑

i=1

aijxi

∥∥∥∥∥
2

=
n∑

j=1

(
m∑

k=1

akjx
T
k

)(
m∑

l=1

aljxl

)

=
∑

1≤k,l≤m

(xT
k xl)

n∑
j=1

akjalj =
∑

1≤k,l≤m

〈xk,xl〉 · (AAT )kl.

Observe that ‖A‖2Im − AAT and (〈xk,xl〉)1≤k,l≤m are both
positive-semidefinite matrices. We now use the following theorem (see,
e.g., [39, Corollary 7.5.4]) characterizing positive-semidefinite matrices.

Fact 4.3 (Fejer’s Theorem). A matrix P ∈ Rm×m is positive-
semidefinite if and only if for all positive-semidefinite matrices Q ∈
Rm×m,

∑
1≤k,l≤mPklQkl ≥ 0.

Hence,
∑

1≤k,l≤m〈xk,xl〉 · (‖A‖2Im − AAT )kl ≥ 0. Using this we
continue with our upper bound on D:

D ≤
∑

1≤k,l≤m

〈xk,xl〉 · ‖A‖2(Im)kl = ‖A‖2
∑

1≤k≤m

〈xk,xk〉

= ‖A‖2m since xk are unit vectors.

This completes the proof.

Corollary 4.4. For an n × n Hadamard matrix H, sign-rank(H)
≥ √

n.

4.2.1 Proof of Lemma 4.1

For a vector x ∈ Rd (written as a column vector), let M(x) denote the
rank-1 matrix xxT in Rd×d. For a set of vectors X = {x1, . . . ,xm} ⊆ Rd,
let M(X) denote the d × d matrix

∑m
i=1 M(xi) =

∑m
i=1xix

T
i . Define a

set of vectors X to be nice if M(X) = (m/d)Id.
For a set of vectorsX, let N(X) denote the normalizations of vectors

in X, i.e., N(X) = {xi/‖xi‖ : xi ∈ X}. For a linear transformation B
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on Rd, B(X) denotes the set of images of elements of X under B. Then,
the lemma can be restated as follows: If X is a set of vectors in Rd in
general position, then there exists a nonsingular linear transformation
B on Rd such that N(B(X)) is nice.

The proof is based on the following two lemmas.

Lemma 4.5. Let X ⊆ Rd be a set of m ≥ d vectors in general position.
Either the matrix M(X) is equal to (m/d)Id or there is a nonsingular
linear transformation B on Rd such that the matrix M(N(B(X))) has
its smallest eigenvalue strictly greater than that of M(X).

Proof. If |X| = d, then by applying a nonsingular linear transforma-
tion B, we can ensure that M(X) = Id and the lemma is proved. So,
let us assume that |X| > d.

Let λ be the smallest eigenvalue of M(X). Note that M(X) is a pos-
itive semidefinite matrix and hence all its eigenvalues are nonnegative.
In fact, it is easy to see that λ is at least 1 (for instance, map, say,
the first d vectors onto the canonical basis vectors ei of Rd). Fur-
ther, the sum of eigenvalues of M(X) is tr(M(X)) =

∑m
i=1
∑d

j=1x
2
i,j =∑m

i=1 ‖xi‖2 = m. It follows that if λ ≥m/d, then all its eigenvalues are
m/d. Hence, by applying a nonsingular linear transformation, we can
write M(X) as (m/d)Id and we are again done.

So, we can assume that λ < m/d. Let s be the multiplicity of λ.
We will show that by applying a nonsingular linear transformation B,
we can ensure that the multiplicity of λ as the smallest eigenvalue of
M(N(B(X))) is strictly smaller than s. By repeatedly applying this
step, we arrive at a matrix having λ as its smallest eigenvalue with
multiplicity zero and no smaller eigenvalues; thus proving the lemma.

We can assume without loss of generality that M(X) is diagonal-
ized: M(X) = diag(λ1,λ2, . . . ,λd), where 1 ≤ λ = λ1 = λ2 = · · · = λs <

λs+1 ≤ ·· · ≤ λd. Let us define B := diag(λ−1/2
1 , . . . ,λ

−1/2
d ) and consider

the multiplicity of λ as an eigenvalue of

C := M(N(B(X))) =
m∑

i=1

1
‖Bxi‖2 (Bxi)(Bxi)T .
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Note that ‖Bxi‖2 =
∑d

j=1x
2
i,j/λj ≤ 1/λ since λj ≥ λ and ‖xi‖2 = 1.

Also,
∑m

i=1(Bxi)(Bxi)T = Id by our assumption on M(X) and
definition of B. It follows that C − λId is positive semidefinite. Hence,
all eigenvalues of C are at least λ.

We need to show that the multiplicity of λ as an eigenvalue of C
is strictly smaller than s. We will do this by showing that the rank of
C − λId is strictly larger than d − s. To this end, we note that in the
inequality ‖Bxi‖2 ≤ 1/λ observed above, equality holds if and only if xi

is an eigenvector of M(X) for eigenvalue λ. Since λ has multiplicity s,
there are at most s vectors xi ∈ X such that this equality holds. For
the remaining m − s vectors from X, this inequality is strict. Note
that s < m since λ < m/d and the sum of the eigenvalues of M(X)
is m. Since

C − λId =
m∑

i=1

(
1

‖Bxi‖2 − λ

)
(Bxi)(Bxi)T ,

for at least m − s terms in the sum, the coefficients are strictly positive.
Moreover, the vectors xi (and hence Bxi) corresponding to these terms
are either linearly independent (if there are fewer than d of them) or in
general position (if there are more than d of them). Hence, C − λId is a
positive linear combination of at least min{m − s,d} rank-1 matrices of
the form yiy

T
i . It follows that the rank of C − λId is at least min{m −

s,d}. Since m > d, we conclude that the rank of C − λId is strictly
larger than d − s, unless it is already d.

Lemma 4.6. For a given finite set X ⊆ Rd of vectors in general posi-
tion and an ε > 0, the set of all matrices A ∈ Rd×d such that (1) and
(2) below hold is compact.

(1) ‖B‖ = 1.
(2) The smallest eigenvalue of M(N(B(X))) is least 1 + ε.

The proof of this lemma is by a simple compactness argument and
we refer the reader to [28] for the details.
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Given Lemmas 4.5 and 4.6, we can now complete the proof of
Lemma 4.1.

By reasoning as in the proof of Lemma 4.5, we can see that the
smallest eigenvalue of M(X) is at least 1. If M(X) is already not of the
form (m/d)Id, then Lemma 4.5 shows that we can increase its smallest
eigenvalue to at least 1 + ε for some ε > 0 after applying a nonsingular
linear transformation B and normalizing.

The nonsingular transformation B above can be assumed to have
‖B‖ = 1 since replacing B by B/‖B‖ does not change M(N(B(X))).
By Lemma 4.6, the set of all such linear transformations is compact.
The smallest eigenvalue of a positive semidefinite matrix is a continuous
function of the matrix. Hence, the smallest eigenvalue of M(N(B(X))) is
a continuous function of B for the given X. It follows that the maximal
value of the smallest eigenvalue is achieved by some B in this set. For
this B, M(N(B(X))) must be of the form (m/d)Id. Otherwise, we can
apply Lemma 4.5 again and find another B in this set to increase
the smallest eigenvalue. This contradicts the maximality at B of the
smallest eigenvalue of M(N(B(X)).

4.3 Margin Complexity, Factorization Norms,
and Discrepancy

The margin of an arrangement of hyperplanes and points arises in learn-
ing theory. We will discuss this application in more detail in Section 4.5.

Definition 4.3. Let X = {xi, . . . ,xm} and Y = {y1, . . . ,yn} be a sign
realization by unit vectors of the matrix A ∈ {−1,+1}m×n as in
Definition 4.2. The margin of A is then defined to be the maximum
margin among all its realizations:

margin(A) := max
{

min
i,j

|〈xi,yj〉| : X,Y realize A
}
.

We also define, following [55], the margin complexity mc(A) to be
margin(A)−1.

When we view xi as points and yj as normals to hyperplanes through
the origin, margin(A) is the minimum distance of any point from any
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hyperplane in the arrangement. Note that the dimension of the R-space
in which the xi and yj live is not relevant for this definition.

It is easy to see that for any A ∈ {−1,+1}m×n, mc(A) is at most
min{√m,√n}.

Forster’s result from Section 4.2 also proves a lower bound on the
margin complexity of a sign matrix.

Theorem 4.7. For A ∈ {−1,+1}m×n, mc(A) ≥ √
mn/‖A‖.

Proof. Recall the definition of D from the proof of Theorem 4.2:

D :=
n∑

j=1

(
m∑

i=1

dist(Pi,Hj)

)2

=
n∑

j=1

(
m∑

i=1

|〈xi,yj〉|
)2

.

Let us consider D in a realization by xi and yj achieving the maximal
margin for A.

Clearly, D ≥ n(mmargin(A))2. In that proof, we also proved the
upper bound D ≤m‖A‖2. Combining these, we have margin(A) ≤
‖A‖/√mn. Since mc(A) = margin(A)−1, we are done.

Linial et al. [53] relate margin complexity to some factorization
norms of sign matrices and discrepancy.

Given an operator A : U → V , its factorization norm through the
normed space W is obtained by writing A = XY , where Y : U →W

and X : W → V , that minimizes the product of the norms of operators
X and Y . An example of such a factorization norm of interest to us is
when U = �m1 , V = �n∞, and W = �2.

Definition 4.4. Let A : �m1 → �n∞. Then, we define γ2(A) to be

γ2(A) = min
A=XY

‖Y ‖1→2‖X‖2→∞.

It is easy to see that for a matrix R ∈ Rm×r, ‖R‖1→2 is the largest
�2-norm of a row of R and that for a matrix C ∈ Rs×n, ‖C‖2→∞ is the
largest �2-norm of a column of C. Hence, we have

γ2(A) = min
A=XY

max
ij

‖xi‖‖yj‖, (4.2)
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where xi, 1 ≤ i ≤m, are the rows of X and yj , 1 ≤ j ≤ n, are the
columns of Y .

Definition 4.5. For a matrix A ∈ {+1,−1}m×n, the set SP(A) is
defined by

SP(A) := {B ∈ Rm×n such that ∀i, j aijbij ≥ 1},
i.e., the set of real matrices B that agree in sign with A entry-wise and
have each entry of absolute value at least 1.

Lemma 4.8. mc(A) = minB∈SP(A) γ2(B).

Proof. (sketch) Given a sign realization as in Definition 4.3 achieving
mc(A), identify (by abuse of notation) the set of vectors X and Y

with matrices X and Y with rows xi and columns yj , respectively. Let
B := mc(A)XY . Note that B ∈ SP(A) and γ2(B) ≤ mc(A). This shows
that minB∈SP(A) γ2(B) ≤ mc(A). For the other direction, let B achieve
the minimum on the right-hand side. Let X and Y be the matrices
realizing the minimum in γ2(B). Since B ∈ SP(A), it can be seen that
the rows and columns of X and Y , respectively give, after suitable
normalization, a sign realization of A with a margin complexity at
most γ2(B).

Corollary 4.9. mc(A) ≤ γ2(A).

We recall the definition of a dual norm.

Definition 4.6. Let A ∈ Cm×n. Let ‖ · ‖ be a norm on a vector space
V over R or C. The dual norm ‖ · ‖∗ is defined by

‖y‖∗ := sup{|〈x,y〉| : ‖x‖ = 1}.
In particular, for a matrix norm ‖ · ‖ on Cm×n the dual norm ‖ · ‖∗ is
defined by

‖A‖∗ := sup{|trAC∗| : C ∈ Cm×n,‖C‖ = 1},
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where the dual is defined with respect to the Frobenius inner product,
〈A,C〉 = tr(AC∗), on Cm×n.

Using the dual norm γ∗
2 of γ2, Linial et al. [53] obtain a better lower

bound on mc(A) than Forster’s (Theorem 4.7).

Theorem 4.10. mc(A) ≥mn/γ∗
2(A).

Proof. Let B ∈ Rm×n be a matrix with mc(A) = γ2(B) as in
Lemma 4.8. Define C := B/γ2(B) so γ2(C) = 1. Since B and C

have the same sign pattern, 〈C,A〉 =
∑

ij cijaij = (
∑

ij bijaij)/γ2(B) ≥
mn/γ2(B) since B ∈ SP(A). Hence, by definition, γ∗

2(A) ≥mn/γ2(B).
Since mc(A) = γ2(B), we are done.

The following inequality shows that the bound in Theorem 4.10 can
be better than the bound in Theorem 4.7.

Lemma 4.11. For A ∈ Rm×n, γ∗
2(A) ≤ √

mn‖A‖.

Proof. Let B ∈ Rm×n be such that γ2(B) = 1. Using (4.2), let X ∈
Rm×t and Y ∈ Rt×n (the value of t is not important) be such that
B = XY and γ2(B) = 1 = maxij ‖xi‖‖yj‖, where xi (yj) is the ith row
(jth column) ofX (Y ), 1 ≤ i ≤m, 1 ≤ j ≤ n. Let x(j) be the jth column
of X and y(i) be the ith row of Y for 1 ≤ i, j ≤ t and note that B =
XY =

∑t
j=1x

(j)y(j). Now,

〈A,B〉 =
〈
A,
∑

x(j)y(j)
〉

=
∑

j

〈A,x(j)y(j)〉

=
∑

j

y(j)Ax(j)

≤ ‖A‖
∑

j

‖x(j)‖‖y(j)‖ by definition of ‖A‖

≤ ‖A‖

√√√√√
∑

j

‖x(j)‖2

∑
j

‖y(j)‖2

 by Cauchy–Schwartz
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= ‖A‖

√√√√√(∑
i

‖xi‖2

)∑
j

‖yj‖2


≤ ‖A‖√mmax

i
‖xi‖

√
nmax

j
‖yj‖

= ‖A‖√mnγ2(B) = ‖A‖√mn.

In fact, Linial et al. exhibit a (random-like) matrix A ∈ {−1,+1}n×n

for which γ∗
2(A) = O(n3/2), whereas ‖A‖ = Ω(n3/4). For this A, then,

Forster’s bound can give at most a lower bound on mc(A) of O(n1/4)
whereas the bound from Theorem 4.10 gives Ω(n1/2).

Finally, Linial et al. use a famous inequality due to Grothendieck
to relate γ∗

2(A) to an operator norm of A.

Theorem 4.12 (Grothendieck’s Inequality). Let A = (aij) be a
real matrix such that |∑ij aijsitj | ≤ 1 for every choice of reals that sat-
isfy |si|, |tj | ≤ 1 for all i, j. Then, there exists an absolute constant KG,
where 1.5 < KG < 1.8, such that∣∣∣∣∣∣

∑
ij

aij〈xi,yj〉
∣∣∣∣∣∣ ≤KG,

for all unit vectors xi and yj in a real Hilbert space.

For an elementary proof of this inequality, see [14].

Lemma 4.13. For every A ∈ Rm×n,

‖A‖∞→1 ≤ γ∗
2(A) ≤KG‖A‖∞→1.

Proof. Let x be such that ‖x‖∞ = 1 and ‖Ax‖1 = ‖A‖1. Consider the
matrix B = sign(x)xt, where sign(x) is the column vector of signs of
the coordinates of x. It is easy to see that γ2(B) = ‖x‖∞ = 1 and that
〈A,B〉 = sign(x)tAx = ‖Ax‖1. Hence, γ∗

2(A) ≥ 〈A,B〉 = ‖A‖∞→1.
The other direction is a restatement of Grothendieck’s

inequality.
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Corollary 4.14.

mc(A) ≥ mn

KG‖A‖∞→1
.

Using methods similar to the foregoing, Linial et al. also prove lower
bounds on sign-rank.

Theorem 4.15. For any A ∈ {−1,+1}m×n,

sign-rank(A) ≥ mn

γ∗
2(A)

, and

sign-rank(A) ≥ mn

KG‖A‖∞→1
.

Using the well-known John’s theorem [17, Section 4, Theorem 15]
(also known as John’s Lemma and related to the so-called Löwner–
John ellipsoids), Linial et al. also show the following relation between
rank and γ2.

Lemma 4.16. For any A ∈ Rm×n,

γ2
2(A) ≤ ‖A‖2

∞→1 rank(A).

In particular, for a sign matrix A,

γ2(A) ≤
√

rank(A).

Combined with Corollary 4.9 we have the following for any m × n

sign matrix A:

mc(A) ≤ γ2(A) ≤
√

rank(A). (4.3)

The results for an Hadamard matrix show that these inequalities
are in general tight.

As we note from the above, we have the same lower bounds on sign-
rank(A) and mc(A) and they are proved using very similar techniques.
Hence, one wonders if there is some relation between sign-rank(A)
and mc(A). The best known relation is the following based on the
Johnson–Lindenstrauss lemma.
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Lemma 4.17. For A ∈ {−1,+1}m×n,

sign-rank(A) = O(mc(A)2 log(m + n)).

We will see a proof of this lemma in the context of probabilistic
communication complexity in Section 5.3 (cf. Lemma 5.15).

Finally, Linial and Shraibman [55] show a close relationship between
margin complexity and discrepancy.

Definition 4.7. Let A ∈ {−1,+1}m×n and µ be a probability distri-
bution on entries of A. For a combinatorial rectangle R in A, let R+

and R− are the positive and negative entries in R, respectively. Then,

discµ(A) := max |µ(R+) − µ(R−)|,

where the maximum is taken over all combinatorial rectangles R in A.
The discrepancy of A, denoted disc(A), is then defined as the minimum
of discµ over all distributions µ.

Theorem 4.18. For any A ∈ {−1,+1}m×n,

1
8

margin(A) ≤ disc(A) ≤ 8margin(A).

Proof. (outline) The proof consists of the three main steps below. For
details, see [55].

(1) Show that the margin changes by at most a factor of KG,
where KG is the Grothendieck’s constant, if we replace
the arbitrary unit vectors in Definition 4.3 by normalized
sign vectors, i.e., xi/‖xi‖,yj/‖yj‖, where xi,yj ∈ {−1,+1}k

for some k. Denote this restricted variant of margin by
margin±(A).
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(2) Next, observe that

disc(A) ≤ min
P∈P

‖P ◦ A‖∞→1 ≤ 4disc(A),

where ◦ denotes the Hadamard product of two matrices and
P denotes the set of matrices with nonnegative entries that
sum up to 1.

(3) Finally, express margin± in the first step as the optimum of
a linear program and use Linear Programming (LP) duality
to show that

margin±(A) = min
P∈P

‖P ◦ A‖∞→1.

4.4 Sign-Rank of an AC0 function

Recently, Razborov and Sherstov [88] proved a lower bound of
exp(Ω((logn)1/3)) on the sign-rank of an n × n matrix Af obtained by
evaluating an AC0 function f on all (x,y). This is a remarkable result
both due to the new techniques it uses and several interesting conse-
quences. In this subsection, we review the proof of this lower bound.
We discuss its applications in the next subsection.

The matrix Af is a 2t3 × 2t3 ±1 matrix given by evaluating the AC0

function

f(x,y) :=
t∧

i=1

t2∨
j=1

(xij ∧ yij), (4.4)

on all pairs (x,y) ∈ {0,1}t3 × {0,1}t3 , i.e., Af (x,y) := (−1)f(x,y). The
main result from [88] is that sign-rank(Af ) = 2Ω(t).

The first ingredient in the proof is a generalization of Forster’s argu-
ment to matrices that may have a small number of zero entries and there
is a lower bound on the magnitude of the remaining entries. The sec-
ond new ingredient is the construction of the so-called smooth orthog-
onalizing distributions for Boolean functions. By “masking” a Boolean
function with such a distribution, the Fourier coefficients can be con-
trolled. The final ingredient is the derivation of an expression for the
spectral norm of a pattern matrix in terms of the Fourier transform
of the Boolean function defining that matrix. We will discuss these
ingredients before proving the main theorem.
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4.4.1 A Generalization of Forster’s Argument

We define the sign-rank of an arbitrary real matrix A as the minimum
rank of a real matrix B such that all nonzero entries of the entry-wise
product A ◦ B are strictly positive:

sign-rank(A) := min{rank(B) : ∀i, j aij 	= 0 ⇒ aijbij > 0}.
Clearly, we can assume that all the entries of A are bounded in absolute
value by at most 1.

A simple generalization of Forster’s bound from Theorem 4.2 was
proved in [29]: for any matrix A ∈ Rm×n, sign-rank(A) ≥ minxy |Axy| ·√
mn/‖A‖. Another generalization in [30] considers preserving signs for

all but h of the entries of A: if Ã is obtained from A ∈ {−1,+1}m×n by
changing at most h entries in an arbitrary fashion, then sign-rank(Ã) ≥√
mn/‖A‖ + 2

√
h. Razborov and Sherstov [88] prove the following

hybrid generalization.

Theorem 4.19. Let A ∈ Rm×n be such that for all but h of (i, j),
|aij | ≥ γ. Then,

sign-rank(A) ≥ γmn

‖A‖√mn + γh
.

Proof. Let sign-rank(A) = d. Let B be a matrix of rank d such that for
all i, j, where aij 	= 0, aijbij > 0. We can further assume that

(1) ‖B‖∞ ≤ 1.
(2) ‖B‖2

F = mn/d.

Indeed, write B = XY , where X ∈ Rm×d and Y ∈ Rd×n. Using argu-
ments similar to those in Section 4.2, we can assume that the rows
of X, x1, . . . ,xm ∈ Rd, are unit vectors in general position and that
the columns of Y , y1, . . . ,yn ∈ Rd are all unit vectors. Then, B is
defined by bij := 〈xi,yj〉. Since xi and yj are unit vectors, for any i, j,
|bij | = |〈xi,yj〉| ≤ ‖xi‖‖yj‖ = 1 by Cauchy–Schwartz. Thus, (1) holds.
The calculation in the proof of Theorem 4.2 shows that for any j,∑m

i=1(〈xi,yj〉)2 = m/d. Thus, ‖B‖2
F =
∑n

j=1
∑m

i=1(〈xi,yj〉)2 = mn/d.
This shows (2).
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The proof compares an upper bound and a lower bound on 〈A,B〉 :=∑
ij aijbij (cf. Lemma 3.7). We have,

〈A,B〉 ≥
∑

|aij |≥γ

aijbij since aijbij ≥ 0 for all i, j

≥ γ

∑
ij

|bij | − h

 since ∀i, j |bij | ≤ 1 and

aijbij = |bij | for all but h of (i, j)

≥ γ(‖B‖2
F − h) by (1) above

≥ γ
(mn
d

− h
)

by (2) above.

On the other hand,

〈A,B〉 =
∑

i

σi(A)σi(B) from the proof of Lemma 3.7

≤ ‖A‖
∑

i

σi(B)

≤ ‖A‖‖B‖F

√
d by Cauchy–Schwartz since∑

i

σ2
i (B) = ‖B‖2

F and σi(B) = 0 for i > rank(B)

= ‖A‖√mn by (2) above.

Comparing the two bounds,

γ
(mn
d

− h
)
≤ 〈A,B〉 ≤ ‖A‖√mn.

Hence,

d ≥ γmn

‖A‖√mn + γh
.

4.4.2 Smooth Orthogonalizing Distributions

We recall some basic facts about Fourier analysis of Boolean functions.
Consider the space of functions F := {f : {0,1}n → C} with the inner
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product:

(f,g) := 2−n
∑

x∈{0,1}n

f(x)g(x).

The functions χS(x) = (−1)
∑

i∈S xi , S ⊆ [n], form an orthonormal basis
for the space F with the above inner product. Hence, every function
f ∈ F can be uniquely expressed as a linear combination of χS . The
coefficients in this linear combination are called the Fourier Coefficients
of f . In particular, for S ⊆ [n], the Fourier coefficient f̂(S) is given by

f̂(S) := 2−n
∑

x∈{0,1}n

f(x)χS(x).

Thus, we also have the inverse transform:

f(x) =
∑

S⊆[n]

f̂(S)χS(x).

By orthogonality of the basis, we also have
∑

S⊆[n] |f̂(S)|2 = (f,f) =
2−n
∑

x∈{0,1}n |f(x)|2; this is known as Parseval’s Identity.

Definition 4.8. A distribution µ on {0,1}n is k-orthogonalizing for a
function f : {0,1}n → {−1,+1} if

|S| < k ⇒ Ex∼µ[f(x)χS(x)] = 0.

A smooth distribution places substantial weight on all but a tiny
fraction of the sample points.

The second ingredient of the main result constructs smooth orthog-
onalizing distributions for the function:

MPm(x) :=
m∧

i=1

4m2∨
j=1

xij .

Theorem 4.20. There is an (m/3)-orthogonalizing distribution µ for
MPm such that µ(x) ≥ 8−m2−4m3

/2 for all x ∈ {0,1}4m3
such that

MPm(x) = −1.
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4.4.3 The Pattern Matrix Method for Lower Bounds
on Sign-Rank

The pattern matrix method, introduced by Sherstov [90], is a power-
ful tool for proving lower bounds in communication complexity. This
method is used in obtaining a formula (exact!) for the spectral norm
of a pattern matrix defined by an AC0 function f in terms of Fourier
coefficients of f .

Let n and N be positive integers such that n |N . Partition [N ] into
n intervals of length N/n each:

[N ] =
{

1, . . . ,
N

n

}
∪̇ · · · ∪̇

{
(n − 1)N

n
+ 1, . . . ,N

}
.

Let V := V(N,n) denote the family of n-subsets V ⊆ [N ] that contain
exactly one element from each of the above intervals. For x ∈ {0,1}N

and V = {i1, . . . , in} ∈ V, where ij is in the jth interval in the above
partition of [N ], let x�V := (xi1 , . . . ,xin) ∈ {0,1}n denote the projection
of x onto V .

Definition 4.9. Let φ : {0,1}n → R. The (N,n,φ)-pattern matrix A

has rows indexed by x ∈ {0,1}N and columns indexed by pairs (V,w)
where V ∈ V(N,n) and w ∈ {0,1}n. Thus, A is a 2N × (N/n)n2n real
matrix. The entry indexed by (x,(V,w)) is given by evaluating the
function φ at x�V ⊕ w, i.e., the mod-2 sum of the projection of x onto
V and w. That is,

A = (φ(x�V ⊕ w))x∈{0,1}N ,(V,w)∈V×{0,1}n .

The final ingredient we need is a formula for the spectral norm of
the pattern matrix A in terms of the Fourier transform of φ, [90].

Theorem 4.21. Let A be the (N,n,φ)-matrix as defined above. Then,

‖A‖ =

√
2N

(
2N
n

)n

max
S⊆[n]

{
|φ̂(S)|

( n
N

)|S|/2
}
.

We now have all the ingredients to prove the main result of this
section.
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Theorem 4.22. Let f be defined as in (4.4) and let Af = (f(x,y))x,y ∈
{−1,+1}2t3×2t3

, be the matrix obtained by evaluating f on all pairs of
inputs (x,y). Then, sign-rank(Af ) = 2Ω(t).

Proof. Let M be the (N,n,MPm) pattern matrix. We first observe
that M is a submatrix of Af , by letting t = cm for some large enough
constant c. It suffices to take c = 4N/n (later we will set N = 106n). To
see that M is a submatrix of Af , note that (z�V )ij ⊕ wij = ((z�V )ij ∧
wij) ∨ ((z�V )ij ∧ wij). Now, consider two disjoint subsets of N bits each
among the 2t bits of x and similarly for y. Map z ∈ {0,1}N onto an x

that agrees with z on one of these two disjoint subsets and with z on
the other. Next, map (V,w) ∈ V × {0,1}n onto a y, i.e., zero everywhere
except the positions indexed by elements of V ⊆ [N ] in the two subsets.
In the positions indexed by V set the bits in one of the subsets to those
of w and in the other subset by w. For such an (x,y) it is easy to see
that MPm(z�V ⊕ w) = f(x,y). Thus, M is a submatrix of Af . Hence,
it suffices to prove that sign-rank(M) = 2Ω(m).

Let P be the (N,n,µ) pattern matrix, where µ is as in Theorem 4.20.
Since P is a nonnegative matrix, sign-rank(M) ≥ sign-rank(M ◦ P ).
Instead of on M , we prove a lower bound of 2Ω(m) on sign-rank(M ◦ P )
since Mµ := M ◦ P has a better-behaved Fourier transform than M ,
thanks to the smooth orthogonalizing aspect of µ for the function MPm.

We will apply Theorem 4.19 to the matrix Mµ. Note that all but
an exp(−m2)-fraction of entries of Mµ have absolute value at least
8−m2−n/2 by the smoothness property of µ and since |M(x,y)| = 1.
Hence, we take γ := 8−m2−n/2 and h = |M |exp(−m2), where |Mµ| =
|M | denotes the total number of entries inM , i.e., 2N · (2N/n)n. Hence,
we have

sign-rank(Mµ) ≥ γ|M |
‖Mµ‖

√|M | + γh
≥ min

{
γ
√|M |

2‖Mµ‖ ,2
Ω(m2)

}
. (4.5)

It remains to prove an upper bound on ‖Mµ‖. Let φ(x) :=
MPm(x)µ(x) and note that Mµ is the (N,n,φ) pattern matrix. From
definition, for any S ⊆ [n], |φ̂(S)| ≤ 2−n

∑
x∈{0,1}n |φ(x)| = 2−n. Also,
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by the orthogonalizing nature of µ, φ̂(S) = 0 for |S| ≤m/3. Hence,
in the expression for ‖Mµ‖ in Theorem 4.21, the max is at most
2−n(n/N)m/6. It follows that ‖Mµ‖ ≤√|M |2−n(N/n)−m/6.

Substituting this upper bound on ‖Mµ‖ and the value of γ in (4.5),
we obtain sign-rank(Mµ) ≥ 8−m(N/n)m/6. We take N = 106n, so we
get sign-rank(Mµ) = exp(m) and the theorem is proved.

4.5 Applications of Complexity Measures of Sign Matrices

4.5.1 Communication Complexity

The notion of sign-rank of a matrix was first introduced by Paturi and
Simon [71] in the context of unbounded error probabilistic communica-
tion complexity. We will focus on communication complexity models in
detail in Section 5. Hence, we postpone this application to Sections 5.3
and 5.4.

4.5.2 Learning Theory

In learning theory, a basic task is to design algorithms that take a
training sample of input–output pairs ((ξ1,f(ξ1)), . . . ,(ξm,f(ξm))) of a
function f : D → {−1,+1}, ξi ∈ D, and learn some (approximate) rep-
resentation f∗ of f . The function f is often assumed to come from
a concept class F . Properties of F are exploited to make the learn-
ing algorithm efficient and the classifier f∗ accurate. The domain D
is often mapped, via a kernel, into Rd and the classifier f∗ is repre-
sented by a hyperplane in Rd. The sample inputs ξi are then mapped
to points xi ∈ Rd and an exact1 classifier f∗ would then correspond to a
hyperplane with a normal y ∈ Rd such that xi is on the positive side of
the hyperplane, i.e., sign〈xi,y〉 > 0 if and only of f(ξi) = +1. A future
input x ∈ Rd is then classified by the learned hyperplane according to
the sign of 〈x,y〉.

In large margin classifiers (e.g., Support Vector Machines (SVMs)),
the objective of the classifier is to find a hyperplane that maximizes the
margin, i.e., the distance to the hyperplane from any point from the

1 Here we consider only exact classifiers.
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training sample. Since scaling can artificially inflate this distance, it is
natural to assume that the samples xi and the normal y are all unit
vectors in Rd. Furthermore, we can assume that the hyperplane passes
through the origin by translating. Then, for a given sample X = {xi}
and a hyperplane with normal y, it is easy to see that the margin is
given by mini |〈xi,y〉|. Since the unknown function f comes from the
concept class F = {f1, . . . ,fn}, we want to consider the overall mini-
mum margin (worst case among all functions from F) in an arrange-
ment of hyperplanes (with normals yj) for all the functions from F
and for the sample xi. By increasing the dimension by 1 and losing
a factor of 2 in the margin, we can assume that hyperplanes all pass
through the origin. The minimum margin of an arrangement (X,Y ) is
then given by

margin(X,Y ) = min
ij

|〈xi,yj〉| .

Note that the dimension d of the space in which the arrangement is
realized is not relevant for this complexity measure.

A concept class F on a given sample Ξ of inputs is naturally
given by a sign matrix AΞ,F ∈ {−1,+1}m×n, where AΞ,F (ξ,f) = f(ξ),
|Ξ| = m, and |F| = n. The performance of a learning algorithm with
a given mapping κ : D → Rd for this concept class on this sample is
margin(X,Y ) = minij |〈xi,yj〉|, where X = κ(Ξ) and Y is the set of nor-
mals to the homogeneous hyperplanes learned by the algorithm. Hence,
the performance of the best learning algorithm under the best mapping
is given by

margin(AΞ,F ) = sup
X,Y

margin(X,Y ) = sup
X,Y

min
ij

|〈xi,yj〉| ,

where the sup is over all unit vectors x1, . . . ,xm and y1, . . . ,yn in Rd.
This is the margin of the sign matrix A and defines, in some sense, the
inherent learning complexity of A.

It is easy to show that there is a trivial arrangement of homoge-
neous halfspaces that realizes any m × n matrix A with a margin of at
least max{m−1/2,n−1/2}: if m ≤ n, let xi be the canonical unit vectors
and yj be the normalized column vectors of the matrix A. Ben-David
et al. [11] show that a random n × n sign matrix has a margin of at



4.5 Applications of Complexity Measures of Sign Matrices 87

most O(n−1/2 log1/2n). Thus, for almost all n × n sign matrices the
margin given by the trivial embedding is essentially optimal. Forster’s
theorem (Theorem 4.7) gives an explicit matrix for which the trivial
embedding indeed gives the best possible margin.

Corollary 4.23 (to Theorem 4.7). Suppose, AΞ,F is given by an
n × n Hadamard matrix Hn. Then, margin(H) ≤ n−1/2.

There’s another parameter, the VC-dimension of a concept class
that also plays a prominent role in learning theory. Vapnik [99], in
particular, showed that if the VC-dimension of a concept class is d,
then the margin of any arrangement realizing the concept class is at
most d−1/2. The VC-dimension of the concept class given by an n × n

Hadamard matrix is easily seen to be at most logn. Thus, the upper
bound based on VC-dimension is at most (logn)−1/2, whereas the above
corollary gives the optimal n−1/2.

4.5.3 Threshold Circuits

Our third application is to lower bounds on depth-2 threshold circuits
in terms of minimal dimension.

Recall that a (linear) threshold gate with weights w1, . . . ,wn

and threshold w0 outputs 1 on inputs x1, . . . ,xn if and only if
w1x1 + · · · + wnxn ≥ w0. Proving superpolynomial lower bounds on the
size of depth-2 threshold circuits for explicit functions when the thresh-
old gates are allowed to use arbitrary weights is an interesting open
question. Hajnal et al. [35] show an exponential lower bound for the
inner product mod-2 function when all the weights used in a depth-2
threshold circuit are polynomially bounded. Here, we will see a stronger
result by showing that the restriction on the weights of the top gate
can be removed. We use lower bounds on sign-ranks of explicit matrices
to derive exponential lower bounds for some explicit functions includ-
ing inner product mod-2. In fact, these lower bounds are exponen-
tial when the depth-2 circuit has a threshold gate (with unrestricted
weights) at the top and either threshold gates with polynomial weights
or gates computing arbitrary symmetric functions at the bottom.
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The following theorem states that (loosely speaking) Boolean func-
tions with “high” minimal dimension cannot be computed by “small”
(somewhat technically restricted) depth-2 threshold circuits. Part (a)
of this theorem strengthens the lower bound of [35] and Part (b) gener-
alizes and strengthens the results of [19, 46, 47]. Note that for technical
reasons we assume that the top threshold gate is ±1-valued whereas
the threshold gates on the bottom level are {0,1}-valued.

Theorem 4.24. Let (fn) be a family of Boolean functions, where
fn : {0,1}n × {0,1}n → {−1,+1} and let Af (x,y) = f(x,y) be the cor-
responding 2n × 2n sign matrix. Suppose (fn) is computed by depth-2
threshold circuits in which the top gate is a linear threshold gate (with
unrestricted weights). Then the following holds:

(a) If the bottom level has s linear threshold gates using
integer weights of absolute value at most W , then s =
Ω
( sign-rank(Af )

nW

)
. In particular, s = Ω

(2n/2

nW

)
for fn = ipn

(inner product mod-2).
(b) If the bottom level has s gates computing symmetric func-

tions, then s = Ω
( sign-rank(Af )

n

)
. In particular, s = Ω

(2n/2

n

)
for fn = ipn.

Note that the specific bounds for ipn follow immediately from the
general bound for fn by applying Corollary 4.4.

Using Theorem 4.22, we obtain a separation result between depth-3
AC0 and depth-2 threshold circuits.

Corollary 4.25. Let fn be the depth-3 AC0-function given by (4.4)
with n = t3. Then, depth-2 threshold circuits of the kind in (a) com-
puting fn must have size 2Ω(n1/3)/W and depth-2 threshold circuits of
the kind in (b) computing fn must have size 2Ω(n1/3).

The proof of this theorem is based on Theorem 4.2 and the two
lemmas below.
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Lemma 4.26. Let G : {0,1}n × {0,1}n → {0,1} be a threshold func-
tion where for x,y ∈ {0,1}n, G(x,y) = 1 if and only if

∑n
i=1αixi +∑n

i=1βiyi ≥ µ for weights αi,βi,µ ∈ Z. Then, G (viewed as a matrix)
has rank at most min{∑n

i=1 |αi|,
∑n

i=1 |βi|} + 1.

Proof. W.l.o.g. let
∑n

i=1 |αi| ≤
∑n

i=1 |βi|. Let αmin (αmax) be the min-
imal (maximal) value taken by

∑n
i=1αixi as x ranges over all possible

inputs in {0,1}n. As the weights are integers, this sum takes at most
αmax − αmin + 1 distinct values. We partition the rows of G according
to the weight contributed by x and, within each block of these rows,
we partition the columns into two groups depending on whether or not
the weight contributed by y together with that of any row of that block
exceeds the threshold µ or not. Specifically, define the following sets of
entries of G for all α such that αmin ≤ α ≤ αmax:

Sα,0 :=

{
(x,y) :

n∑
i=1

αixi = α and
n∑

i=1

βiyi < µ − α

}
, and

Sα,1 :=

{
(x,y) :

n∑
i=1

αixi = α and
n∑

i=1

βiyi ≥ µ − α

}
.

Let Gα,0 and Gα,1 be (disjoint) submatrices of G defined by the entries
Sα,0 and Sα,1, respectively. It is clear that Gα,0 is an all-0 matrix and
Gα,1 is an all-1 matrix for any α. Furthermore, G =

∑
α(Gα,0 + Gα,1).

Hence, by subadditivity of rank we see that the rank of G is at most
the number of distinct values taken by α. The latter is bounded above
by αmax − αmin + 1 ≤∑n

i=1 |αi| + 1.

Note that the same proof goes through even if we generalize the
definition of G by setting G(x,y) = 1 if and only if

∑n
i=1αixi +∑n

i=1βiyi ∈ T for an arbitrary subset T of Z. Specifically, we have the
following corollary of the proof.

Corollary 4.27. Let G : {0,1}n × {0,1}n → {0,1} be a symmetric
function in the sense that its value depends only on

∑n
i=1(xi + yi).

Then, its matrix G as defined above has rank at most n + 1.
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Lemma 4.28. Let f : {0,1}n × {0,1}n → {−1,+1} be a Boolean func-
tion computed by a depth-2 threshold circuit C with the top gate using
unrestricted weights and each of the bottom gates using weights of
absolute value at most W . Then, there is a real matrix F such that
sign(F (x,y)) = f(x,y) for all x,y ∈ {0,1}n and rank(F ) = O(snW ),
where s is the number of bottom gates.

Proof. Let the top gate of C have weights φ1, . . . ,φs and threshold φ0.
Hence, we can write f(x,y) = sign(

∑s
i=1φiGi(x,y) − φ0), where Gi are

the functions computed by the bottom gates. Define the matrix

F := φ1G1 + · · · + φsGs − φ0J,

where J is the all 1’s 2n × 2n matrix. It is clear that
f(x,y) = sign(F (x,y)) for all x,y ∈ {0,1}n. Moreover, rank(F ) ≤ 1 +∑s

i=1 rank(Gi) ≤ 1 + s(1 + nW ) using Lemma 4.26.

Using Corollary 4.27, one can similarly prove that if f is computed
by a depth-2 circuit with a threshold gate at the top and s symmetric
gates at the bottom, then there is a matrix F of rank O(sn) that sign-
represents f .

Proof. [of Theorem 4.24]. By Lemma 4.28, if a depth-2 threshold circuit
computes fn(x,y), then there is a matrix Fn such that sign(Fn(x,y)) =
sign(fn(x,y)) and rank(Fn) = O(snW ). On the other hand, rank(Fn) ≥
sign-rank(Af ). Comparing the upper and lower bounds on rank(F ),
we get snW = Ω(sign-rank(Af )). This proves Part (a) of the theorem.
Part (b) is proved similarly by means of Corollary 4.27.

4.5.4 Probabilistic OBDD’s

We briefly recall the technical definitions concerning OBDD’s. An
ordered binary decision diagram (OBDD) over Boolean variables
x1, . . . ,xn is given by a directed acyclic graph G = (V,E). The graph G
contains exactly one source (node without a proper predecessor) and
two sinks (nodes without a proper successor). One of the sinks is labeled
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−1 and the other-one is labeled +1. Each nonsink node is labeled by
a Boolean variable such that, on each path from the source to a sink,
each variable occurs exactly once and they always occur in the same
order.2 Each nonsink has two outgoing edges. One of them is labeled 0,
the other one is labeled 1. Each OBDD G represents a Boolean function
fG which is evaluated on a ∈ {0,1}n as follows. Vector a enters G at
the source and is then routed through G until it reaches a sink. More
specifically, at a node labeled xi, vector a is routed through the outgo-
ing edge labeled ai. According to this rule, a will be routed either to the
(−1)-sink or to the (+1)-sink. In the former case, we have fG(a) = −1;
in the latter case fG(a) = 1. The size of an OBDD is the number of its
nodes.

A probabilistic ordered binary decision diagram (POBDD) G is
defined analogously, except that the routing procedure becomes prob-
abilistic. Loosely speaking, the deterministic transitions along edges
labeled either 0 or 1 are replaced by random transitions. Formally,
this can be achieved as follows. With each node v on layer l of G,
we associate two probability distributions D0 and D1 that assign
probabilities to all nodes on layer l + 1. If v is labeled xi and vec-
tor a is currently located at v, then a is routed to node w on layer
l + 1 with probability Dai(w). Each POBDD G represents a collec-
tion (BG(x)) of Bernoulli random variables in the obvious sense. We
say that G realizes Boolean function f : {0,1}n → {−1,+1} if f(x) = 1
implies that Pr(BG(x) = 1) > 1/2, whereas f(x) = −1 implies that
Pr(BG(x) = 1) < 1/2. The size of a POBDD is the number of its nodes.

POBDD’s are quite powerful because they need only a slight advan-
tage over random guessing. We present here exponential lower bounds
on the size of POBDD’s for concrete functions. In the sequel, we present
a function IPn that is provably hard to realize with POBDD’s. Our
function IPn embodies ipn (the inner product modulo 2 function) as a
subfunction. Note however that ipn itself is easy to compute by OBDD’s

2 Since we say that each variable occurs exactly once (as opposed to at most once) on
each path, we implicitly make the assumption that G is layered, where all nodes in the
same layer are labeled by the same variable and edges go from one layer to the next one
according to the fixed order of the variables. This assumption is made only for the sake of
simple technical exposition.
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(even for deterministic ones). We will define IPn in such a way, that,
no matter how the variable order in the OBDD is chosen, there will
be a subfunction of the form ipn such that the chosen variable order is
actually “weird.”

We move on to the definition of IPn. We use 2n Boolean variables
z1, . . . ,z2n and, in addition, 2n auxiliary Boolean variables h1, . . . ,h2n.
Assume that the Hamming weight of h is n and that the 0-entries occur
in positions i(1) < · · · < i(n), whereas the 1-entries occur in positions
j(1) < · · · < j(n). Then, we define

IPn(z,h) := (−1)
∑n

k=1 zi(k)zj(k) . (4.6)

If the Hamming weight of h differs from n we define IPn(z,h) := 1 by
default.

Theorem 4.29. Any POBDD G that computes IPn has size at
least 2n/2.

Proof. Assume that the variables z1, . . . ,z2n appear in G in the order
zσ(1), . . . ,zσ(2n). Let i(1) < · · · < i(n) be the sorted sequence of the ele-
ments of {σ(1), . . . ,σ(n)}. Likewise, j(1) < · · · < j(n) denotes the sorted
sequence of all the elements of {σ(n + 1), . . . ,σ(2n)}. Note that in G

all zi(k)-variables occur before all zj(k)-variables. Fix a vector h of
Hamming weight n such that hi(k) = 0 and hj(k) = 1 for k = 1, . . . ,n.
This leads to a subfunction of the form (4.6). Let V ′ be the set of nodes
labeled zj(1). In what follows, we write input z in the form (x,y), where
x = (zi(1), . . . ,zi(n)) and y = (zj(1), . . . ,zj(n)). For each v ∈ V ′, denote by
pv(x) the probability that z = (x,y) is routed from the source to v.
Denote by qv(y), the probability that z is routed from v to the (+1)-
sink. We conclude that

IPn(x,y,h) = 1 ⇔
∑
v∈V ′

pv(x)qv(y) >
1
2
. (4.7)

Note that, for our fixed choice of h, the subfunction IPn(x,y,h) is the
inner product modulo 2 of x and y. Equation (4.7) realizes this subfunc-
tion by a |V ′|-dimensional arrangement that uses half spaces induced
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by inhomogeneous hyperplanes. Adding one dimension, the hyperplanes
can be made homogeneous (and we arrive at a linear arrangement). By
Forster’s Theorem 4.2, |V | ≥ |V ′| + 1 ≥ 2n/2.

Our lower bound can be extended to k-POBDD’s: k-POBDD’s gen-
eralize POBDD’s in the following way. On each path from the source
to a sink the variables appear at most k times in an order, i.e., the
same permutation of variables repeated k times, i.e., a k-POBDD can
be partitioned into k layers such that each layer is read-once ordered
according to the same variable ordering. From Example 5.11, we con-
clude that every probabilistic two-way protocol for IPn has length at
least n/2 − 1. Using this we obtain the following.

Corollary 4.30. Each k-POBDD, k ≥ 2, computing IPn has size at
least 2

n−2
4k−2−1.

Indeed, if there exists a k-POBDD P of size S then one can find a
probabilistic communication protocol of 2k rounds that computes the
same function as P and has length (2k − 1)�logS . In this communi-
cation game, the input variables of processor Π0 are the variables that
are read in the first half of each layer of P and the input variables of
processor Π1 are the variables read in the second half of each layer,
respectively. The computation can be performed in the way that the
processors follow a path in P in turn such that each processor sends to
the other one the number of the first node on the path not belonging
to its sublayer. This well-known technique (e.g., [15]) yields the desired
lower bound.



5
Rank Robustness and

Two-Party Communication Complexity

5.1 The Log-Rank Conjecture in Communication
Complexity

For every graph G, is it true that

logχ(G) ≤ (log rank(G))O(1),

where χ(G) is the chromatic number of the complement of G and
rank(G) is the rank of the adjacency matrix of G over R? This combi-
natorial question is equivalent to a complexity question [62]:

Let f : {0,1}t × {0,1}t → {0,1} and let cc(f) denote
the two-party communication complexity of f . Let
Mf (x,y) = f(x,y). Then, is it true that for all f

cc(f) ≤ (logrank(Mf ))O(1)?

Here also the rank of Mf is taken over R.

It is well-known [48, Section 1.4] that cc(f) ≥ logrank(Mf ) (in this
inequality, rank over any field would do). Thus, answering the above

94
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question positively would resolve the famous log-rank conjecture in
communication complexity. This is by far the most challenging open
question in two-party communication complexity.

The most significant progress so far on this conjecture has been
made by Nisan and Wigderson [68]. They show that (i) to resolve
the log-rank conjecture, it suffices to show that every 0–1 matrix
A of rank r contains a “large” submatrix of rank at most (1 − ε)r
for some constant ε; here, large means having a fraction at least
exp(−(logrankA)O(1)) of entries of A, and (ii) there is an f such that
cc(f) ≥ (logrank(Mf ))log3 6. We will discuss these results below.

In what follows, |M | denotes the total number of entries of M
(including zero entries).

Theorem 5.1. If,

for every 0–1 matrix M of rank r and for some
δ ≥ exp(− logc r) for some constant c > 0, there exists
a submatrix S with at least δ|M | entries such that
rank(S) ≤ 0.25r,

then M has a protocol tree with at most exp(O(logc+1 r)) leaves. In
particular, M can be covered by at most exp(O(logc+1 r)) disjoint
monochromatic rectangles.

Remark 5.1.

• Note that instead of 0.25 in the assumption above, any con-
stant < 1 would do since by repeatedly taking submatrices
a constant number of times, we can still get a submatrix of
the claimed size (with a different c) of rank ≤ 0.25r.

• If |M | ≤ exp(logc+1 r), then the trivial protocol already gives
a communication complexity of O(log |M |) = O(logc+1 r).
Hence, we can assume w.l.o.g., that |M | ≥ exp(logc+1 r). This
guarantees that a submatrix with δ|M | entries is not too
small.
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Proof. Let L(m,r) denote the maximum, over all 0–1 matrices M with
m entries and rank r, of the minimum number of leaves in a two-party
protocol tree for M . Clearly, L(m,1) ≤ 2 for all m. We wish to prove
that L(m,r) ≤ exp(logc+1 r) for all m assuming the hypothesis of the
theorem.

LetM be indexed byX × Y , i.e., rows by x ∈ X and columns by y ∈
Y , and let S be indexed by X0 × Y0 for X0 ⊆ X and Y0 ⊆ Y . Consider
the partition of X × Y into the four parts Xα × Yβ for α,β ∈ {0,1},
where X1 = X\X0 and Y1 = Y \Y0. The corresponding submatrices of
M are denoted Sαβ , where S = S00:

M =

[
S00 S01

S10 S11

]
.

Observe that

rankS01 + rankS10 ≤ rankM + rankS00.

W.l.o.g., rank S01 ≤ rank S10. Then rank S01 ≤ (rankM +
rank S00)/2 ≤ 5

8 rankM since rank S00 ≤ 1
4 rankM . It follows that

rank[S00 |S01] ≤ 1
4

rankM +
5
8

rankM =
7
8

rankM.

By definition, then, the top part [S00 |S01] has a protocol tree with
most L(m,7r/8) leaves, while the bottom part [S10 |S11] has a protocol
tree with at most L((1 − δ)m,r) leaves. The row player will send one
bit to the column player to indicate whether his input x ∈ X is in the
top part or the bottom part. (If rank S01 > rank S10, the players would
consider the partition into the left and the right parts and then the
column player would send a bit.) They will then proceed recursively on
either part of the matrix.

Thus, we have the recurrence relation

L(m,r) ≤ L

(
m,

7r
8

)
+ L((1 − δ)m,r). (5.1)

The above recurrence relation has the solution L(m,r) =
exp(O(logc+1 r)).
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Corollary 5.2. If, for every 0–1 matrix M of rank r and for
some δ ≥ exp(− logc r) with some constant c > 0, there exists a
submatrix S with at least δ|M | entries such that rankS ≤ 0.25r,
then for any Boolean function f : {0,1}t × {0,1}t → {0,1}, cc(f) ≤
(logrank(Mf ))c+1. In other words, the log-rank conjecture holds under
the hypothesis stated in Theorem 5.1.

Proof. It is known that if the {0,1}-matrix Mf has a communication
protocol with L leaves, then f has communication complexity at most
O(logL) (see [48, Lemma 2.8].).

To show the best known gap between the rank and communication
complexity of a matrix, we need to review the notions of sensitivity
and degree of a Boolean function. We will construct a function with
maximum sensitivity and relatively low degree as a polynomial over R.
A communication matrix defined in terms of this function will have low
rank (owning to the low degree) and high communication complexity
(owing to the maximum sensitivity).

Definition 5.1. For a Boolean function g : {0,1}t → {0,1}, define the
sensitivity of g, sens(g), as

sens(g) := max
x∈{0,1}t

|{y ∈ {0,1}t : g(y) 	= g(x),dist(x,y) = 1}|,

where dist(x,y) denotes the Hamming distance between x and y. In
other words, define the sensitivity of g at input x to be the number
of Hamming neighbors of x where g takes a value different from g(x)
itself. Now, sensitivity of g is defined as the maximum sensitivity of g
at any input.

For example, the OR, the AND, and the PARITY functions on n

variables all have sensitivity n. The MAJORITY function, on the other
hand, has sensitivity (n + 1)/2 for odd n.

Definition 5.2. For a Boolean function g : {0,1}t → {0,1}, the degree
of g, deg(g) is defined as the degree of the unique polynomial over R
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that represents g. Note that the deg(g) is also the largest |S|, S ⊆ [t],
such that the Fourier coefficient ĝ(S) 	= 0.

The exact relation between degree and sensitivity of Boolean func-
tions is an intriguing open question in Boolean function complexity.
What is currently known is summarized in the next two theorems by
Nisan and Szegedy [66] and Kushilevitz (stated in [66]).

Theorem 5.3. For every Boolean function g, deg(g) ≥ c
√

sens(g), for
some absolute constant c > 0.

Theorem 5.4. There exists a t-variable Boolean function g such that
sens(g) = t, but deg(g) ≤ tlog6 3 ≈ t0.6131.

Proof. Let g0 be the following 6-variable function (defined as a real
polynomial of degree 3):

g0(x1, . . . ,x6) =
6∑

i=1

xi −
∑
i
=j

xixj +
∑

{i,j,k}∈F
xixjxk,

where F is the following set system on {1, . . . ,6}:
{{1,2,5},{1,2,6},{1,3,4},{1,3,5},{1,4,6},{2,3,4},

{2,3,6},{2,4,5},{3,5,6},{4,5,6}}.
It’s easy to verify that in F ,

• Every point is contained in exactly five sets.
• Every pair of points is contained in exactly two sets.

Using these properties it is easy to verify that g0 is indeed a Boolean
function on {0,1}6. Its degree is clearly 3. It is also clear that g(0) = 0
and that g(x) = 1 for any x with exactly one 1. Thus, g has sensitivity 6.

We now recursively define gk on t := 6k variables as follows:

gk(x1, . . . ,xt) = g0(gk−1(x1, . . . ,xt/6), . . . ,gk−1(x5t/6+1, . . . ,xt)),

i.e, g0 is applied on 6 copies of gk−1 on 6k−1 variables each.
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It is easy to see by induction on k that sens(gk) = t and that
deg(gk−1) = 3k = tlog6 3.

Definition 5.3. For a Boolean function g : {0,1}t → {0,1}, define the
function g∧ : {0,1}t × {0,1}t → {0,1} as follows:

g∧(x,y) := g(x1 ∧ y1, . . . ,xt ∧ yt).

Lemma 5.5. If g : {0,1}t → {0,1} has sensitivity t, then cc(g∧) =
Ω(t).

Proof. W.l.o.g. (by shifting g if necessary), we can assume that g(0) = 0
and ∀i, g(ei) = 1, where ei has zeros in all coordinates except the i’th,
where it has a 1. Thinking of x and y as characteristic vectors of sets
X,Y ⊆ [t], note that g∧(x,y) = 0 if X ∩ Y = ∅ and that g∧(x,y) = 1 if
|X ∩ Y | = 1.

Now, a well-known lower bound [48, Section 4.6] on the set disjoint-
ness problem shows that even the randomized communication complex-
ity of the problem of deciding whether the intersection between two sets
is the empty set or a singleton is linear. For a more recent proof of this
result, see [37].

This immediately gives the required reduction.

Lemma 5.6. If g : {0,1}t → {0,1} has degree d over R, then the
2t × 2t 0–1 matrix M(g∧) corresponding to g∧ has rank at most∑d

i=0
(

t
d

)
= O(td).

Proof. Consider the polynomial representation of g:

g(z1, . . . ,zt) =
∑

S⊆[t],|S|≤d

αs

∏
i∈S

zi,

and note that g∧ is similarly expressed as a polynomial:

g∧(x1, . . . ,xt,y1, . . . ,yt) =
∑

S⊆[t],|S|≤d

αs

∏
i∈S

xi

∏
j∈S

yj .
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Now, to construct the matrix M(g∧), it suffices to construct matri-
ces corresponding to each monomial and add them up (with the corre-
sponding coefficients αS) entry-wise. On the other hand, the 0–1 matrix
corresponding to each monomial

∏
i∈S xi

∏
j∈S yj is easily seen to be a

rank-1 matrix (it’s a rectangle of 1’s given by the rows and columns
corresponding to the subcubes defined by the products

∏
i∈S xi and∏

j∈S yj , respectively). It follows that the rank of M(g∧) is bounded by
the number of monomials in the polynomial representing the function
g and the proof is complete.

Theorem 5.7. There is a Boolean function f such that cc(f) ≥
(logrankMf )c, where c = log3 6 − o(1) ≈ 1.631.

Proof. Let f be g∧ where g is as in Theorem 5.4. Then cc(f) =
Ω(t) from Lemma 5.5 since g is fully sensitive. On the other hand,
Lemma 5.6 combined with the degree bound from Theorem 5.4 shows
that rank(Mf ) ≤ O(td), where d ≤ tlog6 3. Hence,

logrankMf = (d log t) + O(1) = tlog6 3+o(1) ≤ cc(f)log6 3+o(1).

Note that the method we used to prove the above theorem cannot
yield more than a quadratic gap between log-rank and communication
complexity, in view of Theorem 5.3.

5.2 Discrepancy and Randomized
and Quantum Communication Complexity

Just as rank of a sign matrix is a natural lower bound on the determin-
istic communication complexity of the corresponding Boolean function,
discrepancy turns out to be a natural lower bound on both the ran-
domized and quantum communication complexity. In this subsection,
we present some of these results.

Recall the definition of discrepancy (cf. Definition 4.7) disc(M) of a
sign matrix M . Let discU (M) denote the discrepancy of M under the
uniform distribution, i.e., discU (M) = maxR ||R+| − |R−||/|M |, where
the maximum is taken over all combinatorial rectangles R contained
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inM . Nisan and Wigderson [68] also prove1 that for a rank-r matrixM ,
discU (M) ≥ εr−3/2 for some constant ε > 0. However, from the results
of [53], we get an even stronger lower bound on general discrepancy
itself, i.e., disc(M) instead of discU (M): disc(M) ≥ 1

8r
−1/2. To prove

this lower bound and for use in later results, we use a generalization of
the γ2-norm of a matrix, defined in Definition 4.4 and introduced by
Linial et al. [53].

Definition 5.4. For a sign matrix M = (aij), i.e., M ∈ {−1,+1}m×n,
and a real number α ≥ 1,

γα
2 (M) := min{γ2(B) : 1 ≤ aijbij ≤ α ∀ i, j}.

Clearly, if α ≤ β, then γα
2 (M) ≥ γβ

2 (M) for any sign matrix M . In
particular, γ∞

2 (M) ≤ γ2(M). Now, use Corollary 4.3 and Theorem 4.18
to conclude

8disc(M) ≥ margin(M) = (γ∞
2 (M))−1 ≥ (γ2(M))−1 ≥ (rank(M))−1/2 .

For a sign matrix M , let Rε(M) be the randomized communica-
tion complexity of the corresponding Boolean function fM with success
probability ≥ 1/2 + ε. Similarly, let Qε be the quantum communica-
tion complexity (with prior entanglement) of fM . It is well-known that
both these communication complexity measures are lower bounded by
Ω(log((1 − 2ε)/disc(M))). Linial and Shraibman [54] prove more gen-
eral lower bounds in terms of γα

2 -norms.

Theorem 5.8. With the above notation,

Rε(M) ≥ 2log
(
γ

1/2ε
2 (M)

)
+ 2log2ε, and

Qε(M) ≥ log
(
γ

1/2ε
2 (M)

)
+ log2ε.

1 Their result is more generally expressible in terms of the spectral norm: discU (M) ≥
ε(‖M‖/n)3.
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Proof. By definition, a randomized communication protocol for fM is
a probability distribution µ on deterministic protocols for fM such
that, for each input, the probability mass on the protocols comput-
ing the correct answer is at least 1/2 + ε. Let Dπ be the ±1-matrix
corresponding to a deterministic protocol π (making some errors) for
fM and let µ(π) be the probability with which π is chosen. Recall that
Dπ can be partitioned into at most 2c monochromatic rectangles, where
c := Rε(M) is an upper bound on the communication complexity ofDπ.
Hence, rank(Dπ) ≤ 2c. By Lemma 4.16, γ2(Dπ) ≤√rank(Dπ) ≤ 2c/2.
Consider the matrix

N :=
1
2ε

∑
π

µ(π)Dπ.

Clearly, |Nij | ≤ 1/2ε for all i, j. WhenMij = +1 (−1),
∑

π µ(π)(Dπ)ij ≥
2ε (≤ −2ε, respectively). Hence, 1 ≤MijNij ≤ 1/2ε. Finally, since γ2 is
a norm,

γ2(N) ≤ 1
2ε

∑
π

µ(π)γ2(Dπ) ≤ 1
2ε

2c/2.

It follows that γ
1/2ε
2 (M) ≤ 1

2ε2
c/2. This proves the first part of the

theorem.
The second part of the theorem is based on the following lemma. A

proof of this lemma can be found in [54].

Lemma 5.9. For a sign-matrix M , let P := (pij) be the acceptance
probabilities of a quantum communication protocol with prior entan-
glement for fM and complexity c. Then, P = XY , where the matrices
X and Y satisfy ‖X‖2→∞,‖Y ‖1→2 ≤ 2c/2.

If prior entanglement is not used, the matrices X and Y can be
taken to have rank at most 22c.

Given this lemma, the proof of the second part of the theorem is
similar to the first part by taking N to be 1

2ε(2P − J), where J is the
all 1’s matrix.
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5.3 Relating Probabilistic Communication Complexity
to Sign-Rank and Margin Complexity

We say that a probabilistic communication protocol computes the func-
tion f : {0,1}t × {0,1}t → {−1,1} with unbounded error if for all inputs
(x,y) ∈ {0,1}t × {0,1}t the correct output is calculated with probabil-
ity greater than 1/2. Since the slightest advantage over random guessing
is already sufficient, this model is called the unbounded error model. Let
n := 2t. The length of a communication protocol is �log2K , where K
is the number of distinct message sequences that can occur in the pro-
tocol. The unbounded error probabilistic communication complexity [71]
UPP-CC(f) of a function f : {0,1}t × {0,1}t → {−1,1} is the smallest
length of a communication protocol that computes f with unbounded
error (in the sense defined above).

We briefly note that Paturi and Simon [71] have shown that, in the
unbounded error model, any probabilistic two-way protocol of length
k can be converted into a one-way protocol with length at most k + 1.

Furthermore, the minimal dimension or the sign-rank of a realiza-
tion (cf. Definitions 4.1 and 4.2) of the sign-matrix Af of a Boolean
function f(x,y) is closely related to its probabilistic communication
complexity UPP-CC(f). Paturi and Simon [71] have proved the follow-
ing relation:

�logsign-rank(Af ) ≤ UPP-CC(f) ≤ �logsign-rank(Af ) + 1 (5.2)

Using Theorem 4.2, we conclude the following.

Theorem 5.10. For any function f : {0,1}t × {0,1}t → {−1,1},
UPP-CC(f) ≥ n/‖Af‖.

Example 5.11. Let ipt(x,y) := (−1)x�y, where x,y ∈ Zt
2, be the inner

product mod-2 function. It is well known that the corresponding
matrix H such that Hx,y = ipn(x,y) is an Hadamard matrix and easy
to see that H has operator norm 2t/2. Hence, from Theorem 5.10,
UPP-CC(ipt) ≥ t/2.
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Given a probabilistic communication protocol, let ε(x,y) denote the
difference between the probability that (x,y) is accepted and the proba-
bility that (x,y) is rejected by the protocol. Thus, f(x,y) = sign(ε(x,y))
for any probabilistic protocol that correctly computes f . The error
bound of the protocol is defined as minx∈X,y∈Y |ε(x,y)|. Hence, we only
require that |ε(x,y)| > 0 for all (x,y) in the Paturi–Simon model. We
say a function family f = (ft) is in the communication complexity class
UPP if each ft has an unbounded error probabilistic protocol with
2polylog(t) messages.

A weakening of the above definition gives a communication complex-
ity analog of the class PP in the Turning Machine world. Here, we define
that a family f = (ft) of Boolean functions ft : {0,1}t × {0,1}t →
{−1,+1} belongs to PPcc if there exists a probabilistic one-way pro-
tocol that transmits at most polylog(t) bits (uses at most 2polylog(t)

messages) and achieves error bound 2−polylog(t).
Halstenberg and Reischuk [36] have shown that the class PPcc does

not change if we allow only one-way protocols. The class PPcc is one
of the main complexity classes in the bounded-error model for proba-
bilistic communication complexity.

Interestingly, it is possible to express membership in PPcc in terms
of only one parameter: the maximal margin (cf. Sections 4.3 and 4.5.2).
Here is the connection.

Theorem 5.12. (ft) ∈ PPcc ⇔ margin(Af ) ≥ 2−polylog(t).

Combining this theorem with Theorem 4.18, we also get a charac-
terization of PPcc in terms of discrepancy. This characterization was
originally discovered by Klauck [43] using Fourier transform techniques.

Corollary 5.13. (ft) ∈ PPcc ⇔ disc(Af ) ≥ 2−polylog(t).

Theorem 5.12 will follow from Lemmas 5.14, 5.15, and 5.16 below.
Lemma 5.15 makes use of a random projection technique from [3].
Lemmas 5.14 and 5.16 are implicitly proven in [71] on probabilistic
communication complexity with unbounded error.
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Lemma 5.14. Each probabilistic one-way protocol for f that uses
at most K messages and achieves error-bound ε can be converted
into a K-dimensional linear arrangement that realizes f with margin
µ ≥ ε/

√
K.

Proof. Let pi(x) be the probability that Player 1 sends the i’th message
on input x. Let qi(y) be the probability that Player 2 outputs a 1
upon receiving the i’th message on input y. It is clear that ε(x,y) =∑K

i=1 pi(x)(2qi(y) − 1). Define

ux := (pi(x))K
i=1, vy = (2qi(y) − 1)K

i=1.

It is easy to see that {ux/‖ux‖ : x ∈ {0,1}t} and {vy/‖vy‖ : y ∈ {0,1}t}
define a realization of the matrix of f in K-dimensions. Furthermore,
‖ux‖ ≤ ‖ux‖1 = 1 since it is a vector of probabilities and ‖vy‖ ≤ √

K

since each of its entries is at most 1 in absolute value. It follows that
the margin of this realization is

µ ≥ min
x,y

|〈ux/‖ux‖,vy/‖vy‖〉| ≥ 1√
K

min
x,y

|ε(x,y)| =
ε√
K
.

This proves one direction of Theorem 5.12. The other direction fol-
lows by combining the next two lemmas.

Lemma 5.15. Each linear arrangement (of arbitrarily high
dimension) that realizes f with margin µ can be converted into
an O(t/µ2)-dimensional linear arrangement that realizes f with
margin µ/2.

Proof. (sketch) The following result (whose proof can be found in [11]),
is based on the technique of random projections using the Johnson–
Lindenstrauss lemma (see [3]):

Let w,x ∈ Rr be arbitrary but fixed. Let R = (Ri,j)
be a random (k × r)-matrix such that the entries Ri,j

are i.i.d. according to the normal distribution N(0,1).
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Consider the random projection uR := 1√
k
(Ru) ∈ Rk for

all u ∈ Rr. Then, the following holds for every µ > 0:

Pr
R

[
|〈wR,xR〉 − 〈w,x〉| ≥ µ

4
(‖w‖2 + ‖x‖2)] ≤ 4e−µ2k/32.

This result can be used in an obvious way to guarantee the existence
of a random projection that maps an r-dimensional linear arrangement
that realizes f with margin µ to a k-dimensional linear arrangement
that realizes f with margin µ/2 by choosing k := ct/µ2 for a suitable
positive constant c.

Lemma 5.16. Each K-dimensional linear arrangement that realizes f
with margin µ can be converted into a probabilistic one-way protocol
that uses at most 2K messages and achieves error-bound ε ≥ µ/

√
K.

Proof. (sketch) Let ux and vy be unit vectors in RK for x,y ∈ {0,1}t

that realize the matrix Af with margin µ. Player 1 sends a message
(i,sign(ux(i)), where ux(i) denotes the i’th coordinate of ux, on input
x with probability:

pi(x) :=
|ux(i)|
‖ux‖1

.

Clearly, the number of messages is 2K. Now, Player 2 accepts on input
y and receiving the i’th message from Player 1 with probability:

qi(y) :=
sign(ux(i)) · vy(i) + 1

2
.

By a calculation similar to that in the proof of Lemma 5.14, we can see
that

ε(x,y) =
〈ux,vy〉
‖ux‖1

≥ µ√
K
.

Here, the inequality follows by the assumed bound on the margin given
by ux and vy and by the inequality ‖ux‖1 ≤ √

K‖ux‖2 =
√
K.
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5.4 Matrix Rigidity and Quantifier Alternation
in Communication Complexity

Taking a complexity theoretic view of Yao’s [104] model of two-party
communication complexity, Babai et al. [5] defined analogs of var-
ious Turing Machine complexity classes. For example, they defined
PPcc ,PHcc , and PSPACEcc. A class unique to communication com-
plexity, namely, UPP, arising from the Paturi–Simon model was
discussed in Section 5.3. Separating the complexity classes in the two-
party communication model does not appear to be nearly as chal-
lenging as separating the corresponding classes in the Turing Machine
model. Specifically, we know that Pcc, NPcc, and BPPcc are all differ-
ent from each other and that NPcc ∩ Co–NPcc = Pcc [48, Section 4.5].
We will also see later that UPP and Σcc

2 are separated in a recent
result by Razborov and Sherstov [88], resolving a long-standing open
question in this area, and improving the result that PSPACEcc 	⊆
UPP [28]. We note that both these separation results follow from
lower bounds on sign-rank we presented in Section 4. On the other
hand, it is still a major challenge to separate PHcc and PSPACEcc.
We now relate this question to the notion RA(r,θ) of matrix rigidity
(cf. Definition 3.2).

First, we review some of the definitions.
To define communication complexity classes, we consider languages

consisting of pairs of strings (x,y) such that |x| = |y|. Denote by
Σ2∗ the universe {(x,y) : x,y ∈ {0,1}∗ and |x| = |y|}. For a language
L ⊆ Σ2∗, we denote its characteristic function on pairs of strings of
length m by Ln, where n := 2m. Ln is naturally represented as an
n × n matrix with 0–1 or ±1 entries (with −1 for true and +1 for
false).

Conversely, if A = {An} is an infinite sequence of ±1-matrices
(where An is n × n), then we can associate a language LA with A

and talk about its communication complexity. LA is not necessarily
unique (since the n’s may be different from powers of two), but for the
purposes of lower bounds we will fix one such language and refer to it
as the language LA corresponding to A.

We recall the following definitions from [5].
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Definition 5.5. Let nonnegative integers l1(m), . . . , lk(m) be such that
l(m) :=

∑k
i=1 li(m) ≤ (logm)c for a fixed constant c ≥ 0.

A language L is in Σcc
k if there exist l1(m), . . . , lk(m) as above and

Boolean functions ϕ,ψ : {0,1}m+l(m) → {0,1} such that (x,y) ∈ Ln if
and only if

∃u1∀u2 · · ·Qkuk (ϕ(x,u)♦ψ(y,u)),

where |ui| = li(m),u = u1 · · ·uk, Qk is ∀ for k even and is ∃ for k odd,
and, ♦ stands for ∨ if k is even and for ∧ if k is odd.

Definition 5.6.

• By allowing a bounded number of alternating quantifiers in
Definition 5.5, we get an analog of the polynomial time hier-
archy: PHcc =

⋃
k≥0 Σcc

k .
• We get an analog of PSPACE, by allowing an unbounded, but

no more than polylog(m), number of alternating quantifiers
in Definition 5.5: PSPACEcc =

⋃
c>0
⋃

k≤(logm)c Σcc
k .

Theorem 5.17. Let L be a language in PHcc and An be its n × n

±1-matrix, where n := 2m. Then, for all constants c ≥ 0, there exist
constants c1, c2 ≥ 0 such that

RAn(2(log logn)c1
,2(log logn)c2 ) ≤ n2

2(log logn)c .

Corollary 5.18. Let A = {An} be an infinite sequence of ±1-matrices
and LA be the associated language. For some constant c > 0 and any
r and θ in 2(log logn)ω(1)

, if RA(r,θ) ≥ n2/2(log logn)c
, then LA 	∈ PHcc.

In particular, if A can be chosen such that LA ∈ PSPACEcc, then
PHcc � PSPACEcc.
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Proof. (of Theorem 5.17) This theorem is proved using Tarui’s [97]
low-degree polynomials (over integers) that approximate AC0-circuits.

The theorem will follow from the following: for all c > 0, there exist
c1, c2 > 0, and integer matrices {Bn}, where Bn is n × n, such that

(1) rank(Bn) ≤ 2(log logn)c1 .
(2) ∀(x,y), 1 ≤ |Bn(x,y)| ≤ 2(log logn)c2 .
(3) wt(An − Bn) ≤ n2/2(log logn)c

.

For simplicity of notation, let L ∈ Σcc
k , where k is odd. In Defini-

tion 5.5 of Σcc
k , for any fixed sequence of moves u = u1, . . . ,uk, ϕ is a

function of x and ψ is a function of y. Define fu(·) ≡ ϕ(·,u) and simi-
larly gu(·) ≡ ψ(·,u). Replacing ∃ move by an OR-gate and ∀ move by
an AND-gate, we see that L has a Σcc

k protocol iff it can be expressed as
the output of an {AND,OR} circuit C of depth k and size 2polylog(m),
where the inputs of C are fu(x) ∧ gu(y) for 1 ≤ u ≤ 2polylog(m). Hence,
for all (x,y) ∈ {0,1}m × {0,1}m,

L(x,y) = C(f1(x) ∧ g1(y), . . . ,ft(y) ∧ gt(y)), (5.3)

where t ≤ 2polylog(m) is the number of possible u’s.
Considering fi as the characteristic function of a subset Ui of rows

and gi as that of a subset Vi of columns of the {0,1}m × {0,1}m matrix,
we observe that fi(x) ∧ gi(y) is a “rectangle” Ui × Vi in the matrix.
We will denote this rectangle Ri and identify it with the corresponding
n × n {0,1}-matrix of rank-1:

Ri(x,y) =
{

1, if fi(x) ∧ gi(y) = 1,
0, otherwise.

From Equation (5.3), it follows that L is in Σcc
k iff its matrix is express-

ible by an AC0-circuit (of quasi-polynomial size) acting on a set of
rank-1 matrices.

We now use the fact that an AC0-circuit is well-approximated by a
low-degree polynomial over Z. Tarui [97] constructs such polynomials.

Theorem 5.19 (Tarui). Let C be an AC0-circuit of size 2polylog(t)

and φ1, . . . ,φt : {0,1}s → {0,1} be arbitrary Boolean functions. Fix
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0 < δ = 2−(log t)c′
, for some constant c′ ≥ 0. Then, there exist constants

c′1, c′2 ≥ 0, and a polynomial Φ(φ1, . . . ,φt) such that

• Low degree: The degree of Φ in φ1, . . . ,φt is at most (log t)c′
1 .

• Small error : The fraction of inputs x ∈ {0,1}s, where
C(φ1, . . . ,φt)(x) 	= Φ(φ1, . . . ,φt)(x) is at most δ.

• Small norm: The sum of the absolute values of the coefficients
of Φ is at most 2(log t)c′

2 .
• Boolean guarantee: When Φ differs from C, the value of

Φ(φ1, . . . ,φt)(x) is ≥ 2.

Let Ln be the {0,1}-matrix of L , i.e., Ln = (Jn − An)/2, where Jn

is the n × n all 1’s matrix.
From Equation (5.3), Ln is computed by an AC0-circuit C(z1, . . . ,zt)

of size 2polylog(m), where zi = fi(x) ∧ gi(y) = fi(x)gi(y) since fi,gi are
{0,1}-functions. Using Theorem 5.19 for C, there is polynomial Φ
of degree d ≤ polylog(t) such that L(x,y) = Φ(x,y), except for a δ =
2−(logm)c

(choose c′ such that (logm)c = (log t)c′
) fraction of (x,y) ∈

{0,1}m × {0,1}m. We can write Φ as follows

Φ(x,y) =
∑

S⊆[t],|S|≤d

αS

∏
i∈S

zi

=
∑

S⊆[t],|S|≤d

αS

∏
i∈S

fi(x)gi(y)

=
∑

S⊆[t],|S|≤d

αS fS(x)gS(y).

Here, fS(x) =
∏

i∈S fi(x) and similarly gS .
Returning to our matrix interpretation, fS(x)gS(y) is a {0,1}-

matrix RS of rank-1, and then, as a matrix, Φ is of rank at most∑
i≤d

(
t
i

) ≤ 2polylog(t). L and Φ agree on all but an ε fraction of the
entries. Furthermore, by Theorem 5.19, the entries of Φ are all non-
negative integers, and, > 1 if L(x,y) 	= Φ(x,y). Let us now define a
matrix Bn:

Bn := Jn − 2Φ = Jn − 2 ·
∑

S⊆[t],|S|≤d

αSRS .
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Clearly,

rank(Bn) ≤ 1 + rank(Φ) ≤ 2polylog(t) ≤ 2polylog(m),

thus proving (1); the value of constant c′1 implies constant c1 since
polylog(t) = polylog(m) with suitable exponents. Entries of Bn are
bounded in absolute value by 2polylog(m) and hence (2) is true; again
c′2 implies c2. Moreover, Bn differs from An in at most a δ = 2−(logm)c

-
fraction of entries. Thus (3) follows. (In fact, since Φ is at least 2 on
the error points, Bn can only switch the signs of +1’s in An.)

Recently, Linial and Shraibman [55] relate the question of finding
an explicit language outside PHcc to the question of soft margin com-
plexity or mc-rigidity. This notion measures the Hamming distance of
a sign matrix to a matrix of small margin complexity.

Definition 5.7. The mc-rigidity function of a sign-matrix A at
Hamming distance d is defined as follows

mc-rigidity(A,d) := min{mc(B) : wt(A − B) ≤ d},
where margin complexity mc(B) of a sign-matrix B is as defined at the
beginning of Section 4.3.

Linial and Shraibman then show that an infinite family of sign
matrices with sufficiently high margin complexity would yield a lan-
guage outside PHcc. Since the quantitative bounds and the proof tech-
niques (mainly Theorem 5.19) are similar to those of Theorem 5.17, we
refer the reader to [55] for details.

We conclude this section with a remarkable separation result in
two-party communication complexity recently proved by Razborov and
Sherstov [88].

Theorem 5.20. Σcc
2 	⊆ UPP and Πcc

2 	⊆ UPP.

Proof. By definition, the function f on t3 bits given by (4.4) is com-
puted by a depth-2 linear size circuit with rectangles at the inputs.
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Hence, f ∈ Πcc
2 . On the other hand, by Theorem 4.22, sign-rank(Af ) =

exp(Ω(t)). Characterization (5.2) of UPP communication complexity
implies that f requires at least Ω(t) bits of communication in the
Paturi–Simon model. Hence, f 	∈ UPP. Since UPP is closed under com-
plement, the claim follows.



6
Graph Complexity and Projective and Affine

Dimensions of Graphs

Just as we associate to a Boolean function f : {0,1}� × {0,1}� → {0,1}
a 2� × 2� 0–1 matrix Mf in the previous sections, we can also natu-
rally associate to f a bipartite graph Gf and try to relate properties
of Gf to the complexity of f . One can also think of models of compu-
tation on graphs and relate complexity of graphs in those models to
the complexity of the corresponding Boolean functions. This approach
was initiated by Pudlák et al. [79]. These models generalize well-known
models of Boolean complexity such as circuits, branching programs,
and two-party communication complexity. Measures of graph complex-
ity such as affine dimension and projective dimension of graphs have
been proposed and studied in [76, 78, 85] as criteria for lower bounds
on formula size and branching program size of Boolean functions. Sepa-
ration questions about classes of two-party communication complexity
[5, 104] can be re-formulated as lower bound questions about bipar-
tite graph complexity as noted in [79]. In this section, we introduce
graph complexity and motivate lower bounds on affine and projective
dimensions of graphs by connecting them to lower bounds on Boolean
functions. We present some reductions that connect graph complexity

113
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to linear algebraic parameters and prove lower bounds on depth-3 graph
formula size. Some of the techniques in this section are used in the next
section on span programs.

6.1 Graph Complexity

The complexity of a graph G measures the difficulty of constructing G
using a given collection of primitive graphs, called generators, and a
given basis of operations on sets of edges. All the graphs involved are
assumed to have the same set of vertices, typically X = {1, . . . ,n}. A
set operation on graphs refers to the operation on the corresponding
edge sets. For instance, the result of G1 ∪ G2 on graphs G1 = (V,E1)
and G2 = (V,E2) is the graph G = (V,E1 ∪ E2). Models of graph com-
plexity are defined analogous to the standard models of circuits and
formulas where the generator graphs play the role of input variables
and the set operations play the role of gates.

As usual, we can imagine a circuit to be a directed acyclic graph
(DAG) with the input nodes (of in-degree 0) labeled by the generator
graphs and the internal nodes (gates) labeled by set operations from
the basis. The target graph appears at the output gate (of out-degree 0)
of this DAG. The depth of the circuit is defined to be the length of a
longest path in the DAG. Its size is the number of nodes in it.

A graph formula is a graph circuit in which the out-degree of each
gate is at most one. Thus, a graph formula can be represented as a
tree with the leaves labeled by generator graphs and the internal nodes
labeled by operations from the basis. The size of a formula is the number
of leaves in its tree. The formula complexity of a graph is the smallest
size of a formula that computes the graph (with respect to a fixed set
of generators and a basis).

We can also define natural restricted models such as constant depth
graph circuits and formulas. In these models, we allow unbounded fan-
in and assume that the operations from the basis are naturally extend-
able to an unbounded number of operands (e.g., union, intersection,
and symmetric difference of sets have this property). We can similarly
generalize other models of Boolean complexity such as decision trees
and branching programs to graph complexity.



6.1 Graph Complexity 115

We will consider graph complexity with the set operations of ∪
(union) and ∩ (intersection) only. We will naturally want the sets
of generators to be complete in the sense that every graph should be
constructible from these generators using ∩ and ∪ operators in a circuit
or a formula.

We are especially interested in the complexity of bipartite graphs
because of their direct relevance to lower bounds on Boolean circuits
and communication complexity.

Definition 6.1. Fix the color classes X and Y . Let B denote the fol-
lowing set of complete bipartite graphs:

B = {A × Y : A ⊆ X} ∪ {X × B : B ⊆ Y }.

For a bipartite graph G ⊆ X × Y , the bipartite-formula complexity of
G is the smallest size of a graph formula computing G using B as the set
of generators and ∪ and ∩ as the basis. Bipartite-formula complexity
of G is denoted by LB(G).

Definition 6.2. Let f be a Boolean function on 2� variables, written
as f : {0,1}� × {0,1}� → {0,1}. Let n := 2�. The n × n bipartite graph
Gf ⊆ {0,1}� × {0,1}� is defined by including the edge (x,y) in Gf iff
f(x,y) = 1, where x,y ∈ {0,1}�.

Note that the and and or operations on Boolean functions cor-
respond to union and intersection operations on the edge sets
of their corresponding graphs. In other words, Gf1∧f2 = Gf1 ∩ Gf2

and Gf1∨f2 = Gf1 ∪ Gf2 . This suggests a syntactic transformation of
a Boolean formula (assuming all negations are pushed to the leaves)
into a graph formula. What about the input literals of the Boolean for-
mula? The literals are simply the projection functions and the graphs
corresponding to projection functions are complete bipartite graphs
isomorphic to Kn/2,n and Kn,n/2. For instance, Gxi is the complete
bipartite graph {x ∈ {0,1}� : xi = 1} × {0,1}�. Thus each literal can be
translated into a generator in B. With this transformation of a Boolean
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formula for f into a bipartite-formula for Gf , it follows that

LB(Gf ) ≤ L(f), (6.1)

where L(f) is the minimum size of a formula (with tight negations)
computing f .

Given an n × n bipartite graph G, where n = 2�, we can clearly
define a function f on 2� variables such that Gf = G. Thus, we get the
following criterion for lower bounds on Boolean formula size, proved
in [79].

Lemma 6.1. A lower bound of LB(G) ≥ ψ(logn) for an explicit n × n

bipartite graph G, where n = 2�, would yield an explicit function f on
2� variables with formula size lower bound L(f) ≥ ψ(�).

Since the proof of this proposition is essentially syntactic, similar
relations hold for other models such as circuits, decision trees, and
branching programs as well.

Note, however, that graph complexity of Gf could be much smaller
than the Boolean complexity of f . This is because in a bipartite-formula
we have access to an exponential (in n) number of generators B, whereas
the transformation above uses only the 4logn “canonical” generators
corresponding to the projection functions. In fact, the generators in B,
withX = Y = {0,1}�, can be viewed as defining arbitrary Boolean func-
tions of either the first � or the last � variables. This interpretation
captures the connection between two-party communication complexity
and graph complexity.

The connections below indicate the generality and usefulness of
graph complexity. In the following remarks, we assume the generators
are from B:

• When the model of computation is a decision tree, we get the
model of Yao’s two-party communication complexity [104].

• When the model is a Boolean formula of constant depth
(polylog(�) depth) and quasi-poly(�) size, we get the defi-
nitions (cf. Definitions 5.6) of “polynomial hierarchy” PHcc

(PSPACEcc, respectively) in the two-party communication
complexity model as defined in [5].
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• In [76], graph complexity in the model of branching programs
was used to derive criteria for the branching program size
of the corresponding Boolean function. In particular, they
define the notion of projective dimension of graphs and show
that lower bounds on projective dimension of graphs imply
lower bounds on branching program size of Boolean func-
tions. We will see this notion in more detail in the next sub-
section.

• Formula complexity of graphs was used by Razborov [85] to
derive criteria for lower bounds on formula size of the cor-
responding Boolean function. He defines the notion of affine
dimension of graphs and shows that lower bounds on affine
dimension of graphs imply lower bounds on formula size of
Boolean functions. He also shows the relations between affine
and projective dimensions of graphs in various cases. We will
review these results as well in the next subsection.

• Using the translation of graph complexity to Boolean func-
tion complexity as an intermediate step, Lokam [58] shows
that sufficiently strong lower bounds on the monotone com-
plexity of the very special class of 2-slice functions imply
lower bounds on the complexity over a complete basis of cer-
tain Boolean functions.

6.2 Projective and Affine Dimensions of Graphs

Although the definitions of projective and affine dimensions make sense
for any graph, we restrict our attention here to bipartite graphs only
because of the motivating applications to Boolean function complexity.
It is easy to generalize the following for nonbipartite graphs.

Definition 6.3. Let G ⊆ X × Y be a bipartite graph and V be a vec-
tor space of dimension d over a field F.

• A projective representation of G in V associates a subspace
Uz with every vertex z ∈ X ∪ Y such that (x,y) ∈ G if and
only if Ux ∩ Uy 	= {0}. The projective dimension ofG over F is
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defined to be the minimum d such that G has a d-dimensional
representation and is denoted pdimF(G).

• The affine dimension of G adimF(G) is defined similarly
using affine subspaces Ux, where (x,y) ∈ G if and only if
Ux ∩ Uy 	= ∅.

Remark 6.1. Note that in the above definitions, we do not care about
intersections of subspaces among vertices within the same color class
X or Y .

Rónyai et al. [89] prove the following upper bounds on the projective
dimension of any (even nonbipartite) graph.

Theorem 6.2. For any graph G = (X,E),

• pdimF(G) ≤ |E| over any field F.
• pdimF(G) ≤ 2∆ if |F| ≥ |E|, where ∆ is the maximum degree

of a vertex in G.

Proof. Let m := |E|. For the first part, assign to each edge e ∈ E a
vector ve in a basis {ve : e ∈ E} of Fm. To each vertex x ∈ E assign the
subspace Ux := span{ve : e contains/incident with x}. For the second
part, pick m vectors {ve : e ∈ E} in general position in the space F2∆,
e.g., ve = (1,αe,α

2
e, . . . ,α

2∆−1
e ), where αe are distinct elements of F. Let

Ux be as above.

The main motivation for studying the affine dimension of graphs
comes from the following theorem [76].

Theorem 6.3. Let f : {0,1}� × {0,1}� → {0,1} be a Boolean function
and Gf be the associated n × n bipartite graph, where n = 2� as in
Definition 6.2. Suppose f is computed by a branching program of size β.
Then, for any field F, pdimF(Gf ) ≤ β + 2.
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The following theorem about pdimF(G) for almost all bipartite
graphs implies that most Boolean functions require branching programs
of size Ω(2�/2). This leads to the main challenge about pdimF: prove
lower bounds, even of the form ω(logn), for explicit bipartite graphs.

Theorem 6.4. For almost all n × n bipartite graphs G

pdimF(G) =

{
Ω(

√
n), if F is finite,

Ω
(√

n/ logn
)
, if F is infinite.

For finite F, the proof follows from a simple counting argument. For
infinite (or sufficiently large) F, the proof [89] (generalizing the proof
in [76] for F = R) uses upper bounds on the number of zero patterns of
a sequence of polynomials.

The following lemma is proved in [76] (and generalized in [89]) to
prove the second part of the above theorem and is often useful.

Lemma 6.5. Suppose, pdimF(G) ≤ d and that F is sufficiently large.
Then, there is a projective representation of G in F2d in which, for every
vertex x ∈ X, the associated subspace Ux is of dimension exactly d.

The only explicit graph we know of for which a lower bound on the
projective dimension is known is the following.

Lemma 6.6. Let G ⊆ X × Y be the complement of a matching,
e.g., X = Y = {1,2, . . . ,n} and (x,y) ∈ G if and only if x 	= y. Then,
pdimF(G) = Ω(logn) for any sufficiently large field F.

Proof. Suppose pdimF(G) = d. By Lemma 6.5, we can assume that
G has a projective representation in V := F2d such that for each x ∈
X (y ∈ Y ) dimUx = d (dimUy = d). We will consider the dth exterior
powerW :=

∧dV of V . Corresponding to a d-dimensional subspace U ⊆
V , we have a vector u ∈W defined by the wedge product u = u1 ∧ ·· · ∧
ud, where u1, . . . ,ud is some basis of U . Thus, we have vectors ux and
uy for each x ∈ X, y ∈ Y . Recall that a wedge product w = w1 ∧ ·· · ∧
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wk = 0 (the zero vector in
∧kV ) if and only if the vectors w1, . . . ,wk

are linearly dependent in V . It follows that ux ∧ uy = 0 in
∧2dV if and

only if (x,y) ∈ G. By the proof of Theorem 6.12 [4, pp. 132–133], we
conclude that {ux : x ∈ X} is a linearly independent set of vectors in
W and hence n ≤ dimW =

(2d
d

)
. Hence, d = Ω(logn).

Next, we consider the motivation for the affine dimension of graphs.
Razborov [85] shows that for any bipartite graph G, LB(G) ≥ adimF(G)
(Theorem 6.12 below).

Before, we prove this theorem, we review some notions about rect-
angle covers. This machinery is again used in Section 7.

6.2.1 Rectangle Covers

Let P and Q be (for now) arbitrary finite sets. A rectangle in P × Q is
a set S × T , where S ⊆ P and T ⊆ Q. A set of rectangles C is called a
cover (or a rectangle cover) of P × Q if ∪R∈CR = P × Q. A rectangle
cover is a disjoint cover if the rectangles in it are mutually disjoint.
A set of rectangles C′ is embedded in the set of rectangles C if every
R′ ∈ C′ is contained in some R ∈ C. For a rectangle cover C of P × Q,
define

α(C) := min{|C′| : C′ is a disjoint cover embedded in C}.
Finding lower bounds on α(C) is reduced next to finding lower bounds
on certain rank-like functions. Let A be a matrix over P × Q (i.e., rows
are indexed by elements of P and columns by elements of Q). For a
rectangle R ⊆ P × Q, let AR denote the matrix with entries in R equal
to those of A and zero outside of R.

Lemma 6.7. For a rectangle cover C of P × Q and any matrix A (over
any field F) over P × Q,

α(C) ≥ rank(A)
maxR∈C rank(AR)

.

In particular, if A is such that AR is monochromatic (i.e., all nonzero
entries of AR are equal) for each R ∈ C, then α(C) ≥ rank(A).
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Proof. Let C′ be a disjoint covering embedded in C such that
α(C) = |C′|. Note that for any R′ ∈ C′, there is an R ∈ C such that
R′ ⊆ R. Thus, rank(AR′) ≤ rank(AR). Now, A =

∑
R′∈C′AR′ and hence

rank(A) ≤
∑

R′∈C′
rank(AR′)

≤ |C′| max
R′∈C′ rank(AR′) ≤ α(C)max

R∈C
rank(AR).

Here, another rank-like function is useful in proving lower bounds
on α(C). In a partial matrix A over a field F, some entries may be left
unspecified (denoted by ∗). The rank of a partial matrix is defined to be
the minimum rank of a full matrix obtained from A, over all possible
ways of filling the unspecified entries from F. Suppose, C = C1 ∪ C2.
Let a1 	= a2 be two nonzero entries over F. An element (p,q) ∈ P × Q

is covered by Ci if it is contained in some rectangle R′ ∈ Ci. Define the
partial matrix A by

Apq =


a1, if (p,q) is not covered by C1,
a2, if (p,q) is not covered by C2,
∗, otherwise.

Lemma 6.8. For any cover C of P × Q such that C = C1 ∪ C2 and any
partial matrix A defined as above, α(C) ≥ rank(A).

Proof. We will define a matrix B such that rank(B) = rank(A) for
the partial matrix A. Let C′ be a disjoint covering embedded in C
such that α(C) = |C′|. Partition C′ as C′ = C′

1 ∪ C′
2 (C′

1 ∩ C′
2 = ∅) where1

supp(C′
1) ⊆ supp(C1) and supp(C′

2) ⊆ supp(C2). Let

B := a2
∑

R′∈C′
1

JR′ + a1
∑

R′∈C′
2

JR′ ,

where JR′ is a matrix with all 1’s inside R′ and 0’s elsewhere. Clearly,
B extends A and hence rank(A) ≤ rank(B). Moreover rank(B) ≤
|C′

1| + |C′
2| ≤ |C′| = α(C).

1 Define supp(C) to be the union of all the rectangles in C.
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Let f : {0,1}t → {0,1} be a Boolean function and let, now, P ⊆
f−1(1) and Q ⊆ f−1(0). Then, there is a canonical cover of P × Q

consisting of the 2t rectangles

Riε := {(x,y) ∈ P × Q : xi = ε,yi = 1 − ε},
for 1 ≤ i ≤ t and ε ∈ {0,1}. This canonical cover is denoted by
Ccan(P,Q). If P = f−1(1) and Q = f−1(0), it is denoted by Ccan(f).
If f is a monotone Boolean function, then for any x with f(x) = 1 and
y with f(y) = 0, we can find an index i such that xi = 1 and yi = 0.
Hence, for monotone f , it suffices to consider the t canonical rectangles
with ε = 1. Such monotone canonical covers are denoted Cmon(P,Q)
and Cmon(f) analogous to the above notation.

The fundamental application of rectangle covers to lower bounds is
given by the following result from [85].

Theorem 6.9. For any Boolean function f : {0,1}t → {0,1} and any
P ⊆ f−1(1), Q ⊆ f−1(0), the formula size complexity L(f) (in the
AND, OR, NOT basis) of f is lower bounded as follows

L(f) ≥ α(Ccan(f)) ≥ α(Ccan(P,Q)).

For monotone f , the monotone formula complexity Lmon(f) in the
AND-OR basis is lower bounded as

Lmon(f) ≥ α(Cmon(f)) ≥ α(Cmon(P,Q)).

We remark that the basic intuition for this connection goes back to
Khrapchenko and Rychkov (see, [85]). A similar approach was taken
by Karchmer and Wigderson [40] in their characterization of circuit
depth in terms of communication complexity (recall that circuit depth
is logarithmic in formula size).

The ideas in the proof of Theorem 6.9 generalize to the model of
graph complexity. For this, let G ⊆ X × Y be a bipartite graph. Recall
that LB(G) denotes the graph-formula complexity of G using operations
∪ and ∩ and complete bipartite graphs (B) as generators. Let us look
at the framework of rectangle covers in this context. To begin with, let
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P ⊆ G be a subset of edges of G and let Q ⊆ (X × Y )\G be a subset
of nonedges of G. We can then consider the rectangle covers of P × Q

(or more generally those of P ′ × Q′ for any disjoint P ′,Q′ ⊆ X × Y ).
For any X0 ⊆ X, let B(X0) denote the complete bipartite graph X0 ×
Y ; similarly for any Y0 ⊆ Y . The canonical cover of P × Q, denoted
Cgr(P,Q), is defined by the sets of rectangles:

Cgr,X := {P ∩ B(X0) × Q ∩ B(X0) : X0 ⊆ X},
Cgr,Y := {P ∩ B(Y0) × Q ∩ B(Y0) : Y0 ⊆ Y }.

When P = G and Q = (X × Y )\G, we denote this canonical cover by
Cgr(G).

The generalization of Theorem 6.9 to graph complexity is as follows.

Theorem 6.10. For any bipartite graph G ⊆ X × Y and P ⊆ G and
Q ⊆ (X × Y )\G, LB(G) ≥ α(Cgr(P,Q)).

Consider the partial matrix A := A(F,a1,a2,G) over F, where a1 	=
a2 are nonzero elements of F for the cover Cgr(G).

Given an edge p ∈ G and a non-edge q ∈ (X × Y ) \ G, we have

Apq =


a1 if p and q share a vertex in X,
a2 if p and q share a vertex in Y ,
∗ otherwise.

(Note that an (edge, nonedge) pair covered by a rectangle in Cgr,X

cannot share a common vertex in X and similarly Cgr,Y .)
Using Lemma 6.8 for the cover Cgr(G) with this partial matrix and

Theorem 6.10, we get the following.

Lemma 6.11. For any bipartite graph G ⊆ X × Y , LB(G) ≥
rank(A(F,a1,a2,G)).

6.2.2 Affine Dimension

We can now return to the main motivation for studying the affine
dimension of graphs [85].
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Theorem 6.12. For any graph G ⊆ X × Y and any field F, LB(G) ≥
adimF(G).

Proof. We will give an affine representation for G using Lemma 6.11 in
dimension d = rank(A(F,a1,a2,G)). Let B be a full matrix of rank d

over F such that (usual) rank(B) = rank(A). Let the row space of B
be the ambient space (∼= Fd). Recall that the rows of B are indexed
by edges of G. With each edge e ∈ G, associate the corresponding row
vector ve. Now, represent each vertex z ∈ X ∪ Y by affine subspace Uz

given by affine span of edges incident to z:

Uz := affspan〈ve : e is incident to z〉.
Clearly, if x and y are adjacent in G, the affine subspaces Ux and Uy

have the vector vxy in them. On the other hand, suppose x and y are not
adjacent. For any edge e incident to x, e and xy share the vertex x ∈ X.
Hence, for every such edge the corresponding row has a1 in the column
corresponding to the nonedge xy. Thus, all affine linear combinations
of these edges will also have a1 in that coordinate, i.e., every vector
in Ux has a1 in the coordinate indexed by the column xy. Similarly,
every vector in the affine subspace Uy has a2 in that coordinate since
the nonedge xy and all edges incident to y share a vertex in Y . This
show that Ux ∩ Uy = ∅.

The following theorem from [85] states the known the relations
between adimF and pdimF.

Theorem 6.13. For any graph G,

• over any field F, adimF(G) ≤ (pdimF(G))2.
• over any finite field F, pdimF(G) ≤ (adimF(G))O(adimF(G)).

It is easy to see that, when G is the complement of a matching,
adimR(G) = 2. Combined with Lemma 6.6, this shows that no general
relation between adimR and pdimR can exist.
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6.3 Lower Bounds on Depth-3 Graph Complexity

In this subsection, we consider a restricted model of graph complexity,
namely, depth-3 formulas. We will derive a nontrivial lower bound of
Ω(log3n/(log logn)5) on the depth-3 complexity of Paley-type bipartite
graphs [58]. The proof uses the lower bound on �2-rigidity (Lemma 3.5)
and approximating polynomial representations of the OR function.
Improving this to nΩ(1) is a big challenge — such a bound would give
superlinear lower bounds on log-depth Boolean circuits and a language
outside the class Σcc

2 in two-party communication complexity — these
are two long-standing open questions.

Suppose a depth-3 bipartite-formula computes a bipartite graph
G ⊆ U × V , |U | = |V | = n. Recall that the leaves of the formula are
graphs from B = {A × V : A ⊆ U} ∪ {U × B : B ⊆ V }. Let us first
observe that the bottom gates of a bipartite-formula need not have fan-
in more than 2. Indeed, an ∩ gate at the bottom computes a complete
bipartite graph A × B and a ∪ bottom gate computes the complement
of a complete bipartite graph A × B, where A ⊆ U and B ⊆ V . These
can be written as intersection and union, respectively, of at most two
graphs from B.

Without loss of generality, we consider ∪ ∩ ∪ formulas. By the
remark above, we can write such a formula as G = ∪i ∩j Gij , where
Gij is the complement of a complete bipartite graph, i.e., Aij × Bij for
some Aij ⊆ U and Bij ⊆ V .

One ingredient of our proof is sign-representing polynomials for
DNF’s. Nisan and Szegedy [66] give the following construction of ε-
approximating polynomials for the or-function. They assume a con-
stant ε. The refined analysis to bring out the dependence on ε is due
to Hayes and Kutin (private communication). For a proof, see [58].

Lemma 6.14. The or-function of n Boolean variables can be ε-
approximated by a real polynomial of degree at most O(

√
n log(2/ε)).

More precisely, for every 0 < ε < 1/2, there is a real polynomial p
of degree at most O(

√
n log(2/ε)) such that for every x ∈ {0,1}n,

|or(x) − p(x)| ≤ ε.
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For a bipartite graphG ⊆ U × V , we will letG(x,y) = 1 if (x,y) ∈ G
and G(x,y) = 0 if (x,y) 	∈ G.

Lemma 6.15. Suppose an n × n bipartite graph H ⊆ U × V is writ-
ten as a union of d complete bipartite graphs:

H =
d⋃

i=1

(Ai × Bi), where Ai ⊆ U, Bi ⊆ V.

Then, for every ε, where 0 < ε < 1/2, there is a real matrix MH such
that

• For all (x,y) ∈ U × V , |MH(x,y) − H(x,y)| ≤ ε,
• rank(MH) ≤ exp(O(

√
d log(2/ε) logd)).

Proof. Let R be the incidence matrix of H, and similarly let Ri be
the incidence matrices of the complete bipartite graphs Ai × Bi, 1 ≤
i ≤ d, covering H. Note that R is simply the entry-wise or of the Ri.
Furthermore, each Ri is of rank one as a real matrix. We obtain MH

from R using the approximating polynomials for the or-function given
by Lemma 6.14.

Suppose p(z1, . . . ,zd) is an ε-approximating polynomial of degree
k := c · √d log(2/ε) for or(z1, . . . ,zd). Syntactically substitute the
matrix Ri for zi in this polynomial, but interpret the product as
entry-wise product of matrices, i.e., a monomial zizj is replaced by
Ri ◦ Rj , where for matrices A and B, (A ◦ B)(x,y) := A(x,y)B(x,y).
Note that if A and B are rank-1 matrices, then A ◦ B is also
a rank-1 matrix. Thus, a monomial zi1 · · ·zit is replaced by the
rank-1 0–1 matrix Ri1 ◦ · · · ◦ Rit . The matrix obtained by comput-
ing the polynomial p(R1, . . . ,Rd) in this way gives us the desired
matrix MH .

It is clear that MH(x,y) = p(R1(x,y), . . . ,Rd(x,y)). From the prop-
erties of p, it is easy to see that for all x,y, |MH(x,y) − H(x,y)| ≤ ε.
SinceMH is a linear combination of rank-1 matrices, one for each mono-
mial, it follows that rank of MH is at most the number of monomials
in p which is bounded by

∑k
j=0
(
d
j

) ≤ exp(O(k logd)).
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Lemma 6.16. Let G ⊆ U × V be a bipartite graph. If G is realized
by a depth-3 bipartite-formula:

G =
t⋃

i=1

di⋂
j=1

(Aij × Bij), where Aij ⊆ U, Bij ⊆ V,

then there exists a matrix M such that

(1) If G(x,y) = 0, then M(x,y) ≤ −1/6.
(2) If G(x,y) = 1, then M(x,y) ≥ +1/6.
(3) rank(M) ≤ exp(O(

√
D log t logD)), where D = maxt

i=1 di.

Proof. Let G1, . . . ,Gt be the input graphs to the top gate so that
G = ∪t

i=1Gi. Since each Gi is an intersection of complements of
complete bipartite graphs, its complement, Hi := Gi is computed
by a union of complete bipartite graphs. Thus, we can apply
Lemma 6.15 to the Hi. Let Mi be the real matrix given by
Lemma 6.15 that εi-approximates Hi, where εi := 1/3t. Since, as
a matrix, Gi = J − Hi, where J is the n × n all 1’s matrix, the
matrix Ni := J −Mi is an εi-approximation of Gi. Furthermore, since
rank(Ni) ≤ rank(Mi) + 1, it follows from Lemma 6.15 that rank(Ni) ≤
exp(O(

√
di log(1/εi) logdi)) ≤ exp(O(

√
D log t logD)).

Let M := N1 + · · · + Nt − 1
2 · J . Let us see the relation between M

and G:

(1) If G(x,y) = 0, then ∀i Gi(x,y) = 0, and hence ∀i|Ni(x,y)| ≤ εi.
It follows that M(x,y) ≤∑t

i=1 εi − 1/2 ≤ −1/6.
(2) If G(x,y) = 1, then ∃i Gi(x,y) = 1 and for this i, 1 − εi ≤

Ni(x,y) ≤ 1 + εi. For j 	= i, −εj ≤ Nj(x,y) ≤ 1 + εj . Hence,
we have 1 − εi −

∑
j 
=i εj − 1/2 ≤M(x,y) ≤∑t

j=1(1 + εj) −
1/2. So, in this case, 2/3 − 1/2 ≤M(x,y) ≤ t + 1/3 − 1/2,
and hence M(x,y) ≥ 1/6.

(3) Moreover, rank(M) ≤ ∑t
i=1 rank(Ni) + 1 ≤ t exp(O(

√
D

logD log t)) + 1 ≤ exp(O(
√
D logD log t)).
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Lemma 6.17. Let G be an n × n bipartite graph G ⊆ U × V . If G is
realized by a depth-3 bipartite-formula:

G =
t⋃

i=1

di⋂
j=1

(Aij × Bij), where Aij ⊆ U, Bij ⊆ V,

then there exists a matrix M such that

(1) If G(x,y) = 0, then M(x,y) ≥ 1.
(2) If G(x,y) = 1, then M(x,y) = 0.
(3) rank(M) ≤∏t

i=1 di.

Proof. It will be convenient to consider the complement graph G of G.
Clearly,

G =
t⋂

i=1

di⋃
j=1

(Aij × Bij)︸ ︷︷ ︸
Gij︸ ︷︷ ︸

Gi

.

Let Rij be the incidence matrix of the complete bipartite graph Gij .
Define Mi =

∑di
j=1Rij . Finally, let M = M1 ◦M2 ◦ · · · ◦Mt. Hence, we

have

M(x,y) =
t∏

i=1

di∑
j=1

Rij(x,y).

Note that if (x,y) ∈ Gi then Mi(x,y) =
∑di

j=1Rij(x,y) ≥ 1 and if
(x,y) 	∈ Gi, then Mi(x,y) = 0. Hence, we have

(x,y) ∈ G ⇒ M(x,y) ≥ 1,

(x,y) 	∈ G ⇒ M(x,y) = 0.

From this (1) and (2) follow.
To see the bound on rank(M), note that rank is sub-multiplicative

under ◦ : rank(A ◦ B) ≤ rank(A) · rank(B). Since rank(Rij) = 1, we
have rank(Mi) ≤ di. Hence, rank(M) ≤∏t

i=1 rank(Mi) ≤∏t
i=1 di. This

gives (3).
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Theorem 6.18. Let G be an n × n bipartite graph G ⊆ U × V . If G
is realized by a depth-3 bipartite-formula:

G =
t⋃

i=1

di⋂
j=1

(Aij × Bij), where Aij ⊆ U, Bij ⊆ V,

then there exists a matrix M such that

(1) If G(x,y) = 0, then M(x,y) ≤ −1/12.
(2) If G(x,y) = 1, then M(x,y) ≥ +1/12.
(3) rank(M) ≤ exp(O(L1/3 log5/3L)), where L =

∑t
i=1 di.

Proof. Let D∗ be a parameter to be fixed later. We will separate the
formula into two parts depending on whether the middle fan-in di is
smaller or larger than D∗. This idea of splitting the formula based on
middle fan-in was used earlier in [44].

Specifically, let Gs be the subgraph of G realized by the subformula
given by union of middle gates of fan-in at most D∗ and let Gl be the
subgraph of G similarly given by middle gates of fan-in larger than D∗:

Gs =
⋃

di≤D∗

di⋂
j=1

(Aij × Bij),

Gl =
⋃

di>D∗

di⋂
j=1

(Aij × Bij).

We apply Lemma 6.16 to Gs to get a matrix Ms such that Ms(x,y) ≥
1/6 if (x,y) ∈ Gs and Ms(x,y) ≤ −1/6 if (x,y) 	∈ Gs. Furthermore, we
have rank(Ms) ≤ exp(O(

√
D∗ logD∗ log t)) since all middle fan-in’s of

the formula for Gs are at most D∗ and the top fan-in is at most t.
We apply Lemma 6.17 to Gl and get a matrix Ml such that

Ml(x,y) ≥ 1 if (x,y) 	∈ Gl and Ml(x,y) = 0 if (x,y) ∈ Gl. Since all mid-
dle fan-in’s of the formula for Gl are at least D∗, the top fan-in tl of
this formula is at most tl ≤

∑t
i=1 di/D

∗ ≤ L/D∗. We bound rank of Ml
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as follows:

rank(Ml) ≤
∏

di>D∗, 1≤i≤t

di

≤
 ∑

di>D∗

di

tl

tl

≤ exp(O(tl logD)), where D =
∑

di>D∗

di

tl
≤ L

≤ exp
(
O

(
L

D∗ logD
))

.

DefineM = Ms ◦Ml + (1/12)J . If (x,y) ∈ Gl, thenM(x,y) = 1/12,
and if (x,y) ∈ Gs\Gl, then M(x,y) ≥ 1/6 + 1/12. If (x,y) 	∈ Gs ∪ Gl,
then M(x,y) ≤ −1/6 + 1/12 ≤ −1/12. Hence, (1) and (2) are satisfied
by M .

By sub-multiplicativity of rank under ◦, we get the upper bound on
rank of M :

rank(M) ≤ exp
(
O(

√
D∗ logD∗ log t) + O

(
L

D∗ logD
))

+ 1.

We set D∗ = Θ((L/ logL)2/3). Using the trivial upper bound of
O(logL) on logD∗, logD, and log t, we get that rank(M) =
exp(O(L1/3(logL)5/3)), verifying (3).

We now use Forster’s Theorem 4.2 to show that for some “interest-
ing” graphs G any matrix satisfying (1) and (2) of Theorem 6.18 must
have a large rank and hence conclude a lower bound on the depth-3
complexity of G using (3).

Theorem 6.19. Let G be an n × n bipartite graph and AG be its
±1 incidence matrix, i.e., AG(x,y) = 1 if (x,y) is an edge of G and
AG(x,y) = −1 if (x,y) is not an edge of G. Then any depth-3 bipartite-
formula for G must have size at least

Ω
(

log3(n/‖AG‖)
log log5(n/‖AG‖)

)
.
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Proof. Given a depth-3 formula for G of size L, let M be the matrix
given by Theorem 6.18. Note that if (x,y) 	∈ G, then M(x,y) ≤ −1/12,
and if (x,y) ∈ G, then M(x,y) ≥ 1/12. Hence, 12M is a sign-preserving
variation of AG and we can apply Theorem 4.2 to conclude that
rank(M) = rank(12M) = Ω(n/‖AG‖). On the other hand, from Theo-
rem 6.18, (3), we get that rank(M) ≤ exp(O(L1/3 log5/3L)). Combining
the two estimates on rank(M), we get

exp(O(L1/3 log5/3L)) =
n

‖AG‖ .

Solving for L proves the theorem.

Corollary 6.20. For any graph G such that AG is an Hadamard
matrix, the depth-3 bipartite-formula complexity of G is at least
Ω((logn)3/(log logn)5). An example of such a graph is the Paley-type
bipartite graph.



7
Span Programs: A Linear Algebraic Model

of Computation

The model of span programs was introduced by Karchmer and
Wigderson [41]. A span program over a field F computes a Boolean
function f : {0,1}n → {0,1} as follows. With each of the 2n literals xi

(xi, respectively), a span program associates a subspace U1
i (U0

i ) of an
ambient space V over F. There is no condition on the dimensions of
these subspaces. Fix a nonzero vector z ∈ V . Now, the condition is that

f(x) = 1 if and only if z ∈ span{Ux1
1 ,Ux2

2 , . . . ,Uxn
n },

i.e., an input assignment “picks” either U1
i or U0

i depending on whether
it sets xi to 1 or 0, respectively, and the function evaluates to 1 on that
assignment if and only if the special vector z falls in the linear span
of the picked subspaces. W.l.o.g, we let z to be the all 1’s vector 1 in
what follows. The dimension of the span program is the dimension of
the ambient space V . Define now sdimF(f) to be the smallest dimension
d of an ambient vector space V in which a span program as described
above can be realized for computing the function f . The size of the span
program is the sum of the dimensions of the 2n subspaces associated to
the literals:

∑
i,ε dimU ε

i . The span program size SPF(f) of a function f
is the minimum size of a span program computing the function f .

132
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In matrix language, a span program for a Boolean function f is a
matrix S whose rows span the ambient space V . Each row is labeled by
a unique literal (the same vector could repeat as multiple rows). Each
subspace U ε

i is then specified by a subset of rows and the number of
rows in S is the size of the span program. For a given input assignment
x ∈ {0,1}n, let Sx denote the submatrix given by the rows “activated”
by x, i.e., for each i, take the set of rows corresponding to Uxi

i . Then,
f(x) = 1 if and only if 1 is in the row space of Sx, i.e., there exists a
vector cx such that cTxSx = 1T .

A monotone span program has subspaces associated only to the n
positive literals xi. The criterion for when a monotone span program
computes a monotone Boolean function is defined similarly as above.
Let mSPF(f) denote the size of a monotone span program that com-
putes the monotone function f .

Using Warren’s inequality [102], Babai et al. [6] prove that for almost
all f , sdimF(f) is at least Ω(2n1/3

/(n logn)1/3). Proving superpolyno-
mial lower bounds for explicit f is a major challenge. Span programs
provide a “static” model of computation for a Boolean function and
this model promises to be a vehicle for realizing the approach of the
fusion method [103] for circuit lower bounds. Span programs are well-
related to other models of complexity such as Boolean formulas, sym-
metric branching programs, algebraic proof systems, and secret sharing
schemes.

A major achievement is a sequence of results [6, 9, 32] culminating
in Gál’s proof of an nΩ(logn) lower bound on monotone span program
size of several explicit Boolean functions. These results are highly non-
trivial applications of combinatorial and algebraic techniques. Gál [32]
actually provides a characterization of span program size and uses a
gap between rectangle cover numbers (cf. Section 6.2.1) and ranks to
get the lower bound.

7.1 Characterizing Span Program Size

Recall the notion of a rectangle cover of a cartesian product P × Q

from Section 6.2.1. Here, we will use a parameter that generalizes
α(C).
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Definition 7.1. Let a rectangle cover C of P × Q and a field F be
given. A set K of rank-1 matrices (with entries indexed by P × Q) over
F is said to be embedded in C if for every K ∈ K, the set of all nonzero
entries of K are contained in some rectangle R ∈ C. We then define

αF(C) := min

{
|K| :

∑
K∈K

K = J and K is a set of rank-1 matrices

over F embedded in C
}
.

Here, J denotes the all 1’s matrix over F indexed by P × Q.

Clearly, α(C) ≥ αF(C) : for a disjoint rectangle cover C′ embedded
in C, simply take for each R ∈ C′ a rank-1 matrix whose entries take
the value 1 inside R and 0 outside R. An analog of Theorem 6.9 char-
acterizes the span program size completely.

Theorem 7.1. Fix a field F. For every Boolean function f , SPF(f) =
αF(Ccan(f)). For every monotone Boolean function f , mSPF(f) =
αF(Cmon(f)).

To prove this theorem, we make use of the following lemma.

Lemma 7.2. A Boolean function f : {0,1}n → {0,1} has a span pro-
gram of size s over F if and only if there exist sets of vectors

B =
{
bx ∈ Fs : x ∈ f−1(0)

}
, and C =

{
cy ∈ Fs : y ∈ f−1(1)

}
,

such that

(1) The set [s] of coordinates can be partitioned into subsets siε

corresponding to the 2n literals, 1 ≤ i ≤ n, ε ∈ {0,1}, such
that the following holds: Every bx ∈ B can partitioned into 2n
“segments” (or subvectors) biεx , where biεx is the restriction of
bx to siε, such that the segments activated by x are identically
zero vectors, i.e., bixi

x = 0 for all i,1 ≤ i ≤ n. Similarly, every
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cy ∈ C can be partitioned into ciεy such that, w.o.l.g., we can
assume that the segments not activated by y are identically
zero, i.e, ci,1−yi

y = 0 for all i,1 ≤ i ≤ n.
(2) For every b ∈ B, c ∈ C, cT b = 1.

Proof. The if-direction is trivial: let S be the matrix with vectors from
B as columns. It is easy to verify that S is a valid span program for
f and its size is clearly s. Consider the submatrix of S given by the
segments biεx for all x ∈ f−1(0). The rows of this submatrix generate U ε

i

of dimension |siε| = diε.
For the other direction, let S be any span program computing f

and of size s. Then, [41, Theorem 6] shows that S can be turned into
a canonical span program S′ of the same size. In a canonical span
program, there is a one-to-one correspondence between the zeros of the
function and the columns of the span program and for every zero of
the function, the corresponding column has zeros in all rows activated
by that input. Let B be the set of column vectors of S′. Since S′ is
canonical they satisfy (1). By definition, for every y ∈ f−1(1), there
exists a vector cy such that cTy S

′
y = 1. Taking C to be the set of vectors

cy, we have (2). Since the only rows of S′ that participate to generate
1 on an input y ∈ f−1(1) are those activated by y, we can assume,
w.l.o.g., that the restriction of cy to the remaining coordinates is zero.
Thus, cy can also be taken to satisfy (1).

Proof. (of Theorem 7.1) By the lemma, it suffices to show that α :=
αF(Ccan(f)) is the smallest s such that sets of vectors B and C as in
the lemma exist.

First, we show that α ≤ s: Fix i, 1 ≤ i ≤ n, and ε ∈ {0,1}. Let
Biε be the diε × |f−1(0)| matrix with biεx as columns. Let Ciε be the
|f−1(1)| × diε matrix with rows ciεy . Now, define Kiε := CiεBiε. Note
that rank(Kiε) ≤ diε. We can write Kiε as a sum of at most diε rank-1
matrices over F. Define now K to be the set of all such rank-1 matri-
ces for all i and ε. Clearly, |K| ≤∑i,ε rank(Kiε) ≤∑iε diε = s. We now
argue that K is indeed a set of rank-1 matrices embedded in Ccan(f)
and that

∑
K∈KK = J . This will show that α ≤ s. We claim that all
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nonzero entries of Kiε are contained in the rectangle Ri,ε ∈ Ccan(f).
By property (1) in Lemma 7.2 for biεx , we see that for any x such
that xi = ε, the corresponding columns in Biε are the all-0 columns.
Hence, all columns in Kiε indexed by x ∈ f−1(0) with xi = ε are all-0
columns. Also by (1) applied to cy for y ∈ f−1(1), we see that the rows
of Ciε indexed by y with yi = 1 − ε are all-0 rows. Thus, any nonzero
entry Kiε(y,x) must have yi = ε and xi = 1 − ε, i.e., such an entry is
in Ri,ε. Finally, the (y,x) entry of

∑
K∈KK is given by

∑
iεKiε(x,y) =∑

i,ε(c
iε
y )T biεx = cTy bx = 1 by property (2) in the lemma. This shows that∑

K∈KK = J .
Next, we show that s ≤ α. Suppose K is a set of rank-1 matri-

ces embedded in Ccan(f) such that |K| = α. Now, collect together the
rank-1 matrices contained in Riε ∈ Ccan (resolve ambiguities arbitrar-
ily, but uniquely) and add them up to form Kiε. Clearly, rank(Kiε)
is at most the number of these rank-1 matrices. Write Kiε = CiεBiε,
where Ciε (Biε) has rank(Kiε) columns (rows). Define biεx (ciεy ) to be the
columns (rows) of Biε (Ciε). Now, define bx (cy) as the concatenation
of biεx (ciεy ) for all i and ε. Since nonzero entries of Kiε are contained
in Riε, it is easy to ensure (1) in the lemma for bi,εx and ci,εy . Since∑

K∈KK = J implies that
∑

iεKiε = J and hence
∑

iε(c
iε
y )T biεx = 1 for

all (y,x) ∈ f−1(1) × f−1(0). It follows that cTy bx = 1 as required in (2).
We thus have vectors bx and cy satisfying (1) and (2) in dimension at
most

∑
iε rank(Kiε) ≤ |K| and hence s ≤ α.

The claim for monotone Boolean functions is proved similarly by
considering Cmon and observing that an analog of Lemma 7.2 holds for
a characterization of monotone span programs computing monotone
Boolean functions.

7.2 Explicit Lower Bounds on Monotone Span
Program Size

Recall that for a matrix A over (indexed by) P × Q and a rectangle
R ⊆ P × Q, AR denotes the restriction of A to the entries indexed by R.
Analogous to Lemma 6.7, we have the following lower bound for αF in
terms of ranks.
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Lemma 7.3. For a rectangle cover C and any matrix A over P × Q

over the field F,

αF(C) ≥ rank(A)
maxR∈C rank(AR)

.

In particular, if A is such that AR is monochromatic (i.e., all nonzero
entries of AR are equal) for each R ∈ C, then αF(C) ≥ rank(A).

The proof of this lemma is easy and similar to that of Lemma 6.7.
Thus, if we have a matrix A indexed by f−1(0) × f−1(1) (or more

generally by P × Q, where P ⊆ f−1(0) and Q ⊆ f−1(1)) such that
rankF(A) is superpolynomial in the number of variables and every sub-
matrix AR for each rectangle R ∈ Ccan(f) is monochromatic, we will
have a superpolynomial lower bound on SPF(f). Analogous statement
holds for mSPF(f) for a monotone f by considering Cmon(f). We will
exploit an interesting connection in the opposite direction. That is, if
there is an explicit matrix A over F such that rank(A) is superpoly-
nomially large compared to the minimum number of monochromatic
submatrices of A needed to cover all entries of A, then we can get an
explicit function f with mSPF(f) superpolynomial. This reverse con-
nection was already observed by Razborov [85] in the context of lower
bounds on formula size. The connection also exists for general, i.e.,
not necessarily monotone, lower bounds by considering the so-called
“self-complementary” covers. But, so far, only the monotone case was
successfully exploited for explicit lower bounds. Razborov used this
connection to obtain a superpolynomial lower bound on the monotone
formula size of an explicit Boolean function from a Boolean function
whose nondeterministic and co-nondeterministic communication com-
plexity is almost quadratically smaller compared to its deterministic
communication complexity. Gál used the same approach to obtain a
monotone Boolean function with a superpolynomial lower bound on its
monotone span program size.

Let us make the above connection more precise. Suppose A is a
matrix with entries indexed by P × Q and with a monochromatic rect-
angle cover of size t, i.e., A1, . . . ,At are monochromatic submatrices of
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A such that every entry (p,q) ∈ P × Q is in some Ai. Let R1, . . . ,Rt

be the rectangles in P × Q defining the nonzero entries of A1, . . . ,At.
We define a monotone Boolean function f : {0,1}t → {0,1} such that
αF(Cmon(f)) ≥ rank(A). Associate a variable xi with each rectangle Ri

for 1 ≤ i ≤ t. Each column q (an element of Q ⊆ f−1(1)) will be a
minterm and each row p (an element of P ⊆ f−1(0)) will be a max-
term of f . Recall that a minterm of a monotone Boolean function f is
a minimal subset of variables such that fixing each of them to 1 will
ensure that the function value will be 1 no matter what we assign to the
other variables. Similarly, a maxterm of a monotone Boolean function
f is a minimal subset of variables such that fixing each of them to 0 will
ensure that the function value will be 0 no matter what we assign to
the other variables. (Geometrically, a minterm (maxterm) is a maximal
subcube of the cube {0,1}t on which the function is constantly 1 (0).)
Note that a monotone Boolean function is completely specified by its
set of minterms or maxterms. Now, a minterm q is the set of all vari-
ables corresponding to the rectangles that intersect column q. Similarly,
a maxterm p is the set of all variables corresponding to the rectangles
that intersect row p. Next, extend each minterm q to an assignment,
also denoted q, in {0,1}t by assigning 1 to all variables in the minterm
and 0 to all the others. Similarly, extend each maxterm p to an assign-
ment p ∈ {0,1}t by assigning 0 to all variables in the maxterm and 1
to others. This way, we get P ⊆ f−1(0) and Q ∈ f−1(1). It is now easy
to verify that R1, . . . ,Rt form the monotone canonical cover Cmon(P,Q)
(cf. Theorem 6.9 and the discussion preceding it). Furthermore, matrix
A over P × Q is monochromatic restricted to each Ri. Hence, by The-
orem 7.1 and Lemma 7.3, we have mSPF(f) ≥ αF(P,Q) ≥ rank(A).

We now construct the explicit matrix A that accomplishes the above
goal. The matrix A will be the 0–1 disjointness matrix over sets of size
at most s = Θ(logm) over a universe of size m: the rows and columns
of A are indexed by P = Q = subsets of [m] of cardinality ≤ s and
A(p,q) = 1 if and only p ∩ q = ∅. It is well-known [85] that A is full-
rank, i.e., rank(A) =

∑s
i=0
(
m
i

)
, over any field F. We next need to show

that there is set of O(m) monochromatic rectangles that cover all the
entries of A. For this, we use an important pseudo-random property of
Paley graphs.
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A Paley graph is defined over a field K such that |K| ≡ 1 (mod 4)
where the vertex set is K and i ∼ j if and only if i − j is a quadratic
residue in K. A graph G is said to have Property P̃k if for any two
disjoint sets S and T of vertices such that |S| + |T | ≤ k, there is a
vertex v in G such that v is adjacent to every vertex in S and not
adjacent to any vertex in T . Theorem 13.11 from [18] shows that the
Paley graph has property P̃k for k ≤ ε log |K| for some constant ε.

Let m := |K| and s = (ε/2) logm. We identify the vertices of the
Paley graph G on K with the universe [m]. For the matrix A, we
obtain a rectangle cover by associating one rectangle with each vertex
of G. By Property P̃2s of G, for any two disjoint subsets p and q of
vertices of size at most s, there exists a vertex v of G such that every
vertex in p is adjacent to v and no vertex in q is adjacent to x. It
follows that the matrix A has a rectangle cover of size m while it has
a rank of

∑s
i=0
(
m
i

)
= mΘ(logm). We can use A to define an explicit

Boolean function on m variables with monotone span program size
mΘ(logm).

Definition of f : Given a Paley graph G on m vertices, we let f :
{0,1}m → {0.1} as follows. The m variables of f are identified with the
vertices of G. For each subset p of at most s vertices f has a minterm
and is given by all vertices of G (variables of f) that are adjacent to all
vertices of p. Similarly, for each subset q of at most s vertices f has a
maxterm and is given by all vertices of G (variables of f) that are not
adjacent to any vertex of q.

The following theorem follows from the foregoing arguments.

Theorem 7.4. For the function f defined above and any field F,
mSPF(f) = mΩ(logm).

It is known [10] that span programs become exponentially weak if we
restrict them to be monotone. On the other hand, there exist functions
with linear size monotone span programs but requiring exponential
size monotone Boolean circuits [6]. Another interesting result in [10] is
the exponential separation of monotone span programs over fields of
different characteristics.
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The characterization of Gál of span program size in terms of gaps
between combinatorial cover numbers and ranks seems to be a very
promising criterion for lower bounds. It has already been extensively
used in [10]. These results also bring together the theme that com-
munication complexity techniques provide very powerful approaches to
problems in lower bounds.



8
Conclusions and Open Problems

In this last section, we make some concluding remarks and mention
several open problems.

Rigid matrices over small number fields: Proving strong superlinear
lower bounds on the rigidity of explicit matrices (Open Question 2.1)
remains an intriguing open problem. On the one hand, intuitive criteria,
such as having all submatrices nonsingular, are insufficient as shown in
Theorem 2.12. On the other hand, using algebraic independence of
very high-degree among entries of matrices such as (√pij), we were
able to prove quadratic lower bounds on their rigidity (Corollary 2.19
and Theorem 2.21). These lower bounds are not satisfactory since the
entries of those matrices live in number fields of exponentially large
dimensions. It would be interesting to prove RA(εn) ≥ n1+δ for A ∈
Cn×n, where entries aij of A span a number field of poly(n) dimension,
i.e., dim(Q(aij) : Q) ≤ poly(n). Note that the Fourier transform matrix
F = (ωij)n−1

i,j=0 defines a number field of dimension ϕ(n) ≤ n − 1 [50,
Ch. VI, Theorem 3.1].

Rigidity of Vandermonde matrices: Note also that the Fourier trans-
form matrix is a Vandermonde matrix. However, we do not know strong
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lower bounds on the rigidity of even a generic Vandermonde matrix, i.e.,
V = (xj−1

i )1≤i,j≤n, where the xi are algebraically independent over Q.
Can we prove (or disprove) that RV (εn) ≥ n1+δ? Theorem 2.17 gives
an Ω(n2) lower bound, but only when r = O(

√
n). For an arbitrary

Vandermonde matrix, we only know a lower bound of Ω(n2/r) (The-
orem 2.10) and only a slightly better bound of Ω(n2

r log n
r ) for specific

Vandermonde matrices, e.g., when the xi are distinct positive integers
and when they are powers of a primitive root of unity of a prime order
(Theorem 2.8 and the discussion following it).

Rigidity of character tables: The Fourier transform matrix and the
Sylvester-type Hadamard matrix (defined by (2.3)) are conjectured to
have high-rigidity. They are the character tables of the groups Zn and
Zt

2, respectively. We pose the following more general question: Given a
finite abelian group G of order n, let AG ∈ Cn×n be the character table
of G. Prove that RAG

(εn) ≥ n1+δ for some group G. For the character
table of any finite abelian group, a lower bound of Ω(n2/r) follows from
Theorem 3.8 using spectral techniques.

Paturi–Pudlák dimensions over infinite fields: The techniques from
Section 2.6 currently apply to finite fields. Proving nontrivial bounds on
the inner and outer dimensions over infinite fields may be an interesting
extension to [70].

Spectral techniques: In Section 3, we looked at several rank robust-
ness functions expressed in terms of �2-norm. Spectral techniques have
been helpful in proving lower bounds on such normed variants of rigid-
ity. We have also seen that such variants, and spectral techniques in
general, have been very successful in proving lower bounds on bounded
coefficient complexity of linear and bilinear circuits. Notable among
these are the Ω(n logn) lower bound for the Fourier transform and the
Ω(n2 logn) lower bound for matrix multiplication.

Sign-rank versus margin complexity : Spectral techniques are also used
in Section 4 to prove lower bounds on sign-rank and margin complexity;
note that both lower bounds (Theorems 4.2 and 4.7) are

√
mn/‖A‖.

While the lower bound on margin complexity of an Hadamard matrix
is tight, we do not know if the lower bound on its sign-rank is tight.
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From Lemma 4.17, sign-rank can be at most quadratically (ignoring
log-factors) larger than margin complexity. Recall that [2] show that
for almost all sign matrices, sign-rank is Θ(n). Hence, a random matrix
shows that this gap is tight apart from log-factors. It would thus be
interesting to find an explicit sign matrix with a sign-rank of Ω(n).

Connections between complexity measures of sign matrices and com-
munication complexity : Consider the sequence of inequalities1√

sign-rank(A) � mc(A) ≤ γ
1/2ε
2 (A) ≤

√
rank(A), (8.1)

valid for any matrix A ∈ {−1,+1}n×n and compare it to the hierarchy
of communication complexity classes:

UPP ⊇ PPcc ⊇ BPPcc ⊇ Pcc. (8.2)

Recall that sign-rank(A) and mc(A) (and hence disc(A)) character-
ize the communication complexity classes UPP and PPcc, respec-
tively. More specifically, if these functions are bounded above by
exp(polylog log(n)) for an infinite family of matrices {An}, then the
language defined by {An} is in the corresponding communication com-
plexity classes. The next two parameters γ1/2ε

2 (A) and rank(A) are
only known to give lower bounds on bounded error probabilistic com-
munication complexity (Theorem 5.8) and deterministic communica-
tion complexity, respectively. It would be very interesting to prove
(or disprove) that the parameters γ1/2ε

2 and rank can also be used to
characterize the corresponding communication complexity classes. It
would also be interesting to investigate if γ2-norm can be used to char-
acterize quantum communication complexity. Note that proving that
polylog(rank(A)) is an upper bound on deterministic communication
complexity is precisely the log-rank conjecture.

Gaps between log-rank and communication complexity : The log-rank
conjecture is one of the basic open questions in complexity theory.
It would be interesting to improve the gap between log-rank and
communication complexity given by Theorem 5.7, for instance, to
quadratic by constructing an n-variable Boolean function of degree

1 We use � instead of ≤ to ignore factors up to logn.
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O(
√
n) and sensitivity Ω(n). More generally, is it possible to construct

Boolean matrices of small rank r (say, r = exp((logn)O(1))) in which
every monochromatic rectangle is small (say, containing at most an
exp(−(logr)ω(1))-fraction of entries)? Note that if, for some constant
c > 0, every rank-r Boolean matrix contains a monochromatic subma-
trix with at least an exp(−(logr)c)-fraction of entries, then the log-rank
conjecture holds [68].

Lower bounds for higher classes in communication complexity :
Regarding the “higher” complexity classes in the two-party commu-
nication model, separating PHcc from PSPACEcc is a long-standing
open question [5]. The approaches via matrix rigidity or margin com-
plexity rigidity from Section 5.4 seem to demand extremely strong
lower bounds on those parameters. However, it is also a challeng-
ing open question to find an explicit language outside Σcc

2 ; we know
explicit languages outside several classes smaller than Σcc

2 such as
Pcc,NPcc,Co–NPcc, and BPPcc. We also know explicit languages, e.g.,
inner product mod-2, outside PPcc and UPP, thanks to their charac-
terizations in terms of margin complexity and sign-rank. Recall also
the recent breakthrough result of [88] that Σcc

2 	⊆ UPP (Theorem 5.20).

Lower bounds on dimensions of graphs: Proving strong lower bounds,
i.e., at least 2log lognω(1)

, on depth-3 graph complexity for explicit n × n

bipartite graphs is one approach to finding explicit languages outside
Σcc

2 . An nΩ(1) lower bound on depth-3 graph complexity will have an
even more amazing consequence; it would imply a superlinear lower
bound on log-depth Boolean circuits. Unfortunately, we currently know
only Ω̃(log3n) lower bounds (Theorem 6.19).

Proving superlogarithmic lower bounds on the affine and projec-
tive dimensions of explicit graphs is a challenging open problem. For
instance, what are the projective and affine dimensions of graphs such
as the Paley graph or explicit Ramsey-like graphs? It is interesting
that depth-3 graph complexity can also be related to certain geometric
representations of graphs. Indeed, Theorem 6.19 shows that a depth-3
lower bound can be derived from a lower bound on the dimension d

for the following kind of geometric representation: associate vectors
ux,vy ∈ Rd such that uT

x vy ≥ δ if (x,y) is an edge and uT
x vy ≤ −δ if
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(x,y) is not an edge, where δ > 0 is a constant. As seen in the proof of
Theorem 6.19, a lower bound of d = Ω(n) for the Paley graph follows
from a lower bound on the sign-rank of an Hadamard matrix.

Span program complexity : The parameters α(C) (Section 6.2.1) and
αF(C) (Definition 7.1) have lower bounds in terms of certain rank-like
functions of (partial) matrices (Lemmas 6.7 and 7.3). When applying
this connection to prove lower bounds on monotone span program size,
we used an explicit matrix A such that rank(A) is quasi-polynomially
large compared to the size of a monochromatic rectangle cover of A (see,
Section 7.2). In contrast, recall that, to prove the log-rank conjecture
in two-party communication complexity, we need to show that every
Boolean matrix can be covered by quasi-polynomially many monochro-
matic rectangles compared to its rank.

Computational complexity of rank robustness functions: We observe
here a correlation between the complexity of computing various rank
robustness functions and the difficulty of proving lower bounds on those
functions for explicit matrices. This is reminiscent of the theory of nat-
ural proofs [87] in the context of lower bounds for explicit Boolean func-
tions. For concreteness, let us consider the three functions: (i) Valiant’s
general rigidity RA(r) in Definition 2.1, (ii) Raz’s geometric rigidity in
Definition 3.4, and (iii) �2-rigidity in Definition 3.2. As we will explain
below, functions (i)–(iii) are apparently of decreasing computational
complexity and, interestingly, proving explicit lower bounds on these
functions also appears to be of decreasing difficulty. Moreover, the cor-
responding circuit lower bounds that can be derived also appear to be
of decreasing strength and generality as we go from (i) to (iii).

(1) Given a matrix A (say, over a finite field) and an integer r,
computing RA(r) appears to be an intractable question. In
fact, Deshpande (private communication) showed the follow-
ing problem to be NP-complete: Given a matrix A ∈ Fq

m×n,
and integers 0 ≤ w ≤ n2 and 0 ≤ r ≤ n, does there exist a
matrix C ∈ Fq

m×n with no more than w nonzero entries, such
that rank(A + C) ≤ r? The reduction is from the Nearest
Codeword Problem. Alekhnovich [1] shows an even stronger
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hardness result based on a conjecture about the average hard-
ness of maximum satisfying linear subsystem in a system of
linear equations over GF (2): it is infeasible to distinguish
between matrices M with RM (εn) < n1+δ and random M

(hence of quadratic rigidity). It follows that having high
rigidity is unlikely to be an easy property of a matrix. This
may partly explain why coming up with explicit matrices of
high rigidity remains a challenging open problem.

(2) A notion essentially equivalent to Raz’s geometric rigid-
ity (Definition 3.4) is studied in computational geometry
under the name outer radius of a set of points (see, e.g.,
[100]). In [100] and other related works, the complexity of
computing outer radius has been investigated. From these
results, we obtain the following: (a) For any r ≤ n, Rigr(A)
can be approximated in polynomial time within a factor of
O(

√
logm). When r is a constant, Rigr(A) can be approx-

imated within a factor of (1 + ε) for any constant ε > 0.
(b) For any r ≤ nε, where 0 < ε < 1, Rigr(A) cannot be
approximated within a factor of (logm)δ, where δ > 0 is a
fixed constant, unless NP ⊆ P̃. Furthermore, it is NP-hard to
approximate Rign−1(A) within any constant factor. It follows
that Rigr(A) is in general hard to compute but seems to be
of varying difficulty to approximate. We also saw an explicit
matrix, namely, a generalized Hadamard matrix H, that has
Rigr(H) ≥ √

n − r (Corollary 3.12). However, for Raz’s lower
bound on matrix multiplication, we only need that a random
matrix Y has Rigεn(Y ) = Ω(

√
n) (Lemma 3.20(2)).

(3) Measuring the distance of a matrix from the set of low
rank matrices in �2-distance as opposed to Hamming dis-
tance seems to make the problem considerably easier. This
is illustrated by the complete characterization of �2-Rigr(A)
in terms of singular values of A (Lemma 3.5). As a result
of this characterization, we have both a polynomial time
algorithm to compute �2-Rigr(A) and explicit matrices with
strong lower bounds, e.g., Hadamard matrix, on this rank
robustness function.
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Understanding the computational complexity of other rank robust-
ness functions is an interesting and emerging area of research. In partic-
ular, it would be interesting to prove hardness results (or find efficient
algorithms) for Paturi-Pudlák dimensions.

Linial et al. [53], formulate margin and γ2-norm in terms of semi-
definite programs. Thus, they are computable in polynomial time. How-
ever, the computational complexity of the sign-rank of a matrix is
still unknown. Very recently, Kushilevitz and Weinreb [49] studied the
complexity of computing the communication complexity of a Boolean
matrix and showed that, under certain cryptographic assumptions, it
is intractable to compute, or even to approximate well, the communi-
cation complexity.
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