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Chapter 12

Communication Complexity

Communication complexity concerns the following scenario. There are two players with unlimited
computational power, each of whom holds an n bit input, say x and y. Neither knows the other’s
input, and they wish to collaboratively compute f(x, y) where function f :{0, 1}n×{0, 1}n → {0, 1}
is known to both. Furthermore, they had foreseen this situation (e.g., one of the parties could be
a spacecraft and the other could be the base station on earth), so they had already —before they
knew their inputs x, y— agreed upon a protocol for communication1. The cost of this protocol is
the number of bits communicated by the players for the worst-case choice of x, y.

Researchers have studied many modifications of the above basic scenario, including randomized
protocols, nondeterministic protocols, average-case protocols (where x, y are assumed to come from
a distribution), multiparty protocols, etc. Truly, this is a self-contained mini-world within com-
plexity theory. Furthermore, lowerbounds on communication complexity have uses in a variety of
areas, including lowerbounds for parallel and VLSI computation, circuit lowerbounds, polyhedral
theory, data structure lowerbounds, etc. We give a very rudimentary introduction to this area; an
excellent and detailed treatment can be found in the book by Kushilevitz and Nisan [?].

12.1 Definition

Now we formalize the informal description of communication complexity given above.
A t-round communication protocol for f is a sequence of function pairs (S1, C1), (S2, C2), . . . , (St, Ct), (f1, f2).

The input of Si is the communication pattern of the first i−1 rounds and the output is from {1, 2},
indicating which player will communicate in the ith round. The input of Ci is the input string of
this selected player as well as the communication pattern of the first i − 1 rounds. The output of
Ci is the bit that this player will communicate in the ith round. Finally, f1, f2 are 0/1-valued func-
tions that the players apply at the end of the protocol to their inputs as well as the communication
pattern in the t rounds in order to compute the output. These two outputs must be f(x, y). The

1Do not confuse this situation with information theory, where an algorithm is given messages that have to be
transmitted over a noisy channel, and the goal is to transmit them robustly while minimizing the amount of com-
munication. In communication complexity the channel is not noisy and the players determine what messages to
send.
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communication complexity of f is

C(f) = min
protocols P

max
x,y

{Number of bits exchanged by P on x, y.}

Notice, C(f) ≤ n+1 since the trivial protocol is for one player to communicate his entire input,
whereupon the second player computes f(x, y) and communicates that single bit to the first. Can
they manage with less communication?

Example 12.1 (Parity)
Suppose the function f(x, y) is the parity of all the bits in x, y. We claim that C(f) = 2. Clearly,
C(f) ≥ 2 since the function depends nontrivially on each input, so each player must transmit at
least one bit. Next, C(f) ≤ 2 since it suffices for each player to transmit the parity of all the bits
in his possession; then both know the parity of all the bits.

Remark 12.2
Sometimes students ask whether a player can communicate by not saying anything? (After all,
they have three options: send a 0, or 1, or not say anything in that round.) We can regard such
protocols as communicating with a ternary, not binary, alphabet, and analyze them analogously.

12.2 Lowerbound methods

Now we discuss methods for proving lowerbounds on communication complexity. As a running
example in this chapter, we will use the equality function:

EQ(x, y) =

{
1 if x = y

0 otherwise

We will see that C(EQ) ≥ n.

12.2.1 Fooling set

We show C(EQ) ≥ n. For contradiction’s sake, suppose a protocol exists whose complexity is
at most n − 1. Then there are only 2n−1 communication patterns possible between the players.
Consider the set of all 2n pairs (x, x). Using the pigeonhole principle we conclude there exist two
pairs (x, x) and (x′, x′) on which the communication pattern is the same. Of course, thus far we
have nothing to object to, since the answers EQ(x, x) and EQ(x′, x′) on both pairs are 1. However,
now imagine giving one player x and the other player x′ as inputs. A moment’s thought shows
that the communication pattern will be the same as the one on (x, x) and (x′, x′). (Formally, this
can be shown by induction. If player 1 communicates a bit in the first round, then clearly this bit
is the same whether his input is x or x′. If player 2 communicates in the 2nd round, then his bit
must also be the same on both inputs since he receives the same bit from player 1. And so on.)
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Hence the player’s answer on (x, x) must agree with their answer on (x, x′). But then the protocol
must be incorrect, since EQ(x, x′) = 0 6= EQ(x, x).

The lowerbound argument above is called a fooling set argument. It is formalized as follows.

Definition 12.3
A fooling set for f :{0, 1}n × {0, 1}n → {0, 1} is a set S ⊆ {0, 1}n × {0, 1}n and a value b ∈ {0, 1}
such that:

1. For every (x, y) ∈ S, f(x, y) = b.

2. For every two distinct pairs (x1, y1), (x2, y2) ∈ S, either f(x1, y2) 6= b or f(x2, y1) 6= b.

Lemma 12.4
If f has a fooling set with m pairs then C(f) ≥ log2 m.

Example 12.5 (Disjointness)
Let x, y be interpreted as characteristic vectors of subsets of {1, 2, . . . , n}. Let DISJ(x, y) = 1 if
these two subsets are disjoint, otherwise DISJ(x, y) = 0. Then C(DISJ) ≥ n since the following 2n

pairs constitute a fooling set:

S =
{
(A,A) : A ⊆ {1, 2, . . . , n}

}
.

12.2.2 The tiling lowerbound

The tiling lowerbound takes a more global view of f . Consider the matrix of f , denoted M(f),
which is a 2n × 2n matrix whose (x, y)’th entry is f(x, y). See Figure 12.1. We visualize the

Figure unavailable in pdf file.

Figure 12.1: Matrix M(f) for the equality function when the inputs to the players have 3 bits. The numbers in the
matrix are values of f .

communication protocol in terms of this matrix. A combinatorial rectangle (or just rectangle) in
the matrix is a submatrix corresponding to A×B where A ⊆ {0, 1}n, B ⊆ {0, 1}n. If the protocol
begins with the first player sending a bit, then M(f) partitions into two rectangles of the type
A0 × {0, 1}n, A1 × Bn, where Ab is the subset of strings for which the first player communicates
bit b. Notice, A0 ∪A1 = {0, 1}n. If the next bit is sent by the second player, then each of the two
rectangles above is further partitioned into two smaller rectangles depending upon what this bit
was. If the protocol continues for k steps, the matrix gets partitioned into 2k rectangles. Note that
each rectangle in the partition corresponds to a subset of input pairs for which the communication
sequence thus far has been identical. (See Figure 12.2 for an example.)
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Figure unavailable in pdf file.

Figure 12.2: Two-way communication matrix after two steps. The large number labels are the concatenation of
the bit sent by the first player with the bit sent by the second player.

If the protocol stops, then the value of f is determined within each rectangle, and thus must be
the same for all pairs x, y in that rectangle. Thus the set of all communication patterns must lead
to a partition of the matrix into monochromatic rectangles. (A rectangle A×B is monochromatic
if for all x in A and y in B, f(x, y) is the same.)
Definition 12.6
A monochromatic tiling of M(f) is a partition of M(f) into disjoint monochromatic rectangles.
We denote by χ(f) the minimum number of rectangles in any monochromatic tiling of M(f).

The following theorem is immediate from our discussion above.
Theorem 12.7
If f has communication complexity C then it has a monochromatic tiling with at most 2C rectangles.
Consequently, C ≥ log2 χ(f).

The following observation shows that the tiling bound subsumes the fooling set bound.
Lemma 12.8
If f has a fooling set with m pairs, then χ(f) ≥ m.

Proof: If (x1, y1) and (x2, y2) are two of the pairs in the fooling set, then they cannot be in a
monochromatic rectangle since not all of (x1, y1), (x2, y2), (x1, y2), (x2, y1) have the same f value.
�

12.2.3 Rank lowerbound

Now we introduce an algebraic method to lowerbound χ(f) (and hence communication complexity).
Recall the high school notion of rank of a square matrix: it is the size of the largest subset of
rows/colums that are independent. The following is another definition.
Definition 12.9
If a matrix has entries from a field F then the rank of an n × n matrix M is the minimum value
of l such that M can be expressed as

M =
l∑

i=1

αiBi,

where αi ∈ F \ {0} and each Bi is an n× n matrix of rank 1.

Note that 0, 1 are elements of every field, so we can compute the rank over any field we like. The
choice of field can be crucial; see Problem 5 in the exercises.

The following theorem is trivial, since each monochromatic rectangle can be viewed (by filling
out entries outside the rectangle with 0’s) as a matrix of rank at most 1 .
Theorem 12.10
For every function f , χ(f) ≥ rank(M(f)).
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12.2.4 Discrepancy

The discrepancy of a rectangle A×B in M(f) is

1
22n

|number of 1’s in A×B − number of 0’s in A×B| . (1)

The discrepancy of the matrix M(f), denote Disc(f), is the largest discrepancy among all
rectangles. The following Lemma relates it to χ(f).

Lemma 12.11

χ(f) ≥ 1
Disc(f)

.

Proof: For a monochromatic rectangle, the discrepancy is its size divided by 22n. The total
number of entries in the matrix is 22n. The bound follows. �

Example 12.12
Lemma 12.11 can be very loose. For the EQ() function, the discrepancy is at least 1−2−n (namely,
the discrepancy of the entire matrix), which would only give a lowerbound of 2 for χ(f). However,
χ(f) is at least 2n, as already noted.

Now we describe a method to upperbound the discrepancy using eigenvalues.

Lemma 12.13 (eigenvalue bound)
For any matrix M , the discrepancy of a rectangle A× B is at most λmax(M)

√
|A| |B|/22n, where

λmax(M) is the magnitude of the largest eigenvalue of M .

Proof: Let 1A, 1B ∈ Rn denote the characteristic vectors of A,B. Then |1A|2 =
√∑

i∈A 12 =√
|A|.
The discrepancy of the rectangle A×B is

1
22n

1T
AM1B ≤ 1

22n
λmax(M)

∣∣1T
A1B

∣∣ ≤ 1
22n

λmax(M)
√
|A| |B|.

explain this.
�

Example 12.14
The mod 2 inner product function defined as f(x, y) = (x · y)2 =

∑
i xiyi(mod2) has been encoun-

tered a few times in this book. To bound its discrepancy, we consider the matrix 2M(f)− 1. This
transformation makes the range of the function {−1, 1} and will be useful again later. Let this new
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matrix be denoted N . It is easily checked that every two distinct rows (columns) of N are orthog-
onal, every row has `2 norm 2n/2, and that NT = N . Thus we conclude that N2 = 2nI where I is
the unit matrix. Hence every eigenvalue is either +2n/2 or −2n/2, and thus Lemma 12.13 implies
that the discrepancy of a rectangle A × B is at most 2n/2

√
|A| |B| and the overall discrepancy is

at most 23n/2 (since |A| , |B| ≤ 2n).

A technique for upperbounding the discrepancy

Now we describe an upperbound technique for the discrepancy that will later be useful in the
multiparty setting (Section 12.3). For ease of notation, in this section we change the range of f to
{−1, 1} by replacing 1’s in M(f) with −1’s and replacing 0’s with 1’s. Note that now

Disc(f) = max
A,B

1
22n

∣∣∣∣∣∣
∑

a∈A,b∈B

f(a, b)

∣∣∣∣∣∣ .

Definition 12.15
E(f) = Ea1,a2,b1,b2

[∏
i=1,2

∏
j=1,2 f(ai, bj)

]
.

Note that E(f) can be computed, like the rank, in polynomial time given the M(f) as input.

Lemma 12.16

Disc(f) ≤ E(f)1/4.

Proof: The proof follows in two steps.

Claim 1: For every function h :{0, 1}n × {0, 1}n → {1,−1}, E(h) ≥ (Ea,b[f(a, b)])4.
We will use the Cauchy-Schwartz inequality, specifically, the version according to which E[z2] ≥

(E[z])2 for every random variable z.

E(h) = Ea1,a2

Eb1,b2

 ∏
i=1,2

∏
j=1,2

h(ai, bj)

 (2)

= Ea1,a2

[
(Eb[h(a1, b)h(a2, b)])

2
]

(3)

≥ (Ea1,a2 [Eb[h(a1, b)h(a2, b)]])
2 (Cauchy Schwartz) (4)

≥ (Ea,b[h(a, b)])4 . (repeating prev. two steps) (5)

Claim 2: For every function f there is a function h such that E(f) = E(h) and Ea,b[h(a, b)] ≥
Disc(f).
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First, we note that for every two functions g1, g2 :{0, 1}n → {−1, 1}, if we define h = f ◦ g1 ◦ g2

as
h(a, b) = f(a, b)g1(a)g2(b)

then E(f) = E(h). The reason is that for all a1, a2, b1, b2,∏
i=1,2

∏
j=1,1

h(ai, bj) = g1(a1)2g1(a2)2g2(b1)2g2(b2)2
∏

i=1,2

∏
j=1,2

f(ai, bj)

and the square of any value of g1, g2 is 1.
Now we prove Claim 2 using the probabilistic method. Define two random functions g1, g2 :

{0, 1}n → {−1, 1} as follows:

g1(a) =

{
1 if a ∈ A

ra ra ∈ {−1, 1} is randomly chosen

g2(b) =

{
1 if b ∈ B

sb sb ∈ {−1, 1} is randomly chosen

Let h = f ◦ g1 ◦ g2, and therefore E(h) = E(f). Furthermore

Eg1,g2 [Ea,b[h(a, b)]] = Ea,b [Eg1,g2 [f(a, b)g1(a)g2(b)]] (6)

=
1

22n

∑
a∈A,b∈B

f(a, b) (7)

= Disc(f) (8)

where the second line follows from the fact that Eg1 [g1(a)] = Eg2 [g2(b)] = 0 for a 6∈ A and b 6∈ B.
Thus in particular there exist g1, g2 such that |Ea,b[h(a, b)]| ≥ Disc(f). �

12.2.5 Comparison of the lowerbound methods

As already noted, discrepancy upperbounds imply lowerbounds on χ(f). Of the other three meth-
ods, the tiling argument is the strongest, since it subsumes the other two. The rank method is the
weakest, since the rank lowerbound always implies a tiling lowerbound and a fooling set lowerbound
(the latter follows from Problem 3 in the exercises).

Also, we can separate the power of these lowerbound arguments. For instance, we know functions
for which there is a significant gap between log χ(f) and log rank(M(f)). However, the following
conjecture (we only state one form of it) says that all three methods (except discrepancy, which as
already noted can be arbitrarily far from χ(f)) give the same bound up to a polynomial factor.

Conjecture 12.17 (log rank conjecture)
There is a constant c > 1 such that C(f) = O(log(rank(M(f)))c) for all f and all input sizes n.
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12.3 Multiparty communication complexity

There is more than one way to generalize communication complexity to a multiplayer setting. The
most interesting model is the “number on the forehead” model often encountered in math puzzles
that involve people in a room, each person having a bit on their head which everybody else can
see but they cannot. More formally, there is some function f : ({0, 1}n)k → {0, 1}, and the input
is (x1, x2, . . . , xk) where each xi ∈ {0, 1}n. The ith player can see all the xj such that j 6= i. As
in the 2-player case, the k players have an agreed-upon protocol for communication, and all this
communication is posted on a “public blackboard”. At the end of the protocol all parties must
know f(x1, . . . , xk).

Example 12.18
Consider computing the function

f(x1, x2, x3) =
n⊕

i=1

maj(x1i, x2i, x3i)

in the 3-party model where x1, x2, x3 are n bit strings. The communication complexity of this
function is 3: each player counts the number of i’s such that she can determine the majority of
x1i, x2i, x3i by examining the bits available to her. She writes the parity of this number on the
blackboard, and the final answer is the parity of the players’ bits. This protocol is correct because
the majority for each row is known by either 1 or 3 players, and both are odd numbers.

Example 12.19 (Generalized Inner Product)
The generalized inner product function GIPk,n maps nk bits to 1 bit as follows

f(x1, . . . , xk) =
n⊕

i=1

k∧
j=1

xij . (9)

Notice, for k = 2 this reduces to the mod 2 inner product of Example 12.14.

In the 2-party model we introduced the notion of a monochromatic rectangle in order to prove
lower bounds. For the k-party case we will use cylinder intersections. A cylinder in dimen-
sion i is a subset S of the inputs such that if (x1, . . . , xk) ∈ S then for all x′i we have that
(x1, . . . , xi−1, x

′
i, xi+1, . . . , xk) ∈ S also. A cylinder intersection is ∩k

i=1Ti where Ti is a cylinder in
dimension i.

As noted in the 2-party case, a communication protocol can be viewed as a way of partitioning
the matrix M(f). Here M(f) is a k-dimensional cube, and player i’s communication does not
depend upon xi. Thus we conclude that if f has a multiparty protocol that communicates c bits,
then its matrix has a tiling using at most 2c monochromatic cylinder intersections.
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Lemma 12.20
If every partition of M(f) into monochromatic cylinder intersections requires at least R cylinder
intersections, then the k-party communication complexity isat least log2 R.

Discrepancy-based lowerbound

In this section, we will assume as in our earlier discussion of discrepancy that the range of the
function f is {−1, 1}. We define the k-party discrepancy of f by analogy to the 2-party case

Disc(f) =
1

2nk
max

T

∣∣∣∣∣∣
∑

(a1,a2,...,ak)∈T

f(a1, a2, . . . , ak)

∣∣∣∣∣∣ ,

where T ranges over all cylinder intersections.
To upperbound the discrepancy we introduce the k-party analogue of E(f). Let a cube be a

set D in {0, 1}nk of 2k points of the form {a1,1, a2,1} × {a1,2, a2,2} × · · · × {a1,k, a2,k}, where each
ai,j ∈ {0, 1}n.

E(f) = ED

[∏
a∈D

f(a)

]
.

Notice that the definition of E() for the 2-party case is recovered when k = 2. The next lemma
is also an easy generalization.

Lemma 12.21

Disc(f) ≤ (E(f))1/2k
.

Proof: The proof is analogous to Lemma 12.16 and left as an exercise. The only difference is that
instead of defining 2 random functions we need to define k random functions g1, g2, gk :{0, 1}nk →
{−1, 1}, where gi depends on every one of the k coordinates except the ith. �

Now we can prove a lowerbound for the Generalized Inner Product function. Note that since
we changed the range to {−1, 1} it is now defined as

GIPk,n(x1, x2, . . . , xk) = (−1)
∑

i≤n

∏
j≤k xij(mod2). (10)

Theorem 12.22
The function GIPk,n has k-party communication complexity Ω(n/8k) as n grows larger.

Proof: We use induction on k. For k ≥ 1 let βk be defined using β1 = 0 and βk+1 = 1+βk
2 . We

claim that
E(GIPk,n) ≤ βn

k .
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Assuming truth for k − 1 we prove for k. A random cube D in {0, 1}nk is picked by picking
a11, a21 ∈ {0, 1}n and then picking a random cube D′ in {0, 1}(k−1)n.

E(GIPk,n) = Ea11,a21

ED′

 ∏
a∈{a11,a21}×D′

GIPk,n(a)

 (11)

The proof proceeds by considering the number of coordinates where strings a11 and a21 are identical.
Examining the expression for GIPk,n in (10) we see that these coordinates contribute nothing once
we multiply all the terms in the cube, since their contributions get squared and thus become 1.
The coordinates that contribute are

to be completed �

12.4 Probabilistic Communication Complexity

Will define the model, give the protocol for EQ, and describe the discrepancy-based lowerbound.

12.5 Overview of other communication models

We outline some of the alternative settings in which communication complexity has been studied.

Nondeterministic protocols: These are defined by analogy to NP. In a nondeterministic pro-
tocol, the players are both provided an additional third input z (“nondeterministic guess”).
Apart from this guess, the protocol is deterministic. The cost incurred on x, y is

min
z

{|z|+ number of bits exchanged by protocol when guess is z} .

The nondeterministic communication complexity of f is the minimum k such that there is a
nondeterministic protocol whose cost for all input pairs is at most k.

In general, one can consider communication protocols analogous to NP, coNP, PH etc.

Randomized protocols: These are defined by analogy to RP,BPP. The players are provided
with an additional input r that is chosen uniformly at random from m-bit strings for some
m. Randomization can significantly reduce the need for communication. For instance we
can use fingerprinting with random primes (explored in Chapter 7), to compute the equality
function by exchanging O(log n) bits: the players just pick a random prime p of O(log n) bits
and exchange x (mod p) and y (mod p).

Average case protocols: Just as we can study average-case complexity in the Turing machine
model, we can study communication complexity when the inputs are chosen from a distribu-
tion D. This is defined as

CD(f) = min
protocols P

∑
x,y

Pr[(x, y) ∈ D]× {Number of bits exchanged by P on x, y.}
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Computing a non boolean function: Here the function’s output is not just {0, 1} but an m-bit
number for some m. We discuss one example in the exercises.

Asymmetric communication: The “cost” of communication is asymmetric: there is some B
such that it costs the first player B times as much to transmit a bit than it does the second
player. The goal is to minimize the total cost.

Multiparty settings: The most obvious generalization to multiparty settings is whereby f has k
arguments x1, x2, . . . , xk and player i gets xi. At the end all players must know f(x1, x2, . . . , xk).
This is not as interesting as the so-called “number of the forehead” where player i can see all
of the input except for xi. We discuss it in Section ?? together with some applications.

Computing a relation: There is a relation R ⊆ {0, 1}n×{0, 1}n×{1, 2, . . . ,m} and given x, y ∈
Bn the players seek to agree on any b ∈ {1, 2, . . . ,m} such that (x, y, b) ∈ R. See section ??.

These and many other settings are discussed in [?].

12.6 Applications of communication complexity

We briefly discussed parallel computation in Chapter 6. Yao [?] invented communication complexity
as a way to lowerbound the running time of parallel computers for certain tasks. The idea is that
the input is distributed among many processors, and if we partition these processors into two halves,
we may lowerbound the computation time by considering the amount of communication that must
necessarily happen between the two halves. A similar idea is used to prove time/space lowerbounds
for VLSI circuits. For instance, in a VLSI chip that is an m × m grid, if the communication
complexity for a function is greater than c, then the time required to compute it is at least c/m.

Communication complexity is also useful in time-space lowerbounds for Turing machines (see
Problem 1 in exercises), and circuit lowerbounds (see Chapter 13).

Data structures such as heaps, sorted arrays, lists etc. are basic objects in algorithm design.
Often, algorithm designers wish to determine if the data structure they have designed is the best
possible. Communication complexity lowerbounds can be used to establish such results. See [?].

Yannakakis [?] has shown how to use communication complexity lowerbounds to prove lower-
bounds on the size of polytopes representing NP-complete problems. Solving the open problem
mentioned in Problem 8 in the exercises would prove a lowerbound for the polytope representing
vertex cover.

Exercises

§1 If S(n) ≤ n, show that a space S(n) TM takes at least Ω(n/S(n)) steps to decide the language
{x#x : x ∈ {0, 1}∗}.

§2 Show that the high school definition of rank (the size of the largest set of independent rows
or columns) is equivalent to that in Definition 12.9.

§3 Give a fooling set argument that proves that C(f) ≥ dlog rank(M(f))e.
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§4 Show that C(f)rank(M(f) + 1.

§5 Consider x, y as vectors over GF (2)n and let f(x, y) be their inner product mod 2. Prove
that the communication complexity is n.

Hint:Lowerboundtherankofthematrix2M(f)−JwhereJis
theall-1matrix.

What field should you use to compute the rank? Does it matter?

§6 Let f : {0, 1}n × {0, 1}n → {0, 1} be such that all rows of M(f) are distinct. Show that
C(f) ≥ log n.

Hint:Lowerboundtherank.

§7 (Aho, Ullman, Yannakakis) Show that C(f) = O(log2 χ(f)).

Hint:Theplayerstrytodeterminewhichofthe|χ(f)|rectangles
theirinput-pairliesin.TheprotocolhasO(logχ(f))phases,and
ineachphaseO(logχ(f))bitsgetcommunicated.

§8 For any graph G with n vertices, consider the following communication problem: Player 1
receives a clique C in G, and Player 2 receives an independent set I. They have to com-
municate in order to determine |C ∩ I|. (Note that this number is either 0 or 1.) Prove an
O(log2 n) upperbound on the communication complexity.

Can you improve your upperbound or prove a lower bound better than Ω(log n)? (Open
question)

§9 Prove Lemma 12.21 using the hint given there.

§10 (Karchmer-Wigderson) Consider the following problem about computing a relation. Associate
the following communication problem with any function f : {0, 1}n → {0, 1}. Player 1 gets
any input x such that f(x) = 0 and player 2 gets any input y such that f(y) = 1. They have
to communicate in order to determine a bit position i such that xi 6= yi.

Show that the communication complexity of this problem is exactly the minixmum depth of
any circuit that computes f . (The maximum fanin of each gate is 2.)

§11 Use the previous question to show that computing the parity of n bits requires depth at least
2 log n.

§12 Show that the following computational problem is in EXP: given the matrix M(f) of a
boolean function, and a number K, decide if C(f) ≤ K.

(Open since Yao [?]) Can you show this problem is complete for some complexity class?
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Chapter notes and history

Communication complexity was first defined by Yao [?]. Other early papers that founded the field
were Papadimitriou and Sipser [?], Mehlhorn and Schmidt [?] (who introduced the rank lowerbound)
and Aho, Ullman and Yannakakis [?].

The original log rank conjecture was that C(f) = O(rank(M(f))) but this was disproved by
Raz and Spieker [?].

The book by Nisan and Kushilevitz [?] is highly recommended.
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