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1 Nondeterministic vs. Randomized NOF Protocols

Recall from last time:

Definition 1 (Lifted function). Let m := nǫ for a small constant ǫ determined later. Given a base
function f : {0, 1}m → {−1,+1}, and a selection function φ : {0, 1}kn →

(

[n]
m

)

, we define the lifted

function Lift (f, φ) : {0, 1}(k+1)n → {−1,+1} by

Lift (f, φ) (x, y1, . . . , yk) := f(x|φ(y1, . . . , yk)).

We want to compute Lift (f, φ) using (k + 1)-player NOF protocols, where player 0 has x on its
forehead, and player i > 0 has yi on its forehead.

Fact 1. ∀φ, N(Lift (OR, φ)) ≤ log n + 1, so Lift (OR, φ) ∈ NP
cc
k , for all k.

Our goal is to show that: if k = k(n) < δ · log n for a fixed δ < 1 and sufficiently large
n, there exists an α such that for some φ, R(Lift (OR, φ)) > nα. As we have seen last time,
to get the lower bound above it is enough to show that there exists a distribution λ such that
corrλ

(

Lift (OR, φ) ,Πnα)

< 1/3.
By [4, 3], there exists a constant γ, a function g : {0, 1}m → {−1,+1}, and a distribution µ on

{0, 1}m, such that

• corrµ (OR, g) ≥ 5/6

• and corrµ (g, χS) = 0 for all S with |S| < γ · √m.

Furthermore, let λ be the distribution on {0, 1}(k+1)n defined by

λ(x, y1, . . . , yk) :=
2mµ(x|φ(y1, . . . , yk))

2(k+1)n
.

Fact 2.

corrλ (Lift (OR, φ) ,Lift (g, φ)) = corrµ (OR, g) .

We have seen that d(f, g) = 1 − corr (f, g) is a distance, so by the triangle inqeuality,
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Fact 3.

corrλ (Lift (OR, φ) ,Πc) ≤ corrλ (Lift (g, φ) ,Πc) + (1 − corrλ (Lift (OR, φ) ,Lift (g, φ)))

= corrλ (Lift (g, φ) ,Πc) + (1 − corrµ (OR, g))

≤ corrλ (Lift (g, φ) ,Πc) + 1/6.

Thus, to obtain the upper bound on corrλ (Lift (OR, φ) ,Πc) < 1/3, it is enough to obtain the
upper bound corrλ (Lift (g, φ) ,Πc) < 1/6. For the latter, we use the following connection between
correlation and discrepancy, along with the regular discrepancy method of [1].

Fact 4 ([5]).

corrλ (F,Πc) ≤ 2c · discλ(F ).

Fact 5 ([1]). For every function f : {0, 1}(k+1)n → R and for every cylinder intersection T ⊆
{0, 1}(k+1)n,

(

E
x,ȳ

[f(x, ȳ) · 1T (x, ȳ)]

)2k

≤ E
ȳ0,ȳ1





∣

∣

∣

∣

∣

∣

E
x





∏

u∈{0,1}k

f (x, ȳu)





∣

∣

∣

∣

∣

∣



 ,

where we write ȳu for (yu1

1 , yu2

2 , . . . , yuk
k ).

Putting these facts together, we get:

Claim 6.

(corrλ (Lift (g, φ) ,Πc))2
k ≤ 2(c+m)2k · E

ȳ0,ȳ1





∣

∣

∣

∣

∣

∣

E
x





∏

u∈{0,1}k

(µ · g)(x|φ(ȳu))





∣

∣

∣

∣

∣

∣



 .

Proof of Claim 6.

corrλ (Lift (g, φ) ,Πc) ≤ 2c · discλ (Lift (g, φ)) (by Fact 4)

= 2c ·
∣

∣

∣

∣

∣

E
(x,ȳ)∼λ

[(Lift (g, φ) · 1T ) (x, ȳ)]

∣

∣

∣

∣

∣

,

where T is the cylinder intersection witnessing the discrepancy of Lift (g, φ) under λ,

= 2c ·
∣

∣

∣

∣

∣

∑

x,ȳ

(λ · Lift (g, φ) · 1T ) (x, ȳ)

∣

∣

∣

∣

∣

= 2c ·
∣

∣

∣

∣

∣

∑

x,ȳ

(µ · g)(x|φ(ȳ))

2(k+1)·n−m
· 1T (x, ȳ)

∣

∣

∣

∣

∣

,

where we have used the definitions of λ and Lift (g, φ),

= 2c+m ·
∣

∣

∣

∣

E
x,ȳ

[(µ · g)(x|φ(ȳ)) · 1T (x, ȳ)]

∣

∣

∣

∣

.
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We are now in a position to apply the version of the [1] argument given as Fact 5, obtaining:

(corrλ (Lift (g, φ) ,Πc))2
k ≤ 2(c+m)·2k

E
ȳ0,ȳ1





∣

∣

∣

∣

∣

∣

E
x





∏

u∈{0,1}k

(µ · g)(x|φ(ȳ))





∣

∣

∣

∣

∣

∣



 .

We also use the following notation:

Definition 2. Let S = (S1, . . . , Sz) be a multiset of m-element subsets of [n]. Let the range of S,
denoted by

⋃S, be the set of indices from [n] that appear in at least one set in S. Let the boundary
of S, denoted by ∂S, be the set of indices from [n] that appear in exactly one set in the collection
S.

For ȳ0 = (y0
1, . . . , y

0
k), ȳ

1 = (y1
1 , . . . , y

1
k) ∈ {0, 1}kn, and for u ∈ {0, 1}k, define Su(ȳ0, ȳ1, φ) :=

φ(yu1

1 , . . . , yuk
k ). Let S(ȳ0, ȳ1, φ) be the multiset

(

Su : u ∈ {0, 1}k
)

. We define the number of con-
flicts in S to be q(S) := m · 2k − |⋃S|. We write Su for Su(ȳ0, ȳ1, φ) and S for S(ȳ0, ȳ1, φ).

The crux of the argument is that, while for every φ, Lift (OR, φ) ∈ NP
cc
k , when φ is a random

selection function, Lift (OR, φ) /∈ BPP
cc
k . Formally, we claim that:

E
φ

[corrλ (Lift (g, φ) ,Πc)] < 1/6.

To prove this, we first expand the bound above as follows:

(

E
φ

[corrλ (Lift (g, φ) ,Πc)]

)2k

≤ E
φ

[

(corrλ (Lift (g, φ) ,Πc))2
k
]

≤ E
φ



2(c+m)·2k

E
ȳ0,ȳ1





∣

∣

∣

∣

∣

∣

E
x





∏

u∈{0,1}k

(µ · g)(x|φ(ȳu))





∣

∣

∣

∣

∣

∣









= 2(c+m)·2k · E
φ,ȳ0,ȳ1





∣

∣

∣

∣

∣

∣

E
x





∏

u∈{0,1}k

(µg)(x|Su)





∣

∣

∣

∣

∣

∣





= 2(c+m)·2k ·
∑

q≥0

Pr [q(S) = q] · E
[
∣

∣

∣

∣

∣

E
x

[

∏

u

(µg)(x|Su)

]
∣

∣

∣

∣

∣

∣

∣q(S) = q

]

Above, both the probability and the outter expected value are taken over the choice of a uniformly
random selection function φ, and uniformly random input vectors ȳ0 and ȳ1.

We analyze the sum in three steps.
First, we claim that when the number of conflicts in S is small enough, some set Sv has such a

small intersection with the other sets Su, that the second property in the definition of g (the fact
that it is orthogonal to all Fourier characters of all sets) kicks in and allows us to conclude that
the contribution of those terms to the sum is 0.

Lemma 7. For every ȳ0, ȳ1 and φ, if q(S(ȳ0, ȳ1, φ)) < γ · √m · 2k/2, then

E
x





∏

u∈{0,1}k

(µg)(x|Su(ȳ0, ȳ1, φ))



 = 0.
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Proof of Lemma 7. Let r(S) = |⋃S| be the size of the range of S, and let b(S) = |∂S| be the
size of the boundary of S. Note that r(S) − b(S) ≤ q(S) because every j ∈ ∪S \ ∂S occurs in at
least 2 sets in S, thus contributes at least 1 to q(S). Furthermore, r(S) + q(S) = m · 2k. Then,
∑

u∈{0,1}k |Su ∩ ∂S| = b(S) ≥ r(S) − q(S) = m · 2k − 2 · q(S) > (m − γ
√

m)2k. By the pigeonhole

principle, there exists v such that |Sv ∩ ∂S| > m − γ
√

m. We can write

E
x





∏

u∈{0,1}k

(µ · g)(x|Su)



 = E
x|Sv



(µ · g)(x|Sv) · E
x|[n]\Sv





∏

u 6=v

(µ · g)(x|Su)







 .

Let T = Sv \ ∂S. So |T | ≤ γ
√

m. Let h := Ex|[n]\Sv

[

∏

u 6=v(µ · g)(x|Su)
]

. Since h depends only

on x|T , by Property (ii) of g and µ, Ex|Sv
[(µ · g)(x|Sv) · h(x|T )] = 0.

Second, we claim a general bound for every q. This does not depend on g at all, only on the
fact that µ is a probability distribution.

Lemma 8. For every ȳ0, ȳ1 and φ:

E
x





∏

u∈{0,1}k

µ(x|Su(ȳ0, ȳ1, φ))



 ≤ 2q(S(ȳ0,ȳ1,φ))

2m·2k .

Third, we have the point where the random choice of φ comes into play:

Lemma 9. For every q > 0 and uniformly chosen ȳ0, ȳ1, φ:

Pr
ȳ0,ȳ1,φ

[

q(S(ȳ0, ȳ1, φ)) = q
]

≤
(

m3 · 22k

q · n

)q

.

Proof sketch of Lemma 9. Assume that for every 1 ≤ i ≤ k, y0
i 6= y1

i . Then, all 2k points ȳu where
φ is evaluated are distinct. In this case, the multiset S consists of 2k random m-element subsets
of [n].

If these were chose with replacement (i.e., for each set: pick m elements of [n] with replacement),
the probability of obtaining q conflicts in S is at most:

(

m · 2k

q

)

·
(

m · 2k

n

)q

≤
(

e · m2 · 22k

qn

)q

To see this: the binomial coefficient is the number of ways to get q conflicts out of the total 2k

(sets) times m (elements per set) draws; the range of the elements picked so far is always at most
m · 2k; so the probability for each conflict is at most m · 2k/n.

Of course, the sets are in fact picked without replacement, but a similar bound holds.
This takes care of the case when y0

i 6= y1
i for all i. If any of these are equal, the 2k points where

φ is evaluated are no longer distinct. However, by a union bound, this happens with probability
at most k/2n.

Adding these two terms we get the bound stated in the Lemma.
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By standard algebraic manipulations, we get

(

E
φ

[corrλ (Lift (g, φ) ,Πc)]

)2k

≤ 2c·2k
∑

q≥γ
√

m2k/2

(

4

γ
· n 5ǫ

2
−(1−δ)

)q

,

where we have used k < δ · log n and m = nǫ. Setting ǫ := 1−δ
5 ,

≤ 2c·2k+1− γ
√

m2
k

2

For α := ǫ/4 and c := nα,

≤ 22k(nα−(γ/2)·nε/2).

Therefore, for all large enough n, there is some φ such that corrλ (Lift (g, φ) ,Πc) < 1/6. As
discussed before, this implies Lift (OR, φ) /∈ BPP

cc
k .

2 Deterministic vs. Randomized NOF Protocols

Here, we give a brief overview of the following related class separation:

Theorem 10 ([2]). P
cc
k 6= RP

cc
k for k ≤ nO(1).

Consider the class of functions G =
{

g : {0, 1}kn → {0, 1}m
}{

g : {0, 1}kn → {0, 1}m
∣

∣

}

for

some m ≤ n. For every g ∈ G, consider the graph function f g : {0, 1}(k+1)n → {0, 1} defined
by f g(x, ȳ) = 1 if and only if x = g(ȳ) ◦ 0n−m. Observe that, for every ȳ input to players 1, . . . , k,
there is a unique value for the x input of player 0 such that f(x, ȳ) = 1.

Lemma 11. For every g, f g ∈ coRP
cc
k .

Proof. Consider the following protocol: player 0, seeing ȳ, computes x∗ = g(ȳ)◦0n−m; then, players
0 and 1 run an equality testing protocol with inputs x∗ and x, respectively. This costs O (log n) in
the private coin model, and it has only false-positives error.

Our goal is now to show that for some g, f g /∈ P
cc
k . We do this using a counting argument.

The key property which allows us to give the upper bound needed in the counting argument is the
following “normal form” property.

Lemma 12. Let g be a function in G, and let π be a deterministic protocol for f g with cost c.
Then, there exists another deterministic protocol π′ for f g, which works as follows:

• player 0 first sends c bits;

• players 1 through k simultaneously send 1 bit each;

• the output of π′ is 1 iff all “check” bits send in the second stage are 1.
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Proof sketch. We describe π′. Player 0, seeing ȳ, computes the unique value x∗ = g(ȳ) ◦ 0n−m for
which f g(x∗, ȳ) = 1. Then, player 0 communicates the entire transcript τ of π on input (x∗, ȳ).
Now each other player i > 0 checks inductively that τ is consistent with its own view on the real
input (x, ȳ) to π′. That is, for every bit τj that would have been communicated by player i in π,
player i checks that τj is the value it would have communicated seeing the previous communication
τ1, . . . , τj−1 and the real input (x, y1, . . . , yi−1, yi+1, . . . , yk). It is easy to see that all players 1
through k agree with τ iff x = x∗, and hence, iff f g(x, ȳ) = 1.

Observe that π′ has slightly higher cost π: c + k vs. c. However, the interaction between the
players is much more limited in π′ than in π, and this allows us to describe a protocol of the type
of π′ very efficiently. The crux of the counting argument is that, when c ≃ n/2, m ≃ n/2, and
k ≤ nO(1), there are more functions g ∈ G than there are deterministic protocols of cost c for graph
functions f g. Hence, for all large enough n, some graph function f g has complexity more than c,
placing it outside Pcc

k .
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