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1 Applications of 2-Party Communication Complexity Cont’d

1.1 Circuit Depth via Communication Complexity

In order to get circuit lower bounds, we need to extend our notion of 2-party communication
complexity so that it can compute relations.

Definition A relation R is a subset R ⊆ X × Y × Z

Given a relation R the cc problem associated with R follows:
Alice gets x ∈ X
Bob gets y ∈ Y
Alice and Bob must both compute (and output) some z s.t. (x, y, z) ∈ R

A protocol for relations is the same as a protocol for functions, in each step it must specifiy
which party sends a message and the value of that message.

Note that for a given relation there may be more than on z satisfying the above property, Alice
and Bob only need to give one such z. In general, lower bounds are harder to prove for relations
as we need to show it is hard for Alice and Bob to compute any z.

Definition For any boolean function f : {0, 1}n → {0, 1} and X = f−1(1), Y = f−1(0). We define
Rf ⊆ X × Y × {1, 2, ...n} to be the associated relation where,

• Rf = {(x, y, i)|x ∈ X, y ∈ Y, xi 6= yi}

Rf is the set of all (x, y, i) where f(x) = 1, f(y) = 0 and x and y differ on bit i. Similarly if f is
monotone then

• Mf ⊆ X × Y ×{1, 2, ...n} is the set of all (x, y, i) such that x ∈ X, y ∈ Y and xi = 1, yi = 0.

(Recall that for a monotone boolean function f , f(x) = 1 implies that for all x′ where x′i ≥ xi on
every i, x′ is also a 1 of the function.)

Communication complexity lower bounds on Mf give bounds on monotone circuit depth of f
and lower bounds on Rf give circuit depth bounds for general circuits.

Let d(f) and dmonotone(f) denote the min depth of a circuit computing f over ∧, ∨, ¬, and the
min depth of a monotone circuit computing f over ∧, ∨ respectively. In both cases the circuits
must have bounded fan-in.
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Theorem 1 (Karchmer and Widerson ’80s)

1. For every boolean function f : {0, 1}n → {0, 1}, cc(Rf ) = d(f)

2. For f monotone, cc(Mf ) = dmonotone(f).

For formulas it is known that 2d(f) = formula-size(f) so proving lower bounds on communication
complexity of relations is also equivalent to proving formula size lower bounds.

It is a major open problem to get even super log-depth lower bounds for the general case. But
for the monotone case the method above has been used to show that NCi

monotone 6= NCi+1
monotone

for all i [see Theorem 2 and 3].

Proof of Theorem 1 “⇒”
Let C be a circuit for f , depth(C) = d. We can assume that all the negations in the circuit

are at the leaves. (If not, the negations can be pushed to the leaves without affecting depth in any
circuit by repeated application of DeMorgan’s laws.)

We want to use the circuit to obtain a protocol for Rf .

The protocol will involve Alice and Bob taking a particular path down the circuit with Alice,
deciding the branch to take at OR gates and Bob deciding at AND gates. As long as the two
parties maintain the invariant that at each subnode v Cv(x) = 1 while Cv(y) = 0 then the leaf
reached is a bit i where xi 6= yi.

The protocol follows:
Starting from the top of the circuit, for each each node v with children vL, vR

if the gate is an OR Alice says 0 if CvL
(x) = 1 and 1 otherwise.

if the gate is an AND Bob says 0 CvL
(y) = 1 and 1 otherwise.

At the end of the exchange, both Alice and bob recurse on vL if the message sent was 0 and vR

if the message sent was 1.

Clearly at the top of the circuit, for any inputs (x, y), C(x) 6= C(y). Suppose at some point
during the protocol Alice and Bob are at some inner node v where Cv(x) 6= Cv(y).

Case 1 v is an or node.
Then Cv(y) = 0 implies that both CvL

(y) and CvR
(y) are also 0. By choosing the subcircuit for

which her input evaluates to 1, Alice ensures that the recursion continues on a subcircuit where
the two inputs differ.

Case 2 v is an and node.
Likewise, Cv(x) = 1 ⇒ CvL

(x) = CvR
(x) = 1 so by choosing the subcircuit for which his input

evaluates to 0 Bob can also maintain the above invariant.
By induction, when the protocol reaches a leaf, both A and B know an i at which their inputs

differ. The total number of bits sent is bounded by the depth of the circuit. If C was monotone
the same protocol reaches a left where xi = 1.
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Example

OR

OR

AND

OR

x3x2

!x4

AND

c5x3

AND

AND

x3x1

OR

!x2x1

Suppose Alice and Bob have inputs (01101) and (01010) respectively. Then on the circuit above
the sequence of bits sent would be.

Alice : 0 (go right)
Bob : 1(go left)
Alice : 0 (go left)

At which point they reach x3 a bit on which they differ.

Proof of Theorem 1 “⇐”
Given a protocol for Rf we can construct a circuit computing f of bounded depth.
Consider a protocol tree T for Rf . Convert T into a circuit as follows:

1. For each node where the message is sent by Alice, replace the node with an OR gate

2. For each node where the message is sent by Bob, replace the node with an AND gate

3. At each leaf of the protocol tree, with associated monochromatic rectangle A×B and input
bit i
Claim Exactly one of the following hold

(a) ∀α ∈ A, αi = 1 and ∀β ∈ B, βi = 0

(b) ∀α ∈ A, αi = 0 and ∀β ∈ B, βi = 1

Assign the leaves in case (a) to be zi and and the leaves in case (b) to be z̄i.

Given the claim we can prove by induction that the circuit thus constructed calculates f(z).

Proof of Claim
Let α ∈ A, αi = σ. Then for every β ∈ B, βi = σ̄ which in turn implies that ∀α ∈ A, αi = σ.

Theorem 2 (KW)
The monotone depth of st-connectivity is Ω(log2 n).
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Theorem 2 separates monotone NC1 from monotone NC2. A similar lower bound proved for
clique separates monotone− P from monotone−NP .

Theorem 3 Theorem(Raz, McKenzie)
For every i there exists a monotone function in monotone-NCi+1 but not in monotone-NCi.

2 NOF (Number on Forehead) Communication Complexity

Thus far, we have looked at 2-party communication complexity. One extention of this model to
a multi-party problem is the Number on Forehead model.

In an NOF cc problem, there are k players where player i receives xi, |xi| = n. We can imagine
each player wearing their input on their forehead. Thus player i can see all inputs except xi and
players communicate on a shared blackbord to compute some function f(x1, ...xk). Note that when
k = 2 this reduces to the 2-party model.

Intuitively, this model can be more powerful than the 2-party model since more players (k-1 to
be exact) have access to each bit.

Example The multi party Equality problem EQk
n(x1, ...xk) = 1 iff x1 = ... = xk

In the first lecture, we showed using Fooling Sets that for k = 2 D(EQ2
n) = n+ 1.

In contrast, for any k ≥ 3 it only takes 2 bits under the following protocol
Step 1. Player 1 sends 1 iff x2 = ... = xk

Step 2. Player 2 sends 1 iff x1 = x3.

2.1 NOF Complexity Classes

As with two party communication complexity, NOF communication complexity has the following
analogs to the usual complexity classes.

P k,cc NP k,cc RP k,cc BPP k,cc

In recent years the following two facts have been shown

1. P k,cc * RP k,cc

2. BPP k,cc * NP k,cc

2.2 Importance of NOF model (Connection to ACC)

Definition ACC is the family of unbounded fan-in circuits of constant depth and polysize over
∨, ∧, ¬,MODm for some fixed m. (MODm(x1, ...xn) = 1 ⇐⇒

∑

i xi = 0 modm)

When m is a power of a prime, we know lower bounds for ACC but otherwise very little is
known even form as small as 6. We will show that lower bounds for any explicit function f(x1, ...xk)
for polylogn values of k imply super polynomial lower bounds for the class ACC.

Definition SYM+ is the family of depth 2 circuits where the top gate is a symmetric function and

the bottom level consists of AND gates with fan-in d = polylogn. The overall size is 2polylogn.
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Theorem 4 (Yao, Beigel, Tarui)
ACC ⊆ SYM+

Lemma 5 Let f be a boolean function computed by C ∈ SYM+, where C has size S and bottom
fan-in d.

Then there exists a d + 1 player NOF protocol for computing f (under any partition of the
inputs) that sends O(d log S) bits.

Given the lemma, if we can prove that a function f requires super polylog computational
complexity for polylog players then f /∈ SYM+ ⇒ f /∈ ACC. Furthermore, finding such an f ∈ P
would imply that P 6= ACC.

Proof of Lemma
Each AND gate can have fan-in at most d so there must be at least one xi in a d+1 partion of

the input such that the AND gate does not depend on inputs from xi by the pigeon hole principal.
The ith player can compute the this and gate without any communication from other players simply
by looking at the bits available to him.

A priori, we can agree on a partition of the ANDs into d+ 1 groups where group j are AND
functions that can be evaluated by j.

During the protocol, each party i need only send the number of AND gates in group i that
evaluate to true. In fact, the evaluation of the ANDs and sending of this number can be done in
parallel. Since the top gate is symmetric, this information is sufficient for each i to know the value
of the circuit.

Each number sent has at most log S bits so we get the O(d log S) bound immediately.

2.3 Cylinder Intersections

The analog of combinatorial rectangles in the NOF model is the cylinder intersection. Each
node of a protocol tree is consistent with a particular cylinder intersection. These are also the basic
objects under consideration for obtaining lower bounds in the NOF model.

Definition
Let Xi be the set of all possible values for xi (usually {0, 1}n). A cylinder in the ith dimension

is a subset Si ⊂ X1 × ...×Xk where

(x1, x2, ...xi, xi+1, ...xk) ∈ Si ⇐⇒ (x1, x2, ...x
′
i, xi+1, ...xk) ∀x1, ...xn, x

′
i

In otherwords, membership in Si does not depend on the ith coordinate.

Si looks like (a1, ...ai−1, ∗, ai+1, ...ak) where (a1, ...ai−1, ai+1, ...ak) ∈ B[k]/i.

Definition
A subset S ⊂ Xi × ... ×Xk is a cylinder intersection if S =

⋂k
i=1 Si where Si is a cylinder in

the ith dimension.

Example
The entire space X1 × ...×Xk is a cylinder intersection
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Example
The main diagonal of a cube is a cylinder intersection. The three ith dimensional cylinders are

the three planes intersecting main diagonals of oposing faces of the cube.

Example
Again in a cube, the points (1, 1, 1), (0, 1, 0) and (1, 0, 0) are not a cylinder intersection. These

points are known as a “star”. One technique of proving lower bounds is exploiting the structure
of stars (see Chandra Furst Lipton ’86).

Lemma 6 Let P be a k−party deterministic protocol and v be a node in the protocol tree. Then Rv,
the set of inputs that reach v is a cylinder intersection. In particular P partitions X1 × ...×Xkinto
2L (disjoint) monochromatic cylinder intersections, where L =number of leaves of P .

Proof (by induction on tree height)
Suppose Rv = Sv1

∩ Sv2
∩ ... ∩ Svk

, without loss we can assume that player 1 speaks at node
v. This partitions Sv1

into two halves, S1
v1

and S0
v1

. Then then left-right children of Rv are equal
to S1

v1
∩ ... ∩ Svk

and S0
v1

∩ ... ∩ Svk
both of which are cylinder intersections.

2.3.1 Discrepancy in NOF

Most NOF Lower bounds come from discrepancy. The following two Lemmas from previous
lectures still hold for NOF models

1. Dµ,ǫ(f) ≥ log 1−2ǫ
discµ(f) , ǫ < 1/2 and discµ(f) = maxT discµ(f, T )

2. Rǫ ≥ Dµ,ǫ(f) ∀µ

It is useful to consider the definition of discrepancy in a different form.

Definition For a function f : {0, 1}nk → {−1, 1}, a distribtution µ on {0, 1}nk ,and a set T ⊆
{0, 1}nk

discµ(f, T ) =
∣

∣µ
(

f−1(1) ∩ T
)

− µ
(

f−1(−1) ∩ T
)
∣

∣

= |Ex∼µ [f(x) ∗ 1T (x)]|

where 1T (x) = 1 iff x ∈ T .

Theorem 7 (Babai, Nisen, Szegedy ’92)

Ex (f(x) · 1T (x))2
k

≤ E
x

0,x1

[

Π
u∈{0,1}kf(xu)

]

Proof for k = 3
Let T be the cylinder intersection such that discµ(f, T ) = discµ(f) i.e. T witnessses the max

discrepancy.
Consider E(f(x)1T (x)) for the case where k = 3. Writing out the x, we get

Ex1,x2,x3
[f(x1, x2x3) · 1T (x1, x2, x3)]

6



CS 2429 - Foundations of Communication Complexity Lecture #7: 27 October 2009

Because T is a cylinder intersection there exists ψ1, ψ2, ψ3 functions from {0, 1}2n → {0, 1} such
that

1T (x1, x2, x3) = ψ1(x2, x3) · ψ2(x1, x3) · ψ3(x1, x2)

ψ1, ψ2, ψ3 are characteristic functions of the basis for T . Substituting in the expectation above

Ex2,x3
[ψ1(x2, x3) · Ex1

[f(x1, x2, x3]ψ2, ψ3] (1)

From Cauchy-Schwartz we know that E[z]2 ≤ E[z2]

(1)2 ≤ Ex2,x3

[

ψ2
1(x2, x3) (Ex1

[f(x1, x2, x3)ψ2ψ3])
2
]

≤

[expanding out the square and dropping ψ2
1 > 0]

≤ Ex2,x3

[

Ex0

1
x1

1

(

Πu1∈{0,1}f(xu1

1 , x2, x3)ψ2ψ3

)

]

≤ Ex0

1
x1

1
x3

[

ψ2ψ
1
2Ex2

[Πu1
f · ψ3]

]

another application of Cauchy-Swartz gives

(1)4 ≤ Ex0

1
x1

1
x3

[

Ex0

2
x1

2

[

Πu1,u2∈{0,1}f · ψ3

]

]

...

In general, each application of Cauchy-Swartz eliminates one ψ after k applications we get

Ex (f(x) · 1T (x))2
k

≤ E
x

0,x1

[

Π
u∈{0,1}kf(xu)

]

where x = (x1, x2, ...xk) and xu = (xu1

1 , xu2

2 , ...xuk

k ).
The product Π

u∈{0,1}k takes the products of f over the vertices of a hyper cube.
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