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1 Discrepancy and Duality of Sign Degree

Theorem 1 (Duality of sign degree) Let f : {−1, 1}n d ≥ 0

Then sign-deg(f) d iff ∃ a distribution µ over {−1, 1}n s.t.

Ex∼µ [f(x) · χS(x)] = 0 ∀S, |S| < d

That is to say, “f is orthogonal to χS for small s”, where χS is the parity function over the indices
in S

Theorem 2 (Duality of approximation degree) (Sherstov, Shi-Zhu)
Fix ε ≥ 0. Let f : {−1, 1}n → {−1, 1}, degε(f) = d ≥ 1.
Then ∃g : {−1, 1}n → {−1, 1} and a distribution µ over {−1, 1}n such that:

(1) Ex∼µ [g(x)χS(x)] = 0 ∀S |S| ≤ d

(2) corrµ(f, g) > ε (corrµ(f, g) = Ex∼µ[f(x)g(x)])

Proof (Duality of sign degree) This is an instance of the “Gordon Transposition Lemma”
Let A be a matrix of dimension m× n. Then ∃~u s.t. ~uT A > 0 iff ∃~v > 0 s.t. A~v = 0

We want a polynomial f ′ which sign-approximates f . We look for coefficients αs, |S| < d to
produce f ′ =

∑
S αsχs

Fix ρ. If f(ρ) = 1
∑

S αsχs > 0, and if f(ρ) = −1
∑

S αsχs < 0. So,
∑

αsχsf(ρ) > 0, that is
to say, they match in sign.

We construct a matrix with columns representing values for rho and rows representing values
for s, that is, subsets of 1..n of size ≤ d. For each value we fill in χs(ρ)f(ρ). Then the rows of
our matrix are the values for αs, which is ~uT in the above lemma, and ~v is a distribution over our
columns.
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Using duality of sign degree we can prove 2-party communication complexity lower bounds.

(1) We start with a base function f : {−1, 1}n with large sign degree d. For example,
f(x) =

∨m
i=1

∧4m2

j=1 xij has sign-degree m, or the parity function, with sign degree n.

(2) Use the pattern matrix method to construct a 2-player CC problem F (x̄, ȳ) |x̄| = N and
|ȳ| = log

(N
n

)
, N = O(nk). F (x̄, ȳ) = f((̄x)|ȳ), which is read “f of x̄, restricted to the bits specified

by ȳ”

(3) Use duality and BNS upper bound for discrepancy to show that there exists a distribution
λ such that F (x̄, ȳ) has 2−d discrepancy w.r.t λ, for appropriate N.

Theorem 3 Let f be boolean over x1..xn with sign degree ≥ d.
Then disc(F ) ≤ (4en2

Nd )
d
2 where e has its usual meaning as the base of the natural logarithm.

We set N = 16en2

d so that disc ≤ 2−d. See Sherstov, Seperating AC0 from depth-2 majority
circuits, and Sherstov, Pattern Matrix Method.

Proof BNS Lemma: F (X × Y ) → {−1, 1} |X| = 2N |Y | = 2N

discλ(F )2 ≤ 4N
∑

y,y′∈Y

∣∣∣∣∣
∑

x∈X

λ(x, y)λ(x, y′)F (x, y)F (x, y′)

∣∣∣∣∣

We rename y, y′ S and T . λ is a distribution on X × Y induced by µ. To obtain λ we pick y ∈ Y
uniformly at random. We choose x|S according to µ. Then we set the rest of the bits of x uniformly
at random.

By the above lemma,
discΠ(µ)2 ≤ (∗)4nES,T∼U |Γ(S, T )|

where
Γ(S, T ) = Ex∼U [µ(x|S)µ(x|T )f(x|S)f(x|T )]

Claim 1 When |S ∩ T | ≤ d− 1 then Γ(S, T ) = 0.

Claim 2 When |S ∩ T | = i, |Γ(S, T )| ≤ 2i−2.

By these claims,

(∗) ≤
n∑

k=d

2kPr [|S ∩ T | = k]

Pr [|S ∩ T | = k] =

(n
k

)(N−n
n−k

)
(N

n

) ≤
(

en2

Nk

)k

discλ(F )2 ≤
n∑

k=d

2k

(
en2

Nk

)k

=
n∑

k=d

(
2en2

Nk

)k

≤
(

4en2

Nd

)k
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by magic.

Proof of Claim 1 Proving that when |S ∩ T | ≤ d− 1 then Γ(S, T ) = 0. Let S be x1...xn

Γ(S, T ) = Ex [µ(x1...xn)f(x1...xn)µ(x|T )f(x|T )]

Γ(S, T ) = 2
1
N

∑
x1..xn

µ(x1..xn)f(x1..xn)
∑

xn+1..xN

µ(x|T )f(x|T )

Γ(S, T ) = 2
1
N Ex1..xn∼µf(x|x1..xn)


 ∑

xn+1..xN

µ(x|T )f(x|T )




∑
xn+1..xN

µ(x|T )f(x|T ) depends on ≤ d bits, so

Γ(S, T ) = 0

Proof of Claim 2 When |S ∩ T | = i, |Γ(S, T )| ≤ 2i−2

|Γ(S, T )| = Ex1..xn [µ(x1..xn)] · max
x1..xn

Exn+1..x2n−i [µ(x1..xixn+1..x2n−i)]

where we assume that f(x1..xixn+1..x2n−i) = 1 because we’re searching for a maximal value.
Ex1..xn [µ(x1..xn)] = 2−n and Exn+1..x2n−i [µ(x1..xixn+1..x2n−i)] ≤ 2−n−i so

|Γ(S, T )| = 2i−2n

2 Application to Circuits

Allender ’89 Any AC0 function can be computed by a depth-3 majority circuit of quasipolyno-
mial (O(npolylog(n)) size.

(Formerly) open question - Can this be improved? Can every function in AC0 be computed by
depth-2 majority-of-threshold circuits of quasipolynomial size?

Theorem 4 (Sherstov) ∃F ∈ AC0
3 (depth 3) whose computation requires majority of exponen-

tially many threshold gates.

It suffices to show an AC0 function with exponentially small discrepancy. We start with the AC0
2

function:

f =
m∨

i=1

4m2∧

j=1

eij

We construct F(x,y) where F (x, y) = f(x|y), that is, f of the bits of x specified by y. F(x,y) is in
AC0

3 :

F (x, y) =
m∨

i=1

4m2∧

j=1

∨
α

(
yijα1 ∧ yijα2 ∧ ... ∧ yijαq ∧ xijα

)
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because we can swap the order of the ∧’s within the brackets with the last
∨

and then merge them
with the middle

∧
.

By the degree/discrepancy theorem we know that because f requires a high degree polynomial
to compute, F(x,y) has low discrepancy. Each threshold gate can be computed by a O(log n) bit
probabilistic CC protocol with Rpub

ε (f) = O(log n + log 1
ε ).

Suppose F has (low) discrepancy e−Nε
. Then any randomized protocol requires N ε bits. Also

let F = MAJ(h1..hS) where each hi is a threshold circuit.

The players pick a random i ∈ [S]. They evaluate hi, using O(log n) bits and output the result.

The probability of correctness of the threshold-computing protocol is 1− 1
4S if we set ε′ ∼ 1

S .

The total cost is O(log n)+ log S bits. The probability of correctness is (1
2 + 1

2S )− 1
4S = 1

2 + 1
4S

on every input.

Since we know that F requires O(N ε) bits to compute, S must be exponentially large! And so
there is no polynomially-sized majority-of-threshold circuit to compute F ∈ AC0

3 .

4


