CS 2429 - Foundations of Communication Complexity

Lecture #5: 13 October 2006

Lecturer: Toniann Pitassi and Avner Magen

Scribe Notes by: Daniel Fryer

1 Discrepancy and Duality of Sign Degree

Theorem 1 (Duality of sign degree) Let $f : \{-1, 1\}^n d \ge 0$

Then sign-deg(f) d iff \exists a distribution μ over $\{-1,1\}^n$ s.t.

 $E_{x \sim \mu} \left[f(x) \cdot \chi_S(x) \right] = 0 \ \forall S, \ |S| < d$

That is to say, "f is orthogonal to χ_S for small s", where χ_S is the parity function over the indices in S

Theorem 2 (Duality of approximation degree) (Sherstov, Shi-Zhu) Fix $\varepsilon \ge 0$. Let $f : \{-1, 1\}^n \to \{-1, 1\}$, $deg_{\varepsilon}(f) = d \ge 1$. Then $\exists g : \{-1, 1\}^n \to \{-1, 1\}$ and a distribution μ over $\{-1, 1\}^n$ such that:

(1) $E_{x \sim \mu} [g(x)\chi_S(x)] = 0 \quad \forall S \quad |S| \le d$

(2) $\operatorname{corr}_{\mu}(f,g) > \varepsilon$ $(\operatorname{corr}_{\mu}(f,g) = E_{x \sim \mu}[f(x)g(x)])$

Proof (Duality of sign degree) This is an instance of the "Gordon Transposition Lemma" Let A be a matrix of dimension $m \times n$. Then $\exists \vec{u} \text{ s.t. } \vec{u}^T A > 0$ iff $\exists \vec{v} > 0 \text{ s.t. } A \vec{v} = 0$

We want a polynomial f' which sign-approximates f. We look for coefficients α_s , |S| < d to produce $f' = \sum_S \alpha_s \chi_s$

Fix ρ . If $f(\rho) = 1 \sum_{S} \alpha_s \chi_s > 0$, and if $f(\rho) = -1 \sum_{S} \alpha_s \chi_s < 0$. So, $\sum \alpha_s \chi_s f(\rho) > 0$, that is to say, they match in sign.

We construct a matrix with columns representing values for rho and rows representing values for s, that is, subsets of 1..*n* of size $\leq d$. For each value we fill in $\chi_s(\rho)f(\rho)$. Then the rows of our matrix are the values for α_s , which is \vec{u}^T in the above lemma, and \vec{v} is a distribution over our columns. Using duality of sign degree we can prove 2-party communication complexity lower bounds.

(1) We start with a base function $f : \{-1,1\}^n$ with large sign degree d. For example, $f(x) = \bigvee_{i=1}^m \bigwedge_{j=1}^{4m^2} x_{ij}$ has sign-degree m, or the parity function, with sign degree n.

(2) Use the pattern matrix method to construct a 2-player CC problem $F(\bar{x}, \bar{y}) |\bar{x}| = N$ and $|\bar{y}| = \log {N \choose n}$, $N = O(n^k)$. $F(\bar{x}, \bar{y}) = f(\bar{x})|_{\bar{y}}$, which is read "f of \bar{x} , restricted to the bits specified by \bar{y} "

(3) Use duality and BNS upper bound for discrepancy to show that there exists a distribution λ such that $F(\bar{x}, \bar{y})$ has 2^{-d} discrepancy w.r.t λ , for appropriate N.

Theorem 3 Let f be boolean over $x_1..x_n$ with sign degree $\geq d$. Then $disc(F) \leq (\frac{4en^2}{Nd})^{\frac{d}{2}}$ where e has its usual meaning as the base of the natural logarithm.

We set $N = \frac{16en^2}{d}$ so that $disc \leq 2^{-d}$. See Sherstov, Separating AC^0 from depth-2 majority circuits, and Sherstov, Pattern Matrix Method.

Proof BNS Lemma: $F(X \times Y) \rightarrow \{-1, 1\} |X| = 2^N |Y| = 2^N$

$$disc_{\lambda}(F)^{2} \leq 4^{N} \sum_{y,y' \in Y} \left| \sum_{x \in X} \lambda(x,y)\lambda(x,y')F(x,y)F(x,y') \right|$$

We rename y, y' S and T. λ is a distribution on $X \times Y$ induced by μ . To obtain λ we pick $y \in Y$ uniformly at random. We choose $x|_S$ according to μ . Then we set the rest of the bits of x uniformly at random.

By the above lemma,

$$disc_{\Pi}(\mu)^2 \le (*)4^n E_{S,T \sim U} |\Gamma(S,T)|$$

where

$$\Gamma(S,T) = E_{x \sim U} \left[\mu(x|S) \mu(x|T) f(x|S) f(x|T) \right]$$

Claim 1 When $|S \cap T| \le d-1$ then $\Gamma(S,T) = 0$.

Claim 2 When $|S \cap T| = i$, $|\Gamma(S,T)| \le 2^{i-2}$.

By these claims,

$$(*) \leq \sum_{k=d}^{n} 2^{k} Pr\left[|S \cap T| = k\right]$$
$$Pr\left[|S \cap T| = k\right] = \frac{\binom{n}{k}\binom{N-n}{n-k}}{\binom{N}{n}} \leq \left(\frac{en^{2}}{Nk}\right)^{k}$$
$$disc_{\lambda}(F)^{2} \leq \sum_{k=d}^{n} 2^{k} \left(\frac{en^{2}}{Nk}\right)^{k} = \sum_{k=d}^{n} \left(\frac{2en^{2}}{Nk}\right)^{k} \leq \left(\frac{4en^{2}}{Nd}\right)^{k}$$

by magic.

Proof of Claim 1 Proving that when $|S \cap T| \leq d-1$ then $\Gamma(S,T) = 0$. Let S be $x_1...x_n$

$$\Gamma(S,T) = E_x \left[\mu(x_1...x_n) f(x_1...x_n) \mu(x|_T) f(x|_T) \right]$$

$$\Gamma(S,T) = 2^{\frac{1}{N}} \sum_{x_1..x_n} \mu(x_1...x_n) f(x_1...x_n) \sum_{x_{n+1}..x_N} \mu(x|_T) f(x|_T)$$

$$\Gamma(S,T) = 2^{\frac{1}{N}} E_{x_1...x_n \sim \mu} f(x|_{x_1...x_n}) \left[\sum_{x_{n+1}..x_N} \mu(x|_T) f(x|_T) \right]$$

 $\sum_{x_{n+1}..x_N} \mu(x|_T) f(x|_T)$ depends on $\leq d$ bits, so

 $\Gamma(S,T) = 0$

Proof of Claim 2 When $|S \cap T| = i$, $|\Gamma(S,T)| \le 2^{i-2}$

$$|\Gamma(S,T)| = E_{x_1..x_n} \left[\mu(x_1..x_n) \right] \cdot \max_{x_1..x_n} E_{x_{n+1}..x_{2n-i}} \left[\mu(x_1..x_ix_{n+1}..x_{2n-i}) \right]$$

where we assume that $f(x_1...x_ix_{n+1}...x_{2n-i}) = 1$ because we're searching for a maximal value. $E_{x_1...x_n}[\mu(x_1...x_n)] = 2^{-n}$ and $E_{x_{n+1}...x_{2n-i}}[\mu(x_1...x_ix_{n+1}...x_{2n-i})] \le 2^{-n-i}$ so

$$|\Gamma(S,T)| = 2^{i-2n}$$

2 Application to Circuits

Allender '89 Any AC^0 function can be computed by a depth-3 majority circuit of quasipolynomial $(O(n^{polylog(n)})$ size.

(Formerly) open question - Can this be improved? Can every function in AC^0 be computed by depth-2 majority-of-threshold circuits of quasipolynomial size?

Theorem 4 (Sherstov) $\exists F \in AC_3^0$ (depth 3) whose computation requires majority of exponentially many threshold gates.

It suffices to show an AC^0 function with exponentially small discrepancy. We start with the AC_2^0 function:

$$f = \bigvee_{i=1}^{m} \bigwedge_{j=1}^{4m^2} e_{ij}$$

We construct F(x,y) where $F(x,y) = f(x|_y)$, that is, f of the bits of x specified by y. F(x,y) is in AC_3^0 :

$$F(x,y) = \bigvee_{i=1}^{m} \bigwedge_{j=1}^{4m^2} \bigvee_{\alpha} \left(y_{ij\alpha_1} \wedge y_{ij\alpha_2} \wedge \dots \wedge y_{ij\alpha_q} \wedge x_{ij\alpha} \right)$$

because we can swap the order of the \wedge 's within the brackets with the last \bigvee and then merge them with the middle \wedge .

By the degree/discrepancy theorem we know that because f requires a high degree polynomial to compute, F(x,y) has low discrepancy. Each threshold gate can be computed by a $O(\log n)$ bit probabilistic CC protocol with $R_{\epsilon}^{pub}(f) = O(\log n + \log \frac{1}{\epsilon})$.

Suppose F has (low) discrepancy $e^{-N^{\varepsilon}}$. Then any randomized protocol requires N^{ε} bits. Also let $F = MAJ(h_1..h_S)$ where each h_i is a threshold circuit.

The players pick a random $i \in [S]$. They evaluate h_i , using $O(\log n)$ bits and output the result.

The probability of correctness of the threshold-computing protocol is $1 - \frac{1}{4S}$ if we set $\varepsilon' \sim \frac{1}{S}$.

The total cost is $O(\log n) + \log S$ bits. The probability of correctness is $(\frac{1}{2} + \frac{1}{2S}) - \frac{1}{4S} = \frac{1}{2} + \frac{1}{4S}$ on every input.

Since we know that F requires $O(N^{\varepsilon})$ bits to compute, S must be exponentially large! And so there is no polynomially-sized majority-of-threshold circuit to compute $F \in AC_3^0$.