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1 Discrepancy and Duality of Sign Degree

Theorem 1 (Duality of sign degree) Let f: {—1,1}" d >0
Then sign-deg(f) d iff 3 a distribution p over {—1,1}" s.t.
Eou [£(2) - xs(@)] = 0 Y8, 18] < d

That is to say, “f is orthogonal to yg for small s”, where xg is the parity function over the indices

inS

Theorem 2 (Duality of approximation degree) (Sherstov, Shi-Zhu)
Fize >0. Let f:{-1,1}" — {—1,1}, deg(f) =d > 1.
Then 3g : {—1,1}" — {—1,1} and a distribution u over {—1,1}" such that:

(1) Eieplg(@)xs(z)] =0 VS [S|<d

(2) corry(f,g) > ¢ (corru(f,g9) = Explf(x)g(x)])

Proof (Duality of sign degree) This is an instance of the “Gordon Transposition Lemma”
Let A be a matrix of dimension m x n. Then 3i s.t. 4@/ A > 0iff 37 > 0 s.t. ATV =0

We want a polynomial f’ which sign-approximates f. We look for coefficients ay, |S| < d to
produce f' =3¢ asxs

Fix p. If f(p) =1 Y gasxs > 0, and if f(p) = —1 D gasxs < 0. So, > asxsf(p) > 0, that is
to say, they match in sign.

We construct a matrix with columns representing values for rho and rows representing values
for s, that is, subsets of 1..n of size < d. For each value we fill in xs(p)f(p). Then the rows of
our matrix are the values for o, which is @’ in the above lemma, and ¥ is a distribution over our
columns.
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Using duality of sign degree we can prove 2-party communication complexity lower bounds.

(1) We start with a base function f : {—1,1}" with large sign degree d. For example,
f(z) =Vit, /\?Z‘f x;; has sign-degree m, or the parity function, with sign degree n.

(2) Use the pattern matrix method to construct a 2-player CC problem F(z,y) |z| = N and
|y| = log (JT\Z), N = O(n*). F(z,9) = f((x)|3), which is read “f of Z, restricted to the bits specified
by y”

(3) Use duality and BNS upper bound for discrepancy to show that there exists a distribution
A such that F(z,y) has 2~ discrepancy w.r.t \, for appropriate N.

Theorem 3 Let f be boolean over x1..x, with sign degree > d.

Then disc(F') < (4]%722)% where e has its usual meaning as the base of the natural logarithm.

We set N = % so that disc < 27¢. See Sherstov, Seperating AC? from depth-2 majority
circuits, and Sherstov, Pattern Matrix Method.

Proof BNS Lemma: F(X xY) — {-1,1} | X| =2V |Y| =2V

discy(F)* < 4N Z Z M, )Nz, Y ) F(x,y)F(z,y)
y,y' €Y leeX

We rename y,y’ S and T. ) is a distribution on X x Y induced by p. To obtain A we pick y € Y
uniformly at random. We choose z|g according to . Then we set the rest of the bits of z uniformly
at random.
By the above lemma,
discr(p)? < (*)4"Es 7u|T(S, T)|

where

I'(S,T) = Eznv [u(x]s)u(z|r) f(2]s) f(z|T)]

Claim 1 When |[SNT| <d—1 then I'(S,T) = 0.
Claim 2 When |SNT| =1, |['(S,T)| < 2072

By these claims,
n

(x) <> 2"Pr(|SNT| = k]
k=d

n\y (N—n 2\ k
Pr(lSNT| =k = (k)((;;)—’“) < (j@f)

, 9 2 [en? g 2 [ 2en? k 4en? g
discy(F)* < Z 2 ~N5| = Z T < N
k=d
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by magic.
Proof of Claim 1 Proving that when |SNT| < d— 1 then I'(S,T) = 0. Let S be z7...x,
I'(S,T) = Ey [p(xr-xn) f (2120 (] 1) £ (2] 7))

LS, T) =25 3 plerean) fera,) S wlr)flalr)

T1..Tn Tp41--TN

F(57 T) = Q%Ezl..anMf(x’zl..mn) |: Z M(x’T)f(x‘T)]

Tn+1--TN

Y anir.an H(@|T) f(z|T) depends on < d bits, so
'S, 7)=0
Proof of Claim 2 When |[SNT| =14, [['(S,T)| < 272

IT(S,T)| = Eay.ap [(@1-20)] - mAX By g, (21 ing1-- 20—

T1..Tn

where we assume that f(x1..2;2p41..2,—;) = 1 because we’re searching for a maximal value.
Ey  w, p(z1.20)] =27 and By oo, [10(21.-2% 041 T2n—i)] <2777 s0

D(S, T)| =2~

2 Application to Circuits

Allender ’89 Any AC? function can be computed by a depth-3 majority circuit of quasipolyno-
mial (O(nPovos(n)) size.

(Formerly) open question - Can this be improved? Can every function in AC? be computed by
depth-2 majority-of-threshold circuits of quasipolynomial size?

Theorem 4 (Sherstov) 3F € ACY (depth 3) whose computation requires majority of exponen-
tially many threshold gates.

It suffices to show an AC? function with exponentially small discrepancy. We start with the ACY

function:
m 4m?

F=V Ney

i=1j=1

We construct F(x,y) where F(x,y) = f(xz|y,), that is, f of the bits of x specified by y. F(x,y) is in
ACY:

<3

4m?
F(l’, y) = /\ \/ (yijoq A Yijaso ARTIA yijaq A xl]a)
]:1 o

i=1j
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because we can swap the order of the A’s within the brackets with the last \/ and then merge them
with the middle A.

By the degree/discrepancy theorem we know that because f requires a high degree polynomial
to compute, F(x,y) has low discrepancy. Each threshold gate can be computed by a O(logn) bit
probabilistic CC protocol with RF*(f) = O(logn + log 1).

Suppose F has (low) discrepancy e~"". Then any randomized protocol requires N¢ bits. Also
let F' = MAJ(h;..hs) where each h; is a threshold circuit.

The players pick a random i € [S]. They evaluate h;, using O(logn) bits and output the result.
The probability of correctness of the threshold-computing protocol is 1 — ﬁ if we set &’ ~ %

The total cost is O(logn) 4 log S bits. The probability of correctness is (3 + 55) — ﬁ =1+ ﬁ
on every input.

Since we know that F requires O(N¢) bits to compute, S must be exponentially large! And so
there is no polynomially-sized majority-of-threshold circuit to compute F' € ACY.



