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1 The Discrepancy Method — Cont’d

In the previous lecture we’ve outlined the discrepancy method, which is a method for getting lower
bounds on randomized communication complexity given upper bounds on the discrepancy of the
matrix Mf corresponding to the function in question. In this lecture we will present two general
methods that can be used to upper bound the discrepancy.

We denote the discrepancy of f (with respect to the uniform distribution) and a rectangle A×B
by discf (A × B). All our results can be generalized to arbitrary distributions by multiplying each
entry of Mf by the probability of the corresponding cell.

Recall that Boolean functions can be considered as taking values in either {0, 1} or {+1,−1}.
In this section, we will use the ±1 convention.

We use the notation 1A for the characteristic vector of A, which contains 1 in positions corre-
sponding to the elements of A.

1.1 The Eigenvalue Method

The eigenvalue method upper bounds the discrepancy using the maximal eigenvalue of Mf .

Lemma 1 (Eigenvalue Bound) Let f be a symmetric Boolean function, i.e. f(x, y) = f(y, x).
Then

discf (A × B) ≤ 2−2nλmax

√

|A| · |B|,
where n = |x| = |y| is the input size, and λmax is the largest eigenvalue of the symmetric matrix Mf .

Proof Since Mf is symmetric, its eigenvectors vi form an orthonormal basis for R
n. Denote by λi

the eigenvalue corresponding to vi, so that Mfvi = λivi.
Expand the characteristic vectors of A and B in this basis:

1A =
∑

αivi, 1B =
∑

βivi.

Putting these expansions into the definition of discrepancy, we are almost done:
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Note that
∑

α2
i = ‖1A‖2 = |A| and similarly

∑

β2
i = |B|. The lemma follows from an applica-

tion of Cauchy-Schwarz:

22ndiscf (A × B) ≤ λmax

∣

∣

∣

∑

αiβi

∣
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∣

≤ λmax

√

∑

α2
i

√

∑

β2
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√

|A| · |B|.

We can prove Lindsey’s lemma using this bound. First, let’s find the eigenvalues of the
Hadamard matrices. Recall these are defined by the following recursive construction:

H0 = [1], Hn+1 =

[

Hn Hn

Hn −Hn

]

.

Lemma 2 For each n, H2
n = 2nI2n .

Proof The proof is by induction. Since H0 = I1, the lemma is correct for n = 0.
Given that H2

n = 2nI, we can calculate H2
n+1 explicitly:

H2
n+1 =

[

Hn Hn

Hn −Hn

2
]

=

[

H2
n + H2

n H2
n − H2

n

H2
n − H2

n H2
n + H2

n

]

=

[

2n+1I2n 0
0 2n+1I2n

]

= 2n+1I2n+1 .

Corollary 3 The eigenvalues of Hn are all ±2n/2.

Moreover, if n > 0, then half of the eigenvalues are +2n/2, and half of them −2n/2.

Proof If λ is an eigenvalue of Hn then λ2 is an eigenvalue of 2nI, so λ2 = 2n/2.
Moreover, if n > 0 then Tr(Hn) = 0 by construction, and so exactly half of the eigenvalues are

positive, and exactly half are negative.

Lindsy’s lemma follows:

Lemma 4 (Lindsey’s Lemma) We have 22ndiscIPn
(A × B) ≤

√

2n|A| · |B|.
Here IPn(x, y) =

∑

xiyi (mod 2).

Proof The matrix corresponding to IPn is Hn. We have shown that λmax(Hn) = 2n/2, and so the
lemma follows by the Eigenvalue Bound.
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1.2 The BNS Method

The BNS method is another way to bound the discrepancy, and will furnish us with yet another
proof of the upper bound on discIPn

. Actually, it’s a general reformulation of our first proof of
Lindsey’s lemma (given in the previous lecture). The method first appeared in a paper by Babai,
Nisan and Szegedy1.

The method is given by the following lemma:

Lemma 5 (BNS) The discrepancy of a function f : X × Y → Z2 can be bounded as follows:

discf (A × B)2 ≤ E
y,y′

∣

∣

∣
E
x

Mf (x, y)Mf (x, y′)
∣

∣

∣
,

where x, y, y′ are chosen independently and uniformly at random, x from X and y, y′ from Y .

Proof Recall the definition of discrepancy.

discf (A × B) =
∑

x∈A,y∈B

Mf (x, y)/22n.

The discrepancy can be written using expectations as

discf (A × B) =

∣

∣

∣

∣

E
x,y

1A(x)1B(y)Mf (x, y)

∣

∣

∣

∣

.

We can recast the Cauchy-Schwarz inequality in the form E[Z]2 ≤ E[Z2]. Retracing our steps in
the first proof of Lindsey’s lemma, we find that

discf (A × B)2 =

(

E
x
1A(x) E

y
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)2

≤ E
x

(

1A(x) E
y
1B(y)Mf (x, y)

)2

≤ E
x

(

E
y
1B(y)Mf (x, y)

)2

= E
x

(

E
y,y′

1B(y)1B(y′)Mf (x, y)Mf (x, y′)

)

= E
y,y′

1B(y)1B(y′)
(

E
x

Mf (x, y)Mf (x, y′)
)

≤ E
y,y′

∣

∣

∣
E
x

Mf (x, y)Mf (x, y′)
∣

∣

∣
.

The bound we get does not depend on the sizes of A and B, and so it is slightly inferior to bounds
which do (like Lindsey’s lemma). In practice, the difference is usually insignificant (but is the
subject of the final question in the first assignment!).

We illustrate the method by proving yet again the upper bound on the discrepancy of the inner
product function:

1Szegedy is a Hungarian surname and so the digraph sz should be pronounced as an English s (IPA [s]). When
an English sh sound (IPA [

R

]) is intended, the monograph s is used, for example Erdős.
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Lemma 6 We have discIPn
(A × B) ≤ 2−n/2.

Proof The matrix corresponding to IPn is Hn. The rows of Hn are orthogonal and so

E
x

Hn(x, y)Hn(x, z) =

{

0 if y 6= z,

1 if y = z.

Using the BNS bound,

discIPn
(A × B)2 ≤ E

y,z

∣

∣

∣
E
x

Hn(x, y)Hn(x, z)
∣

∣

∣
= Pr[y = z] = 2−n.

2 Degree/Discrepancy Method

The Degree/Discrepancy method, due to Sherstov, is a way to come up with functions having
high randomized communication complexity. The basic idea is to start with some other function
(the “base” function) which is difficult under some other complexity measure, and to “lift” it to
a function which is difficult in the randomized communication complexity model. Sherstov’s main
contribution is using polynomial complexity measures to quantify the difficulty of the base function.

2.1 Polynomial Complexity Measures

We will consider several different complexity measures for the base function. All of them try to
capture the notion of being hard to approximate by a polynomial over the real numbers.

Consider a Boolean function f(x1, . . . , xq). We will assume that the inputs and outputs are the
usual 0/1 (rather than ±1). This function can be represented as a real polynomial by following
the following steps:

1. Present f as a logical formula, e.g. conjunctive normal form.

2. Convert the formula to a polynomial using the following rules:

¬(x) = 1 − x,

x ∧ y = xy,

x ∨ y = x + y − xy.

3. Use the identity x2 = x to reduce any repeated variables in the monomials.

The result is some polynomial whose degree is at most q.
This prompts the following definition:

Definition The degree (also polynomial degree) of a function f , written deg(f), is the minimal
degree of a real polynomial P such that f(x1, . . . , xq) = P (x1, . . . , xq) on all Boolean inputs.

In general, it is difficult to represent functions exactly by polynomials, and so the fact that
a function has high polynomial degree isn’t strong enough for our purposes. A rather lenient
alternative is the following:
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Definition The sign degree (sometimes polynomial threshold degree) of a function f , written
sign-deg(f), is the minimal degree of a real polynomial P such that for all Boolean inputs x1, . . . , xq:

• If f(x1, . . . , xq) = 1 then P (x1, . . . , xq) > 0.

• If f(x1, . . . , xq) = 0 then P (x1, . . . , xq) < 0.

This definition is so permissive that it is hard to prove lower bounds on the sign degree. Here
are two examples of functions for which a lower bound is known:

• The parity function on q inputs has the maximal sign degree q.

• The Minsky-Papert “tribes” function
∨m

i=1

∧4m2

j=1 xij has sign degree m = 3
√

q/4.

Lower bounding the sign degree can be difficult simply because a function with high polynomial
degree can be sign-represented by a very low degree polynomial. An extreme example is the
OR function (the logical inclusive or of all inputs). This function is sign-represented by the linear
polynomial

∑

xi− 1
2 , but an exact representation necessitates a degree q polynomial. This prompts

the need for some sort of an interpolation between these two extreme definitions.
The following definition generalizes both previous ones:

Definition [ǫ-Approximation Degree] Given a real 0 ≤ ǫ ≤ 1
2 , the ǫ-degree (more officially, ǫ-

approximation degree) of a function f , written ǫ-deg(f), is the minimal degree of a real polynomial P
such that for all Boolean inputs,

|f(x1, . . . , xq) − P (x1, . . . , xq)| ≤ ǫ.

If ǫ = 0 this reduces to the regular degree, while if ǫ = 1
2 then this (almost) reduces to the sign

degree. Clearly the ǫ-degree is monotone decreasing in ǫ, and so for general 0 < ǫ < 1
2 we have

0 ≤ sign-deg(f) ≤ ǫ-deg(f) ≤ deg(f) ≤ q.

As an example, the OR function, whose sign-degree is 1 and whose polynomial degree is q, has
ǫ-degree O(

√
q) for ǫ = 1/8.

Nisan and Szegedy related the ǫ-degree to decision tree complexity, defined as follows:

Definition A decision tree for a Boolean function is a binary tree whose inner vertices are labelled
by input variables, and whose leaves are labelled by 0/1. The computation outlined by the tree
proceeds from the root by querying the labelled variable, taking the left branch if the respective
variable is 0, the right branch if it is 1. Upon reaching a leaf, its label is output.

The decision tree complexity of a function f , written DTC(f), is the depth of the shallowest
decision tree which represents it.

Using the method outlined above for converting a formula into a real polynomial, one sees that the
decision tree complexity upper bounds the polynomial degree. In particular, ǫ-deg(f) ≤ DTC(f).
Nisan and Szegedy proved a matching upper bound:

ǫ-deg(f) ≤ DTC(f) ≤ ǫ-deg(f)8.

Formulated differently, we have log ǫ-deg(f) = Θ (log DTC(f)).
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2.2 Looking ahead

In the next class we will show how to turn a function with high polynomial degree complexity into
a function with high randomized communication complexity. For now, we outline the procedure
for a base function with high sign degree. The first observation is the following duality theorem,
which we formulate for functions in the ±1 universe.

Theorem 7 (Duality of Sign Degree) The function f(x1, . . . , xq) satisfies sign-deg(f) > d if

and only if there exists a measure µ on Z
q
2 such that

E
x1,...,xq∼µ

[f(x1, . . . , xq)χS(x1 . . . , xq)] = 0 for all |S| ≤ d,

where χS, the Fourier character corresponding to S, is defined by

χS(x1, . . . , xq) =
∏

i∈S

xi.

Since the Fourier characters corresponding to all subsets of S span all functions which depend
only on inputs from S, the condition in the theorem can be reformulated as

E
x1,...,xq∼µ

[f(x1, . . . , xq)g(x1 . . . , xq)] = 0

for every function g depending on at most d coordinates.
We will prove this theorem, which is an easy application of linear programming duality, during

the next lecture.

Given this theorem, we will proceed according to the following outline:

1. Start with a base function f with high sign-degree.

2. Lift it to a function F (X,Y ) defined as follows. The first player’s input X is a vector of
length N = qO(1). The second player’s input Y is an indexing of all possible ordered choices
of q bits out of N . Thus |Y | = log N !/(N − q)!. Each input Y defines some sequence of
non-repeating indices 0 ≤ i1, . . . , iq < N . We define F (X,Y ) = f(xi1 , . . . , xiq).

3. Use duality to get a distribution, µ, on the inputs of f under which f has zero correlation to
all functions depending on few coordinates.

4. Lift this distribution to a distribution, λ, on X × Y with similar properties.

5. Use the BNS method to upper bound the discrepancy of F with respect to λ, and deduce a
lower bound on the randomized communication complexity.
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