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Randomized Communication Complexity

Definitions

A (private coin) randomized protocol is a protocol where Alice and Bob have access to random
strings rA and rB, respectively. These two strings are chosen independently, according to some
probability distribution. We can classify randomized protocols by considering different types of
error:

• zero-error protocol P:
∀x, y Pr

rA,rB
[P(x, rA, y, rB) = f(x, y)] = 1

• ε-error protocol P:
∀x, y Pr

rA,rB
[P(x, rA, y, rB) = f(x, y)] ≥ 1− ε

• one-sided ε-error protocol P:

∀x, y : f(x, y) = 0⇒ PrrA,rB [P(x, rA, y, rB) = 0] = 1
f(x, y) = 1⇒ PrrA,rB [P(x, rA, y, rB) = 1] ≥ 1− ε

Due to randomization, the number of bits exchanged may differ in different executions of the
protocol on the same input (x, y). So, there are two natural choices for measuring the running time
of a randomized protocol:

• The worst case running time P on input (x, y) is the maximum number of bits communicated
over all choices of the random strings rA and rB. The worst case cost of P is the maximum,
over all inputs (x, y), of the worst case running time of P on (x, y).

• The average case running time P on input (x, y) is the expected number of bits communicated
over all choices of the random strings rA and rB. The average case cost of P is the maximum,
over all inputs (x, y), of the average case running time of P on (x, y).

So, for a function f : X × Y → {0, 1}, we define the following complexity measures:

• R0(f) is the minimum average case cost of a randomized protocol that computes f with zero
error.
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• For 0 < ε < 1
2 , Rε(f) is the minimum worst case cost of a randomized protocol that computes

f with error ε.

• For 0 < ε < 1, R1
ε (f) is the minimum worst case cost of a randomized protocol that computes

f with one-sided error ε.

These lead naturally to the following complexity classes:

• ZPP cc = {f | R0(f) ∈ O(polylog(n))}

• BPP cc = {f | Rε(f) ∈ O(polylog(n))}

• RP cc = {f | R1
ε (f) ∈ O(polylog(n))}

Analogous definitions hold in a public coin model, that is, a model where both Alice and Bob see
the results of a single series of random coin flips. A randomized protocol in the public coin model
can be viewed as a distribution of deterministic protocols, that is, Alice and Bob choose together a
string r (according to a probability distribution Π, and independently of x and y) and then follow
the deterministic protocol Pr. The success probability of a public coin protocol on input (x, y)
is the probability of choosing a deterministic protocol, according to the probability distribution
Π, that computes f(x, y) correctly. We use the same complexity measures as in the private coin
model, but add a superscript ‘pub’, i.e., Rpub0 (f), Rpubε (f), R1 pub

ε (f). We have previously seen the
following facts:

• Rpubε (f) ≤ Rε(f)

• for every δ > 0 and every ε > 0, Rε+δ(f) ≤ Rpubε (f) +O(log n+ log δ−1)

Distributional Complexity

Let µ be a probability distribution overX×Y , X = {0, 1}n, Y = {0, 1}n. The (µ, ε)-distributional
communication complexity of f , Dµ

ε (f), is the cost of the best deterministic protocol that gives the
correct answer for f on at least a (1− ε) fraction of all inputs in X × Y , weighted by µ.

Theorem 1 Rpubε (f) = maxµDµ
ε (f)

Proof First, we show that Rpubε (f) ≥ maxµDµ
ε (f). Let P be a randomized public coin protocol

with worst-case cost Rpubε (f) that computes f with success probability at least 1− ε for every input
(x, y). Therefore, if Π is the probability distribution of P’s public coin flips,

Pr
r∈Π,(x,y)∈(X×Y )µ

(Pr(x, y) = f(x, y)) ≥ 1− ε

By a counting argument, there exists a fixed choice of public coin flips r′ such that

Pr
(x,y)∈(X×Y )µ

(Pr′(x, y) = f(x, y)) ≥ 1− ε

Thus, Pr′ is a deterministic protocol that gives the correct answer for f on at least a 1− ε fraction
of all inputs in X × Y , weighted by µ. So, Rpubε (f) ≥ cost(Pr′) ≥ maxµDµ

ε (f).
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Next, we show that Rpubε (f) ≤ maxµDµ
ε (f). Let c = maxµDµ

ε (f). We define a two-player
zero-sum game:

• Player P1 has all deterministic c-bit communication protocols. Player P2 has all inputs
X × Y .

• P1 chooses a protocol P, P2 chooses an input (x, y) (independently of one another).

• P1 wins if P(x, y) = f(x, y), otherwise P2 wins.

Each mixed strategy of P2 can be viewed as a distribution µ′ on the inputs. Since Dµ′
ε (f) ≤ c,

there is a protocol that P1 can pick that ensures that the expected payment is at least 1− ε. By
John von Neumann’s Minimax theorem, P1 has a randomized strategy that guarantees payoff 1−ε
for every choice (x, y) of P2. This randomized strategy is a distribution Π over c-bit deterministic
protocols, so it is a randomized public coin protocol P for f with cost at most c and error at most
ε. Therefore, c ≥ cost(P) ≥ Rpubε (f).

Theorem 1 is useful because, for any choice of µ, a lower bound for Dµ
ε gives a lower bound on

Rpubε (f).

Definition A distribution µ over X × Y is a product distribution if µ(x, y) = µX(x) · µY (y) for
some distributions µX over X and µY over Y . Let R[ ](f) = maxµDµ(f), where the maximum is
taken over all product distributions µ.

Exercise: Prove that R[ ]
ε (DISJ) = O(

√
n log n). On the other hand, show that Rε(DISJ) = Θ(n).

Sherstov showed a separation between product and non-product distributional complexity by
proving the existence of a function f such that R[ ](f) = Θ(1) but Rε(f) = Θ(n).

Discrepancy

We now consider a technique for proving lower bounds for Dµ
ε . It consists of finding an upper

bound for the size of rectangles in Mf that are “almost” monochromatic. If we can prove that all
such rectangles are small, then we need a lot of rectangles to “cover” the function.

Definition Let f : X × Y → {0, 1} be a function, R be any rectangle, and µ be a probability
distribution on X × Y . Denote

Discµ(R, f) =
∣∣∣∣Pr
µ

[f(x, y) = 0 and (x, y) ∈ R]− Pr
µ

[f(x, y) = 1 and (x, y) ∈ R]
∣∣∣∣

The discrepancy of f according to µ is

Discµ(f) = max
R
{Discµ(R, f)},

where the maximum is taken over all rectangles R.

Proposition 2 For every function f : X ×Y → {0, 1}, every probability distribution µ on X ×Y ,
and every ε ≥ 0,

Dµ
1
2
−ε ≥ log2(

2ε
Discµ(f)

)
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Proof Let P be a c-bit deterministic protocol for f which is correct with probability at least 1
2 +ε,

where the inputs are weighted by µ. Then,

(1
2 + ε)− (1

2 − ε) ≤ Pr
µ

[P(x, y) = f(x, y)]− Pr
µ

[P(x, y) 6= f(x, y)]

2ε =
∑
`

(
Pr
µ

[P(x, y) = f(x, y) and (x, y) ∈ R`]− Pr
µ

[P(x, y) 6= f(x, y) and (x, y) ∈ R`]
)

where the summation is over all leaves ` of the protocol. Since each leaf designates either a 0 or a
1, we can bound this expression from above by

∑
`

∣∣∣∣Pr
µ

[f(x, y) = 0 and (x, y) ∈ R`]− Pr
µ

[f(x, y) = 1 and (x, y) ∈ R`]
∣∣∣∣

Each R` is a rectangle, so each of the terms in this sum is bounded from above by Discµ(f). Since
there at most 2c leaves, we get 2ε ≤ 2c ·Discµ(f), which implies the result.

We now demonstrate how to prove a lower bound for the inner product (IP) function by calculating
the discrepancy of IP according to the uniform distribution. First, we prove the following result,
known as the Lindsey Lemma. We will use the fact that, for any two rows ri and r` of a Hadamard
matrix, < ri, r` >= 0 whenever i 6= `.

Lemma 3 Let H be an N ×N Hadamard matrix. Let K = S × T , where |S| = a and |T | = b, be
an (a× b) submatrix of H. The absolute value of the sum of all entries in K is bounded above by√
abN .

Proof Let α =
∑
i∈S

∑
j∈T

Kij . Let Ki denote the ith row of K and define y =
∑
i∈S

Ki. Denote by x

the vector such that

xj =

{
1 if j ∈ T
0 if j /∈ T

It follows that α =< x, y >. But,

< x, y >2 ≤ |x|22 · |y|22
= b · |y|22
= b· < y, y >
= b· <

∑
i∈SKi ,

∑
i∈SKi >

= b ·
∑
i∈S

∑
`∈S < Ki,K` >

= b ·
∑
i∈S < Ki,Ki > (as < Ki,K` >= 0 when i 6= `)

= b · (aN)

Thus, α =
√
abN .

Now, we calculate an upper bound on the discrepancy of IP according to the uniform distribution.
We define f = IP as:

f(x, y) =

{
1 if

∑n
i=1 xiyi mod 2 = 0

−1 if
∑n
i=1 xiyi mod 2 = 1
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Then, any matrix Mf is a 2n×2n Hadamard matrix. So, for any rectangle K = S×T with |S| = a
and |T | = b,

Discuniform(K, f) =
∑
i∈S

∑
j∈T Kij

≤
√
ab2n

22n by Lemma 3

As a, b ≤ 2n,
Discuniform(f) ≤

√
2n2n2n

22n

= 2−
n
2

So, by Proposition 2, Dµ
1
2
−ε(IP ) ≥ log2

(
2ε

2−
n
2

)
= n

2 + 1 + log2(ε).
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