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1 Unbounded Error Probabilistic Communication Complexity and

Sign-Rank

Definition Let f : {0, 1}n ×{0, 1}m → {0, 1}. An unbounded error protocol for f , is a protocol P
such that

Pr[P (x, y) = f(x, y)] > 1/2

the probability is over the coin tosses of the players. The (worst-case) cost of P is the maximum
number of bits sent during an execution of P taken over choices of x and y, the players inputs. The
unbounded error communication complexity of f , denoted C̃f , is the minimum cost of an unbounded
error protocol for f .

Most functions have linear unbounded error communication complexity. This lecture is an ex-
position of Jürgen Forster’s 2002 paper ‘A linear lower bound on the unbounded error probabilistic
communication complexity’ from the Journal of Computer and System Sciences, which was the
first to give an explicit function with linear unbounded error communication complexity.

We denote the set of n by m real-valued matrices by R
n×m, and the set of n by m ±1-valued

matrices by {+1,−1}n×m.

Definition Let A ∈ {+1,−1}n×m. B ∈ R
n×m sign-approximates A if

sign(Bi,j) = Ai,j for each entry i, j

The sign-rank of A is the minimum rank of a matrix B that sign-approximates A. I.e.,

sign-rank(A) = min
B∈Rn×m

{rank(B) : ∀i, j sign(Bi,j) = Ai,j}

For a function f : {0, 1}n × {0, 1}m → {0, 1}, Mf is the 2n by 2m matrix whose i, jth entry is
2f(i, j) − 1, i.e.

Mf = [2f(i, j) − 1]i,j

The following theorem motivates our interest in the sign-rank of Mf :

Theorem 1 For f : {0, 1}n × {0, 1}m → {0, 1}, if r = sign-rank(Mf ) then

⌈log r⌉ ≤ C̃f ≤ ⌈log r⌉ + 1
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Theorem 1 will be proven in a later lecture; we concern ourselves with deriving a lower bound for
the sign-rank.

Definition The spectral norm, of a matrix A ∈ R
n×m is

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖

Where ‖v‖ is the standard Euclidean norm if v is a vector.

Theorem 2 Let A ∈ {+1,−1}n×m

sign-rank(A) ≥
√

nm

‖A‖

Corollary 3 For f : {0, 1}n × {0, 1}n → {0, 1},

C̃f ≥ n − log2 ‖Mf‖

Example The Hadamard matrices {Hn}n∈N are a sequence of matrices. Hn is 2n by 2n

H1 =

∣

∣

∣

∣

1 1
1 −1

∣

∣

∣

∣

Hn+1 =

∣

∣

∣

∣

Hn Hn

Hn −Hn

∣

∣

∣

∣

It is easy to see that distinct columns, x, y of Hn match in exactly half their entries and so the
columns of Hn are orthogonal and HT

n Hn = 2nI2n and so ‖HT
n Hn‖ = 2n.

‖Hn‖ =
√

‖HT
n Hn‖ = 2n/2

Let f = IPn, i.e. f(x, y) =
∑n

i=1 xiyi mod 2. Mf is the nth Hadamard matrix. So

C̃IP ≥ n − log2 ‖Hn‖ = n/2

So we have given a function (the inner product) whose unbounded error probabilistic commu-
nication complexity is at least n/2. The rest of the lecture is concerned with the proof Theorem
2, the heart of which is is linear algebra.

2 Background in Matrix Theory

In this section we recall some terminology and basics facts concerning matrices. Readers needing
no such reminders may safely skip this section.

A set of vectors in R
k are said to be in general position if no k or fewer of them are linearly

dependent. The set of eigenvalues of a matrix A is called its spectrum and denoted spec(A). We
will denote the eigenspace of A associated with eigenvalue λ as Eλ(A).

Let A ∈ R
n×n be a symmetric matrix. The spectral theorem for symmetric matrices states that

there exists an orthonormal basis d1, ..., dn of R
n and values λ1, ..., λn ∈ R such that

A =

n
∑

i=1

λidid
T
i
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Equivalently, A = DΛDT where D = [d1|...|dn] and Λ = diag(λ1, ..., λn). {d1, ..., dn} are the
eigenvectors of A and {λ1, ..., λn} = spec(A). A is said to be positive semi-definite (PSD) if

∀x ∈ R
n xT Ax ≥ 0

If A is PSD, not only is its spectrum real, but it is non-negative. For i ∈ {1, ..., n} we have

0 ≤ dT
i Adi

= dT
i





∑

j

λjdjd
T
j



 di

= dT
i





∑

j

λj〈di, dj〉dj





= dT
i λi〈di, di〉di (Orthogonality of D)

= λi (‖di‖ = 1)

Note that for any b ∈ R
n, bbT is PSD. Also, if {A1, ..., Am} are PSD matrices and {α1, ..., αm} are

positive real numbers then M =
∑

αiAi is PSD.
Fix a symmetric matrix A (so spec(A) ⊂ R) and a candidate spectrum lower-bound λ0 ∈ R.

Let B = A−λ0In. Let λm be A’s smallest eigenvalue and v an associated eigenvector. If λm < λ0,
then

vT Bv = vT Av − vT λ0v = (λm − λ0)‖v‖2 < 0

so B is not PSD.

The Spectral Norm

We recall the definition of the spectral norm of a matrix A ∈ R
n×m

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖ (1)

This is just the operator norm for R
n×m induced by the Euclidean norm on R

n. It can be shown
with little effort that the function defined in 1 is in fact a norm, and thus induces a topology
on R

n×m via the metric p(A,B) = ‖A − B‖ makes R
n×m so we can talk about convergence of

sequences of matrices, and continuity of functions acting on a set of matrices.
First note that

‖A‖ def
= sup

x 6=0

‖Ax‖
‖x‖ = sup

‖x‖≤1
‖Ax‖ = max

‖x‖=1
‖Ax‖

The first equality is the definition, the second follows by the linearity of M . That the supremum
is obtained follows from the continuity of the euclidean norm and the compactness of the unit ball
in R

m. This last implies that A is bounded (which is not true of all linear operators on infinite-
dimensional vector spaces), so we can bound the length of images of vectors under the action of A,
I.e.

∀x ∈ R
m ‖Ax‖ ≤ ‖A‖‖x‖ (2)

The LHS of (2) is the length of the vector Ax (i.e. the image of x under A), whereas the RHS is
the product of the spectral norm of A and the length of x.
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For all matrices A, AT A is an n by n symmetric matrix. So AT A =
∑

i σiuiu
T
i for orthonormal

{u1, ..., un} and {σ1, ..., σn} = spec(AT A). Without loss of generality, suppose σ1 > ... > σn.
Further, since

xT (AT A)x = (Ax)T (Ax) = ‖Ax‖2 ≥ 0

we have that AT A is PSD, and so σi ≥ 0 for all i. Now

‖Ax‖2 = 〈Ax,Ax〉
= xT AT Ax

= xT

(

∑

i

σiuiu
T
i

)

x

=
∑

i

σi〈x, ui〉2

So ‖Ax‖2 is maximized over unit vectors when x is in the direction of u1 (since σ1 ≥ σi for all i).

‖A‖ = max
‖x‖=1

‖Ax‖ =
√

max
‖x‖=1

‖Ax‖2 =
√

σ1 =
√

‖AT A‖

Now if A is symmetric, A = DΛDT and AT = A, so

AT A = A2 = (DΛDT )(DΛDT ) = DΛ2DT

So the squares of the eigenvalues of A equal the eigenvalues of AT A, and

‖A‖ =
√

σ1 = max{|λ| : λ ∈ spec(A)}

Finally, we want to show that the function mλ : R
n×n → R with returns the smallest modulus

of its eigenvalues, i.e.
mλ(M) = min{|λ| : λ ∈ spec(M)

is a continuous function (with respect to the topology induced by the spectral norm). To do this,
it is convenient to introduce the max norm, ‖ · ‖ : R

n×m, which is the maximum magnitude of any
of a matrix’s entries, i.e.

‖M‖∞ = max
i,j

|Mi,j |

It is straightforward to see that ‖M‖ ≤ √
n‖M‖∞, and so the topology induced by the spectral

norm ‖ · ‖ is a refinement of the topology induced by the max norm ‖ · ‖∞. So to show that mλ is
continuous with respect to the spectral norm, it suffices to show that mλ is a continuous function
with respect to the max norm.

For a square matrix A, the eigenvalues of A are the roots of the characteristic polynomial
χA(λ) = det(M − λI). The roots of a polynomial depend continuously on its coefficients, thus the
eigenvalues of A depend continuously on its entries. Thus the function mλ(A) is continuous with
respect to the max norm.
The Trace

The trace of A, trace(A), is the sum of the diagonal entries of A.

trace(A) =
∑

i

Ai,i

4



CS 2429 - Foundations of Communication Complexity Lecture #11: 24 November 2009

Clearly trace is linear. Additionally, for a pair matrices A,B where the products AB and BA are
defined, trace(AB) = trace(BA) (apply the definition of trace, then of matrix multiplication and
reorder the sum). Since A = DΛDT , and D is unitary, we have that

trace(A) = trace(D(ΛDT )) = trace((ΛDT )D) = trace(Λ)

So if A is a symmetric matrix, it is easily seen that trace(A) is the sum of the eigenvalues of A
(since every matrix A is similar to a matrix in Jordan Normal Form this is actually true for all
matrices, but we will not need this more general fact).

3 A Result in Matrix Theory

In this section we state and prove the main technical result from Forster’s paper which is the heart
of the proof of Theorem 2. We define the operator M̃ on a set of vectors X as follows:

M̃(X ) =
∑

x∈X

1

‖x‖2
xxT

If X ⊂ R
r, then M̃(X ) is an r by r matrix.

Theorem 4 Let X = {x1, ..., xn} be a set of vectors in general position in R
r such that n ≥ r.

Then there exists a nonsingular A ∈ R
r×r such that

M̃(AX ) =
n

r
Ir

where AX = {Ax : x ∈ X}
M̃(X is a sum of outer-products of vectors, so it is PSD, so its trace gives us the sum of its
eigenvalues.

trace(M̃(X )) = trace

(

∑

i

1/‖xi‖2xix
T
i

)

=
∑

i

1/‖xi‖2 trace(xix
T
i ) (linearity of trace)

=
∑

i

(1/‖xi‖2)(‖xi‖2)

= n

So the average eigenvalue of M̃(X ) is n/r for any X . By the spectral theorem, M̃ = UΛUT for
unitary U and Λ = diag(spec M̃(X )). So if we can find an A such that

min(spec(M̃(AX ))) = n/r (3)

i.e. n/r is the only eigenvalue of M̃(AX ), then

M̃ (AX ) = U(n/rIr)U
T

=⇒ M̃ (UT AX ) = n/rIr

and we are done. So (3) is our goal.
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Lemma 5 Let X be a set of unit vectors in general position in R
k. Either

M̃ (X ) =
n

r
Ir

or there exists a nonsingular A such that M̃(AX ) whose smallest eigenvalue is strictly larger than

the smallest eigenvalue of M̃(X ).

Proof Without loss of generality we suppose that

M̃(X ) = diag(λ1, ..., λr)

with λ1 ≥ ... ≥ λr. Since λr is the smallest eigenvalue, the average of which is n/r, λr ≤ n/r. If
λr = n/r, then all the eigenvalues are n/r and we are done. So we suppose that λr < n/r and that
its multiplicity is less than r.

Since M̃(X ) is PSD, its spectrum is non-negative, so let

A = diag(λ
−1/2
1 , ..., λ−1/2

r )

Since X is a set of unit vectors, M̃(X ) =
∑

xxT and so

Ir = AM̃ (X )AT =
∑

x

(Ax)(Ax)T (4)

Let
B = M̃ (AX ) − λrIr

If B is PSD, then the smallest eigenvalue of M̃(AX ) is at least λr.

B = M̃(AX ) − λrIr

=

(

∑

x

1/‖Ax‖2(Ax)(Ax)2

)

− λr

∑

x

(Ax)(Ax)T (by (4))

=
∑

x

(1/‖Ax‖2 − λr)(Ax)(Ax)T

So B is PSD if and only if αx = (1/‖Ax‖2 − λr) ≥ 0 for all x ∈ X . Now

‖Ax‖2 =
∑

i

x2
i

λi
≤ 1/λr‖xi‖2

X is a set of unit vectors so ‖Ax‖2 ≤ 1/λr, αx ≥ 0 for all x, B is PSD, and

min(spec(M̃ (AX ))) ≥ λr (5)

If the inequality of (5) is strict, we’re done. So suppose that the inequality of (5) is in fact an
equality. Showing that

dimEλr
(M̃ (AX )) < dim Eλr

(M̃(X )) (6)
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will complete the proof of the lemma since though we have not increased the smallest eigenvalue
of M̃ (AS), the multiplicity of λr is an integer which we can reduce to zero (thereby increasing the
minimum eigenvalue) by iterating the above process.

Let v = dim Eλr
(M̃ (X )). Now

Eλr
(M̃ (AX )) = ker B

im B is the span of vectors x such that αx > 0. On the other hand, αx = 0 if and only if x is an
eigenvector for λr. Since the vectors in X are in general position, the span of B is k, unless the
eigenspace of M̃(X ) associated with λr is large. I.e.

dim im B = min{k, n − v}

By the rank theorem, we have that

dim ker B = k − min{k, n − v}
≤ k − (n − v)

= v − (n − k)

Since n > k, we get that dimker B < v and so (6) holds and the proof of the lemma is complete.

To finish the proof of the theorem, we need a lemma which we cite but do not prove (see the
Forster’s paper for the proof).

Lemma 6 Let X be a set of n ≥ k vectors in general position in R
k. For all ǫ > 0, let

Sǫ = {A ∈ R
k×k : det A 6= 0, ‖A‖ = 1 and min(spec(M̃(AX ))) ≥ 1 + ǫ}

Then Sǫ is compact for all ǫ.

We now prove Theorem 4. We are given X . First normalize X . Partition X arbitrarily into
a set of r vectors, X1 and the remaining n − r vectors X2. Let A be the (nonsingular) linear
transformation mapping X1 to the canonical unit vectors in R

r. Thus

M̃(AX ) = Ir + M

where M = M̃(AX2). If n = r, M is nothing and we’re finished, so suppose n > r. Now M is
PSD, so M = UΛUT where all diagonal entries of Λ are non-negative, so

M̃(AX = Ir + UΛUT

= UIrU
T + UΛUT (U is unitary)

= U(Ir + Λ)UT

We have immediately that the eigenvalues of M̃ (AX ) are all at least 1.
If M̃(X ) 6= n/rIr, Lemma 5 guarantees the existence of nonsingular A such that the smallest

eigenvalue of M̃(AX ) is larger than that of M̃(X ). In particular, the smallest eigenvalue of M̃(AX )
is strictly bigger than 1, so there exists an ǫ > 0 such that all eigenvalues of M̃(AX ) are greater
than 1 + ǫ.

The minimum eigenvalue of M̃ (AX ) is a continuous function of A and by Lemma 6, Sǫ is a
compact set, so there exists a nonsingular A ∈ Sǫ such that the smallest eigenvalue of M̃(AX ) is
maximal. Again by Lemma 5, if M̃(AX ) 6= n/rIr, then we could increase its minimum eigenvalue,
but this contradicts the choice of A, so M̃(AX = n/rIr as required.
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4 Proof of the Main Theorem

We need one more lemma for the proof of the main theorem.

Lemma 7 Let M ∈ {+1,−1}n×m, and unit vectors X = {x1, ..., xn},Y = {y1, ..., ym} ⊂ R
d such

that Mi,j = sign〈xi, yj〉. Then
∑

i,j

|xi · yj| ≤ ‖M‖
√

nm

Proof Let x
(k)
i denote the kth component of the vector xi. If X = [x1|...|xn], let W = {w1, ..., wd} ⊂

R
n be the set of rows of X. Likewise, if Y = [y1|...|ym], let Z = {z1, ..., zd} ⊂ R

m be the set of

rows of Y . (So w
(k)
i = w

(i)
k and likewise for y and z).

sign(xi · yj) = Mi,j =⇒ |xi · yj| = Mi,j(xi · yj)

so

∑

i,j

|xi · yj| =
∑

i,j

Mi,j(xi · yj)

=
∑

i,j

Mi,j

∑

k

x
(k)
i y

(k)
i

=
∑

k

∑

i,j

Mi,j x
(k)
i y

(k)
i

=
∑

k

wT
k Mzk

Since
∑

i,j |xi · yj| is positive, so is
∑

k wT
k Mzk, and so

∑

k

wT
k Mzk =

∣

∣

∣

∣

∣

∑

k

wT
k Mzk

∣

∣

∣

∣

∣

≤
∑

k

|wT
k Mzk|

≤
∑

k

‖wk‖‖Mzk‖

≤
∑

k

‖wk‖‖M‖‖zk‖

= ‖M‖
∑

k

‖wk‖‖zk‖

so
∑

i,j

|xi · yj| ≤ ‖M‖
∑

k

‖wk‖‖zk‖ (7)
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Now
(

∑

k

‖wk‖‖zk‖
)2

≤
(

∑

k

‖wk‖2

)(

∑

k

‖zk‖2

)

(Cauchy-Schwartz)

=

(

∑

i

‖xi‖2

)





∑

j

‖yj‖2





= nm

Thus
∑

k

‖wk‖‖zk‖ ≤
√

nm (8)

The result follows from (7) and (8).

Now we can prove the main theorem.

Proof [Of Theorem 2] We have M ∈ {+1,−1}n×n. Let C ∈ R
n×n be a rank r matrix that

sign-approximates M . So there exists X = {x1, ..., xn},Y = {y1, ..., ym} ⊂ R
r such that

xi · yj = Ci,j

We can assume that X and Y are in general position; otherwise perturbing all entries by a value in
(−ǫ, ǫ) for small enough ǫ gives us a set of vectors that still sign-approximates M (for small enough
ǫ) but are almost surely in general position.

By Theorem 4 there exists a nonsingular A such that M̃(AX ) = n/rIr. Let B = (AT )−1. Note
that

Axi · Byj = (Axi)
T Byj = xT

i AT Byj = xT
i yj = xi · yj

So replace X with xi = Axi/‖Axi‖ and Y by vj = Byj/‖Byj‖. X and Y still sign-approximate M
but now X ,Y are unit vectors and so by lemma 7

∑

i,j

|xi · yj| ≤ ‖M‖
√

nm (9)

and by choice of A,
∑

x∈X xxT = n
r Ir.

Fix yj ∈ Y.

∑

i

|xi · yj | ≥
∑

i

(xi · yj)
2

= yT

(

∑

i

xix
T
i

)

y

= yT (n/rIr)y

= n/r

Summing over j gives
∑

i,j

|xi · yj| ≥ nm/r (10)
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Combining (9) and (10) we get that
r ≥

√
nm/‖M‖

The result follows.
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